A novel role for RecA under non-stress: promotion of swarming motility in Escherichia coli K-12

Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and swarming. Swimming motility consists of individual cell movement in liquid medium or soft semisolid agar, whereas swarming is a coordinated cellul...

Full description

Saved in:
Bibliographic Details
Published inBMC biology Vol. 5; no. 1; p. 14
Main Authors Gómez-Gómez, José-María, Manfredi, Candela, Alonso, Juan-Carlos, Blázquez, Jesús
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 28.03.2007
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and swarming. Swimming motility consists of individual cell movement in liquid medium or soft semisolid agar, whereas swarming is a coordinated cellular behaviour leading to a collective movement on semisolid surfaces. It is known that swimming motility can be influenced by several types of environmental stress. In nature, environmentally induced DNA damage (e.g. UV irradiation) is one of the most common types of stress. One of the key proteins involved in the response to DNA damage is RecA, a multifunctional protein required for maintaining genome integrity and the generation of genetic variation. The ability of E. coli cells to develop swarming migration on semisolid surfaces was suppressed in the absence of RecA. However, swimming motility was not affected. The swarming defect of a DeltarecA strain was fully complemented by a plasmid-borne recA gene. Although the DeltarecA cells grown on semisolid surfaces exhibited flagellar production, they also presented impaired individual movement as well as a fully inactive collective swarming migration. Both the comparative analysis of gene expression profiles in wild-type and DeltarecA cells grown on a semisolid surface and the motility of lexA1 [Ind-] mutant cells demonstrated that the RecA effect on swarming does not require induction of the SOS response. By using a RecA-GFP fusion protein we were able to segregate the effect of RecA on swarming from its other functions. This protein fusion failed to regulate the induction of the SOS response, the recombinational DNA repair of UV-treated cells and the genetic recombination, however, it was efficient in rescuing the swarming motility defect of the DeltarecA mutant. The RecA-GFP protein retains a residual ssDNA-dependent ATPase activity but does not perform DNA strand exchange. The experimental evidence presented in this work supports a novel role for RecA: the promotion of swarming motility. The defective swarming migration of DeltarecA cells does not appear to be associated with defective flagellar production; rather, it seems to be associated with an abnormal flagellar propulsion function. Our results strongly suggest that the RecA effect on swarming motility does not require an extensive canonical RecA nucleofilament formation. RecA is the first reported cellular factor specifically affecting swarming but not swimming motility in E. coli. The integration of two apparently disconnected biologically important processes, such as the maintenance of genome integrity and motility in a unique protein, may have important evolutive consequences.
AbstractList Abstract Background Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and swarming. Swimming motility consists of individual cell movement in liquid medium or soft semisolid agar, whereas swarming is a coordinated cellular behaviour leading to a collective movement on semisolid surfaces. It is known that swimming motility can be influenced by several types of environmental stress. In nature, environmentally induced DNA damage (e.g. UV irradiation) is one of the most common types of stress. One of the key proteins involved in the response to DNA damage is RecA, a multifunctional protein required for maintaining genome integrity and the generation of genetic variation. Results The ability of E. coli cells to develop swarming migration on semisolid surfaces was suppressed in the absence of RecA. However, swimming motility was not affected. The swarming defect of a ΔrecA strain was fully complemented by a plasmid-borne recA gene. Although the ΔrecA cells grown on semisolidsurfaces exhibited flagellar production, they also presented impaired individual movement as well as a fully inactive collective swarming migration. Both the comparative analysis of gene expression profiles in wild-type and ΔrecA cells grown on a semisolid surface and the motility of lexA1 [Ind-] mutant cells demonstrated that the RecA effect on swarming does not require induction of the SOS response. By using a RecA-GFP fusion protein we were able to segregate the effect of RecA on swarming from its other functions. This protein fusion failed to regulate the induction of the SOS response, the recombinational DNA repair of UV-treated cells and the genetic recombination, however, it was efficient in rescuing the swarming motility defect of the ΔrecA mutant. The RecA-GFP protein retains a residual ssDNA-dependent ATPase activity but does not perform DNA strand exchange. Conclusion The experimental evidence presented in this work supports a novel role for RecA: the promotion of swarming motility. The defective swarming migration of ΔrecA cells does not appear to be associated with defective flagellar production; rather, it seems to be associated with an abnormal flagellar propulsion function. Our results strongly suggest that the RecA effect on swarming motility does not require an extensive canonical RecA nucleofilament formation. RecA is the first reported cellular factor specifically affecting swarming but not swimming motility in E. coli. The integration of two apparently disconnected biologically important processes, such as the maintenance of genome integrity and motility in a unique protein, may have important evolutive consequences.
Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and swarming. Swimming motility consists of individual cell movement in liquid medium or soft semisolid agar, whereas swarming is a coordinated cellular behaviour leading to a collective movement on semisolid surfaces. It is known that swimming motility can be influenced by several types of environmental stress. In nature, environmentally induced DNA damage (e.g. UV irradiation) is one of the most common types of stress. One of the key proteins involved in the response to DNA damage is RecA, a multifunctional protein required for maintaining genome integrity and the generation of genetic variation. The ability of E. coli cells to develop swarming migration on semisolid surfaces was suppressed in the absence of RecA. However, swimming motility was not affected. The swarming defect of a DeltarecA strain was fully complemented by a plasmid-borne recA gene. Although the DeltarecA cells grown on semisolid surfaces exhibited flagellar production, they also presented impaired individual movement as well as a fully inactive collective swarming migration. Both the comparative analysis of gene expression profiles in wild-type and DeltarecA cells grown on a semisolid surface and the motility of lexA1 [Ind-] mutant cells demonstrated that the RecA effect on swarming does not require induction of the SOS response. By using a RecA-GFP fusion protein we were able to segregate the effect of RecA on swarming from its other functions. This protein fusion failed to regulate the induction of the SOS response, the recombinational DNA repair of UV-treated cells and the genetic recombination, however, it was efficient in rescuing the swarming motility defect of the DeltarecA mutant. The RecA-GFP protein retains a residual ssDNA-dependent ATPase activity but does not perform DNA strand exchange. The experimental evidence presented in this work supports a novel role for RecA: the promotion of swarming motility. The defective swarming migration of DeltarecA cells does not appear to be associated with defective flagellar production; rather, it seems to be associated with an abnormal flagellar propulsion function. Our results strongly suggest that the RecA effect on swarming motility does not require an extensive canonical RecA nucleofilament formation. RecA is the first reported cellular factor specifically affecting swarming but not swimming motility in E. coli. The integration of two apparently disconnected biologically important processes, such as the maintenance of genome integrity and motility in a unique protein, may have important evolutive consequences.
BACKGROUND: Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and swarming. Swimming motility consists of individual cell movement in liquid medium or soft semisolid agar, whereas swarming is a coordinated cellular behaviour leading to a collective movement on semisolid surfaces. It is known that swimming motility can be influenced by several types of environmental stress. In nature, environmentally induced DNA damage (e.g. UV irradiation) is one of the most common types of stress. One of the key proteins involved in the response to DNA damage is RecA, a multifunctional protein required for maintaining genome integrity and the generation of genetic variation. RESULTS: The ability of E. coli cells to develop swarming migration on semisolid surfaces was suppressed in the absence of RecA. However, swimming motility was not affected. The swarming defect of a ΔrecA strain was fully complemented by a plasmid-borne recA gene. Although the ΔrecA cells grown on semisolidsurfaces exhibited flagellar production, they also presented impaired individual movement as well as a fully inactive collective swarming migration. Both the comparative analysis of gene expression profiles in wild-type and ΔrecA cells grown on a semisolid surface and the motility of lexA1 [Ind-] mutant cells demonstrated that the RecA effect on swarming does not require induction of the SOS response. By using a RecA-GFP fusion protein we were able to segregate the effect of RecA on swarming from its other functions. This protein fusion failed to regulate the induction of the SOS response, the recombinational DNA repair of UV-treated cells and the genetic recombination, however, it was efficient in rescuing the swarming motility defect of the ΔrecA mutant. The RecA-GFP protein retains a residual ssDNA-dependent ATPase activity but does not perform DNA strand exchange. CONCLUSION: The experimental evidence presented in this work supports a novel role for RecA: the promotion of swarming motility. The defective swarming migration of ΔrecA cells does not appear to be associated with defective flagellar production; rather, it seems to be associated with an abnormal flagellar propulsion function. Our results strongly suggest that the RecA effect on swarming motility does not require an extensive canonical RecA nucleofilament formation. RecA is the first reported cellular factor specifically affecting swarming but not swimming motility in E. coli. The integration of two apparently disconnected biologically important processes, such as the maintenance of genome integrity and motility in a unique protein, may have important evolutive consequences.
Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and swarming. Swimming motility consists of individual cell movement in liquid medium or soft semisolid agar, whereas swarming is a coordinated cellular behaviour leading to a collective movement on semisolid surfaces. It is known that swimming motility can be influenced by several types of environmental stress. In nature, environmentally induced DNA damage (e.g. UV irradiation) is one of the most common types of stress. One of the key proteins involved in the response to DNA damage is RecA, a multifunctional protein required for maintaining genome integrity and the generation of genetic variation.BACKGROUNDBacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and swarming. Swimming motility consists of individual cell movement in liquid medium or soft semisolid agar, whereas swarming is a coordinated cellular behaviour leading to a collective movement on semisolid surfaces. It is known that swimming motility can be influenced by several types of environmental stress. In nature, environmentally induced DNA damage (e.g. UV irradiation) is one of the most common types of stress. One of the key proteins involved in the response to DNA damage is RecA, a multifunctional protein required for maintaining genome integrity and the generation of genetic variation.The ability of E. coli cells to develop swarming migration on semisolid surfaces was suppressed in the absence of RecA. However, swimming motility was not affected. The swarming defect of a DeltarecA strain was fully complemented by a plasmid-borne recA gene. Although the DeltarecA cells grown on semisolid surfaces exhibited flagellar production, they also presented impaired individual movement as well as a fully inactive collective swarming migration. Both the comparative analysis of gene expression profiles in wild-type and DeltarecA cells grown on a semisolid surface and the motility of lexA1 [Ind-] mutant cells demonstrated that the RecA effect on swarming does not require induction of the SOS response. By using a RecA-GFP fusion protein we were able to segregate the effect of RecA on swarming from its other functions. This protein fusion failed to regulate the induction of the SOS response, the recombinational DNA repair of UV-treated cells and the genetic recombination, however, it was efficient in rescuing the swarming motility defect of the DeltarecA mutant. The RecA-GFP protein retains a residual ssDNA-dependent ATPase activity but does not perform DNA strand exchange.RESULTSThe ability of E. coli cells to develop swarming migration on semisolid surfaces was suppressed in the absence of RecA. However, swimming motility was not affected. The swarming defect of a DeltarecA strain was fully complemented by a plasmid-borne recA gene. Although the DeltarecA cells grown on semisolid surfaces exhibited flagellar production, they also presented impaired individual movement as well as a fully inactive collective swarming migration. Both the comparative analysis of gene expression profiles in wild-type and DeltarecA cells grown on a semisolid surface and the motility of lexA1 [Ind-] mutant cells demonstrated that the RecA effect on swarming does not require induction of the SOS response. By using a RecA-GFP fusion protein we were able to segregate the effect of RecA on swarming from its other functions. This protein fusion failed to regulate the induction of the SOS response, the recombinational DNA repair of UV-treated cells and the genetic recombination, however, it was efficient in rescuing the swarming motility defect of the DeltarecA mutant. The RecA-GFP protein retains a residual ssDNA-dependent ATPase activity but does not perform DNA strand exchange.The experimental evidence presented in this work supports a novel role for RecA: the promotion of swarming motility. The defective swarming migration of DeltarecA cells does not appear to be associated with defective flagellar production; rather, it seems to be associated with an abnormal flagellar propulsion function. Our results strongly suggest that the RecA effect on swarming motility does not require an extensive canonical RecA nucleofilament formation. RecA is the first reported cellular factor specifically affecting swarming but not swimming motility in E. coli. The integration of two apparently disconnected biologically important processes, such as the maintenance of genome integrity and motility in a unique protein, may have important evolutive consequences.CONCLUSIONThe experimental evidence presented in this work supports a novel role for RecA: the promotion of swarming motility. The defective swarming migration of DeltarecA cells does not appear to be associated with defective flagellar production; rather, it seems to be associated with an abnormal flagellar propulsion function. Our results strongly suggest that the RecA effect on swarming motility does not require an extensive canonical RecA nucleofilament formation. RecA is the first reported cellular factor specifically affecting swarming but not swimming motility in E. coli. The integration of two apparently disconnected biologically important processes, such as the maintenance of genome integrity and motility in a unique protein, may have important evolutive consequences.
ArticleNumber 14
Audience Academic
Author Manfredi, Candela
Gómez-Gómez, José-María
Alonso, Juan-Carlos
Blázquez, Jesús
AuthorAffiliation 1 Departamento de Biotecnología Microbiana. Centro Nacional de Biotecnología, C/Darwin, 3, 28049-Madrid, Spain
AuthorAffiliation_xml – name: 1 Departamento de Biotecnología Microbiana. Centro Nacional de Biotecnología, C/Darwin, 3, 28049-Madrid, Spain
Author_xml – sequence: 1
  givenname: José-María
  surname: Gómez-Gómez
  fullname: Gómez-Gómez, José-María
– sequence: 2
  givenname: Candela
  surname: Manfredi
  fullname: Manfredi, Candela
– sequence: 3
  givenname: Juan-Carlos
  surname: Alonso
  fullname: Alonso, Juan-Carlos
– sequence: 4
  givenname: Jesús
  surname: Blázquez
  fullname: Blázquez, Jesús
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17391508$$D View this record in MEDLINE/PubMed
BookMark eNqNks2L1DAUwIusuB969SgBQfDQMWnTJvUglGXVwYWF9eMakvRlJkubzCad1f3vTZ112OoKkkPCe7_3I3l5x9mB8w6y7DnBC0J4_YYwSnKGMcurnNBH2dE-cHDvfJgdx3iFcVExVj7JDgkrG1JhfpSJFjl_Az0KvgdkfECXoFu0dR2ElHF5HAPE-BZtgh_8aL1D3qD4XYbBuhWaQr0db5F16CzqNQSr11Yi7XuLPuWkeJo9NrKP8OxuP8m-vj_7cvoxP7_4sDxtz3NVUzbmTWM01cp0nVSUqpIZySjGXJnCsNJgoAqUUUCblNQl7XADNeO6lKBUzWl5ki133s7LK7EJdpDhVnhpxa-ADyshw2h1D6Iqaq5KWhdlpymUVDYcg9ayodoYxevkerdzbbZqgE6DG4PsZ9J5xtm1WPkbQXhVYN4kQbsTKOv_IZhntB_E9Fli-ixRCTI96NXdJYK_3kIcxWCjhr6XDvw2JrJkBamKBL7cgSuZHmed8UmpJ1i0pCZNU9SEJ2rxAJVWB4PVaaaMTfFZwetZQWJG-DGu5DZGsfx8-f_sxbc5--J-c_dN-T2SCaA7QAcfYwAjtB3lNHnpxrYXBItp8v_u1-KPsr354YKfZ64DGA
CitedBy_id crossref_primary_10_1080_08927014_2020_1826939
crossref_primary_10_3389_fmicb_2020_00583
crossref_primary_10_1038_s41598_020_76426_2
crossref_primary_10_1093_jac_dky407
crossref_primary_10_1016_j_bjm_2018_03_007
crossref_primary_10_1128_spectrum_01093_22
crossref_primary_10_1021_acsinfecdis_0c00413
crossref_primary_10_1080_08927014_2012_706751
crossref_primary_10_1128_mBio_00971_17
crossref_primary_10_1016_j_celrep_2023_113393
crossref_primary_10_1093_jambio_lxae141
crossref_primary_10_1128_mSystems_00064_16
crossref_primary_10_1186_s12864_015_1890_9
crossref_primary_10_1093_femsre_fuad065
crossref_primary_10_1099_mic_0_2007_009084_0
crossref_primary_10_1016_j_ijbiomac_2024_130611
crossref_primary_10_1002_cbdv_202000171
crossref_primary_10_1128_JB_00804_10
crossref_primary_10_1038_s41429_019_0160_5
crossref_primary_10_1039_b703159a
crossref_primary_10_1055_a_2157_8913
crossref_primary_10_1128_CMR_00023_18
crossref_primary_10_1128_IAI_00566_17
crossref_primary_10_1085_jgp_202213168
crossref_primary_10_1007_s00203_013_0870_1
crossref_primary_10_1093_jac_dku080
crossref_primary_10_1371_journal_pone_0111513
crossref_primary_10_1186_1756_0500_7_108
crossref_primary_10_3389_fmicb_2016_01560
crossref_primary_10_1371_journal_pone_0159871
crossref_primary_10_1016_j_jfp_2023_100137
crossref_primary_10_1371_journal_pone_0105578
crossref_primary_10_1016_j_jprot_2014_06_008
crossref_primary_10_1080_08927014_2010_511197
crossref_primary_10_1371_journal_pone_0146685
crossref_primary_10_1016_j_bbrc_2012_10_141
crossref_primary_10_1099_ijsem_0_005469
crossref_primary_10_1089_ast_2014_1162
crossref_primary_10_1116_1_4972100
crossref_primary_10_1016_j_bbrc_2019_07_093
crossref_primary_10_4155_fmc_2020_0310
crossref_primary_10_1093_femsle_fnac106
crossref_primary_10_4236_abb_2013_43A059
crossref_primary_10_1016_j_ibiod_2013_01_015
crossref_primary_10_1016_j_dnarep_2013_12_001
crossref_primary_10_1016_j_pep_2021_105967
crossref_primary_10_3389_fmicb_2017_01360
crossref_primary_10_1093_jac_dkq496
crossref_primary_10_1371_journal_pone_0178541
crossref_primary_10_1093_jambio_lxad227
crossref_primary_10_1099_ijsem_0_006346
crossref_primary_10_1128_IAI_01321_09
crossref_primary_10_3390_pharmaceutics14112344
Cites_doi 10.1073/pnas.91.18.8631
10.1128/9781555816704
10.1093/genetics/158.1.41
10.1103/PhysRevE.71.031908
10.1016/j.mib.2006.02.001
10.1016/S1369-5274(99)00033-8
10.1038/msb4100050
10.1099/00221287-46-2-175
10.1038/nrm1127
10.1111/j.1365-2958.2005.04755.x
10.1073/pnas.060030097
10.1074/jbc.M513592200
10.1016/S0168-6445(03)00064-0
10.1146/annurev.genet.37.110801.142616
10.1128/JB.180.15.3757-3764.1998
10.1016/0022-2836(88)90246-X
10.1073/pnas.111005198
10.1093/emboj/17.11.3207
10.1046/j.1365-2958.2003.03584.x
10.1111/j.1365-2958.2006.05208.x
10.1074/jbc.M204467200
10.1128/JB.182.21.5990-5996.2000
10.1046/j.1365-2958.2002.03032.x
10.1139/m77-198
10.1128/jb.175.19.6238-6244.1993
10.1126/science.8456314
10.1128/JB.181.6.1703-1712.1999
10.1128/MMBR.58.3.401-465.1994
10.1146/annurev.micro.57.030502.091014
10.1128/JB.182.22.6308-6321.2000
10.1038/nature05042
10.1006/jmbi.2001.5336
10.1126/science.8146657
10.1146/annurev.biochem.71.083101.133940
10.1080/10409230390242489
10.1128/MMBR.63.4.751-813.1999
10.1073/pnas.0602119103
10.1016/j.dnarep.2004.09.008
10.1073/pnas.95.5.2568
10.1002/bies.20343
10.1074/jbc.M410371200
10.1371/journal.pbio.0030176
10.1016/j.molcel.2005.01.006
10.1093/nar/30.11.2280
10.1371/journal.pbio.0030052
10.1016/j.femsre.2003.09.004
10.1146/annurev.bi.63.070194.005015
10.1073/pnas.77.5.2819
10.1038/35003501
10.1128/JB.187.4.1515-1518.2005
10.1101/gr.4527806
10.1128/JB.187.1.304-319.2005
ContentType Journal Article
Copyright COPYRIGHT 2007 BioMed Central Ltd.
Copyright © 2007 Gómez-Gómez et al; licensee BioMed Central Ltd. 2007 Gómez-Gómez et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2007 BioMed Central Ltd.
– notice: Copyright © 2007 Gómez-Gómez et al; licensee BioMed Central Ltd. 2007 Gómez-Gómez et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
7X8
5PM
DOA
DOI 10.1186/1741-7007-5-14
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1741-7007
EndPage 14
ExternalDocumentID oai_doaj_org_article_5268b34623dc4e34a980ecca94cffb86
PMC1852089
oai_biomedcentral_com_1741_7007_5_14
A161992618
17391508
10_1186_1741_7007_5_14
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GroupedDBID ---
0R~
123
23N
2VQ
2WC
4.4
53G
5GY
5VS
6J9
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
C1A
C6C
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
IGS
IHR
INH
INR
IOV
IPNFZ
ISE
ISR
ITC
KQ8
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
WOQ
WOW
XSB
-A0
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7X7
ABVAZ
AFGXO
AFNRJ
5PM
ID FETCH-LOGICAL-b647t-99fc4cbfddab44b37fa74008bf2f73f0e4bebfbe494b3c34d09e678c3aebb6843
IEDL.DBID RBZ
ISSN 1741-7007
IngestDate Wed Aug 27 01:29:17 EDT 2025
Thu Aug 21 13:18:31 EDT 2025
Wed May 22 07:11:44 EDT 2024
Thu Jul 10 23:28:30 EDT 2025
Thu Mar 27 01:51:56 EDT 2025
Tue Mar 25 03:43:32 EDT 2025
Fri Jun 27 05:15:09 EDT 2025
Fri Jun 27 05:15:17 EDT 2025
Wed Feb 19 01:42:21 EST 2025
Tue Jul 01 02:57:57 EDT 2025
Thu Apr 24 23:05:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b647t-99fc4cbfddab44b37fa74008bf2f73f0e4bebfbe494b3c34d09e678c3aebb6843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1741-7007-5-14
PMID 17391508
PQID 70372152
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5268b34623dc4e34a980ecca94cffb86
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1852089
biomedcentral_primary_oai_biomedcentral_com_1741_7007_5_14
proquest_miscellaneous_70372152
gale_infotracmisc_A161992618
gale_infotracacademiconefile_A161992618
gale_incontextgauss_ISR_A161992618
gale_incontextgauss_IOV_A161992618
pubmed_primary_17391508
crossref_citationtrail_10_1186_1741_7007_5_14
crossref_primary_10_1186_1741_7007_5_14
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-03-28
PublicationDateYYYYMMDD 2007-03-28
PublicationDate_xml – month: 03
  year: 2007
  text: 2007-03-28
  day: 28
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC biology
PublicationTitleAlternate BMC Biol
PublicationYear 2007
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References DB Kearns (110_CR12) 2003; 49
K Schlacher (110_CR31) 2006; 442
SC Kowalczykowski (110_CR22) 1994; 58
A Kuzminov (110_CR23) 1999; 63
L Eberl (110_CR11) 1999; 181
S Ayora (110_CR57) 2002; 277
J Courcelle (110_CR25) 2003; 37
OA Soutourina (110_CR2) 2003; 27
S Mariconda (110_CR45) 2006; 60
CD Amsler (110_CR17) 1993; 175
CJ Knyon (110_CR40) 1980; 77
CI Mayfield (110_CR54) 1977; 23
T Yasuda (110_CR51) 1998; 17
K Schlacher (110_CR30) 2005; 18
T Shibata (110_CR42) 2001; 98
J Adler (110_CR16) 1967; 46
T Ogawa (110_CR41) 1993; 259
(110_CR20) 2000
GC Walker (110_CR21) 2000
LL McCarter (110_CR19) 2006; 9
LM Maurer (110_CR18) 2005; 187
JB Stock (110_CR3) 1996
M Kitagawa (110_CR36) 2005
T Pérez-Capilla (110_CR39) 2005; 187
R Daniels (110_CR8) 2004; 28
S Ayora (110_CR55) 2002; 30
RM Harshey (110_CR5) 1994; 91
SC West (110_CR43) 2003; 4
RT Cirz (110_CR38) 2005; 3
WN Abouhamad (110_CR32) 1998; 180
SL Lusetti (110_CR24) 2002; 71
N Renzette (110_CR37) 2005; 57
JC Drees (110_CR48) 2006; 281
RM Harshey (110_CR1) 2003; 57
SC Kowalczykowski (110_CR28) 1994; 63
T Köhler (110_CR13) 2000; 182
JM Cox (110_CR46) 2005; 3
S Ayora (110_CR56) 2002; 316
J Courcelle (110_CR33) 2001; 158
M Arifuzzaman (110_CR44) 2006; 16
EC Friedberg (110_CR27) 2005
FM Camas (110_CR34) 2006; 103
AM Toguchi (110_CR15) 2000; 182
JH Miller (110_CR49) 1972
RS Harris (110_CR50) 1994; 264
M-P Zorzano (110_CR7) 2005; 71
DA McGrew (110_CR26) 2003; 38
C Lehnen (110_CR35) 2002; 45
S Delmas (110_CR52) 2005; 4
110_CR10
GM Fraser (110_CR9) 1999; 2
SL Lusetti (110_CR47) 2004; 31
MM Cox (110_CR29) 2000; 404
T Baba (110_CR53) 2006; 2
M Burkart (110_CR6) 1998; 95
AC Steven (110_CR58) 1988; 200
MD Baker (110_CR4) 2006; 28
MH Rashid (110_CR14) 2000; 97
10074060 - J Bacteriol. 1999 Mar;181(6):1703-12
15601715 - J Bacteriol. 2005 Jan;187(1):304-19
16369945 - Bioessays. 2006 Jan;28(1):9-22
6771759 - Proc Natl Acad Sci U S A. 1980 May;77(5):2819-23
3259634 - J Mol Biol. 1988 Mar 20;200(2):351-65
7979259 - Annu Rev Biochem. 1994;63:991-1043
15719060 - PLoS Biol. 2005 Feb;3(2):e52
12864845 - Mol Microbiol. 2003 Aug;49(3):581-90
10607626 - Curr Opin Microbiol. 1999 Dec;2(6):630-5
15869329 - PLoS Biol. 2005 Jun;3(6):e176
11029417 - J Bacteriol. 2000 Nov;182(21):5990-6
14527279 - Annu Rev Microbiol. 2003;57:249-73
14550943 - FEMS Microbiol Rev. 2003 Oct;27(4):505-23
16769691 - DNA Res. 2005;12(5):291-9
7968921 - Microbiol Rev. 1994 Sep;58(3):401-65
9482927 - Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2568-73
16377615 - J Biol Chem. 2006 Feb 24;281(8):4708-17
11053374 - J Bacteriol. 2000 Nov;182(22):6308-21
15489505 - J Biol Chem. 2004 Dec 31;279(53):55073-9
11829501 - J Mol Biol. 2002 Feb 8;316(1):35-49
10758151 - Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4885-90
15687217 - J Bacteriol. 2005 Feb;187(4):1515-8
16091045 - Mol Microbiol. 2005 Aug;57(4):1074-85
12123461 - Mol Microbiol. 2002 Jul;45(2):521-32
16738554 - Mol Syst Biol. 2006;2:2006.0008
14616075 - Annu Rev Genet. 2003;37:611-46
9683468 - J Bacteriol. 1998 Aug;180(15):3757-64
16606699 - Genome Res. 2006 May;16(5):686-91
11333217 - Genetics. 2001 May;158(1):41-64
12034814 - Nucleic Acids Res. 2002 Jun 1;30(11):2280-9
4961758 - J Gen Microbiol. 1967 Feb;46(2):175-84
15449604 - FEMS Microbiol Rev. 2004 Jun;28(3):261-89
12778123 - Nat Rev Mol Cell Biol. 2003 Jun;4(6):435-45
8078935 - Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8631-5
15721259 - Mol Cell. 2005 Feb 18;17(4):561-72
9606202 - EMBO J. 1998 Jun 1;17(11):3207-16
10716434 - Nature. 2000 Mar 2;404(6773):37-41
14693725 - Crit Rev Biochem Mol Biol. 2003;38(5):385-432
15903460 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Mar;71(3 Pt 1):031908
8146657 - Science. 1994 Apr 8;264(5156):258-60
16796690 - Mol Microbiol. 2006 Jun;60(6):1590-602
11459985 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8425-32
16908855 - Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12718-23
71191 - Can J Microbiol. 1977 Sep;23(9):1311-3
12124388 - J Biol Chem. 2002 Sep 27;277(39):35969-79
10585965 - Microbiol Mol Biol Rev. 1999 Dec;63(4):751-813, table of contents
8407796 - J Bacteriol. 1993 Oct;175(19):6238-44
16487743 - Curr Opin Microbiol. 2006 Apr;9(2):180-6
15590330 - DNA Repair (Amst). 2005 Feb 3;4(2):221-9
8456314 - Science. 1993 Mar 26;259(5103):1896-9
12045091 - Annu Rev Biochem. 2002;71:71-100
16929290 - Nature. 2006 Aug 24;442(7105):883-7
References_xml – volume: 91
  start-page: 8631
  year: 1994
  ident: 110_CR5
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.91.18.8631
– volume-title: DNA Repair and Mutagenesis
  year: 2005
  ident: 110_CR27
  doi: 10.1128/9781555816704
– ident: 110_CR10
– volume-title: Bacterial Stress Responses
  year: 2000
  ident: 110_CR20
– start-page: 1103
  volume-title: Escherichia coli and Salmonella: Cellular and Molecular Biology
  year: 1996
  ident: 110_CR3
– volume: 158
  start-page: 41
  year: 2001
  ident: 110_CR33
  publication-title: Genetics
  doi: 10.1093/genetics/158.1.41
– volume: 71
  start-page: 031908
  year: 2005
  ident: 110_CR7
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.71.031908
– volume: 9
  start-page: 180
  year: 2006
  ident: 110_CR19
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2006.02.001
– volume: 2
  start-page: 630
  year: 1999
  ident: 110_CR9
  publication-title: Curr Opin Microbiol
  doi: 10.1016/S1369-5274(99)00033-8
– volume: 2
  start-page: 1
  year: 2006
  ident: 110_CR53
  publication-title: Mol Syst Biol
  doi: 10.1038/msb4100050
– start-page: 352
  volume-title: Experiments in molecular genetics
  year: 1972
  ident: 110_CR49
– volume: 46
  start-page: 175
  year: 1967
  ident: 110_CR16
  publication-title: J Gen Microbiol
  doi: 10.1099/00221287-46-2-175
– volume: 4
  start-page: 1
  year: 2003
  ident: 110_CR43
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm1127
– volume: 57
  start-page: 1074
  year: 2005
  ident: 110_CR37
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2005.04755.x
– volume: 97
  start-page: 4885
  year: 2000
  ident: 110_CR14
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.060030097
– volume: 281
  start-page: 4708
  year: 2006
  ident: 110_CR48
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M513592200
– volume: 27
  start-page: 505
  year: 2003
  ident: 110_CR2
  publication-title: FEMS Microbiol Rev
  doi: 10.1016/S0168-6445(03)00064-0
– volume: 37
  start-page: 611
  year: 2003
  ident: 110_CR25
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.37.110801.142616
– volume: 180
  start-page: 3757
  year: 1998
  ident: 110_CR32
  publication-title: J Bacteriol
  doi: 10.1128/JB.180.15.3757-3764.1998
– volume: 200
  start-page: 351
  year: 1988
  ident: 110_CR58
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(88)90246-X
– volume: 98
  start-page: 8425
  year: 2001
  ident: 110_CR42
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.111005198
– volume: 17
  start-page: 3207
  year: 1998
  ident: 110_CR51
  publication-title: EMBO J
  doi: 10.1093/emboj/17.11.3207
– volume: 49
  start-page: 581
  year: 2003
  ident: 110_CR12
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2003.03584.x
– volume: 60
  start-page: 1590
  year: 2006
  ident: 110_CR45
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2006.05208.x
– volume: 277
  start-page: 35969
  year: 2002
  ident: 110_CR57
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M204467200
– volume: 182
  start-page: 5990
  year: 2000
  ident: 110_CR13
  publication-title: J Bacteriol
  doi: 10.1128/JB.182.21.5990-5996.2000
– volume: 45
  start-page: 521
  year: 2002
  ident: 110_CR35
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2002.03032.x
– volume: 23
  start-page: 1311
  year: 1977
  ident: 110_CR54
  publication-title: Can J Microbiol
  doi: 10.1139/m77-198
– volume: 175
  start-page: 6238
  year: 1993
  ident: 110_CR17
  publication-title: J Bacteriol
  doi: 10.1128/jb.175.19.6238-6244.1993
– volume: 259
  start-page: 1896
  year: 1993
  ident: 110_CR41
  publication-title: Science
  doi: 10.1126/science.8456314
– volume: 181
  start-page: 1703
  year: 1999
  ident: 110_CR11
  publication-title: J Bacteriol
  doi: 10.1128/JB.181.6.1703-1712.1999
– start-page: 131
  volume-title: Bacterial Stress Responses
  year: 2000
  ident: 110_CR21
– volume: 58
  start-page: 401
  year: 1994
  ident: 110_CR22
  publication-title: Microbiol Rev
  doi: 10.1128/MMBR.58.3.401-465.1994
– volume: 57
  start-page: 249
  year: 2003
  ident: 110_CR1
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.micro.57.030502.091014
– volume: 182
  start-page: 6308
  year: 2000
  ident: 110_CR15
  publication-title: J Bacteriol
  doi: 10.1128/JB.182.22.6308-6321.2000
– volume: 442
  start-page: 883
  year: 2006
  ident: 110_CR31
  publication-title: Nature
  doi: 10.1038/nature05042
– start-page: 291
  volume-title: DNA Res
  year: 2005
  ident: 110_CR36
– volume: 316
  start-page: 35
  year: 2002
  ident: 110_CR56
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2001.5336
– volume: 264
  start-page: 258
  year: 1994
  ident: 110_CR50
  publication-title: Science
  doi: 10.1126/science.8146657
– volume: 71
  start-page: 71
  year: 2002
  ident: 110_CR24
  publication-title: Ann Rev Biochem
  doi: 10.1146/annurev.biochem.71.083101.133940
– volume: 38
  start-page: 385
  year: 2003
  ident: 110_CR26
  publication-title: Crit Rev Biochem Mol Biol
  doi: 10.1080/10409230390242489
– volume: 63
  start-page: 751
  year: 1999
  ident: 110_CR23
  publication-title: Microbiol Molec Biol Rev
  doi: 10.1128/MMBR.63.4.751-813.1999
– volume: 103
  start-page: 12718
  year: 2006
  ident: 110_CR34
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0602119103
– volume: 4
  start-page: 221
  year: 2005
  ident: 110_CR52
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2004.09.008
– volume: 95
  start-page: 2568
  year: 1998
  ident: 110_CR6
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.5.2568
– volume: 28
  start-page: 9
  year: 2006
  ident: 110_CR4
  publication-title: Bioessays
  doi: 10.1002/bies.20343
– volume: 31
  start-page: 55073
  year: 2004
  ident: 110_CR47
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M410371200
– volume: 3
  start-page: 1024
  year: 2005
  ident: 110_CR38
  publication-title: PloS Biol
  doi: 10.1371/journal.pbio.0030176
– volume: 18
  start-page: 561
  year: 2005
  ident: 110_CR30
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2005.01.006
– volume: 30
  start-page: 2280
  year: 2002
  ident: 110_CR55
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.11.2280
– volume: 3
  start-page: 231
  year: 2005
  ident: 110_CR46
  publication-title: PloS Biol
  doi: 10.1371/journal.pbio.0030052
– volume: 28
  start-page: 261
  year: 2004
  ident: 110_CR8
  publication-title: FEMS Microbiol Rev
  doi: 10.1016/j.femsre.2003.09.004
– volume: 63
  start-page: 991
  year: 1994
  ident: 110_CR28
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.bi.63.070194.005015
– volume: 77
  start-page: 2819
  year: 1980
  ident: 110_CR40
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.77.5.2819
– volume: 404
  start-page: 37
  year: 2000
  ident: 110_CR29
  publication-title: Nature
  doi: 10.1038/35003501
– volume: 187
  start-page: 1515
  year: 2005
  ident: 110_CR39
  publication-title: J Bacteriol
  doi: 10.1128/JB.187.4.1515-1518.2005
– volume: 16
  start-page: 686
  year: 2006
  ident: 110_CR44
  publication-title: Genome Res
  doi: 10.1101/gr.4527806
– volume: 187
  start-page: 304
  year: 2005
  ident: 110_CR18
  publication-title: J Bacteriol
  doi: 10.1128/JB.187.1.304-319.2005
– reference: 14527279 - Annu Rev Microbiol. 2003;57:249-73
– reference: 15869329 - PLoS Biol. 2005 Jun;3(6):e176
– reference: 16929290 - Nature. 2006 Aug 24;442(7105):883-7
– reference: 71191 - Can J Microbiol. 1977 Sep;23(9):1311-3
– reference: 10074060 - J Bacteriol. 1999 Mar;181(6):1703-12
– reference: 15903460 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Mar;71(3 Pt 1):031908
– reference: 14550943 - FEMS Microbiol Rev. 2003 Oct;27(4):505-23
– reference: 16487743 - Curr Opin Microbiol. 2006 Apr;9(2):180-6
– reference: 11829501 - J Mol Biol. 2002 Feb 8;316(1):35-49
– reference: 11459985 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8425-32
– reference: 6771759 - Proc Natl Acad Sci U S A. 1980 May;77(5):2819-23
– reference: 12045091 - Annu Rev Biochem. 2002;71:71-100
– reference: 10585965 - Microbiol Mol Biol Rev. 1999 Dec;63(4):751-813, table of contents
– reference: 15601715 - J Bacteriol. 2005 Jan;187(1):304-19
– reference: 15719060 - PLoS Biol. 2005 Feb;3(2):e52
– reference: 12778123 - Nat Rev Mol Cell Biol. 2003 Jun;4(6):435-45
– reference: 9683468 - J Bacteriol. 1998 Aug;180(15):3757-64
– reference: 12034814 - Nucleic Acids Res. 2002 Jun 1;30(11):2280-9
– reference: 14616075 - Annu Rev Genet. 2003;37:611-46
– reference: 10758151 - Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4885-90
– reference: 7968921 - Microbiol Rev. 1994 Sep;58(3):401-65
– reference: 16796690 - Mol Microbiol. 2006 Jun;60(6):1590-602
– reference: 11333217 - Genetics. 2001 May;158(1):41-64
– reference: 7979259 - Annu Rev Biochem. 1994;63:991-1043
– reference: 16738554 - Mol Syst Biol. 2006;2:2006.0008
– reference: 9606202 - EMBO J. 1998 Jun 1;17(11):3207-16
– reference: 8456314 - Science. 1993 Mar 26;259(5103):1896-9
– reference: 8407796 - J Bacteriol. 1993 Oct;175(19):6238-44
– reference: 16377615 - J Biol Chem. 2006 Feb 24;281(8):4708-17
– reference: 12864845 - Mol Microbiol. 2003 Aug;49(3):581-90
– reference: 16091045 - Mol Microbiol. 2005 Aug;57(4):1074-85
– reference: 15449604 - FEMS Microbiol Rev. 2004 Jun;28(3):261-89
– reference: 3259634 - J Mol Biol. 1988 Mar 20;200(2):351-65
– reference: 10716434 - Nature. 2000 Mar 2;404(6773):37-41
– reference: 10607626 - Curr Opin Microbiol. 1999 Dec;2(6):630-5
– reference: 15687217 - J Bacteriol. 2005 Feb;187(4):1515-8
– reference: 16908855 - Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12718-23
– reference: 9482927 - Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2568-73
– reference: 4961758 - J Gen Microbiol. 1967 Feb;46(2):175-84
– reference: 12124388 - J Biol Chem. 2002 Sep 27;277(39):35969-79
– reference: 16606699 - Genome Res. 2006 May;16(5):686-91
– reference: 16769691 - DNA Res. 2005;12(5):291-9
– reference: 14693725 - Crit Rev Biochem Mol Biol. 2003;38(5):385-432
– reference: 8078935 - Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8631-5
– reference: 8146657 - Science. 1994 Apr 8;264(5156):258-60
– reference: 15590330 - DNA Repair (Amst). 2005 Feb 3;4(2):221-9
– reference: 15721259 - Mol Cell. 2005 Feb 18;17(4):561-72
– reference: 11053374 - J Bacteriol. 2000 Nov;182(22):6308-21
– reference: 11029417 - J Bacteriol. 2000 Nov;182(21):5990-6
– reference: 15489505 - J Biol Chem. 2004 Dec 31;279(53):55073-9
– reference: 12123461 - Mol Microbiol. 2002 Jul;45(2):521-32
– reference: 16369945 - Bioessays. 2006 Jan;28(1):9-22
SSID ssj0025773
Score 2.0529506
Snippet Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and...
BACKGROUND: Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types:...
Abstract Background Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 14
SubjectTerms Adenosine Triphosphatases - metabolism
Escherichia coli
Escherichia coli K12 - growth & development
Escherichia coli K12 - physiology
Escherichia coli K12 - radiation effects
Flagella - physiology
Genetic Complementation Test
Green Fluorescent Proteins - genetics
Microbial Viability
Organisms, Genetically Modified
Physiological aspects
Proteins
Rec A Recombinases - genetics
Rec A Recombinases - physiology
Recombinant Proteins - genetics
Recombination, Genetic
SOS Response (Genetics) - physiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SKPgifntaaxChT6G7l2w--nYtLVVRQa30LSTZpB4cu6V7p_jfO7O7Vy-W4ouvmTl2MzPJzOzN_IaQN7KOItVw0iSWNgotA9OuKpkHWzau0KKW2Jz84aM8PRPvzqvzjVFfWBM2wAMPgttHOBLPBXjpOojIhTO6wMcaEVLyugfbBp-3TqbGVKtS_X_LEG6XTIEbHOEaSy33r9dYxcq_-9wXmXvqUfxv3tUbziovpNzwTCf3yb0xpKSzYSsPyJ3YPCTbw5DJX4-IndGm_REXFAsJKcSoFELFGcXmsSugNGxoFzmgl0NlXtvQNtHup8MqmQuKSxiq03lDjztU8RzLoykY0Jy-Z-X0MTk7Of56dMrGsQrMS6GWzJgURPCprp0XwnOVnIKTrH2aJsVTEYWPPvkoDBADF3VhIri0wF30XmrBn5AteLv4jFAeaxVCMEVtJAKvuQjZSnJwiUJgBYqfkINMuvZygNCwCGqdU-B8WVSNRdXYClKSCWFrVdgwApbj3IyF7RMXLW_w713zr59zG-chajZ7m34BDM-Ohmf_ZXgT8hrtwiKIRoNVOhdu1XX27advdgZhNJi-LPVtTF8-Z0x7I1NqYYPBjZ0RIGME58o4dzJOuApCRn61tlGLJKyfa2K76mDrXOEE4wl5OljsHwkpHBFQwG9VZsuZcHJKM__e45Bj332hzfP_Ic0X5O7w1Zyzqd4hW8urVXwJ4d7S7_Yn-zcAI1Du
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQEBIvCMZXYRsWQtqTIa1dx540oYI2DdBAAor2ZtmOXSpVyWhaYP89d0nazZRJvOYuSnwfvnNy9ztCXsgiiFiAp0ksbRRKeqbssM8c2LK2mRKFxObk04_yZCzenw3PLuufOgHW_zza4Typ8Xz28vePi9fg8IeNwyv5CpLqPsvxm9uQ4UzrmxCVcnTSU7H-owCW2fxtXvN2AI6b9__V-T5LAlaD67-5e18JX2lp5ZVYdXyX3OmSTDpqreIeuRHKbXKrHTt5cZ-YES2rn2FGsbSQQtZKIXkcUWwnmwOlZG0DyQE9b2v1qpJWkda_LNbNTChewuSdTkt6VKPSp1gwTcGkpvQD6w8ekPHx0de3J6wbtMCcFPmCaR298C4WhXVCOJ5Hm4NvKxcHMecxC8IFF10QGoieiyLTAYKc5zY4J5XgD8kWvF14TCgPRe6911mhJUKx2QDnl2hhW4VUC0yhRw4S6ZrzFlTDIMx1SgGPM6gag6oxQzik9AhbqcL4DsIcJ2nMTHOUUXKDf3_Nv3rOdZxvULPJ2zQXqvnEdD5sEBnHcQEJY-FF4MJqlaEHaOFjdLi252gXBmE1SqzbmdhlXZt3n76ZESTW4Ayyr65j-vI5YdrvmGIFC_S265UAGSNcV8K5k3DC5uAT8rOVjRokYUVdGaplDUvnOc407pFHrcVeSijHoQEZ3JsntpwIJ6WU0-8NMjl24mdKP_kfQTwlt9vv5JwN1A7ZWsyXYRcSvIXbazz3DwLqTA0
  priority: 102
  providerName: Scholars Portal
Title A novel role for RecA under non-stress: promotion of swarming motility in Escherichia coli K-12
URI https://www.ncbi.nlm.nih.gov/pubmed/17391508
https://www.proquest.com/docview/70372152
http://dx.doi.org/10.1186/1741-7007-5-14
https://pubmed.ncbi.nlm.nih.gov/PMC1852089
https://doaj.org/article/5268b34623dc4e34a980ecca94cffb86
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDI_QEBIviG8OxogQ0p4iepc0H3u7oU0DNJCAoYmXKEmT7aRTO613IP577LZ3W3baEy99iF21ie3GTu2fCXknqyhSBZYmMbVRaBmYduWYedBl4wotKonFycdf5NGJ-HRanl6dd9z4gz_W8j24zGOm8EStZNix-u5EwAjG5fu_1qFVqbp_yWveAZ5x8_4bde3zbDvqUPs3v83XNqc8cfLaTnT4kDwYXEg67WX-iNyJ9WNyr28q-fcJsVNaN7_jnGLiIAWflIJrOKVYLHYJlJr15SF79KLPxGtq2iTa_nGYFXNGcQhdczqr6UGLIp1hOjQFhZnRz2w8eUpODg9-fDhiQxsF5qVQC2ZMCiL4VFXOC-G5Sk6B5WqfJknxVETho08-CgPEwEVVmAhbWOAuei-14M_IFrxdfEEoj5UKIZiiMhKB1lyE6CQ5-GiCIwWCHpG9bHXtRQ-ZYRHEOqeAPVkUjUXR2BJCkBFhK1HYMACUY5-Mue0CFS03-HfX_Kvn3Ma5j5LN3qYbAD2zg4VaxL3xXIA7WAURuXBGF6jfRoSUPM7tLeqFRdCMGrNyztyybe3Hrz_tFNxmUHU51rcxff-WMe0OTKmBCQY3VELAGiMYV8a5nXGC6YeM_GaloxZJmC9Xx2bZwtS5wo7FI_K819irFVLYEqCAe1Wmy9ni5JR6dt7hjmOdfaHNy_8R8ityvz8d52yit8nW4nIZX4Nbt_A73XEIXI-F3ums-x_U10oD
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemIQQviPG1wmAWQtqTIW0c29lbNzZ17ANpbGjixbIdu1QqydQPEP89d0laaqo98Zr7RYl9d_Y5ufsdIe9E4XkowNMEpjZyJRxTJusyC7acm0TxQmBx8vmFGFzzTzfZzQb5uKiFsT9cyz70frX-fFwv2otcscbVlfgA4XSXSfzaljHsZn1PZpnEPgaXB9-Wx65M1v-Zl9iWunH9_n9q3sfRVlUz-q-v2ysbV5xUubJLHT8mj9rwkvabIWyRDV8-IfebhpO_nxLdp2X1048pJhVSiFcphI19ioVkE5CUrCkd2ae3TZZeVdIq0OkvgxkzQ4qXMGyno5IeTVHdI0yVpmBMI3rKur1n5Pr46OpwwNoWC8wKLmcsz4PjzoaiMJZzm8pgJHi1sqEXZBoSz623wXqeg9ClvEhyD9ubS423ViiePieb8HZ-m9DUF9I5lydFLpCEzXg4uQQDCyoEWWAEHbIfza6-beg0NBJcxxLQtUbVaFSNzuB40iFsoQrtWvJy7KEx1vUhRok1_N4Sv3jOXcgD1Gz0NvWFajLUrcFp5MSxKYdQsXDcp9zkKkHbz7kLweLY3qJdaCTUKDFjZ2jm06k--fxV9yGkBjcQXXUX6MtlBNprQaGCATrTVknAHCNRV4TciZCwLLhIvLuwUY0izKUrfTWfwtBTid2MO-RFY7F_Z0hiu4AE7pWRLUeTE0vK0feakxxr8BOVv_wfJe-SB4Or8zN9dnJx-oo8bL6ip6yndsjmbDL3ryH8m9k3tXf_AbQXVpo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemIRAviO8VBrMQ0p7M0saxnb110GpjMNBgaOLFsh27VJSk6geI_567JC010554i3IXJfH9zj4nd78j5KUoPA8FeJrA1EauhGPKZF1mAcu5SRQvBBYnvz8Txxf87WV2uUUGq1oY-8O17EOvNuvPJ_WkDQfu-8G0CI2vK3EA8XSXSfzcljFsZ31DZplE_zw_-rred2Wy_tG81m25G69e_0_R-yRaq2pK_6sT98bKFWdVbixTw7vkThtf0n4DiHtky5f3yc2m4-TvB0T3aVn99BOKWYUUAlYKcWOfYiXZDCQla2pHDum0SdOrSloFOv9lMGVmRPEUxu10XNLBHO09xlxpCmga01PW7T0kF8PB59fHrO2xwKzgcsHyPDjubCgKYzm3qQxGglsrG3pBpiHx3HobrOc5CF3KiyT3sL651HhrheLpI7INT-d3CE19IZ1zeVLkAlnYjIetSzAwo0KUBSjokMNodPW04dPQyHAdS8DYGk2j0TQ6g_1Jh7CVKbRr2cuxicZE17sYJa7o76_1V_e5TvMILRs9TX2imo10674aSXFsyiFWLBz3KTe5ShD8OXchWHy3F4gLjYwaJabsjMxyPtcnH77oPsTU4Aeiq65T-nQeKe23SqFCvJu2TALGGJm6Is3dSBPmBReJ91YY1SjCZLrSV8s5vHoqsZ1xhzxuEPt3hCT2C0jgWhlhORqcWFKOv9Wk5FiEn6j8yf8YeY_c-vhmqN-dnJ0-Jbebr-gp66ldsr2YLf0zCP8W9nnt3H8AEjxWZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+role+for+RecA+under+non-stress%3A+promotion+of+swarming+motility+in+Escherichia+coli+K-12&rft.jtitle=BMC+biology&rft.au=Gomez-Gomez%2C+Jose-Maria&rft.au=Manfredi%2C+Candela&rft.au=Alonso%2C+Juan-Carlos&rft.au=Blazquez%2C+Jesus&rft.date=2007-03-28&rft.pub=BioMed+Central+Ltd&rft.issn=1741-7007&rft.eissn=1741-7007&rft.volume=5&rft.spage=14&rft_id=info:doi/10.1186%2F1741-7007-5-14&rft.externalDBID=IOV&rft.externalDocID=A161992618
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon