A novel role for RecA under non-stress: promotion of swarming motility in Escherichia coli K-12
Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and swarming. Swimming motility consists of individual cell movement in liquid medium or soft semisolid agar, whereas swarming is a coordinated cellul...
Saved in:
Published in | BMC biology Vol. 5; no. 1; p. 14 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
28.03.2007
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and swarming. Swimming motility consists of individual cell movement in liquid medium or soft semisolid agar, whereas swarming is a coordinated cellular behaviour leading to a collective movement on semisolid surfaces. It is known that swimming motility can be influenced by several types of environmental stress. In nature, environmentally induced DNA damage (e.g. UV irradiation) is one of the most common types of stress. One of the key proteins involved in the response to DNA damage is RecA, a multifunctional protein required for maintaining genome integrity and the generation of genetic variation.
The ability of E. coli cells to develop swarming migration on semisolid surfaces was suppressed in the absence of RecA. However, swimming motility was not affected. The swarming defect of a DeltarecA strain was fully complemented by a plasmid-borne recA gene. Although the DeltarecA cells grown on semisolid surfaces exhibited flagellar production, they also presented impaired individual movement as well as a fully inactive collective swarming migration. Both the comparative analysis of gene expression profiles in wild-type and DeltarecA cells grown on a semisolid surface and the motility of lexA1 [Ind-] mutant cells demonstrated that the RecA effect on swarming does not require induction of the SOS response. By using a RecA-GFP fusion protein we were able to segregate the effect of RecA on swarming from its other functions. This protein fusion failed to regulate the induction of the SOS response, the recombinational DNA repair of UV-treated cells and the genetic recombination, however, it was efficient in rescuing the swarming motility defect of the DeltarecA mutant. The RecA-GFP protein retains a residual ssDNA-dependent ATPase activity but does not perform DNA strand exchange.
The experimental evidence presented in this work supports a novel role for RecA: the promotion of swarming motility. The defective swarming migration of DeltarecA cells does not appear to be associated with defective flagellar production; rather, it seems to be associated with an abnormal flagellar propulsion function. Our results strongly suggest that the RecA effect on swarming motility does not require an extensive canonical RecA nucleofilament formation. RecA is the first reported cellular factor specifically affecting swarming but not swimming motility in E. coli. The integration of two apparently disconnected biologically important processes, such as the maintenance of genome integrity and motility in a unique protein, may have important evolutive consequences. |
---|---|
AbstractList | Abstract Background Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and swarming. Swimming motility consists of individual cell movement in liquid medium or soft semisolid agar, whereas swarming is a coordinated cellular behaviour leading to a collective movement on semisolid surfaces. It is known that swimming motility can be influenced by several types of environmental stress. In nature, environmentally induced DNA damage (e.g. UV irradiation) is one of the most common types of stress. One of the key proteins involved in the response to DNA damage is RecA, a multifunctional protein required for maintaining genome integrity and the generation of genetic variation. Results The ability of E. coli cells to develop swarming migration on semisolid surfaces was suppressed in the absence of RecA. However, swimming motility was not affected. The swarming defect of a ΔrecA strain was fully complemented by a plasmid-borne recA gene. Although the ΔrecA cells grown on semisolidsurfaces exhibited flagellar production, they also presented impaired individual movement as well as a fully inactive collective swarming migration. Both the comparative analysis of gene expression profiles in wild-type and ΔrecA cells grown on a semisolid surface and the motility of lexA1 [Ind-] mutant cells demonstrated that the RecA effect on swarming does not require induction of the SOS response. By using a RecA-GFP fusion protein we were able to segregate the effect of RecA on swarming from its other functions. This protein fusion failed to regulate the induction of the SOS response, the recombinational DNA repair of UV-treated cells and the genetic recombination, however, it was efficient in rescuing the swarming motility defect of the ΔrecA mutant. The RecA-GFP protein retains a residual ssDNA-dependent ATPase activity but does not perform DNA strand exchange. Conclusion The experimental evidence presented in this work supports a novel role for RecA: the promotion of swarming motility. The defective swarming migration of ΔrecA cells does not appear to be associated with defective flagellar production; rather, it seems to be associated with an abnormal flagellar propulsion function. Our results strongly suggest that the RecA effect on swarming motility does not require an extensive canonical RecA nucleofilament formation. RecA is the first reported cellular factor specifically affecting swarming but not swimming motility in E. coli. The integration of two apparently disconnected biologically important processes, such as the maintenance of genome integrity and motility in a unique protein, may have important evolutive consequences. Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and swarming. Swimming motility consists of individual cell movement in liquid medium or soft semisolid agar, whereas swarming is a coordinated cellular behaviour leading to a collective movement on semisolid surfaces. It is known that swimming motility can be influenced by several types of environmental stress. In nature, environmentally induced DNA damage (e.g. UV irradiation) is one of the most common types of stress. One of the key proteins involved in the response to DNA damage is RecA, a multifunctional protein required for maintaining genome integrity and the generation of genetic variation. The ability of E. coli cells to develop swarming migration on semisolid surfaces was suppressed in the absence of RecA. However, swimming motility was not affected. The swarming defect of a DeltarecA strain was fully complemented by a plasmid-borne recA gene. Although the DeltarecA cells grown on semisolid surfaces exhibited flagellar production, they also presented impaired individual movement as well as a fully inactive collective swarming migration. Both the comparative analysis of gene expression profiles in wild-type and DeltarecA cells grown on a semisolid surface and the motility of lexA1 [Ind-] mutant cells demonstrated that the RecA effect on swarming does not require induction of the SOS response. By using a RecA-GFP fusion protein we were able to segregate the effect of RecA on swarming from its other functions. This protein fusion failed to regulate the induction of the SOS response, the recombinational DNA repair of UV-treated cells and the genetic recombination, however, it was efficient in rescuing the swarming motility defect of the DeltarecA mutant. The RecA-GFP protein retains a residual ssDNA-dependent ATPase activity but does not perform DNA strand exchange. The experimental evidence presented in this work supports a novel role for RecA: the promotion of swarming motility. The defective swarming migration of DeltarecA cells does not appear to be associated with defective flagellar production; rather, it seems to be associated with an abnormal flagellar propulsion function. Our results strongly suggest that the RecA effect on swarming motility does not require an extensive canonical RecA nucleofilament formation. RecA is the first reported cellular factor specifically affecting swarming but not swimming motility in E. coli. The integration of two apparently disconnected biologically important processes, such as the maintenance of genome integrity and motility in a unique protein, may have important evolutive consequences. BACKGROUND: Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and swarming. Swimming motility consists of individual cell movement in liquid medium or soft semisolid agar, whereas swarming is a coordinated cellular behaviour leading to a collective movement on semisolid surfaces. It is known that swimming motility can be influenced by several types of environmental stress. In nature, environmentally induced DNA damage (e.g. UV irradiation) is one of the most common types of stress. One of the key proteins involved in the response to DNA damage is RecA, a multifunctional protein required for maintaining genome integrity and the generation of genetic variation. RESULTS: The ability of E. coli cells to develop swarming migration on semisolid surfaces was suppressed in the absence of RecA. However, swimming motility was not affected. The swarming defect of a ΔrecA strain was fully complemented by a plasmid-borne recA gene. Although the ΔrecA cells grown on semisolidsurfaces exhibited flagellar production, they also presented impaired individual movement as well as a fully inactive collective swarming migration. Both the comparative analysis of gene expression profiles in wild-type and ΔrecA cells grown on a semisolid surface and the motility of lexA1 [Ind-] mutant cells demonstrated that the RecA effect on swarming does not require induction of the SOS response. By using a RecA-GFP fusion protein we were able to segregate the effect of RecA on swarming from its other functions. This protein fusion failed to regulate the induction of the SOS response, the recombinational DNA repair of UV-treated cells and the genetic recombination, however, it was efficient in rescuing the swarming motility defect of the ΔrecA mutant. The RecA-GFP protein retains a residual ssDNA-dependent ATPase activity but does not perform DNA strand exchange. CONCLUSION: The experimental evidence presented in this work supports a novel role for RecA: the promotion of swarming motility. The defective swarming migration of ΔrecA cells does not appear to be associated with defective flagellar production; rather, it seems to be associated with an abnormal flagellar propulsion function. Our results strongly suggest that the RecA effect on swarming motility does not require an extensive canonical RecA nucleofilament formation. RecA is the first reported cellular factor specifically affecting swarming but not swimming motility in E. coli. The integration of two apparently disconnected biologically important processes, such as the maintenance of genome integrity and motility in a unique protein, may have important evolutive consequences. Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and swarming. Swimming motility consists of individual cell movement in liquid medium or soft semisolid agar, whereas swarming is a coordinated cellular behaviour leading to a collective movement on semisolid surfaces. It is known that swimming motility can be influenced by several types of environmental stress. In nature, environmentally induced DNA damage (e.g. UV irradiation) is one of the most common types of stress. One of the key proteins involved in the response to DNA damage is RecA, a multifunctional protein required for maintaining genome integrity and the generation of genetic variation.BACKGROUNDBacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and swarming. Swimming motility consists of individual cell movement in liquid medium or soft semisolid agar, whereas swarming is a coordinated cellular behaviour leading to a collective movement on semisolid surfaces. It is known that swimming motility can be influenced by several types of environmental stress. In nature, environmentally induced DNA damage (e.g. UV irradiation) is one of the most common types of stress. One of the key proteins involved in the response to DNA damage is RecA, a multifunctional protein required for maintaining genome integrity and the generation of genetic variation.The ability of E. coli cells to develop swarming migration on semisolid surfaces was suppressed in the absence of RecA. However, swimming motility was not affected. The swarming defect of a DeltarecA strain was fully complemented by a plasmid-borne recA gene. Although the DeltarecA cells grown on semisolid surfaces exhibited flagellar production, they also presented impaired individual movement as well as a fully inactive collective swarming migration. Both the comparative analysis of gene expression profiles in wild-type and DeltarecA cells grown on a semisolid surface and the motility of lexA1 [Ind-] mutant cells demonstrated that the RecA effect on swarming does not require induction of the SOS response. By using a RecA-GFP fusion protein we were able to segregate the effect of RecA on swarming from its other functions. This protein fusion failed to regulate the induction of the SOS response, the recombinational DNA repair of UV-treated cells and the genetic recombination, however, it was efficient in rescuing the swarming motility defect of the DeltarecA mutant. The RecA-GFP protein retains a residual ssDNA-dependent ATPase activity but does not perform DNA strand exchange.RESULTSThe ability of E. coli cells to develop swarming migration on semisolid surfaces was suppressed in the absence of RecA. However, swimming motility was not affected. The swarming defect of a DeltarecA strain was fully complemented by a plasmid-borne recA gene. Although the DeltarecA cells grown on semisolid surfaces exhibited flagellar production, they also presented impaired individual movement as well as a fully inactive collective swarming migration. Both the comparative analysis of gene expression profiles in wild-type and DeltarecA cells grown on a semisolid surface and the motility of lexA1 [Ind-] mutant cells demonstrated that the RecA effect on swarming does not require induction of the SOS response. By using a RecA-GFP fusion protein we were able to segregate the effect of RecA on swarming from its other functions. This protein fusion failed to regulate the induction of the SOS response, the recombinational DNA repair of UV-treated cells and the genetic recombination, however, it was efficient in rescuing the swarming motility defect of the DeltarecA mutant. The RecA-GFP protein retains a residual ssDNA-dependent ATPase activity but does not perform DNA strand exchange.The experimental evidence presented in this work supports a novel role for RecA: the promotion of swarming motility. The defective swarming migration of DeltarecA cells does not appear to be associated with defective flagellar production; rather, it seems to be associated with an abnormal flagellar propulsion function. Our results strongly suggest that the RecA effect on swarming motility does not require an extensive canonical RecA nucleofilament formation. RecA is the first reported cellular factor specifically affecting swarming but not swimming motility in E. coli. The integration of two apparently disconnected biologically important processes, such as the maintenance of genome integrity and motility in a unique protein, may have important evolutive consequences.CONCLUSIONThe experimental evidence presented in this work supports a novel role for RecA: the promotion of swarming motility. The defective swarming migration of DeltarecA cells does not appear to be associated with defective flagellar production; rather, it seems to be associated with an abnormal flagellar propulsion function. Our results strongly suggest that the RecA effect on swarming motility does not require an extensive canonical RecA nucleofilament formation. RecA is the first reported cellular factor specifically affecting swarming but not swimming motility in E. coli. The integration of two apparently disconnected biologically important processes, such as the maintenance of genome integrity and motility in a unique protein, may have important evolutive consequences. |
ArticleNumber | 14 |
Audience | Academic |
Author | Manfredi, Candela Gómez-Gómez, José-María Alonso, Juan-Carlos Blázquez, Jesús |
AuthorAffiliation | 1 Departamento de Biotecnología Microbiana. Centro Nacional de Biotecnología, C/Darwin, 3, 28049-Madrid, Spain |
AuthorAffiliation_xml | – name: 1 Departamento de Biotecnología Microbiana. Centro Nacional de Biotecnología, C/Darwin, 3, 28049-Madrid, Spain |
Author_xml | – sequence: 1 givenname: José-María surname: Gómez-Gómez fullname: Gómez-Gómez, José-María – sequence: 2 givenname: Candela surname: Manfredi fullname: Manfredi, Candela – sequence: 3 givenname: Juan-Carlos surname: Alonso fullname: Alonso, Juan-Carlos – sequence: 4 givenname: Jesús surname: Blázquez fullname: Blázquez, Jesús |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17391508$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks2L1DAUwIusuB969SgBQfDQMWnTJvUglGXVwYWF9eMakvRlJkubzCad1f3vTZ112OoKkkPCe7_3I3l5x9mB8w6y7DnBC0J4_YYwSnKGMcurnNBH2dE-cHDvfJgdx3iFcVExVj7JDgkrG1JhfpSJFjl_Az0KvgdkfECXoFu0dR2ElHF5HAPE-BZtgh_8aL1D3qD4XYbBuhWaQr0db5F16CzqNQSr11Yi7XuLPuWkeJo9NrKP8OxuP8m-vj_7cvoxP7_4sDxtz3NVUzbmTWM01cp0nVSUqpIZySjGXJnCsNJgoAqUUUCblNQl7XADNeO6lKBUzWl5ki133s7LK7EJdpDhVnhpxa-ADyshw2h1D6Iqaq5KWhdlpymUVDYcg9ayodoYxevkerdzbbZqgE6DG4PsZ9J5xtm1WPkbQXhVYN4kQbsTKOv_IZhntB_E9Fli-ixRCTI96NXdJYK_3kIcxWCjhr6XDvw2JrJkBamKBL7cgSuZHmed8UmpJ1i0pCZNU9SEJ2rxAJVWB4PVaaaMTfFZwetZQWJG-DGu5DZGsfx8-f_sxbc5--J-c_dN-T2SCaA7QAcfYwAjtB3lNHnpxrYXBItp8v_u1-KPsr354YKfZ64DGA |
CitedBy_id | crossref_primary_10_1080_08927014_2020_1826939 crossref_primary_10_3389_fmicb_2020_00583 crossref_primary_10_1038_s41598_020_76426_2 crossref_primary_10_1093_jac_dky407 crossref_primary_10_1016_j_bjm_2018_03_007 crossref_primary_10_1128_spectrum_01093_22 crossref_primary_10_1021_acsinfecdis_0c00413 crossref_primary_10_1080_08927014_2012_706751 crossref_primary_10_1128_mBio_00971_17 crossref_primary_10_1016_j_celrep_2023_113393 crossref_primary_10_1093_jambio_lxae141 crossref_primary_10_1128_mSystems_00064_16 crossref_primary_10_1186_s12864_015_1890_9 crossref_primary_10_1093_femsre_fuad065 crossref_primary_10_1099_mic_0_2007_009084_0 crossref_primary_10_1016_j_ijbiomac_2024_130611 crossref_primary_10_1002_cbdv_202000171 crossref_primary_10_1128_JB_00804_10 crossref_primary_10_1038_s41429_019_0160_5 crossref_primary_10_1039_b703159a crossref_primary_10_1055_a_2157_8913 crossref_primary_10_1128_CMR_00023_18 crossref_primary_10_1128_IAI_00566_17 crossref_primary_10_1085_jgp_202213168 crossref_primary_10_1007_s00203_013_0870_1 crossref_primary_10_1093_jac_dku080 crossref_primary_10_1371_journal_pone_0111513 crossref_primary_10_1186_1756_0500_7_108 crossref_primary_10_3389_fmicb_2016_01560 crossref_primary_10_1371_journal_pone_0159871 crossref_primary_10_1016_j_jfp_2023_100137 crossref_primary_10_1371_journal_pone_0105578 crossref_primary_10_1016_j_jprot_2014_06_008 crossref_primary_10_1080_08927014_2010_511197 crossref_primary_10_1371_journal_pone_0146685 crossref_primary_10_1016_j_bbrc_2012_10_141 crossref_primary_10_1099_ijsem_0_005469 crossref_primary_10_1089_ast_2014_1162 crossref_primary_10_1116_1_4972100 crossref_primary_10_1016_j_bbrc_2019_07_093 crossref_primary_10_4155_fmc_2020_0310 crossref_primary_10_1093_femsle_fnac106 crossref_primary_10_4236_abb_2013_43A059 crossref_primary_10_1016_j_ibiod_2013_01_015 crossref_primary_10_1016_j_dnarep_2013_12_001 crossref_primary_10_1016_j_pep_2021_105967 crossref_primary_10_3389_fmicb_2017_01360 crossref_primary_10_1093_jac_dkq496 crossref_primary_10_1371_journal_pone_0178541 crossref_primary_10_1093_jambio_lxad227 crossref_primary_10_1099_ijsem_0_006346 crossref_primary_10_1128_IAI_01321_09 crossref_primary_10_3390_pharmaceutics14112344 |
Cites_doi | 10.1073/pnas.91.18.8631 10.1128/9781555816704 10.1093/genetics/158.1.41 10.1103/PhysRevE.71.031908 10.1016/j.mib.2006.02.001 10.1016/S1369-5274(99)00033-8 10.1038/msb4100050 10.1099/00221287-46-2-175 10.1038/nrm1127 10.1111/j.1365-2958.2005.04755.x 10.1073/pnas.060030097 10.1074/jbc.M513592200 10.1016/S0168-6445(03)00064-0 10.1146/annurev.genet.37.110801.142616 10.1128/JB.180.15.3757-3764.1998 10.1016/0022-2836(88)90246-X 10.1073/pnas.111005198 10.1093/emboj/17.11.3207 10.1046/j.1365-2958.2003.03584.x 10.1111/j.1365-2958.2006.05208.x 10.1074/jbc.M204467200 10.1128/JB.182.21.5990-5996.2000 10.1046/j.1365-2958.2002.03032.x 10.1139/m77-198 10.1128/jb.175.19.6238-6244.1993 10.1126/science.8456314 10.1128/JB.181.6.1703-1712.1999 10.1128/MMBR.58.3.401-465.1994 10.1146/annurev.micro.57.030502.091014 10.1128/JB.182.22.6308-6321.2000 10.1038/nature05042 10.1006/jmbi.2001.5336 10.1126/science.8146657 10.1146/annurev.biochem.71.083101.133940 10.1080/10409230390242489 10.1128/MMBR.63.4.751-813.1999 10.1073/pnas.0602119103 10.1016/j.dnarep.2004.09.008 10.1073/pnas.95.5.2568 10.1002/bies.20343 10.1074/jbc.M410371200 10.1371/journal.pbio.0030176 10.1016/j.molcel.2005.01.006 10.1093/nar/30.11.2280 10.1371/journal.pbio.0030052 10.1016/j.femsre.2003.09.004 10.1146/annurev.bi.63.070194.005015 10.1073/pnas.77.5.2819 10.1038/35003501 10.1128/JB.187.4.1515-1518.2005 10.1101/gr.4527806 10.1128/JB.187.1.304-319.2005 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2007 BioMed Central Ltd. Copyright © 2007 Gómez-Gómez et al; licensee BioMed Central Ltd. 2007 Gómez-Gómez et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2007 BioMed Central Ltd. – notice: Copyright © 2007 Gómez-Gómez et al; licensee BioMed Central Ltd. 2007 Gómez-Gómez et al; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 7X8 5PM DOA |
DOI | 10.1186/1741-7007-5-14 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1741-7007 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_5268b34623dc4e34a980ecca94cffb86 PMC1852089 oai_biomedcentral_com_1741_7007_5_14 A161992618 17391508 10_1186_1741_7007_5_14 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Spain |
GeographicLocations_xml | – name: Spain |
GroupedDBID | --- 0R~ 123 23N 2VQ 2WC 4.4 53G 5GY 5VS 6J9 AAFWJ AAJSJ AASML AAYXX ABDBF ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BFQNJ BMC C1A C6C CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO IGS IHR INH INR IOV IPNFZ ISE ISR ITC KQ8 M48 M~E O5R O5S OK1 OVT P2P PGMZT RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS WOQ WOW XSB -A0 ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM 7X8 7X7 ABVAZ AFGXO AFNRJ 5PM |
ID | FETCH-LOGICAL-b647t-99fc4cbfddab44b37fa74008bf2f73f0e4bebfbe494b3c34d09e678c3aebb6843 |
IEDL.DBID | RBZ |
ISSN | 1741-7007 |
IngestDate | Wed Aug 27 01:29:17 EDT 2025 Thu Aug 21 13:18:31 EDT 2025 Wed May 22 07:11:44 EDT 2024 Thu Jul 10 23:28:30 EDT 2025 Thu Mar 27 01:51:56 EDT 2025 Tue Mar 25 03:43:32 EDT 2025 Fri Jun 27 05:15:09 EDT 2025 Fri Jun 27 05:15:17 EDT 2025 Wed Feb 19 01:42:21 EST 2025 Tue Jul 01 02:57:57 EDT 2025 Thu Apr 24 23:05:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b647t-99fc4cbfddab44b37fa74008bf2f73f0e4bebfbe494b3c34d09e678c3aebb6843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1186/1741-7007-5-14 |
PMID | 17391508 |
PQID | 70372152 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5268b34623dc4e34a980ecca94cffb86 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1852089 biomedcentral_primary_oai_biomedcentral_com_1741_7007_5_14 proquest_miscellaneous_70372152 gale_infotracmisc_A161992618 gale_infotracacademiconefile_A161992618 gale_incontextgauss_ISR_A161992618 gale_incontextgauss_IOV_A161992618 pubmed_primary_17391508 crossref_citationtrail_10_1186_1741_7007_5_14 crossref_primary_10_1186_1741_7007_5_14 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-03-28 |
PublicationDateYYYYMMDD | 2007-03-28 |
PublicationDate_xml | – month: 03 year: 2007 text: 2007-03-28 day: 28 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC biology |
PublicationTitleAlternate | BMC Biol |
PublicationYear | 2007 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | DB Kearns (110_CR12) 2003; 49 K Schlacher (110_CR31) 2006; 442 SC Kowalczykowski (110_CR22) 1994; 58 A Kuzminov (110_CR23) 1999; 63 L Eberl (110_CR11) 1999; 181 S Ayora (110_CR57) 2002; 277 J Courcelle (110_CR25) 2003; 37 OA Soutourina (110_CR2) 2003; 27 S Mariconda (110_CR45) 2006; 60 CD Amsler (110_CR17) 1993; 175 CJ Knyon (110_CR40) 1980; 77 CI Mayfield (110_CR54) 1977; 23 T Yasuda (110_CR51) 1998; 17 K Schlacher (110_CR30) 2005; 18 T Shibata (110_CR42) 2001; 98 J Adler (110_CR16) 1967; 46 T Ogawa (110_CR41) 1993; 259 (110_CR20) 2000 GC Walker (110_CR21) 2000 LL McCarter (110_CR19) 2006; 9 LM Maurer (110_CR18) 2005; 187 JB Stock (110_CR3) 1996 M Kitagawa (110_CR36) 2005 T Pérez-Capilla (110_CR39) 2005; 187 R Daniels (110_CR8) 2004; 28 S Ayora (110_CR55) 2002; 30 RM Harshey (110_CR5) 1994; 91 SC West (110_CR43) 2003; 4 RT Cirz (110_CR38) 2005; 3 WN Abouhamad (110_CR32) 1998; 180 SL Lusetti (110_CR24) 2002; 71 N Renzette (110_CR37) 2005; 57 JC Drees (110_CR48) 2006; 281 RM Harshey (110_CR1) 2003; 57 SC Kowalczykowski (110_CR28) 1994; 63 T Köhler (110_CR13) 2000; 182 JM Cox (110_CR46) 2005; 3 S Ayora (110_CR56) 2002; 316 J Courcelle (110_CR33) 2001; 158 M Arifuzzaman (110_CR44) 2006; 16 EC Friedberg (110_CR27) 2005 FM Camas (110_CR34) 2006; 103 AM Toguchi (110_CR15) 2000; 182 JH Miller (110_CR49) 1972 RS Harris (110_CR50) 1994; 264 M-P Zorzano (110_CR7) 2005; 71 DA McGrew (110_CR26) 2003; 38 C Lehnen (110_CR35) 2002; 45 S Delmas (110_CR52) 2005; 4 110_CR10 GM Fraser (110_CR9) 1999; 2 SL Lusetti (110_CR47) 2004; 31 MM Cox (110_CR29) 2000; 404 T Baba (110_CR53) 2006; 2 M Burkart (110_CR6) 1998; 95 AC Steven (110_CR58) 1988; 200 MD Baker (110_CR4) 2006; 28 MH Rashid (110_CR14) 2000; 97 10074060 - J Bacteriol. 1999 Mar;181(6):1703-12 15601715 - J Bacteriol. 2005 Jan;187(1):304-19 16369945 - Bioessays. 2006 Jan;28(1):9-22 6771759 - Proc Natl Acad Sci U S A. 1980 May;77(5):2819-23 3259634 - J Mol Biol. 1988 Mar 20;200(2):351-65 7979259 - Annu Rev Biochem. 1994;63:991-1043 15719060 - PLoS Biol. 2005 Feb;3(2):e52 12864845 - Mol Microbiol. 2003 Aug;49(3):581-90 10607626 - Curr Opin Microbiol. 1999 Dec;2(6):630-5 15869329 - PLoS Biol. 2005 Jun;3(6):e176 11029417 - J Bacteriol. 2000 Nov;182(21):5990-6 14527279 - Annu Rev Microbiol. 2003;57:249-73 14550943 - FEMS Microbiol Rev. 2003 Oct;27(4):505-23 16769691 - DNA Res. 2005;12(5):291-9 7968921 - Microbiol Rev. 1994 Sep;58(3):401-65 9482927 - Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2568-73 16377615 - J Biol Chem. 2006 Feb 24;281(8):4708-17 11053374 - J Bacteriol. 2000 Nov;182(22):6308-21 15489505 - J Biol Chem. 2004 Dec 31;279(53):55073-9 11829501 - J Mol Biol. 2002 Feb 8;316(1):35-49 10758151 - Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4885-90 15687217 - J Bacteriol. 2005 Feb;187(4):1515-8 16091045 - Mol Microbiol. 2005 Aug;57(4):1074-85 12123461 - Mol Microbiol. 2002 Jul;45(2):521-32 16738554 - Mol Syst Biol. 2006;2:2006.0008 14616075 - Annu Rev Genet. 2003;37:611-46 9683468 - J Bacteriol. 1998 Aug;180(15):3757-64 16606699 - Genome Res. 2006 May;16(5):686-91 11333217 - Genetics. 2001 May;158(1):41-64 12034814 - Nucleic Acids Res. 2002 Jun 1;30(11):2280-9 4961758 - J Gen Microbiol. 1967 Feb;46(2):175-84 15449604 - FEMS Microbiol Rev. 2004 Jun;28(3):261-89 12778123 - Nat Rev Mol Cell Biol. 2003 Jun;4(6):435-45 8078935 - Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8631-5 15721259 - Mol Cell. 2005 Feb 18;17(4):561-72 9606202 - EMBO J. 1998 Jun 1;17(11):3207-16 10716434 - Nature. 2000 Mar 2;404(6773):37-41 14693725 - Crit Rev Biochem Mol Biol. 2003;38(5):385-432 15903460 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Mar;71(3 Pt 1):031908 8146657 - Science. 1994 Apr 8;264(5156):258-60 16796690 - Mol Microbiol. 2006 Jun;60(6):1590-602 11459985 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8425-32 16908855 - Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12718-23 71191 - Can J Microbiol. 1977 Sep;23(9):1311-3 12124388 - J Biol Chem. 2002 Sep 27;277(39):35969-79 10585965 - Microbiol Mol Biol Rev. 1999 Dec;63(4):751-813, table of contents 8407796 - J Bacteriol. 1993 Oct;175(19):6238-44 16487743 - Curr Opin Microbiol. 2006 Apr;9(2):180-6 15590330 - DNA Repair (Amst). 2005 Feb 3;4(2):221-9 8456314 - Science. 1993 Mar 26;259(5103):1896-9 12045091 - Annu Rev Biochem. 2002;71:71-100 16929290 - Nature. 2006 Aug 24;442(7105):883-7 |
References_xml | – volume: 91 start-page: 8631 year: 1994 ident: 110_CR5 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.91.18.8631 – volume-title: DNA Repair and Mutagenesis year: 2005 ident: 110_CR27 doi: 10.1128/9781555816704 – ident: 110_CR10 – volume-title: Bacterial Stress Responses year: 2000 ident: 110_CR20 – start-page: 1103 volume-title: Escherichia coli and Salmonella: Cellular and Molecular Biology year: 1996 ident: 110_CR3 – volume: 158 start-page: 41 year: 2001 ident: 110_CR33 publication-title: Genetics doi: 10.1093/genetics/158.1.41 – volume: 71 start-page: 031908 year: 2005 ident: 110_CR7 publication-title: Phys Rev E doi: 10.1103/PhysRevE.71.031908 – volume: 9 start-page: 180 year: 2006 ident: 110_CR19 publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2006.02.001 – volume: 2 start-page: 630 year: 1999 ident: 110_CR9 publication-title: Curr Opin Microbiol doi: 10.1016/S1369-5274(99)00033-8 – volume: 2 start-page: 1 year: 2006 ident: 110_CR53 publication-title: Mol Syst Biol doi: 10.1038/msb4100050 – start-page: 352 volume-title: Experiments in molecular genetics year: 1972 ident: 110_CR49 – volume: 46 start-page: 175 year: 1967 ident: 110_CR16 publication-title: J Gen Microbiol doi: 10.1099/00221287-46-2-175 – volume: 4 start-page: 1 year: 2003 ident: 110_CR43 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1127 – volume: 57 start-page: 1074 year: 2005 ident: 110_CR37 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2005.04755.x – volume: 97 start-page: 4885 year: 2000 ident: 110_CR14 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.060030097 – volume: 281 start-page: 4708 year: 2006 ident: 110_CR48 publication-title: J Biol Chem doi: 10.1074/jbc.M513592200 – volume: 27 start-page: 505 year: 2003 ident: 110_CR2 publication-title: FEMS Microbiol Rev doi: 10.1016/S0168-6445(03)00064-0 – volume: 37 start-page: 611 year: 2003 ident: 110_CR25 publication-title: Annu Rev Genet doi: 10.1146/annurev.genet.37.110801.142616 – volume: 180 start-page: 3757 year: 1998 ident: 110_CR32 publication-title: J Bacteriol doi: 10.1128/JB.180.15.3757-3764.1998 – volume: 200 start-page: 351 year: 1988 ident: 110_CR58 publication-title: J Mol Biol doi: 10.1016/0022-2836(88)90246-X – volume: 98 start-page: 8425 year: 2001 ident: 110_CR42 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.111005198 – volume: 17 start-page: 3207 year: 1998 ident: 110_CR51 publication-title: EMBO J doi: 10.1093/emboj/17.11.3207 – volume: 49 start-page: 581 year: 2003 ident: 110_CR12 publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2003.03584.x – volume: 60 start-page: 1590 year: 2006 ident: 110_CR45 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2006.05208.x – volume: 277 start-page: 35969 year: 2002 ident: 110_CR57 publication-title: J Biol Chem doi: 10.1074/jbc.M204467200 – volume: 182 start-page: 5990 year: 2000 ident: 110_CR13 publication-title: J Bacteriol doi: 10.1128/JB.182.21.5990-5996.2000 – volume: 45 start-page: 521 year: 2002 ident: 110_CR35 publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2002.03032.x – volume: 23 start-page: 1311 year: 1977 ident: 110_CR54 publication-title: Can J Microbiol doi: 10.1139/m77-198 – volume: 175 start-page: 6238 year: 1993 ident: 110_CR17 publication-title: J Bacteriol doi: 10.1128/jb.175.19.6238-6244.1993 – volume: 259 start-page: 1896 year: 1993 ident: 110_CR41 publication-title: Science doi: 10.1126/science.8456314 – volume: 181 start-page: 1703 year: 1999 ident: 110_CR11 publication-title: J Bacteriol doi: 10.1128/JB.181.6.1703-1712.1999 – start-page: 131 volume-title: Bacterial Stress Responses year: 2000 ident: 110_CR21 – volume: 58 start-page: 401 year: 1994 ident: 110_CR22 publication-title: Microbiol Rev doi: 10.1128/MMBR.58.3.401-465.1994 – volume: 57 start-page: 249 year: 2003 ident: 110_CR1 publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.57.030502.091014 – volume: 182 start-page: 6308 year: 2000 ident: 110_CR15 publication-title: J Bacteriol doi: 10.1128/JB.182.22.6308-6321.2000 – volume: 442 start-page: 883 year: 2006 ident: 110_CR31 publication-title: Nature doi: 10.1038/nature05042 – start-page: 291 volume-title: DNA Res year: 2005 ident: 110_CR36 – volume: 316 start-page: 35 year: 2002 ident: 110_CR56 publication-title: J Mol Biol doi: 10.1006/jmbi.2001.5336 – volume: 264 start-page: 258 year: 1994 ident: 110_CR50 publication-title: Science doi: 10.1126/science.8146657 – volume: 71 start-page: 71 year: 2002 ident: 110_CR24 publication-title: Ann Rev Biochem doi: 10.1146/annurev.biochem.71.083101.133940 – volume: 38 start-page: 385 year: 2003 ident: 110_CR26 publication-title: Crit Rev Biochem Mol Biol doi: 10.1080/10409230390242489 – volume: 63 start-page: 751 year: 1999 ident: 110_CR23 publication-title: Microbiol Molec Biol Rev doi: 10.1128/MMBR.63.4.751-813.1999 – volume: 103 start-page: 12718 year: 2006 ident: 110_CR34 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0602119103 – volume: 4 start-page: 221 year: 2005 ident: 110_CR52 publication-title: DNA Repair doi: 10.1016/j.dnarep.2004.09.008 – volume: 95 start-page: 2568 year: 1998 ident: 110_CR6 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.5.2568 – volume: 28 start-page: 9 year: 2006 ident: 110_CR4 publication-title: Bioessays doi: 10.1002/bies.20343 – volume: 31 start-page: 55073 year: 2004 ident: 110_CR47 publication-title: J Biol Chem doi: 10.1074/jbc.M410371200 – volume: 3 start-page: 1024 year: 2005 ident: 110_CR38 publication-title: PloS Biol doi: 10.1371/journal.pbio.0030176 – volume: 18 start-page: 561 year: 2005 ident: 110_CR30 publication-title: Mol Cell doi: 10.1016/j.molcel.2005.01.006 – volume: 30 start-page: 2280 year: 2002 ident: 110_CR55 publication-title: Nucleic Acids Res doi: 10.1093/nar/30.11.2280 – volume: 3 start-page: 231 year: 2005 ident: 110_CR46 publication-title: PloS Biol doi: 10.1371/journal.pbio.0030052 – volume: 28 start-page: 261 year: 2004 ident: 110_CR8 publication-title: FEMS Microbiol Rev doi: 10.1016/j.femsre.2003.09.004 – volume: 63 start-page: 991 year: 1994 ident: 110_CR28 publication-title: Annu Rev Biochem doi: 10.1146/annurev.bi.63.070194.005015 – volume: 77 start-page: 2819 year: 1980 ident: 110_CR40 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.77.5.2819 – volume: 404 start-page: 37 year: 2000 ident: 110_CR29 publication-title: Nature doi: 10.1038/35003501 – volume: 187 start-page: 1515 year: 2005 ident: 110_CR39 publication-title: J Bacteriol doi: 10.1128/JB.187.4.1515-1518.2005 – volume: 16 start-page: 686 year: 2006 ident: 110_CR44 publication-title: Genome Res doi: 10.1101/gr.4527806 – volume: 187 start-page: 304 year: 2005 ident: 110_CR18 publication-title: J Bacteriol doi: 10.1128/JB.187.1.304-319.2005 – reference: 14527279 - Annu Rev Microbiol. 2003;57:249-73 – reference: 15869329 - PLoS Biol. 2005 Jun;3(6):e176 – reference: 16929290 - Nature. 2006 Aug 24;442(7105):883-7 – reference: 71191 - Can J Microbiol. 1977 Sep;23(9):1311-3 – reference: 10074060 - J Bacteriol. 1999 Mar;181(6):1703-12 – reference: 15903460 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Mar;71(3 Pt 1):031908 – reference: 14550943 - FEMS Microbiol Rev. 2003 Oct;27(4):505-23 – reference: 16487743 - Curr Opin Microbiol. 2006 Apr;9(2):180-6 – reference: 11829501 - J Mol Biol. 2002 Feb 8;316(1):35-49 – reference: 11459985 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8425-32 – reference: 6771759 - Proc Natl Acad Sci U S A. 1980 May;77(5):2819-23 – reference: 12045091 - Annu Rev Biochem. 2002;71:71-100 – reference: 10585965 - Microbiol Mol Biol Rev. 1999 Dec;63(4):751-813, table of contents – reference: 15601715 - J Bacteriol. 2005 Jan;187(1):304-19 – reference: 15719060 - PLoS Biol. 2005 Feb;3(2):e52 – reference: 12778123 - Nat Rev Mol Cell Biol. 2003 Jun;4(6):435-45 – reference: 9683468 - J Bacteriol. 1998 Aug;180(15):3757-64 – reference: 12034814 - Nucleic Acids Res. 2002 Jun 1;30(11):2280-9 – reference: 14616075 - Annu Rev Genet. 2003;37:611-46 – reference: 10758151 - Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4885-90 – reference: 7968921 - Microbiol Rev. 1994 Sep;58(3):401-65 – reference: 16796690 - Mol Microbiol. 2006 Jun;60(6):1590-602 – reference: 11333217 - Genetics. 2001 May;158(1):41-64 – reference: 7979259 - Annu Rev Biochem. 1994;63:991-1043 – reference: 16738554 - Mol Syst Biol. 2006;2:2006.0008 – reference: 9606202 - EMBO J. 1998 Jun 1;17(11):3207-16 – reference: 8456314 - Science. 1993 Mar 26;259(5103):1896-9 – reference: 8407796 - J Bacteriol. 1993 Oct;175(19):6238-44 – reference: 16377615 - J Biol Chem. 2006 Feb 24;281(8):4708-17 – reference: 12864845 - Mol Microbiol. 2003 Aug;49(3):581-90 – reference: 16091045 - Mol Microbiol. 2005 Aug;57(4):1074-85 – reference: 15449604 - FEMS Microbiol Rev. 2004 Jun;28(3):261-89 – reference: 3259634 - J Mol Biol. 1988 Mar 20;200(2):351-65 – reference: 10716434 - Nature. 2000 Mar 2;404(6773):37-41 – reference: 10607626 - Curr Opin Microbiol. 1999 Dec;2(6):630-5 – reference: 15687217 - J Bacteriol. 2005 Feb;187(4):1515-8 – reference: 16908855 - Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12718-23 – reference: 9482927 - Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2568-73 – reference: 4961758 - J Gen Microbiol. 1967 Feb;46(2):175-84 – reference: 12124388 - J Biol Chem. 2002 Sep 27;277(39):35969-79 – reference: 16606699 - Genome Res. 2006 May;16(5):686-91 – reference: 16769691 - DNA Res. 2005;12(5):291-9 – reference: 14693725 - Crit Rev Biochem Mol Biol. 2003;38(5):385-432 – reference: 8078935 - Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8631-5 – reference: 8146657 - Science. 1994 Apr 8;264(5156):258-60 – reference: 15590330 - DNA Repair (Amst). 2005 Feb 3;4(2):221-9 – reference: 15721259 - Mol Cell. 2005 Feb 18;17(4):561-72 – reference: 11053374 - J Bacteriol. 2000 Nov;182(22):6308-21 – reference: 11029417 - J Bacteriol. 2000 Nov;182(21):5990-6 – reference: 15489505 - J Biol Chem. 2004 Dec 31;279(53):55073-9 – reference: 12123461 - Mol Microbiol. 2002 Jul;45(2):521-32 – reference: 16369945 - Bioessays. 2006 Jan;28(1):9-22 |
SSID | ssj0025773 |
Score | 2.0529506 |
Snippet | Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and... BACKGROUND: Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types:... Abstract Background Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility... |
SourceID | doaj pubmedcentral biomedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 14 |
SubjectTerms | Adenosine Triphosphatases - metabolism Escherichia coli Escherichia coli K12 - growth & development Escherichia coli K12 - physiology Escherichia coli K12 - radiation effects Flagella - physiology Genetic Complementation Test Green Fluorescent Proteins - genetics Microbial Viability Organisms, Genetically Modified Physiological aspects Proteins Rec A Recombinases - genetics Rec A Recombinases - physiology Recombinant Proteins - genetics Recombination, Genetic SOS Response (Genetics) - physiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SKPgifntaaxChT6G7l2w--nYtLVVRQa30LSTZpB4cu6V7p_jfO7O7Vy-W4ouvmTl2MzPJzOzN_IaQN7KOItVw0iSWNgotA9OuKpkHWzau0KKW2Jz84aM8PRPvzqvzjVFfWBM2wAMPgttHOBLPBXjpOojIhTO6wMcaEVLyugfbBp-3TqbGVKtS_X_LEG6XTIEbHOEaSy33r9dYxcq_-9wXmXvqUfxv3tUbziovpNzwTCf3yb0xpKSzYSsPyJ3YPCTbw5DJX4-IndGm_REXFAsJKcSoFELFGcXmsSugNGxoFzmgl0NlXtvQNtHup8MqmQuKSxiq03lDjztU8RzLoykY0Jy-Z-X0MTk7Of56dMrGsQrMS6GWzJgURPCprp0XwnOVnIKTrH2aJsVTEYWPPvkoDBADF3VhIri0wF30XmrBn5AteLv4jFAeaxVCMEVtJAKvuQjZSnJwiUJgBYqfkINMuvZygNCwCGqdU-B8WVSNRdXYClKSCWFrVdgwApbj3IyF7RMXLW_w713zr59zG-chajZ7m34BDM-Ohmf_ZXgT8hrtwiKIRoNVOhdu1XX27advdgZhNJi-LPVtTF8-Z0x7I1NqYYPBjZ0RIGME58o4dzJOuApCRn61tlGLJKyfa2K76mDrXOEE4wl5OljsHwkpHBFQwG9VZsuZcHJKM__e45Bj332hzfP_Ic0X5O7w1Zyzqd4hW8urVXwJ4d7S7_Yn-zcAI1Du priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQEBIvCMZXYRsWQtqTIa1dx540oYI2DdBAAor2ZtmOXSpVyWhaYP89d0nazZRJvOYuSnwfvnNy9ztCXsgiiFiAp0ksbRRKeqbssM8c2LK2mRKFxObk04_yZCzenw3PLuufOgHW_zza4Typ8Xz28vePi9fg8IeNwyv5CpLqPsvxm9uQ4UzrmxCVcnTSU7H-owCW2fxtXvN2AI6b9__V-T5LAlaD67-5e18JX2lp5ZVYdXyX3OmSTDpqreIeuRHKbXKrHTt5cZ-YES2rn2FGsbSQQtZKIXkcUWwnmwOlZG0DyQE9b2v1qpJWkda_LNbNTChewuSdTkt6VKPSp1gwTcGkpvQD6w8ekPHx0de3J6wbtMCcFPmCaR298C4WhXVCOJ5Hm4NvKxcHMecxC8IFF10QGoieiyLTAYKc5zY4J5XgD8kWvF14TCgPRe6911mhJUKx2QDnl2hhW4VUC0yhRw4S6ZrzFlTDIMx1SgGPM6gag6oxQzik9AhbqcL4DsIcJ2nMTHOUUXKDf3_Nv3rOdZxvULPJ2zQXqvnEdD5sEBnHcQEJY-FF4MJqlaEHaOFjdLi252gXBmE1SqzbmdhlXZt3n76ZESTW4Ayyr65j-vI5YdrvmGIFC_S265UAGSNcV8K5k3DC5uAT8rOVjRokYUVdGaplDUvnOc407pFHrcVeSijHoQEZ3JsntpwIJ6WU0-8NMjl24mdKP_kfQTwlt9vv5JwN1A7ZWsyXYRcSvIXbazz3DwLqTA0 priority: 102 providerName: Scholars Portal |
Title | A novel role for RecA under non-stress: promotion of swarming motility in Escherichia coli K-12 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/17391508 https://www.proquest.com/docview/70372152 http://dx.doi.org/10.1186/1741-7007-5-14 https://pubmed.ncbi.nlm.nih.gov/PMC1852089 https://doaj.org/article/5268b34623dc4e34a980ecca94cffb86 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDI_QEBIviG8OxogQ0p4iepc0H3u7oU0DNJCAoYmXKEmT7aRTO613IP577LZ3W3baEy99iF21ie3GTu2fCXknqyhSBZYmMbVRaBmYduWYedBl4wotKonFycdf5NGJ-HRanl6dd9z4gz_W8j24zGOm8EStZNix-u5EwAjG5fu_1qFVqbp_yWveAZ5x8_4bde3zbDvqUPs3v83XNqc8cfLaTnT4kDwYXEg67WX-iNyJ9WNyr28q-fcJsVNaN7_jnGLiIAWflIJrOKVYLHYJlJr15SF79KLPxGtq2iTa_nGYFXNGcQhdczqr6UGLIp1hOjQFhZnRz2w8eUpODg9-fDhiQxsF5qVQC2ZMCiL4VFXOC-G5Sk6B5WqfJknxVETho08-CgPEwEVVmAhbWOAuei-14M_IFrxdfEEoj5UKIZiiMhKB1lyE6CQ5-GiCIwWCHpG9bHXtRQ-ZYRHEOqeAPVkUjUXR2BJCkBFhK1HYMACUY5-Mue0CFS03-HfX_Kvn3Ma5j5LN3qYbAD2zg4VaxL3xXIA7WAURuXBGF6jfRoSUPM7tLeqFRdCMGrNyztyybe3Hrz_tFNxmUHU51rcxff-WMe0OTKmBCQY3VELAGiMYV8a5nXGC6YeM_GaloxZJmC9Xx2bZwtS5wo7FI_K819irFVLYEqCAe1Wmy9ni5JR6dt7hjmOdfaHNy_8R8ityvz8d52yit8nW4nIZX4Nbt_A73XEIXI-F3ums-x_U10oD |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemIQQviPG1wmAWQtqTIW0c29lbNzZ17ANpbGjixbIdu1QqydQPEP89d0laaqo98Zr7RYl9d_Y5ufsdIe9E4XkowNMEpjZyJRxTJusyC7acm0TxQmBx8vmFGFzzTzfZzQb5uKiFsT9cyz70frX-fFwv2otcscbVlfgA4XSXSfzaljHsZn1PZpnEPgaXB9-Wx65M1v-Zl9iWunH9_n9q3sfRVlUz-q-v2ysbV5xUubJLHT8mj9rwkvabIWyRDV8-IfebhpO_nxLdp2X1048pJhVSiFcphI19ioVkE5CUrCkd2ae3TZZeVdIq0OkvgxkzQ4qXMGyno5IeTVHdI0yVpmBMI3rKur1n5Pr46OpwwNoWC8wKLmcsz4PjzoaiMJZzm8pgJHi1sqEXZBoSz623wXqeg9ClvEhyD9ubS423ViiePieb8HZ-m9DUF9I5lydFLpCEzXg4uQQDCyoEWWAEHbIfza6-beg0NBJcxxLQtUbVaFSNzuB40iFsoQrtWvJy7KEx1vUhRok1_N4Sv3jOXcgD1Gz0NvWFajLUrcFp5MSxKYdQsXDcp9zkKkHbz7kLweLY3qJdaCTUKDFjZ2jm06k--fxV9yGkBjcQXXUX6MtlBNprQaGCATrTVknAHCNRV4TciZCwLLhIvLuwUY0izKUrfTWfwtBTid2MO-RFY7F_Z0hiu4AE7pWRLUeTE0vK0feakxxr8BOVv_wfJe-SB4Or8zN9dnJx-oo8bL6ip6yndsjmbDL3ryH8m9k3tXf_AbQXVpo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemIRAviO8VBrMQ0p7M0saxnb110GpjMNBgaOLFsh27VJSk6geI_567JC010554i3IXJfH9zj4nd78j5KUoPA8FeJrA1EauhGPKZF1mAcu5SRQvBBYnvz8Txxf87WV2uUUGq1oY-8O17EOvNuvPJ_WkDQfu-8G0CI2vK3EA8XSXSfzcljFsZ31DZplE_zw_-rred2Wy_tG81m25G69e_0_R-yRaq2pK_6sT98bKFWdVbixTw7vkThtf0n4DiHtky5f3yc2m4-TvB0T3aVn99BOKWYUUAlYKcWOfYiXZDCQla2pHDum0SdOrSloFOv9lMGVmRPEUxu10XNLBHO09xlxpCmga01PW7T0kF8PB59fHrO2xwKzgcsHyPDjubCgKYzm3qQxGglsrG3pBpiHx3HobrOc5CF3KiyT3sL651HhrheLpI7INT-d3CE19IZ1zeVLkAlnYjIetSzAwo0KUBSjokMNodPW04dPQyHAdS8DYGk2j0TQ6g_1Jh7CVKbRr2cuxicZE17sYJa7o76_1V_e5TvMILRs9TX2imo10674aSXFsyiFWLBz3KTe5ShD8OXchWHy3F4gLjYwaJabsjMxyPtcnH77oPsTU4Aeiq65T-nQeKe23SqFCvJu2TALGGJm6Is3dSBPmBReJ91YY1SjCZLrSV8s5vHoqsZ1xhzxuEPt3hCT2C0jgWhlhORqcWFKOv9Wk5FiEn6j8yf8YeY_c-vhmqN-dnJ0-Jbebr-gp66ldsr2YLf0zCP8W9nnt3H8AEjxWZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+role+for+RecA+under+non-stress%3A+promotion+of+swarming+motility+in+Escherichia+coli+K-12&rft.jtitle=BMC+biology&rft.au=Gomez-Gomez%2C+Jose-Maria&rft.au=Manfredi%2C+Candela&rft.au=Alonso%2C+Juan-Carlos&rft.au=Blazquez%2C+Jesus&rft.date=2007-03-28&rft.pub=BioMed+Central+Ltd&rft.issn=1741-7007&rft.eissn=1741-7007&rft.volume=5&rft.spage=14&rft_id=info:doi/10.1186%2F1741-7007-5-14&rft.externalDBID=IOV&rft.externalDocID=A161992618 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon |