Control strategies for active lower extremity prosthetics and orthotics: a review

: Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to devel...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroengineering and rehabilitation Vol. 12; no. 1; p. 1
Main Authors Tucker, Michael R, Olivier, Jeremy, Pagel, Anna, Bleuler, Hannes, Bouri, Mohamed, Lambercy, Olivier, Millán, José del R, Riener, Robert, Vallery, Heike, Gassert, Roger
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 05.01.2015
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract : Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user.This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic (P/O) devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user's sensory-motor control system. This review underscores the practical challenges and opportunities associated with P/O control, which can be used to accelerate future developments in this field. Furthermore, this work provides a classification scheme for the comparison of the various control strategies.As a novel contribution, a general framework for the control of portable gait-assistance devices is proposed. This framework accounts for the physical and informatic interactions between the controller, the user, the environment, and the mechanical device itself. Such a treatment of P/Os--not as independent devices, but as actors within an ecosystem--is suggested to be necessary to structure the next generation of intelligent and multifunctional controllers.Each element of the proposed framework is discussed with respect to the role that it plays in the assistance of locomotion, along with how its states can be sensed as inputs to the controller. The reviewed controllers are shown to fit within different levels of a hierarchical scheme, which loosely resembles the structure and functionality of the nominal human central nervous system (CNS). Active and passive safety mechanisms are considered to be central aspects underlying all of P/O design and control, and are shown to be critical for regulatory approval of such devices for real-world use.The works discussed herein provide evidence that, while we are getting ever closer, significant challenges still exist for the development of controllers for portable powered P/O devices that can seamlessly integrate with the user's neuromusculoskeletal system and are practical for use in locomotive ADL.
AbstractList Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user. This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic (P/O) devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user's sensory-motor control system. This review underscores the practical challenges and opportunities associated with P/O control, which can be used to accelerate future developments in this field. Furthermore, this work provides a classification scheme for the comparison of the various control strategies. As a novel contribution, a general framework for the control of portable gait-assistance devices is proposed. This framework accounts for the physical and informatic interactions between the controller, the user, the environment, and the mechanical device itself. Such a treatment of P/Os - not as independent devices, but as actors within an ecosystem - is suggested to be necessary to structure the next generation of intelligent and multifunctional controllers. Each element of the proposed framework is discussed with respect to the role that it plays in the assistance of locomotion, along with how its states can be sensed as inputs to the controller. The reviewed controllers are shown to fit within different levels of a hierarchical scheme, which loosely resembles the structure and functionality of the nominal human central nervous system (CNS). Active and passive safety mechanisms are considered to be central aspects underlying all of P/O design and control, and are shown to be critical for regulatory approval of such devices for real-world use. The works discussed herein provide evidence that, while we are getting ever closer, significant challenges still exist for the development of controllers for portable powered P/O devices that can seamlessly integrate with the user's neuromusculoskeletal system and are practical for use in locomotive ADL. Keywords: Prosthetic, Orthotic, Exoskeleton, Control architecture, Intention recognition, Activity mode recognition, Volitional control, Shared control, Finite-state machine, Electromyography, Sensory feedback, Sensory substitution, Seamless integration, Sensory-motor control, Rehabilitation robotics, Bionic, Biomechatronic, Legged locomotion
: Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user. This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic (P/O) devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user's sensory-motor control system. This review underscores the practical challenges and opportunities associated with P/O control, which can be used to accelerate future developments in this field. Furthermore, this work provides a classification scheme for the comparison of the various control strategies. As a novel contribution, a general framework for the control of portable gait-assistance devices is proposed. This framework accounts for the physical and informatic interactions between the controller, the user, the environment, and the mechanical device itself. Such a treatment of P/Os - not as independent devices, but as actors within an ecosystem - is suggested to be necessary to structure the next generation of intelligent and multifunctional controllers. Each element of the proposed framework is discussed with respect to the role that it plays in the assistance of locomotion, along with how its states can be sensed as inputs to the controller. The reviewed controllers are shown to fit within different levels of a hierarchical scheme, which loosely resembles the structure and functionality of the nominal human central nervous system (CNS). Active and passive safety mechanisms are considered to be central aspects underlying all of P/O design and control, and are shown to be critical for regulatory approval of such devices for real-world use. The works discussed herein provide evidence that, while we are getting ever closer, significant challenges still exist for the development of controllers for portable powered P/O devices that can seamlessly integrate with the user's neuromusculoskeletal system and are practical for use in locomotive ADL.
Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user. This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic (P/O) devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user’s sensory-motor control system. This review underscores the practical challenges and opportunities associated with P/O control, which can be used to accelerate future developments in this field. Furthermore, this work provides a classification scheme for the comparison of the various control strategies. As a novel contribution, a general framework for the control of portable gait-assistance devices is proposed. This framework accounts for the physical and informatic interactions between the controller, the user, the environment, and the mechanical device itself. Such a treatment of P/Os – not as independent devices, but as actors within an ecosystem – is suggested to be necessary to structure the next generation of intelligent and multifunctional controllers. Each element of the proposed framework is discussed with respect to the role that it plays in the assistance of locomotion, along with how its states can be sensed as inputs to the controller. The reviewed controllers are shown to fit within different levels of a hierarchical scheme, which loosely resembles the structure and functionality of the nominal human central nervous system (CNS). Active and passive safety mechanisms are considered to be central aspects underlying all of P/O design and control, and are shown to be critical for regulatory approval of such devices for real-world use. The works discussed herein provide evidence that, while we are getting ever closer, significant challenges still exist for the development of controllers for portable powered P/O devices that can seamlessly integrate with the user’s neuromusculoskeletal system and are practical for use in locomotive ADL.
: Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user.This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic (P/O) devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user's sensory-motor control system. This review underscores the practical challenges and opportunities associated with P/O control, which can be used to accelerate future developments in this field. Furthermore, this work provides a classification scheme for the comparison of the various control strategies.As a novel contribution, a general framework for the control of portable gait-assistance devices is proposed. This framework accounts for the physical and informatic interactions between the controller, the user, the environment, and the mechanical device itself. Such a treatment of P/Os--not as independent devices, but as actors within an ecosystem--is suggested to be necessary to structure the next generation of intelligent and multifunctional controllers.Each element of the proposed framework is discussed with respect to the role that it plays in the assistance of locomotion, along with how its states can be sensed as inputs to the controller. The reviewed controllers are shown to fit within different levels of a hierarchical scheme, which loosely resembles the structure and functionality of the nominal human central nervous system (CNS). Active and passive safety mechanisms are considered to be central aspects underlying all of P/O design and control, and are shown to be critical for regulatory approval of such devices for real-world use.The works discussed herein provide evidence that, while we are getting ever closer, significant challenges still exist for the development of controllers for portable powered P/O devices that can seamlessly integrate with the user's neuromusculoskeletal system and are practical for use in locomotive ADL.: Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user.This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic (P/O) devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user's sensory-motor control system. This review underscores the practical challenges and opportunities associated with P/O control, which can be used to accelerate future developments in this field. Furthermore, this work provides a classification scheme for the comparison of the various control strategies.As a novel contribution, a general framework for the control of portable gait-assistance devices is proposed. This framework accounts for the physical and informatic interactions between the controller, the user, the environment, and the mechanical device itself. Such a treatment of P/Os--not as independent devices, but as actors within an ecosystem--is suggested to be necessary to structure the next generation of intelligent and multifunctional controllers.Each element of the proposed framework is discussed with respect to the role that it plays in the assistance of locomotion, along with how its states can be sensed as inputs to the controller. The reviewed controllers are shown to fit within different levels of a hierarchical scheme, which loosely resembles the structure and functionality of the nominal human central nervous system (CNS). Active and passive safety mechanisms are considered to be central aspects underlying all of P/O design and control, and are shown to be critical for regulatory approval of such devices for real-world use.The works discussed herein provide evidence that, while we are getting ever closer, significant challenges still exist for the development of controllers for portable powered P/O devices that can seamlessly integrate with the user's neuromusculoskeletal system and are practical for use in locomotive ADL.
Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user.
Audience Academic
Author Bouri, Mohamed
Lambercy, Olivier
Pagel, Anna
Millán, José del R
Gassert, Roger
Olivier, Jeremy
Vallery, Heike
Tucker, Michael R
Riener, Robert
Bleuler, Hannes
Author_xml – sequence: 1
  givenname: Michael R
  surname: Tucker
  fullname: Tucker, Michael R
– sequence: 2
  givenname: Jeremy
  surname: Olivier
  fullname: Olivier, Jeremy
– sequence: 3
  givenname: Anna
  surname: Pagel
  fullname: Pagel, Anna
– sequence: 4
  givenname: Hannes
  surname: Bleuler
  fullname: Bleuler, Hannes
– sequence: 5
  givenname: Mohamed
  surname: Bouri
  fullname: Bouri, Mohamed
– sequence: 6
  givenname: Olivier
  surname: Lambercy
  fullname: Lambercy, Olivier
– sequence: 7
  givenname: José del R
  surname: Millán
  fullname: Millán, José del R
– sequence: 8
  givenname: Robert
  surname: Riener
  fullname: Riener, Robert
– sequence: 9
  givenname: Heike
  surname: Vallery
  fullname: Vallery, Heike
– sequence: 10
  givenname: Roger
  surname: Gassert
  fullname: Gassert, Roger
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25557982$$D View this record in MEDLINE/PubMed
BookMark eNqNkkuLFDEUhYOMOA_dupSAGzfVJqkkVeVCaBpfMCCCrkMquemOVFXaJN3j_HtT9MwwrQ4MWeT13cPNyTlHJ1OYAKGXlCwobeVb2vC6IoTUFWUVfYLO7g5O7q1P0XlKP8uCE8GfoVMmhGi6lp2hb6sw5RgGnHLUGdYeEnYhYm2y3wMewhVEDL9zhNHna7yNIeUNZG8S1pPFIeZNmHfvsMYR9h6unqOnTg8JXtzMF-jHxw_fV5-ry6-fvqyWl1UveZOrpu7qGlxjpKHUSdkKUQvXW900thFCa0mt7nlPO207azhzApgzVDSW0V67-gK9P-hud_0I1kB5hx7UNvpRx2sVtFfHN5PfqHXYK14zKRgpAsuDQO_DAwLHNyaMarZUzZYqyhQtGm9umojh1w5SVqNPBoZBTxB2SVEpu1aQlj0KJZyKlpBHoIJxwnk3q74-oGs9gPKTC6VVM-NqKYocaxmZqcV_qDJs-VZTEuV8OT8qeHXf3DtTboNTAH4ATElEiuCU8VlnP6dJ-0FRouZ8_uvX4q-yW-UHCv4AkMrmIw
CitedBy_id crossref_primary_10_1109_TMRB_2020_3011841
crossref_primary_10_1016_j_jbiomech_2020_110087
crossref_primary_10_1109_JSEN_2018_2871328
crossref_primary_10_1155_2018_8783642
crossref_primary_10_1515_pjbr_2020_0021
crossref_primary_10_1371_journal_pone_0313156
crossref_primary_10_1109_TNSRE_2022_3202658
crossref_primary_10_3389_fnhum_2018_00312
crossref_primary_10_1002_ar_25031
crossref_primary_10_1109_LRA_2020_3007455
crossref_primary_10_1109_TCYB_2020_2978216
crossref_primary_10_1063_1_5091660
crossref_primary_10_1080_17483107_2020_1749892
crossref_primary_10_3390_s20216345
crossref_primary_10_1115_1_4040699
crossref_primary_10_1016_j_bspc_2022_104163
crossref_primary_10_3390_s22249690
crossref_primary_10_1016_j_neucom_2021_03_038
crossref_primary_10_1038_s41598_022_13981_w
crossref_primary_10_3389_fpubh_2021_783565
crossref_primary_10_1109_ACCESS_2023_3336003
crossref_primary_10_3389_fbioe_2017_00037
crossref_primary_10_1109_TNSRE_2021_3136088
crossref_primary_10_3390_s23115355
crossref_primary_10_1109_TRO_2022_3192779
crossref_primary_10_1109_JSEN_2019_2944653
crossref_primary_10_1109_TNSRE_2021_3107780
crossref_primary_10_1016_j_compbiomed_2023_107192
crossref_primary_10_1186_s12938_018_0502_8
crossref_primary_10_1109_TCYB_2022_3224895
crossref_primary_10_1109_TCST_2016_2643566
crossref_primary_10_1155_2021_6882467
crossref_primary_10_1016_j_medengphy_2021_103744
crossref_primary_10_1109_TRO_2022_3226887
crossref_primary_10_3389_fnbot_2017_00030
crossref_primary_10_1088_1741_2552_ab5ee9
crossref_primary_10_1186_s12984_020_00668_4
crossref_primary_10_1016_j_apergo_2023_104100
crossref_primary_10_3389_fbioe_2023_1188685
crossref_primary_10_1016_j_mechatronics_2018_03_002
crossref_primary_10_3390_app13031893
crossref_primary_10_1109_ACCESS_2019_2953302
crossref_primary_10_14483_22487638_18060
crossref_primary_10_1109_TRO_2019_2956341
crossref_primary_10_1002_admt_202400857
crossref_primary_10_1080_17483107_2019_1695966
crossref_primary_10_1186_s12984_020_00733_y
crossref_primary_10_3389_fnbot_2017_00025
crossref_primary_10_1007_s13534_023_00281_z
crossref_primary_10_1186_s12984_020_00657_7
crossref_primary_10_3390_s19020253
crossref_primary_10_1109_TMECH_2019_2911685
crossref_primary_10_1108_IR_08_2018_0165
crossref_primary_10_1109_ACCESS_2021_3110595
crossref_primary_10_1109_TBME_2017_2672720
crossref_primary_10_1109_TRO_2018_2794536
crossref_primary_10_1109_LRA_2019_2924852
crossref_primary_10_1007_s11062_019_09812_w
crossref_primary_10_1109_JSEN_2023_3328615
crossref_primary_10_1109_TNSRE_2019_2946407
crossref_primary_10_1016_j_birob_2023_100087
crossref_primary_10_1109_LRA_2020_3007480
crossref_primary_10_1109_THMS_2018_2860598
crossref_primary_10_1109_TMRB_2023_3260261
crossref_primary_10_1109_TBME_2017_2656130
crossref_primary_10_1109_TMRB_2023_3328654
crossref_primary_10_1109_ACCESS_2019_2933614
crossref_primary_10_1017_wtc_2024_16
crossref_primary_10_3390_bioengineering9050208
crossref_primary_10_1109_JAS_2021_1003961
crossref_primary_10_1109_TBME_2021_3054564
crossref_primary_10_1109_LRA_2023_3256135
crossref_primary_10_1097_PRS_0000000000010664
crossref_primary_10_1088_1748_3190_aad39d
crossref_primary_10_1017_S0263574721001600
crossref_primary_10_1115_1_4067401
crossref_primary_10_1017_wtc_2023_18
crossref_primary_10_3390_s23187712
crossref_primary_10_1109_ACCESS_2022_3149893
crossref_primary_10_2139_ssrn_4575926
crossref_primary_10_1016_j_cmpb_2024_108305
crossref_primary_10_1109_TRO_2021_3122975
crossref_primary_10_3390_s16101579
crossref_primary_10_1109_THMS_2024_3371099
crossref_primary_10_1109_TNSRE_2016_2569019
crossref_primary_10_1017_wtc_2023_13
crossref_primary_10_1109_LRA_2023_3296349
crossref_primary_10_1080_10400435_2017_1352051
crossref_primary_10_1038_s41598_018_33569_7
crossref_primary_10_1152_physrev_00027_2016
crossref_primary_10_4236_jsip_2024_152002
crossref_primary_10_1063_1_5006461
crossref_primary_10_1017_dap_2022_12
crossref_primary_10_1186_s12984_016_0142_9
crossref_primary_10_1186_s12984_023_01205_9
crossref_primary_10_3390_s20092452
crossref_primary_10_1016_j_jbiomech_2021_110320
crossref_primary_10_1590_2446_4740_07417
crossref_primary_10_1109_LRA_2022_3179420
crossref_primary_10_1088_1741_2552_ab4dba
crossref_primary_10_1098_rspb_2021_1197
crossref_primary_10_1186_s12938_024_01216_0
crossref_primary_10_1088_1741_2552_aaa8c0
crossref_primary_10_3390_s22145214
crossref_primary_10_1177_2055668318761525
crossref_primary_10_1109_JBHI_2021_3106110
crossref_primary_10_3389_fnbot_2022_815693
crossref_primary_10_1109_TNSRE_2019_2933896
crossref_primary_10_3389_fbioe_2020_00855
crossref_primary_10_3389_frobt_2019_00036
crossref_primary_10_1088_1757_899X_377_1_012222
crossref_primary_10_1080_02564602_2021_1994477
crossref_primary_10_1007_s13369_018_3193_3
crossref_primary_10_3390_s20082362
crossref_primary_10_1109_TCDS_2020_2968845
crossref_primary_10_1145_3127874
crossref_primary_10_3389_frobt_2018_00053
crossref_primary_10_3390_s21082576
crossref_primary_10_1016_j_bspc_2020_101968
crossref_primary_10_1017_wtc_2020_8
crossref_primary_10_3389_fnins_2024_1472184
crossref_primary_10_3390_inventions9040071
crossref_primary_10_1007_s43674_021_00031_7
crossref_primary_10_3389_fnbot_2019_00067
crossref_primary_10_3390_bioengineering11070683
crossref_primary_10_1115_1_4043323
crossref_primary_10_3389_fnbot_2019_00063
crossref_primary_10_1177_01423312221088848
crossref_primary_10_1007_s43154_020_00015_4
crossref_primary_10_1017_wtc_2020_5
crossref_primary_10_1109_TRO_2018_2830356
crossref_primary_10_1007_s40815_020_00855_4
crossref_primary_10_1109_RBME_2023_3309328
crossref_primary_10_1007_s42979_023_02551_0
crossref_primary_10_3390_healthcare10102054
crossref_primary_10_3389_fnbot_2018_00080
crossref_primary_10_34133_2021_9863761
crossref_primary_10_1016_j_conengprac_2023_105651
crossref_primary_10_1109_ACCESS_2023_3305674
crossref_primary_10_1186_s12984_022_01097_1
crossref_primary_10_1007_s11517_019_01987_y
crossref_primary_10_1109_TNSRE_2019_2934525
crossref_primary_10_3390_s21113622
crossref_primary_10_3390_s19204418
crossref_primary_10_1093_ptj_pzab310
crossref_primary_10_1016_j_robot_2020_103628
crossref_primary_10_1177_2055668316668147
crossref_primary_10_1109_TNSRE_2023_3336713
crossref_primary_10_1109_TNSRE_2023_3333685
crossref_primary_10_3389_fnins_2023_1158280
crossref_primary_10_3389_fbioe_2021_724626
crossref_primary_10_3389_frobt_2023_1032748
crossref_primary_10_1016_j_bspc_2020_101949
crossref_primary_10_3390_electronics9101676
crossref_primary_10_3389_fncom_2016_00143
crossref_primary_10_3389_fnbot_2022_948093
crossref_primary_10_1038_s41551_020_00619_3
crossref_primary_10_1109_ACCESS_2020_3022656
crossref_primary_10_1109_MCS_2018_2866604
crossref_primary_10_1109_TCST_2019_2928514
crossref_primary_10_1007_s10846_022_01611_6
crossref_primary_10_1109_TNSRE_2024_3495517
crossref_primary_10_1063_5_0185568
crossref_primary_10_1017_wtc_2022_11
crossref_primary_10_3389_fbioe_2022_842294
crossref_primary_10_1109_JBHI_2024_3404019
crossref_primary_10_1109_TNSRE_2019_2909585
crossref_primary_10_1109_TMECH_2017_2755048
crossref_primary_10_1109_TMRB_2021_3075096
crossref_primary_10_3390_act12030118
crossref_primary_10_1109_JSEN_2019_2910161
crossref_primary_10_1016_j_robot_2018_05_015
crossref_primary_10_1017_wtc_2021_13
crossref_primary_10_1109_TBME_2018_2869985
crossref_primary_10_1109_TNSRE_2020_3045003
crossref_primary_10_1109_TMRB_2023_3282325
crossref_primary_10_1115_1_4062341
crossref_primary_10_1016_j_arcontrol_2022_04_003
crossref_primary_10_1109_RBME_2018_2830805
crossref_primary_10_3390_machines11020235
crossref_primary_10_1109_ACCESS_2021_3075253
crossref_primary_10_1016_j_ymssp_2019_106547
crossref_primary_10_1109_TNSRE_2022_3156884
crossref_primary_10_3390_s22197109
crossref_primary_10_3390_healthcare9010070
crossref_primary_10_1007_s12369_019_00537_8
crossref_primary_10_1109_TNSRE_2021_3120429
crossref_primary_10_1109_ACCESS_2022_3171246
crossref_primary_10_1109_TMRB_2021_3091519
crossref_primary_10_1109_TRO_2020_3005533
crossref_primary_10_1109_TMRB_2023_3291015
crossref_primary_10_1155_2020_8472510
crossref_primary_10_1109_TNSRE_2019_2933874
crossref_primary_10_1007_s13534_024_00351_w
crossref_primary_10_1016_j_bspc_2024_106192
crossref_primary_10_1007_s42235_023_00435_w
crossref_primary_10_1109_TMECH_2019_2929826
crossref_primary_10_1007_s11370_017_0239_4
crossref_primary_10_1109_TASE_2020_2964807
crossref_primary_10_1126_scirobotics_adg3705
crossref_primary_10_1109_OJCSYS_2022_3165733
crossref_primary_10_3389_fnins_2022_949138
crossref_primary_10_1115_1_4054529
crossref_primary_10_1088_1741_2552_ab4d99
crossref_primary_10_1088_1741_2560_13_4_041001
crossref_primary_10_1109_JSEN_2022_3167686
crossref_primary_10_1109_TCYB_2023_3240231
crossref_primary_10_1109_TSMC_2019_2932892
crossref_primary_10_1109_LRA_2022_3183762
crossref_primary_10_3390_app13020839
crossref_primary_10_1017_wtc_2021_9
crossref_primary_10_1109_TBME_2018_2813999
crossref_primary_10_3389_fbioe_2022_950110
crossref_primary_10_3389_fnbot_2019_00041
crossref_primary_10_1016_j_isatra_2019_07_030
crossref_primary_10_3390_ijerph182111347
crossref_primary_10_3390_machines10111061
crossref_primary_10_3390_s17122751
crossref_primary_10_3389_frobt_2020_562061
crossref_primary_10_1017_wtc_2021_2
crossref_primary_10_1109_LRA_2025_3539551
crossref_primary_10_3389_frobt_2020_579963
crossref_primary_10_1097_PXR_0000000000000009
crossref_primary_10_1186_s12984_022_01019_1
crossref_primary_10_1109_TMECH_2023_3278315
crossref_primary_10_1142_S0219519423500859
crossref_primary_10_1016_j_pmrj_2018_06_015
crossref_primary_10_1109_TCDS_2019_2897618
crossref_primary_10_1007_s00422_017_0724_z
crossref_primary_10_1109_TCST_2021_3133823
crossref_primary_10_1186_s12984_019_0636_3
crossref_primary_10_3390_app11115007
crossref_primary_10_1016_j_arcontrol_2023_03_003
crossref_primary_10_1007_s11948_020_00268_4
crossref_primary_10_1515_eng_2022_0405
crossref_primary_10_1109_TBME_2022_3208381
crossref_primary_10_1109_LRA_2022_3193462
crossref_primary_10_1038_s41597_022_01580_3
crossref_primary_10_1177_09544119221142335
crossref_primary_10_1109_TNSRE_2017_2659654
crossref_primary_10_1097_PRS_0000000000011183
crossref_primary_10_3389_fbioe_2021_765257
crossref_primary_10_1088_1741_2552_aa92a8
crossref_primary_10_1186_s12984_023_01144_5
crossref_primary_10_3390_biomimetics9020077
crossref_primary_10_1109_TBME_2015_2448457
crossref_primary_10_1109_TNSRE_2023_3327751
crossref_primary_10_1109_TCST_2019_2945021
crossref_primary_10_3390_s22239091
crossref_primary_10_1371_journal_pone_0206464
crossref_primary_10_3389_fnbot_2023_1154427
crossref_primary_10_1038_s41598_023_45130_2
crossref_primary_10_1038_s41598_017_02189_y
crossref_primary_10_1007_s42235_022_00289_8
crossref_primary_10_1186_s12984_019_0526_8
crossref_primary_10_1016_j_mechatronics_2017_06_009
crossref_primary_10_1109_LRA_2022_3194326
crossref_primary_10_3390_s20051448
crossref_primary_10_1186_s12984_024_01511_w
crossref_primary_10_1109_LRA_2022_3183790
crossref_primary_10_1016_j_bspc_2021_103366
crossref_primary_10_1038_s41598_017_11306_w
crossref_primary_10_1109_TNSRE_2024_3435931
crossref_primary_10_1109_MCS_2020_2976384
crossref_primary_10_3390_s20082185
crossref_primary_10_3390_sym12111851
crossref_primary_10_1109_ACCESS_2020_3013417
crossref_primary_10_3389_fnbot_2022_913748
crossref_primary_10_1038_s41597_023_02114_1
crossref_primary_10_1109_TNSRE_2018_2879570
crossref_primary_10_1109_TMECH_2021_3114966
crossref_primary_10_1016_j_patrec_2018_03_020
crossref_primary_10_3389_fbioe_2021_642742
crossref_primary_10_1109_TNSRE_2019_2895221
crossref_primary_10_1109_JTEHM_2018_2880199
crossref_primary_10_1371_journal_pone_0140626
crossref_primary_10_3390_s19224887
crossref_primary_10_1007_s00500_016_2321_9
crossref_primary_10_1109_TNSRE_2020_2966749
crossref_primary_10_1002_term_2727
crossref_primary_10_1080_02699052_2020_1725126
crossref_primary_10_1177_09596518231204054
crossref_primary_10_1080_01691864_2019_1705908
crossref_primary_10_3390_app11156705
crossref_primary_10_1109_OJEMB_2023_3288469
crossref_primary_10_1109_TMRB_2022_3185405
crossref_primary_10_1115_1_4046400
crossref_primary_10_3390_app9183754
crossref_primary_10_1007_s41315_023_00283_1
crossref_primary_10_1136_bmjsem_2016_000216
crossref_primary_10_1109_LRA_2022_3145580
crossref_primary_10_1186_s12984_020_00726_x
crossref_primary_10_1016_j_robot_2017_05_013
crossref_primary_10_1097_PXR_0000000000000199
crossref_primary_10_1016_j_medj_2021_05_002
crossref_primary_10_1002_adma_202107902
crossref_primary_10_1109_TII_2022_3158935
crossref_primary_10_1186_s12984_023_01232_6
crossref_primary_10_1007_s41315_025_00421_x
crossref_primary_10_1038_s41598_023_43115_9
crossref_primary_10_1109_LRA_2021_3068711
crossref_primary_10_3390_app8091610
crossref_primary_10_1007_s12369_022_00875_0
crossref_primary_10_1631_FITEE_2200065
crossref_primary_10_1016_j_isci_2023_106248
crossref_primary_10_1109_TBME_2023_3287729
crossref_primary_10_1109_LRA_2021_3091953
crossref_primary_10_1109_TNSRE_2020_3039999
crossref_primary_10_1186_s12984_021_00857_9
crossref_primary_10_1109_TMECH_2020_2992090
crossref_primary_10_1109_MRA_2015_2510778
crossref_primary_10_1109_LRA_2022_3186503
crossref_primary_10_3390_machines11070764
crossref_primary_10_1016_j_cmpb_2023_107848
crossref_primary_10_1109_LRA_2024_3396369
crossref_primary_10_1080_24725838_2019_1626303
crossref_primary_10_1109_LRA_2022_3173426
crossref_primary_10_1111_aor_13083
crossref_primary_10_1186_s12984_018_0360_4
crossref_primary_10_1007_s13246_016_0438_x
crossref_primary_10_1109_TRO_2018_2830367
crossref_primary_10_1109_TNSRE_2021_3057877
crossref_primary_10_3389_frobt_2021_610529
crossref_primary_10_3390_app9020324
crossref_primary_10_3389_fbioe_2021_793746
crossref_primary_10_3389_fbioe_2022_1021505
crossref_primary_10_1088_1741_2560_12_5_056009
crossref_primary_10_1109_TNSRE_2023_3322124
crossref_primary_10_33317_ssurj_570
crossref_primary_10_1007_s12008_024_02076_7
crossref_primary_10_1109_TNSRE_2021_3131366
crossref_primary_10_1186_s12984_018_0394_7
crossref_primary_10_1109_TMRB_2024_3385798
crossref_primary_10_1051_matecconf_201819202055
crossref_primary_10_1109_TMECH_2021_3071936
crossref_primary_10_3390_machines11020186
crossref_primary_10_1109_LRA_2024_3379800
crossref_primary_10_1109_ACCESS_2020_2971552
crossref_primary_10_3390_s21082882
crossref_primary_10_1109_LRA_2021_3064269
crossref_primary_10_3390_s24248153
crossref_primary_10_1109_TMRB_2024_3349602
crossref_primary_10_1109_ACCESS_2020_3039983
crossref_primary_10_1109_TASE_2023_3250240
crossref_primary_10_1007_s42235_023_00419_w
crossref_primary_10_1016_j_mechatronics_2021_102635
crossref_primary_10_3389_fnbot_2021_730965
crossref_primary_10_3390_s23136103
crossref_primary_10_1126_scirobotics_adi8852
crossref_primary_10_1109_TNSRE_2022_3223992
crossref_primary_10_3389_fnbot_2022_791169
crossref_primary_10_1186_s12984_023_01273_x
crossref_primary_10_1098_rsos_221617
crossref_primary_10_1109_TBME_2020_3006787
crossref_primary_10_3390_app14073063
crossref_primary_10_26634_jes_12_2_20848
crossref_primary_10_1016_j_engappai_2022_105702
crossref_primary_10_1109_TRO_2021_3073836
crossref_primary_10_1108_SR_10_2020_0249
crossref_primary_10_1186_s12984_021_00906_3
crossref_primary_10_4995_riai_2023_18748
crossref_primary_10_1016_j_ijnurstu_2019_03_015
crossref_primary_10_20965_jrm_2023_p0547
crossref_primary_10_1371_journal_pone_0294161
crossref_primary_10_3389_fbioe_2022_920462
crossref_primary_10_1016_j_robot_2022_104353
crossref_primary_10_1109_TRO_2023_3235584
crossref_primary_10_1088_1741_2552_ac9edd
crossref_primary_10_2196_42901
crossref_primary_10_1109_TII_2018_2875729
crossref_primary_10_1093_rb_rbw002
crossref_primary_10_1109_ACCESS_2024_3388044
crossref_primary_10_1007_s11055_021_01176_1
crossref_primary_10_1109_TCST_2016_2646319
crossref_primary_10_1088_1741_2552_ab08c8
crossref_primary_10_1177_1729881418775854
crossref_primary_10_3390_jsan13060085
crossref_primary_10_1109_LRA_2021_3068892
crossref_primary_10_1109_TNSRE_2025_3543743
crossref_primary_10_1109_TMECH_2020_2990668
crossref_primary_10_1109_LRA_2019_2955946
crossref_primary_10_4316_AECE_2021_01007
crossref_primary_10_1088_1741_2552_acf7f7
crossref_primary_10_1109_TBME_2017_2776157
crossref_primary_10_3389_fnins_2018_00071
crossref_primary_10_1109_TNNLS_2021_3076060
crossref_primary_10_1007_s44174_023_00087_8
crossref_primary_10_3390_s24010211
crossref_primary_10_1109_ACCESS_2021_3062978
crossref_primary_10_1109_TRO_2016_2636844
crossref_primary_10_1155_2019_9604179
crossref_primary_10_1109_ACCESS_2020_3025248
crossref_primary_10_1088_0967_3334_37_3_442
crossref_primary_10_3390_s22239350
crossref_primary_10_1109_LRA_2022_3143579
crossref_primary_10_1109_TMECH_2022_3196098
crossref_primary_10_1017_S0263574718000693
crossref_primary_10_1109_LRA_2024_3414259
crossref_primary_10_3390_ijerph17134786
crossref_primary_10_3233_NRE_240066
crossref_primary_10_3390_s18124349
crossref_primary_10_1007_s42235_022_00169_1
crossref_primary_10_1177_1729881417730321
crossref_primary_10_1016_j_conengprac_2020_104667
crossref_primary_10_1109_TNSRE_2023_3328877
crossref_primary_10_1109_TMRB_2024_3464126
crossref_primary_10_3390_machines9080154
crossref_primary_10_1007_s11012_016_0575_z
crossref_primary_10_1016_j_mechmachtheory_2018_08_014
crossref_primary_10_3390_s21041264
crossref_primary_10_1007_s10489_025_06416_2
crossref_primary_10_1186_s10033_019_0389_8
crossref_primary_10_1186_s12984_021_00973_6
crossref_primary_10_1109_JBHI_2019_2891997
crossref_primary_10_1109_JSEN_2020_3011627
crossref_primary_10_1038_s41597_021_01057_9
crossref_primary_10_3390_s22052028
crossref_primary_10_1109_TIE_2022_3212413
crossref_primary_10_1016_j_knosys_2024_112016
crossref_primary_10_1088_1741_2552_aa6086
crossref_primary_10_1109_TBME_2019_2912466
crossref_primary_10_3390_biomimetics8080591
crossref_primary_10_1016_j_bspc_2022_104096
crossref_primary_10_1038_s41598_023_31594_9
crossref_primary_10_1109_TMRB_2021_3098952
crossref_primary_10_1109_TNSRE_2020_3018650
crossref_primary_10_1186_s12984_019_0547_3
crossref_primary_10_1109_TNSRE_2016_2521160
crossref_primary_10_1186_s12984_017_0237_y
crossref_primary_10_3390_act12110406
crossref_primary_10_3390_s20174963
crossref_primary_10_1016_j_bspc_2021_102983
crossref_primary_10_1109_TMI_2022_3143133
crossref_primary_10_3390_s20174848
crossref_primary_10_5194_ms_14_503_2023
crossref_primary_10_1080_17483107_2022_2107095
crossref_primary_10_1109_JSEN_2023_3267490
crossref_primary_10_3390_s23125687
crossref_primary_10_1109_TNSRE_2020_3032703
crossref_primary_10_1109_OJIES_2024_3412809
crossref_primary_10_1186_s12984_017_0345_8
crossref_primary_10_3389_fnhum_2022_949224
crossref_primary_10_1371_journal_pone_0282130
crossref_primary_10_1016_j_compeleceng_2023_108656
crossref_primary_10_1109_TRO_2024_3508314
crossref_primary_10_1007_s10846_021_01423_0
crossref_primary_10_3389_fnhum_2021_717291
crossref_primary_10_3390_app10082755
crossref_primary_10_1109_TASE_2020_3015930
crossref_primary_10_3390_app10196684
Cites_doi 10.1126/science.1088665
10.1098/rstb.2010.0347
10.1371/journal.pone.0032743
10.1126/science.272.5258.117
10.1109/TBME.2003.816073
10.1016/S1050-6411(02)00023-8
10.1001/jama.2011.465
10.3758/s13423-012-0333-8
10.3390/s140202776
10.1016/j.neunet.2008.03.006
10.1007/s10439-013-0909-0
10.1177/0278364906065505
10.1016/j.apmr.2012.01.001
10.1299/jsmec.45.703
10.1109/10.68204
10.1016/0141-5425(90)90037-N
10.3109/09638288.2010.502586
10.1016/S0166-2236(02)02229-4
10.1115/1.3140702
10.1111/j.1525-1594.2005.29038.x
10.1016/j.jbiomech.2014.05.009
10.1682/JRRD.2011.05.0088
10.1017/S0263574714001568
10.1038/nature11076
10.1682/JRRD.2006.11.0147
10.1016/j.gaitpost.2014.03.189
10.1109/10.32105
10.2307/1311186
10.1016/S0966-6362(01)00162-X
10.1179/2045772312Y.0000000003
10.1186/1743-0003-6-21
10.1108/01439910910980141
10.1038/scientificamerican0912-58
10.1097/00008526-200604000-00007
10.1371/journal.pone.0009307
10.1016/j.apmr.2007.11.005
10.1109/TBME.2004.827086
10.1177/1545968313520410
10.1001/jama.2009.116
10.1007/BF00431022
10.1186/1743-0003-10-62
10.1177/0278364910379882
10.1109/87.998030
10.1115/1.3426266
10.1097/JPO.0b013e3181ccc065
10.1016/j.robot.2013.06.009
10.1016/S0966-6362(97)00042-8
10.1053/apmr.2001.24295
10.1186/1743-0003-8-66
10.1016/S0966-6362(98)00010-1
10.1109/TNSRE.2005.848628
10.1016/j.robot.2014.03.020
10.1016/S0140-6736(12)61816-9
10.1115/1.3140713
10.1186/1743-0003-6-20
10.1016/j.tics.2003.10.013
10.1016/S0966-6362(99)00009-0
10.1682/JRRD.2008.07.0087
10.1056/NEJMoa1300126
10.1126/scitranslmed.3006820
10.1016/j.medengphy.2011.11.018
10.1186/1743-0003-10-60
10.1016/j.gaitpost.2005.05.004
10.1016/j.gaitpost.2012.04.004
10.1108/01439910310457706
10.1115/1.4025851
10.1080/00207178808906161
10.1371/journal.pone.0099387
10.1038/nrn939
10.1016/S0166-2236(02)02173-2
10.1310/sci1701-25
10.1016/S0020-7373(05)80159-2
10.1097/00008526-199400620-00003
10.1038/nrn3724
10.1002/mus.10214
10.1016/j.medengphy.2013.07.003
10.1177/0278364907084588
ContentType Journal Article
Copyright COPYRIGHT 2015 BioMed Central Ltd.
Tucker et al.; licensee BioMed Central. 2015
Copyright_xml – notice: COPYRIGHT 2015 BioMed Central Ltd.
– notice: Tucker et al.; licensee BioMed Central. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
7TB
8FD
FR3
5PM
DOI 10.1186/1743-0003-12-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database

MEDLINE
Neurosciences Abstracts
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Occupational Therapy & Rehabilitation
Physical Therapy
EISSN 1743-0003
EndPage 1
ExternalDocumentID PMC4326520
oai_biomedcentral_com_1743_0003_12_1
A541528201
25557982
10_1186_1743_0003_12_1
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
0R~
29L
2QV
2VQ
2WC
4.4
53G
5GY
5VS
7RV
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
I-F
IAO
IHR
INH
INR
IPNFZ
IPY
ITC
KQ8
L6V
LK8
M0T
M1P
M48
M7P
M7S
ML0
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
7X8
7TK
7TB
8FD
FR3
-A0
3V.
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
5PM
ID FETCH-LOGICAL-b647t-73933ef7c6c11f6685535fbda77d755aa61dab4b19ad9dc42f5e2fc157d21baf3
IEDL.DBID RBZ
ISSN 1743-0003
IngestDate Thu Aug 21 18:06:05 EDT 2025
Wed May 22 07:12:57 EDT 2024
Fri Jul 11 04:27:34 EDT 2025
Fri Jul 11 16:07:08 EDT 2025
Fri Jul 11 12:38:57 EDT 2025
Tue Jun 17 22:07:12 EDT 2025
Tue Jun 10 21:10:19 EDT 2025
Mon Jul 21 05:41:16 EDT 2025
Tue Jul 01 02:19:55 EDT 2025
Thu Apr 24 23:11:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b647t-73933ef7c6c11f6685535fbda77d755aa61dab4b19ad9dc42f5e2fc157d21baf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1743-0003-12-1
PMID 25557982
PQID 1652404491
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4326520
biomedcentral_primary_oai_biomedcentral_com_1743_0003_12_1
proquest_miscellaneous_1669850821
proquest_miscellaneous_1660415800
proquest_miscellaneous_1652404491
gale_infotracmisc_A541528201
gale_infotracacademiconefile_A541528201
pubmed_primary_25557982
crossref_citationtrail_10_1186_1743_0003_12_1
crossref_primary_10_1186_1743_0003_12_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-05
PublicationDateYYYYMMDD 2015-01-05
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-05
  day: 05
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of neuroengineering and rehabilitation
PublicationTitleAlternate J Neuroeng Rehabil
PublicationYear 2015
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References 10.1186/1743-0003-12-1-B91
10.1186/1743-0003-12-1-B215
10.1186/1743-0003-12-1-B30
10.1186/1743-0003-12-1-B74
10.1186/1743-0003-12-1-B115
10.1186/1743-0003-12-1-B50
10.1186/1743-0003-12-1-B134
10.1186/1743-0003-12-1-B93
10.1186/1743-0003-12-1-B34
10.1186/1743-0003-12-1-B56
10.1186/1743-0003-12-1-B133
10.1186/1743-0003-12-1-B155
10.1186/1743-0003-12-1-B10
10.1186/1743-0003-12-1-B32
10.1186/1743-0003-12-1-B54
10.1186/1743-0003-12-1-B130
10.1186/1743-0003-12-1-B53
10.1186/1743-0003-12-1-B197
10.1186/1743-0003-12-1-B27
10.1186/1743-0003-12-1-B151
10.1186/1743-0003-12-1-B69
10.1186/1743-0003-12-1-B28
10.1186/1743-0003-12-1-B5
10.1186/1743-0003-12-1-B204
10.1186/1743-0003-12-1-B128
10.1186/1743-0003-12-1-B85
10.1186/1743-0003-12-1-B40
10.1186/1743-0003-12-1-B126
10.1186/1743-0003-12-1-B83
10.1186/1743-0003-12-1-B123
10.1186/1743-0003-12-1-B102
10.1186/1743-0003-12-1-B9
10.1186/1743-0003-12-1-B23
10.1186/1743-0003-12-1-B67
10.1186/1743-0003-12-1-B89
10.1186/1743-0003-12-1-B165
-
10.1186/1743-0003-12-1-B44
10.1186/1743-0003-12-1-B240
10.1186/1743-0003-12-1-B20
10.1186/1743-0003-12-1-B42
10.1186/1743-0003-12-1-B38
10.1186/1743-0003-12-1-B37
10.1186/1743-0003-12-1-B58
10.1186/1743-0003-12-1-B35
10.1186/1743-0003-12-1-B18
10.1186/1743-0003-12-1-B17
References_xml – ident: 10.1186/1743-0003-12-1-B5
  doi: 10.1126/science.1088665
– ident: -
  doi: 10.1098/rstb.2010.0347
– ident: -
  doi: 10.1371/journal.pone.0032743
– ident: 10.1186/1743-0003-12-1-B204
  doi: 10.1126/science.272.5258.117
– ident: -
  doi: 10.1109/TBME.2003.816073
– ident: 10.1186/1743-0003-12-1-B35
  doi: 10.1016/S1050-6411(02)00023-8
– ident: 10.1186/1743-0003-12-1-B151
  doi: 10.1001/jama.2011.465
– ident: 10.1186/1743-0003-12-1-B89
  doi: 10.3758/s13423-012-0333-8
– ident: 10.1186/1743-0003-12-1-B123
  doi: 10.3390/s140202776
– ident: 10.1186/1743-0003-12-1-B134
  doi: 10.1016/j.neunet.2008.03.006
– ident: 10.1186/1743-0003-12-1-B133
  doi: 10.1007/s10439-013-0909-0
– ident: -
  doi: 10.1177/0278364906065505
– ident: 10.1186/1743-0003-12-1-B23
  doi: 10.1016/j.apmr.2012.01.001
– ident: -
  doi: 10.1299/jsmec.45.703
– ident: 10.1186/1743-0003-12-1-B93
  doi: 10.1109/10.68204
– ident: 10.1186/1743-0003-12-1-B115
  doi: 10.1016/0141-5425(90)90037-N
– ident: 10.1186/1743-0003-12-1-B165
  doi: 10.3109/09638288.2010.502586
– ident: 10.1186/1743-0003-12-1-B215
  doi: 10.1016/S0166-2236(02)02229-4
– ident: -
  doi: 10.1115/1.3140702
– ident: 10.1186/1743-0003-12-1-B30
  doi: 10.1111/j.1525-1594.2005.29038.x
– ident: 10.1186/1743-0003-12-1-B240
  doi: 10.1016/j.jbiomech.2014.05.009
– ident: 10.1186/1743-0003-12-1-B102
  doi: 10.1682/JRRD.2011.05.0088
– ident: -
  doi: 10.1017/S0263574714001568
– ident: 10.1186/1743-0003-12-1-B56
  doi: 10.1038/nature11076
– ident: 10.1186/1743-0003-12-1-B40
  doi: 10.1682/JRRD.2006.11.0147
– ident: 10.1186/1743-0003-12-1-B74
  doi: 10.1016/j.gaitpost.2014.03.189
– ident: -
  doi: 10.1109/10.32105
– ident: -
  doi: 10.2307/1311186
– ident: 10.1186/1743-0003-12-1-B18
  doi: 10.1016/S0966-6362(01)00162-X
– ident: -
  doi: 10.1179/2045772312Y.0000000003
– ident: 10.1186/1743-0003-12-1-B10
  doi: 10.1186/1743-0003-6-21
– ident: -
  doi: 10.1108/01439910910980141
– ident: 10.1186/1743-0003-12-1-B53
  doi: 10.1038/scientificamerican0912-58
– ident: -
  doi: 10.1097/00008526-200604000-00007
– ident: -
  doi: 10.1371/journal.pone.0009307
– ident: 10.1186/1743-0003-12-1-B9
  doi: 10.1016/j.apmr.2007.11.005
– ident: -
  doi: 10.1109/TBME.2004.827086
– ident: 10.1186/1743-0003-12-1-B50
  doi: 10.1177/1545968313520410
– ident: 10.1186/1743-0003-12-1-B128
  doi: 10.1001/jama.2009.116
– ident: 10.1186/1743-0003-12-1-B58
  doi: 10.1007/BF00431022
– ident: 10.1186/1743-0003-12-1-B130
  doi: 10.1186/1743-0003-10-62
– ident: -
  doi: 10.1177/0278364910379882
– ident: -
  doi: 10.1109/87.998030
– ident: 10.1186/1743-0003-12-1-B197
  doi: 10.1115/1.3426266
– ident: -
  doi: 10.1097/JPO.0b013e3181ccc065
– ident: -
  doi: 10.1016/j.robot.2013.06.009
– ident: 10.1186/1743-0003-12-1-B28
  doi: 10.1016/S0966-6362(97)00042-8
– ident: 10.1186/1743-0003-12-1-B38
  doi: 10.1053/apmr.2001.24295
– ident: 10.1186/1743-0003-12-1-B42
  doi: 10.1186/1743-0003-8-66
– ident: 10.1186/1743-0003-12-1-B27
  doi: 10.1016/S0966-6362(98)00010-1
– ident: -
  doi: 10.1109/TNSRE.2005.848628
– ident: -
  doi: 10.1016/j.robot.2014.03.020
– ident: -
  doi: 10.1016/S0140-6736(12)61816-9
– ident: -
  doi: 10.1115/1.3140713
– ident: 10.1186/1743-0003-12-1-B20
  doi: 10.1186/1743-0003-6-20
– ident: -
  doi: 10.1016/j.tics.2003.10.013
– ident: 10.1186/1743-0003-12-1-B37
  doi: 10.1016/S0966-6362(99)00009-0
– ident: 10.1186/1743-0003-12-1-B44
  doi: 10.1682/JRRD.2008.07.0087
– ident: 10.1186/1743-0003-12-1-B67
  doi: 10.1056/NEJMoa1300126
– ident: 10.1186/1743-0003-12-1-B83
  doi: 10.1126/scitranslmed.3006820
– ident: 10.1186/1743-0003-12-1-B17
  doi: 10.1016/j.medengphy.2011.11.018
– ident: 10.1186/1743-0003-12-1-B85
  doi: 10.1186/1743-0003-10-60
– ident: 10.1186/1743-0003-12-1-B155
  doi: 10.1016/j.gaitpost.2005.05.004
– ident: 10.1186/1743-0003-12-1-B91
  doi: 10.1016/j.gaitpost.2012.04.004
– ident: -
  doi: 10.1108/01439910310457706
– ident: -
  doi: 10.1115/1.4025851
– ident: -
  doi: 10.1080/00207178808906161
– ident: -
  doi: 10.1371/journal.pone.0099387
– ident: 10.1186/1743-0003-12-1-B32
  doi: 10.1038/nrn939
– ident: 10.1186/1743-0003-12-1-B34
  doi: 10.1016/S0166-2236(02)02173-2
– ident: -
  doi: 10.1310/sci1701-25
– ident: -
  doi: 10.1016/S0020-7373(05)80159-2
– ident: -
  doi: 10.1097/00008526-199400620-00003
– ident: 10.1186/1743-0003-12-1-B54
  doi: 10.1038/nrn3724
– ident: 10.1186/1743-0003-12-1-B69
  doi: 10.1002/mus.10214
– ident: 10.1186/1743-0003-12-1-B126
  doi: 10.1016/j.medengphy.2013.07.003
– ident: -
  doi: 10.1177/0278364907084588
SSID ssj0034054
Score 2.5906131
SecondaryResourceType review_article
Snippet : Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion....
Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion....
SourceID pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1
SubjectTerms Active control
Activities of Daily Living
Analysis
Control systems
Devices
Electromyography
Gait
Health aspects
Humans
Implants, Artificial
Locomotion
Locomotives
Lower Extremity
Mechanical engineering
Orthopedic equipment and supplies
Orthotic Devices
Portability
Prostheses and Implants
Prosthesis
Prosthesis Design - methods
Prosthetics
Review
Strategy
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZaxRBEG4kguiDx3qtRmnB42lMpqevCYiEYAjCikoW8tb0SYR1Nu5uQP-9VXOs24kGH5eumaW7qrq_mq76ipCXlQ8yMghLknOs4NqXhXWRF1bDhuwB0dqE3zsmn-TRlH88ESd_8p_6BVz-NbTDflLTxeztzx-_3oPDv2sdXssdBNVYHV1hmgFEQtfhVFLYzWDC1zcKFQAT3hVHdrI9gePl5y9Uvs-yA-vitr1xbuU5lRuH1OFdcrtHl3S_M4d75FpsRuTWBufgiNyY9LfpI_Jqk2KYHnf8AvQ1_Zqxd4_Inc-9MgeZ--TLQZfiTpergWuCAvyltt0-6Qx7r1HY9xfxO8B8eoa1JadYL7mktgkUL4vm-GuPWtpVzzwg08MPxwdHRd-doXCSq1WBVHpVTMpLUGmSUgtRieSCVSooIayVZbCOu7K2oQ6esyQiS74UKrDS2VQ9JFvNvImPCZUSJHZ1rFlIAN-EkxDE1dIGybzXyY_JXqYSc9YxcRjkxs5HwE0N6hMv1StTMlOOSTHoz_h-5bD9xsy08Y-Wl-TfrOWH__mnJJqDQeOEN3rbVzTApJBUy-wLREcIscZkO5MEF_bZ8IvBoAwOYd5bE-fnS1NKAZCL8_pKGYk8C4D8r5SpNWBxBu951BnqenIQVApVazYmKjPhbJXzkebbactEzgH8C7b75L-X7Cm5CfMV7TcssU22Vovz-AxQ3co9b931N3m9SrU
  priority: 102
  providerName: Scholars Portal
Title Control strategies for active lower extremity prosthetics and orthotics: a review
URI https://www.ncbi.nlm.nih.gov/pubmed/25557982
https://www.proquest.com/docview/1652404491
https://www.proquest.com/docview/1660415800
https://www.proquest.com/docview/1669850821
http://dx.doi.org/10.1186/1743-0003-12-1
https://pubmed.ncbi.nlm.nih.gov/PMC4326520
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ja9wwFBZtAqU5dJkumTYdVOhyMollbc4tCZmGwoQ0JDD0IrSSwtQTMpP_3_e8pOMJzaUXg9FnG-tJT9-T9D4R8qnwQUYGYUlyjmVc-zyzLvLManDIHhitTTjfMTmVJ5f8-1RM_853rK3g51ruImXG3OcCNxFAnLPJOIRzGJcf_ux8bgG0gzepjw22lWe8__xaXvusNxytO-WVUam_Y3JlCBq_IM9a7kgPGmO_JI9iNSBbK4qCA_Jk0q6VD8jnVQFhetGoB9Av9LynzT0gz89aU3WYV-THUbOBnS6WnZIEBXJLbe0c6QxPVqPg1W_ibyDx9BozR64wG3JBbRUoLgXN8W6fWtrkxrwml-Pji6OTrD17IXOSq2WGQnlFTMpLMFiSUgtRiOSCVSooIayVebCOu7y0oQyesyQiSz4XKrDc2VS8IRvVvIrbhEoJiD0dSxYSkDPhJIRopbRBMu918kOy3zOJuW50NgwqX_dLoBMatCcumRcmZyYfkqyzn_FtzeHhGjNTRzda3sN_vcN33_knEpuDwY4Ob_S2zVeAn0LJLHMgkPsggRqSnR4SOqjvFX_sGpTBItzVVsX57cLkUgCh4rx8ECNRRQF4_YOYUgPTZvCet01Dvfs5CBmFKjUbEtVrwr1a7pdUv65qnXEO1F6wvXf_Y5_35ClUgagnrcQO2Vje3MYPQOOWbkQeq6mCqx5_G5HNw-PTs_NRPSUC1wnXo7qH_wEXlUti
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gJn48-HGKnqLWRORphe223V0SHxAlh3BEzZEQX2q32waT845wR4z_p3-QM_uBW4i8GB4vnfS6ndmZ32xnfgV4ldhSOY5piS8KHonMxpEpnIhMhg7ZIqI1nr53DPfV4EB8PJSHC_C77YVpdnDqKzpH95eTz1B9X5e7-k23P31cOfW2lqx2BZlaI7hNfdMJFSDETenlrvv1ExO72dud92gFK5xvfxhtDaLm7oGoUCKdR0QUlzifWoUL9kplUibSF6VJ0zKV0hgVl6YQRZybMi-t4F467m0s05LHhfEJznsNrqNoWnWVvfvaxocEIZKo2zTrtTVUkhfXe64HfxyEzvMBpBNBw-rOTrjcvgd3GpzLNuu9ug8LbtKD2x32wx7cGDbn-j1Y6ZIds1HNdMBesy-BLnpw91NjVq3MA_i8VRfbs9m8Zb1gCMSZqRw5G9MtcAwj0In7gQkHO6YulyPq3JwxVDajY6sp_dpghtV9PA_h4Ep0tQSLk-nEPQamFEqsZy7npUcgKQuF6WSuTKm4tZm3fdgIVKKPa04QTSzd4QgapCZ90vF-omOu4z5Erf60bXaOLgIZ6yoTy9QF-dUz-fZ__ilJ5qDJKeGM1jS9FfhQRO-lNyXhNAJ7fVgOJNGZ2GD4ZWtQmoaoAm_ipqczHSuJ4E-I_FIZRYwPmINcKpNnmBVwnOdRbahnD4fprUzzjPchDUw42OVwZPL9qOJEF5iGSL7-5H_08wJuDkbDPb23s7_7FG7hdsjqY5tchsX5yal7hvBzXjyv3mYG367affwBQ9eddw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gJkQf_Di_TlHXRPSpQre725bEBwQvIEKQQEJ4Wbf7EYzn3YU7YvxD_X-c6Qe2EHkxvF2zk952Zzrzm-7MbwFeJ9YpzzEtCUXBI5HZODKFF5HJ0CFbRLQm0PeOnV21eSg-HcmjOfjd9MLUKzgOJZ2j_8vJZ6i-r81d_a7dnz4snTr-sN-XJy5UviBTy4S3qXE6oQqEuK693Pa_fmJmN32_tYFmsMT54OPB-mZUHz4QFUqks4iY4hIfUqtwxkGpTMpEhsKZNHWplMao2JlCFHFuXO6s4EF6HmwsU8fjwoQE73sDbqJoSgcr7H84bgJEghhJVH2a1dxqLsnL873QhD_sxM6LEaQVQrvlna14ObgHd2qgy9Yqy7wPc37Ug9st-sMeLOzUG_s9WGqzHbODiuqAvWH7HWX04O5ebVeNzAP4sl5V27PprKG9YIjEmSk9ORvSMXAMQ9Cp_4EZB5tQm8sJtW5OGWqb0b7VmK5WmWFVI89DOLwWXT2C-dF45J8AUwolVjKfcxcQScpCYT6ZK-MUtzYLtg-rHZXoSUUKoommuzuCFqlJn7S_n-iY67gPUaM_beuVo5NAhrpMxTJ1Sf7tuXzzP_-UJHPQ5JXoLTB1cwU-FPF76TVJQI3QXh8WO5LoTWxn-FVjUJqGqARv5MdnUx0riehPiPxKGUWUD5iEXCmTZ5gWcLzP48pQzx8O81uZ5hnvQ9ox4c4qd0dG305KUnSBeYjkK0__Rz8vYWFvY6A_b-1uP4NbuBqy_NgmF2F-dnrmnyP8nBUvypeZwdfr9h5_AH9vnUI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+strategies+for+active+lower+extremity+prosthetics+and+orthotics%3A+a+review&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=Tucker%2C+Michael+R&rft.au=Olivier%2C+Jeremy&rft.au=Pagel%2C+Anna&rft.au=Bleuler%2C+Hannes&rft.date=2015-01-05&rft.issn=1743-0003&rft.eissn=1743-0003&rft.volume=12&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1186%2F1743-0003-12-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_1743_0003_12_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon