A common mechanism of clinical HIV-1 resistance to the CCR5 antagonist maraviroc despite divergent resistance levels and lack of common gp120 resistance mutations

The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for c...

Full description

Saved in:
Bibliographic Details
Published inRetrovirology Vol. 10; no. 1; p. 43
Main Authors Roche, Michael, Salimi, Hamid, Duncan, Renee, Wilkinson, Brendan L, Chikere, Kelechi, Moore, Miranda S, Webb, Nicholas E, Zappi, Helena, Sterjovski, Jasminka, Flynn, Jacqueline K, Ellett, Anne, Gray, Lachlan R, Lee, Benhur, Jubb, Becky, Westby, Mike, Ramsland, Paul A, Lewin, Sharon R, Payne, Richard J, Churchill, Melissa J, Gorry, Paul R
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 20.04.2013
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC. Envs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively "weak" and "strong" resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus. Clinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs.
AbstractList Background The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC. Results Envs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively "weak" and "strong" resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus. Conclusions Clinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs. Keywords: HIV-1, Maraviroc, Resistance, Env, gp120, V3 loop, CCR5 N-terminus, CCR5 ECLs
The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC. Envs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively "weak" and "strong" resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus. Clinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs.
Doc number: 43 Abstract Background: The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo , we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC. Results: Envs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively "weak" and "strong" resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus. Conclusions: Clinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs.
The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC. Envs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively "weak" and "strong" resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus. Clinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs.
BACKGROUND: The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC. RESULTS: Envs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively "weak" and "strong" resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus. CONCLUSIONS: Clinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs.
The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC.BACKGROUNDThe CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC.Envs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively "weak" and "strong" resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus.RESULTSEnvs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively "weak" and "strong" resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus.Clinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs.CONCLUSIONSClinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs.
ArticleNumber 43
Audience Academic
Author Salimi, Hamid
Gray, Lachlan R
Churchill, Melissa J
Wilkinson, Brendan L
Zappi, Helena
Chikere, Kelechi
Lee, Benhur
Ramsland, Paul A
Westby, Mike
Lewin, Sharon R
Moore, Miranda S
Duncan, Renee
Payne, Richard J
Gorry, Paul R
Sterjovski, Jasminka
Ellett, Anne
Roche, Michael
Flynn, Jacqueline K
Webb, Nicholas E
Jubb, Becky
AuthorAffiliation 5 Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
13 Infectious Diseases Unit, The Alfred Hospital, Melbourne, Victoria, Australia
7 Department of Immunology, Monash University, Melbourne, Victoria, Australia
9 Department of Surgery (Austin Health), University of Melbourne, Victoria, Australia
8 Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
3 Department of Microbiology, Monash University, Melbourne, Victoria, Australia
14 Present address: Fred Hutchinson Cancer Research Center, Seattle, WA, USA
10 School of Chemistry, The University of Sydney, New South Wales, Australia
12 Pfizer Global Research and Development, Sandwich, UK
2 Center for Immunology, Monash University, Melbourne, Victoria, Australia
11 Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
4 Department of Infectious Diseases, Monash University, Melbourne, Victoria, Austr
AuthorAffiliation_xml – name: 13 Infectious Diseases Unit, The Alfred Hospital, Melbourne, Victoria, Australia
– name: 6 Department of Medicine, Monash University, Melbourne, Victoria, Australia
– name: 10 School of Chemistry, The University of Sydney, New South Wales, Australia
– name: 11 Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
– name: 14 Present address: Fred Hutchinson Cancer Research Center, Seattle, WA, USA
– name: 7 Department of Immunology, Monash University, Melbourne, Victoria, Australia
– name: 1 Center for Virology, Monash University, Melbourne, Victoria, Australia
– name: 3 Department of Microbiology, Monash University, Melbourne, Victoria, Australia
– name: 9 Department of Surgery (Austin Health), University of Melbourne, Victoria, Australia
– name: 5 Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
– name: 4 Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
– name: 12 Pfizer Global Research and Development, Sandwich, UK
– name: 8 Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
– name: 2 Center for Immunology, Monash University, Melbourne, Victoria, Australia
Author_xml – sequence: 1
  givenname: Michael
  surname: Roche
  fullname: Roche, Michael
– sequence: 2
  givenname: Hamid
  surname: Salimi
  fullname: Salimi, Hamid
– sequence: 3
  givenname: Renee
  surname: Duncan
  fullname: Duncan, Renee
– sequence: 4
  givenname: Brendan L
  surname: Wilkinson
  fullname: Wilkinson, Brendan L
– sequence: 5
  givenname: Kelechi
  surname: Chikere
  fullname: Chikere, Kelechi
– sequence: 6
  givenname: Miranda S
  surname: Moore
  fullname: Moore, Miranda S
– sequence: 7
  givenname: Nicholas E
  surname: Webb
  fullname: Webb, Nicholas E
– sequence: 8
  givenname: Helena
  surname: Zappi
  fullname: Zappi, Helena
– sequence: 9
  givenname: Jasminka
  surname: Sterjovski
  fullname: Sterjovski, Jasminka
– sequence: 10
  givenname: Jacqueline K
  surname: Flynn
  fullname: Flynn, Jacqueline K
– sequence: 11
  givenname: Anne
  surname: Ellett
  fullname: Ellett, Anne
– sequence: 12
  givenname: Lachlan R
  surname: Gray
  fullname: Gray, Lachlan R
– sequence: 13
  givenname: Benhur
  surname: Lee
  fullname: Lee, Benhur
– sequence: 14
  givenname: Becky
  surname: Jubb
  fullname: Jubb, Becky
– sequence: 15
  givenname: Mike
  surname: Westby
  fullname: Westby, Mike
– sequence: 16
  givenname: Paul A
  surname: Ramsland
  fullname: Ramsland, Paul A
– sequence: 17
  givenname: Sharon R
  surname: Lewin
  fullname: Lewin, Sharon R
– sequence: 18
  givenname: Richard J
  surname: Payne
  fullname: Payne, Richard J
– sequence: 19
  givenname: Melissa J
  surname: Churchill
  fullname: Churchill, Melissa J
– sequence: 20
  givenname: Paul R
  surname: Gorry
  fullname: Gorry, Paul R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23602046$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1vEzEQXaEi-gFnbsgSFy7b2uuPrC9IbQS0UiUkBFwtr3ecuHjtsHYi8Xf4pXhJW5KqlZAPtsbvvZl5M8fVQYgBquo1waeEtOKMzFhTMyFxTXDN6LPq6D5ysPM-rI5TusGYkha3L6rDhgrcYCaOqt_nyMRhiAENYJY6uDSgaJHxLjijPbq8-l4TNEJyKetgAOWI8hLQfP6FIx2yXsTCyWjQo964MRrUQ1q5DKh3GxgXEPIu28MGfCrEHnltfvxNtU2_WJEG70KHddbZxZBeVs-t9gle3d4n1bePH77OL-vrz5-u5ufXdSeYyHVrscRCzizmXIimM6YhDeus6YRgvNeE0hm3neECQFgwAlrDqG2t4FIKa-lJ9X6ru1p3A_SmlD5qr1ajK839UlE7tf8T3FIt4kZRwVoqcRG42Ap0Lj4hsP9TWlfTjNQ0I0WwYrSIvLutYow_15CyGlwy4L0OENdJEcqbRvKS8z-gTM4wk40o0LcPoDdxPYZi5yRIMZGzRv5DLbQH5YKNpUwziapzTqciuZjaPH0EVU4PgzNlP60r8T3Cm11j7w2528IC4FuAGWNKI1hl3Hb4Rdn5yZlp2x_x6uwB7076KcYfqFIBJw
CitedBy_id crossref_primary_10_1016_j_virol_2016_03_010
crossref_primary_10_1039_c4mb00018h
crossref_primary_10_1186_s12981_015_0066_7
crossref_primary_10_1016_j_jviromet_2014_04_004
crossref_primary_10_1128_msystems_00388_21
crossref_primary_10_2217_fvl_14_104
crossref_primary_10_7883_yoken_JJID_2015_310
crossref_primary_10_1089_aid_2015_0131
crossref_primary_10_1189_jlb_0713368
crossref_primary_10_3390_v16040500
crossref_primary_10_1042_BCJ20160772
crossref_primary_10_1016_j_virol_2024_110375
crossref_primary_10_1074_jbc_M116_721050
crossref_primary_10_1071_MA14031
crossref_primary_10_1128_CMR_00168_19
crossref_primary_10_1517_14728222_2015_1010513
crossref_primary_10_36233_0507_4088_140
crossref_primary_10_1128_AAC_02285_15
crossref_primary_10_1186_1742_4690_11_48
crossref_primary_10_4049_jimmunol_1800343
crossref_primary_10_1021_cb500337r
crossref_primary_10_1179_1528433614Z_0000000002
crossref_primary_10_1128_MMBR_00065_15
crossref_primary_10_1517_17460441_2015_1041497
crossref_primary_10_1186_s12977_015_0177_1
crossref_primary_10_1002_chem_202402268
crossref_primary_10_1128_AAC_03559_14
crossref_primary_10_1089_aid_2015_0318
crossref_primary_10_1089_aid_2017_0097
crossref_primary_10_1128_aac_01210_23
crossref_primary_10_1021_acs_jmedchem_1c01758
crossref_primary_10_1038_s41598_018_20814_2
crossref_primary_10_1371_journal_pone_0204099
crossref_primary_10_1177_1087057113505906
crossref_primary_10_1080_13543784_2016_1254615
crossref_primary_10_1021_acs_accounts_5b00255
crossref_primary_10_1016_j_bpj_2019_07_043
crossref_primary_10_3390_biomedicines12040915
crossref_primary_10_1093_jac_dkv026
crossref_primary_10_1128_AAC_01534_13
crossref_primary_10_3389_fmicb_2017_00390
crossref_primary_10_1021_acs_biochem_7b00875
crossref_primary_10_1177_20402066211030380
crossref_primary_10_1186_s12977_020_00532_2
crossref_primary_10_1016_j_virol_2013_03_026
crossref_primary_10_1039_C6OB00950F
crossref_primary_10_1128_jvi_01851_21
crossref_primary_10_4049_jimmunol_2000165
crossref_primary_10_1186_s12977_016_0309_2
crossref_primary_10_1007_s13365_017_0600_6
crossref_primary_10_1016_j_virol_2024_110362
crossref_primary_10_1097_QAD_0000000000001043
crossref_primary_10_1038_s41573_023_00692_8
Cites_doi 10.1086/518797
10.1128/JVI.73.4.2576-2586.1999
10.1016/S0092-8674(00)80577-2
10.1073/pnas.090576697
10.1189/jlb.0612308
10.1016/j.virol.2010.12.052
10.1126/science.1118398
10.1016/j.virol.2009.02.044
10.1016/j.virol.2006.01.018
10.1089/aid.2009.0132
10.1128/jvi.70.3.1651-1667.1996
10.1006/jmbi.1993.1626
10.1128/JVI.01109-10
10.1128/JVI.78.16.8654-8662.2004
10.1073/pnas.96.9.5215
10.1056/NEJMoa0803154
10.1128/JVI.00630-11
10.1186/1742-4690-4-89
10.1128/JVI.06421-11
10.1016/j.virol.2007.12.009
10.1128/AAC.49.11.4721-4732.2005
10.1128/JVI.01242-09
10.1016/j.virol.2010.12.010
10.1016/j.virol.2012.09.043
10.1128/JVI.72.2.1160-1164.1998
10.1128/JVI.78.6.2790-2807.2004
10.1128/JVI.00374-10
10.1128/AAC.01055-08
10.1097/QAI.0b013e3181ff63ee
10.1016/j.virol.2012.02.006
10.1074/jbc.M512688200
10.1128/JVI.80.10.4909-4920.2006
10.1124/mol.104.008565
10.1016/j.virol.2006.11.004
10.1097/QAD.0b013e328338b7a6
10.1073/pnas.97.11.5762
10.1128/JVI.02648-08
10.1086/592052
10.1006/bbrc.1999.0633
10.1016/j.virol.2010.05.006
10.1128/JVI.77.9.5201-5208.2003
10.1021/bi101240v
10.1128/JVI.76.17.8953-8957.2002
10.1097/QAI.0b013e3181f25574
10.1128/JVI.74.9.4433-4440.2000
10.1371/journal.pone.0005683
10.1128/JVI.02006-06
10.1128/JVI.05510-11
10.1128/JVI.01863-12
10.1128/JVI.00967-12
10.1007/978-1-4614-0980-9_10
10.1016/S0079-6468(05)43007-6
10.1371/journal.ppat.0030117
10.1074/jbc.M206784200
10.1016/j.virol.2010.01.037
10.1128/JVI.00106-11
10.1002/asia.201100232
10.1128/JVI.72.4.2855-2864.1998
10.1128/AAC.49.12.4911-4919.2005
10.1073/pnas.96.10.5698
10.1128/AAC.01057-08
10.1016/j.virol.2012.03.008
10.1124/mol.107.042101
10.1073/pnas.012519099
10.1016/j.virol.2005.04.035
10.1128/AAC.06061-11
10.1086/650697
10.1128/JVI.00444-08
10.1016/j.chembiol.2008.12.007
10.1073/pnas.0811713106
10.1007/s11904-010-0069-x
10.1086/652189
10.1371/journal.ppat.1000548
10.1128/JVI.75.3.1165-1171.2001
10.1201/b13787-282
10.1128/JVI.01351-09
10.1186/1742-4690-8-89
10.1126/science.1145373
ContentType Journal Article
Copyright COPYRIGHT 2013 BioMed Central Ltd.
2013 Roche et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2013 Roche et al.; licensee BioMed Central Ltd. 2013 Roche et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2013 BioMed Central Ltd.
– notice: 2013 Roche et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2013 Roche et al.; licensee BioMed Central Ltd. 2013 Roche et al.; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7U9
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1186/1742-4690-10-43
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database


MEDLINE - Academic
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1742-4690
EndPage 43
ExternalDocumentID PMC3648390
oai_biomedcentral_com_1742_4690_10_43
2974228741
A534690560
23602046
10_1186_1742_4690_10_43
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Thailand
GeographicLocations_xml – name: Thailand
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: P30 AI028697
GroupedDBID ---
0R~
123
29P
2WC
4.4
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PMFND
3V.
7U9
7XB
8FK
AZQEC
DWQXO
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
-A0
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
5PM
ID FETCH-LOGICAL-b646t-8f090697f055662bcc2124bfcb6645da13375fbc56ee6fec6e8c43f8f65996ff3
IEDL.DBID RBZ
ISSN 1742-4690
IngestDate Thu Aug 21 14:12:48 EDT 2025
Wed May 22 07:14:25 EDT 2024
Fri Jul 11 14:39:35 EDT 2025
Fri Jul 11 10:27:25 EDT 2025
Fri Jul 25 04:33:14 EDT 2025
Tue Jun 17 22:04:54 EDT 2025
Tue Jun 10 21:01:05 EDT 2025
Mon Jul 21 06:04:32 EDT 2025
Tue Jul 01 03:39:40 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b646t-8f090697f055662bcc2124bfcb6645da13375fbc56ee6fec6e8c43f8f65996ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://dx.doi.org/10.1186/1742-4690-10-43
PMID 23602046
PQID 1353019729
PQPubID 54665
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3648390
biomedcentral_primary_oai_biomedcentral_com_1742_4690_10_43
proquest_miscellaneous_1352295364
proquest_miscellaneous_1349704926
proquest_journals_1353019729
gale_infotracmisc_A534690560
gale_infotracacademiconefile_A534690560
pubmed_primary_23602046
crossref_citationtrail_10_1186_1742_4690_10_43
crossref_primary_10_1186_1742_4690_10_43
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-20
PublicationDateYYYYMMDD 2013-04-20
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-20
  day: 20
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Retrovirology
PublicationTitleAlternate Retrovirology
PublicationYear 2013
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References JM Strizki (3429_CR19) 2005; 49
J Sterjovski (3429_CR62) 2010; 404
R Berro (3429_CR48) 2009; 5
J Sterjovski (3429_CR82) 2011; 410
P Dorr (3429_CR16) 2005; 49
EG Cormier (3429_CR8) 2000; 97
M Baba (3429_CR21) 1999; 96
JF Demarest (3429_CR29) 2009; 53
M Roche (3429_CR58) 2011; 8
L Gray (3429_CR78) 2009; 83
R Kondru (3429_CR9) 2008; 73
PR Gorry (3429_CR18) 2010
TJ Henrich (3429_CR38) 2012; 56
RM Gulick (3429_CR26) 2007; 196
B Jubb (3429_CR52) 2011
G Fatkenheuer (3429_CR24) 2008; 359
M Farzan (3429_CR7) 1998; 72
JA Kwong (3429_CR68) 2011; 85
PM McNicholas (3429_CR46) 2011; 56
JC Tilton (3429_CR15) 2010; 84
JC Tilton (3429_CR39) 2010; 26
P Inc (3429_CR47) 2007
RA Ogert (3429_CR50) 2009; 83
A Sali (3429_CR83) 1993; 234
F Gao (3429_CR77) 1996; 70
AM Tsibris (3429_CR23) 2009; 4
M Roche (3429_CR51) 2011; 85
EG Cormier (3429_CR3) 2002; 76
D Taleski (3429_CR70) 2011; 6
AN Ratcliff (3429_CR63) 2012; 87
M Farzan (3429_CR69) 2002; 277
J Sterjovski (3429_CR61) 2007; 4
RA Ogert (3429_CR32) 2010; 400
CB Wilen (3429_CR1) 2012; 726
CC Huang (3429_CR73) 2007; 317
X Yang (3429_CR80) 2001; 75
T Dragic (3429_CR10) 2000; 97
O Putcharoen (3429_CR30) 2012; 86
P McNicholas (3429_CR31) 2010; 201
Y Soda (3429_CR76) 1999; 258
B Lee (3429_CR81) 1999; 96
A Trkola (3429_CR54) 2002; 99
SH Johnston (3429_CR59) 2009; 83
F Tsamis (3429_CR13) 2003; 77
J Mori (3429_CR56) 2008
M Westby (3429_CR22) 2006; 80
K Maeda (3429_CR20) 2004; 78
LS Simpson (3429_CR71) 2009; 16
RA Ogert (3429_CR37) 2008; 373
K Maeda (3429_CR11) 2006; 281
B Etemad-Moghadam (3429_CR66) 2000; 74
C Watson (3429_CR14) 2005; 67
SE Kuhmann (3429_CR40) 2004; 78
CG Anastassopoulou (3429_CR43) 2011; 413
A Brelot (3429_CR6) 1999; 73
MM Laakso (3429_CR49) 2007; 3
K Cashin (3429_CR64) 2011; 85
M Farzan (3429_CR5) 1999; 96
M Westby (3429_CR34) 2007; 81
K Chikere (3429_CR60) 2013; 435
RJ Landovitz (3429_CR27) 2008; 198
KM Kitrinos (3429_CR28) 2009; 53
F Gao (3429_CR79) 1996; 70
R Berro (3429_CR74) 2012; 427
JJ Chiang (3429_CR67) 2012; 86
A Wood (3429_CR17) 2005; 43
P Pugach (3429_CR36) 2009; 387
AJ Marozsan (3429_CR53) 2005; 338
PR Gorry (3429_CR2) 2011; 8
P Pugach (3429_CR35) 2007; 361
TJ Henrich (3429_CR41) 2010; 55
JZ Zhu (3429_CR72) 2011; 50
H Salimi (3429_CR65) 2013; 93
C Seibert (3429_CR12) 2006; 349
JM Pfaff (3429_CR42) 2010; 84
CG Anastassopoulou (3429_CR45) 2012; 428
CC Huang (3429_CR4) 2005; 310
AM Tsibris (3429_CR33) 2008; 82
JK Flynn (3429_CR57) 2013
EJ Platt (3429_CR75) 1998; 72
P Delobel (3429_CR55) 2010; 24
DA Cooper (3429_CR25) 2010; 201
CG Anastassopoulou (3429_CR44) 2009; 106
18096812 - Mol Pharmacol. 2008 Mar;73(3):789-800
16284180 - Science. 2005 Nov 11;310(5750):1025-8
17182681 - J Virol. 2007 Mar;81(5):2359-71
17722977 - PLoS Pathog. 2007 Aug 24;3(8):e117
10823934 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):5762-7
10089882 - Cell. 1999 Mar 5;96(5):667-76
18076768 - Retrovirology. 2007;4:89
21356539 - Virology. 2011 Apr 25;413(1):47-59
19303620 - Virology. 2009 May 10;387(2):296-302
10318947 - Proc Natl Acad Sci U S A. 1999 May 11;96(10):5698-703
20559045 - AIDS. 2010 Jun 1;24(9):1382-4
20055594 - AIDS Res Hum Retroviruses. 2010 Jan;26(1):13-24
16476734 - J Biol Chem. 2006 May 5;281(18):12688-98
17901336 - Science. 2007 Sep 28;317(5846):1930-4
20373959 - J Infect Dis. 2010 May 15;201(10):1470-80
19075068 - Antimicrob Agents Chemother. 2009 Mar;53(3):1124-31
20410277 - J Virol. 2010 Jul;84(13):6505-14
22252820 - Antimicrob Agents Chemother. 2012 Apr;56(4):1931-5
14990699 - J Virol. 2004 Mar;78(6):2790-807
10329384 - Biochem Biophys Res Commun. 1999 May 10;258(2):313-21
15850827 - Prog Med Chem. 2005;43:239-71
18495779 - J Virol. 2008 Aug;82(16):8210-4
22520838 - Virology. 2012 Jul 5;428(2):86-97
21345957 - J Virol. 2011 May;85(9):4330-42
21613393 - J Virol. 2011 Aug;85(15):7563-71
23602007 - Virology. 2013 Jul 20;442(1):51-8
11152489 - J Virol. 2001 Feb;75(3):1165-71
18783318 - J Infect Dis. 2008 Oct 15;198(8):1113-22
23077246 - J Leukoc Biol. 2013 Jan;93(1):113-26
19692480 - J Virol. 2009 Nov;83(21):11016-26
10220446 - Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5215-20
20151839 - J Infect Dis. 2010 Mar 15;201(6):803-13
21216423 - Virology. 2011 Feb 20;410(2):418-28
20856130 - J Acquir Immune Defic Syndr. 2010 Dec;55(4):420-7
16304152 - Antimicrob Agents Chemother. 2005 Dec;49(12):4911-9
10756060 - J Virol. 2000 May;74(9):4433-40
22054077 - Retrovirology. 2011;8:89
15935415 - Virology. 2005 Jul 20;338(1):182-99
11782552 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):395-400
15280474 - J Virol. 2004 Aug;78(16):8654-62
8627686 - J Virol. 1996 Mar;70(3):1651-67
22933279 - J Virol. 2012 Nov;86(22):12417-21
9525605 - J Virol. 1998 Apr;72(4):2855-64
10779565 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5639-44
15644495 - Mol Pharmacol. 2005 Apr;67(4):1268-82
19246006 - Chem Biol. 2009 Feb 27;16(2):153-61
20172579 - Virology. 2010 Apr 25;400(1):145-55
12163614 - J Virol. 2002 Sep;76(17):8953-7
21188555 - Curr HIV/AIDS Rep. 2011 Mar;8(1):45-53
21235238 - Biochemistry. 2011 Mar 8;50(9):1524-34
18832245 - N Engl J Med. 2008 Oct 2;359(14):1442-55
20570309 - Virology. 2010 Sep 1;404(2):269-78
16251317 - Antimicrob Agents Chemother. 2005 Nov;49(11):4721-32
19075055 - Antimicrob Agents Chemother. 2009 Mar;53(3):1116-23
21209592 - J Acquir Immune Defic Syndr. 2011 Mar 1;56(3):222-9
19479085 - PLoS One. 2009;4(5):e5683
10074102 - J Virol. 1999 Apr;73(4):2576-86
19680536 - PLoS Pathog. 2009 Aug;5(8):e1000548
12692222 - J Virol. 2003 May;77(9):5201-8
22424737 - Virology. 2012 Jun 5;427(2):158-65
19321618 - J Virol. 2009 Jun;83(11):5430-41
16641282 - J Virol. 2006 May;80(10):4909-20
17166540 - Virology. 2007 Apr 25;361(1):212-28
22297516 - Adv Exp Med Biol. 2012;726:223-42
23135713 - J Virol. 2013 Jan;87(2):923-34
12183462 - J Biol Chem. 2002 Oct 25;277(43):40397-402
21835796 - J Virol. 2011 Oct;85(20):10699-709
9445013 - J Virol. 1998 Feb;72(2):1160-4
18190945 - Virology. 2008 Apr 10;373(2):387-99
22090117 - J Virol. 2012 Jan;86(2):1119-28
19776131 - J Virol. 2009 Dec;83(23):12151-63
8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815
16494916 - Virology. 2006 May 25;349(1):41-54
17570119 - J Infect Dis. 2007 Jul 15;196(2):304-12
21509944 - Chem Asian J. 2011 Jun 6;6(6):1316-20
20702642 - J Virol. 2010 Oct;84(20):10863-76
19289833 - Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5318-23
23217618 - Virology. 2013 Jan 5;435(1):81-91
References_xml – volume: 196
  start-page: 304
  issue: 2
  year: 2007
  ident: 3429_CR26
  publication-title: J Infect Dis
  doi: 10.1086/518797
– volume: 73
  start-page: 2576
  issue: 4
  year: 1999
  ident: 3429_CR6
  publication-title: J Virol
  doi: 10.1128/JVI.73.4.2576-2586.1999
– volume: 96
  start-page: 667
  issue: 5
  year: 1999
  ident: 3429_CR5
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80577-2
– volume: 97
  start-page: 5639
  issue: 10
  year: 2000
  ident: 3429_CR10
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.090576697
– volume: 93
  start-page: 113
  year: 2013
  ident: 3429_CR65
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.0612308
– volume: 413
  start-page: 47
  issue: 1
  year: 2011
  ident: 3429_CR43
  publication-title: Virology
  doi: 10.1016/j.virol.2010.12.052
– volume: 310
  start-page: 1025
  issue: 5750
  year: 2005
  ident: 3429_CR4
  publication-title: Science
  doi: 10.1126/science.1118398
– volume: 387
  start-page: 296
  issue: 2
  year: 2009
  ident: 3429_CR36
  publication-title: Virology
  doi: 10.1016/j.virol.2009.02.044
– volume: 349
  start-page: 41
  issue: 1
  year: 2006
  ident: 3429_CR12
  publication-title: Virology
  doi: 10.1016/j.virol.2006.01.018
– volume: 26
  start-page: 13
  issue: 1
  year: 2010
  ident: 3429_CR39
  publication-title: AIDS Res Hum Retroviruses
  doi: 10.1089/aid.2009.0132
– volume: 70
  start-page: 1651
  issue: 3
  year: 1996
  ident: 3429_CR79
  publication-title: J Virol
  doi: 10.1128/jvi.70.3.1651-1667.1996
– volume: 234
  start-page: 779
  issue: 3
  year: 1993
  ident: 3429_CR83
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1993.1626
– volume: 84
  start-page: 10863
  year: 2010
  ident: 3429_CR15
  publication-title: J Virol
  doi: 10.1128/JVI.01109-10
– volume: 78
  start-page: 8654
  issue: 16
  year: 2004
  ident: 3429_CR20
  publication-title: J Virol
  doi: 10.1128/JVI.78.16.8654-8662.2004
– volume: 96
  start-page: 5215
  issue: 9
  year: 1999
  ident: 3429_CR81
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.9.5215
– volume: 359
  start-page: 1442
  issue: 14
  year: 2008
  ident: 3429_CR24
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0803154
– volume: 85
  start-page: 7563
  issue: 15
  year: 2011
  ident: 3429_CR68
  publication-title: J Virol
  doi: 10.1128/JVI.00630-11
– volume: 4
  start-page: 89
  year: 2007
  ident: 3429_CR61
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-4-89
– volume: 86
  start-page: 1119
  issue: 2
  year: 2012
  ident: 3429_CR30
  publication-title: J Virol
  doi: 10.1128/JVI.06421-11
– volume: 373
  start-page: 387
  issue: 2
  year: 2008
  ident: 3429_CR37
  publication-title: Virology
  doi: 10.1016/j.virol.2007.12.009
– volume: 49
  start-page: 4721
  issue: 11
  year: 2005
  ident: 3429_CR16
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.49.11.4721-4732.2005
– volume: 83
  start-page: 11016
  year: 2009
  ident: 3429_CR59
  publication-title: J Virol
  doi: 10.1128/JVI.01242-09
– volume: 410
  start-page: 418
  year: 2011
  ident: 3429_CR82
  publication-title: Virology
  doi: 10.1016/j.virol.2010.12.010
– volume: 435
  start-page: 81
  year: 2013
  ident: 3429_CR60
  publication-title: Virology
  doi: 10.1016/j.virol.2012.09.043
– volume: 72
  start-page: 1160
  issue: 2
  year: 1998
  ident: 3429_CR7
  publication-title: J Virol
  doi: 10.1128/JVI.72.2.1160-1164.1998
– volume: 78
  start-page: 2790
  issue: 6
  year: 2004
  ident: 3429_CR40
  publication-title: J Virol
  doi: 10.1128/JVI.78.6.2790-2807.2004
– volume: 84
  start-page: 6505
  issue: 13
  year: 2010
  ident: 3429_CR42
  publication-title: J Virol
  doi: 10.1128/JVI.00374-10
– volume: 53
  start-page: 1116
  issue: 3
  year: 2009
  ident: 3429_CR29
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01055-08
– volume: 56
  start-page: 222
  issue: 3
  year: 2011
  ident: 3429_CR46
  publication-title: J Acquir Immune Defic Syndr
  doi: 10.1097/QAI.0b013e3181ff63ee
– volume: 427
  start-page: 158
  issue: 2
  year: 2012
  ident: 3429_CR74
  publication-title: Virology
  doi: 10.1016/j.virol.2012.02.006
– volume: 281
  start-page: 12688
  issue: 18
  year: 2006
  ident: 3429_CR11
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M512688200
– volume: 80
  start-page: 4909
  issue: 10
  year: 2006
  ident: 3429_CR22
  publication-title: J Virol
  doi: 10.1128/JVI.80.10.4909-4920.2006
– volume: 67
  start-page: 1268
  issue: 4
  year: 2005
  ident: 3429_CR14
  publication-title: Mol Pharmacol
  doi: 10.1124/mol.104.008565
– volume: 361
  start-page: 212
  issue: 1
  year: 2007
  ident: 3429_CR35
  publication-title: Virology
  doi: 10.1016/j.virol.2006.11.004
– volume: 24
  start-page: 1382
  issue: 9
  year: 2010
  ident: 3429_CR55
  publication-title: AIDS
  doi: 10.1097/QAD.0b013e328338b7a6
– volume: 97
  start-page: 5762
  issue: 11
  year: 2000
  ident: 3429_CR8
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.11.5762
– volume: 83
  start-page: 5430
  issue: 11
  year: 2009
  ident: 3429_CR78
  publication-title: J Virol
  doi: 10.1128/JVI.02648-08
– volume: 198
  start-page: 1113
  issue: 8
  year: 2008
  ident: 3429_CR27
  publication-title: J Infect Dis
  doi: 10.1086/592052
– volume: 258
  start-page: 313
  issue: 2
  year: 1999
  ident: 3429_CR76
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1999.0633
– volume: 70
  start-page: 1651
  issue: 3
  year: 1996
  ident: 3429_CR77
  publication-title: The WHO and NIAID Networks for HIV Isolation and Characterization. J Virol
– volume: 404
  start-page: 269
  year: 2010
  ident: 3429_CR62
  publication-title: Virology
  doi: 10.1016/j.virol.2010.05.006
– volume: 77
  start-page: 5201
  issue: 9
  year: 2003
  ident: 3429_CR13
  publication-title: J Virol
  doi: 10.1128/JVI.77.9.5201-5208.2003
– volume: 50
  start-page: 1524
  issue: 9
  year: 2011
  ident: 3429_CR72
  publication-title: Biochemistry
  doi: 10.1021/bi101240v
– volume: 76
  start-page: 8953
  issue: 17
  year: 2002
  ident: 3429_CR3
  publication-title: J Virol
  doi: 10.1128/JVI.76.17.8953-8957.2002
– volume: 55
  start-page: 420
  issue: 4
  year: 2010
  ident: 3429_CR41
  publication-title: J Acquir Immune Defic Syndr
  doi: 10.1097/QAI.0b013e3181f25574
– volume: 74
  start-page: 4433
  issue: 9
  year: 2000
  ident: 3429_CR66
  publication-title: J Virol
  doi: 10.1128/JVI.74.9.4433-4440.2000
– volume: 4
  start-page: e5683
  issue: 5
  year: 2009
  ident: 3429_CR23
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005683
– volume: 81
  start-page: 2359
  issue: 5
  year: 2007
  ident: 3429_CR34
  publication-title: J Virol
  doi: 10.1128/JVI.02006-06
– volume: 85
  start-page: 10699
  year: 2011
  ident: 3429_CR64
  publication-title: J Virol
  doi: 10.1128/JVI.05510-11
– volume: 87
  start-page: 923
  year: 2012
  ident: 3429_CR63
  publication-title: J Virol
  doi: 10.1128/JVI.01863-12
– volume-title: Maraviroc Tablets NDA 22–128: Antiviral Drugs Advisory Committee (AVDAC) Briefing Document
  year: 2007
  ident: 3429_CR47
– volume: 86
  start-page: 12417
  issue: 22
  year: 2012
  ident: 3429_CR67
  publication-title: J Virol
  doi: 10.1128/JVI.00967-12
– volume: 726
  start-page: 223
  year: 2012
  ident: 3429_CR1
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-1-4614-0980-9_10
– volume: 43
  start-page: 239
  year: 2005
  ident: 3429_CR17
  publication-title: Prog Med Chem
  doi: 10.1016/S0079-6468(05)43007-6
– volume: 3
  start-page: e117
  issue: 8
  year: 2007
  ident: 3429_CR49
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.0030117
– volume: 277
  start-page: 40397
  issue: 43
  year: 2002
  ident: 3429_CR69
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M206784200
– volume: 400
  start-page: 145
  issue: 1
  year: 2010
  ident: 3429_CR32
  publication-title: Virology
  doi: 10.1016/j.virol.2010.01.037
– volume: 85
  start-page: 4330
  year: 2011
  ident: 3429_CR51
  publication-title: J Virol
  doi: 10.1128/JVI.00106-11
– volume: 6
  start-page: 1316
  year: 2011
  ident: 3429_CR70
  publication-title: Chem Asian J
  doi: 10.1002/asia.201100232
– volume: 72
  start-page: 2855
  issue: 4
  year: 1998
  ident: 3429_CR75
  publication-title: J Virol
  doi: 10.1128/JVI.72.4.2855-2864.1998
– volume: 49
  start-page: 4911
  issue: 12
  year: 2005
  ident: 3429_CR19
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.49.12.4911-4919.2005
– volume: 96
  start-page: 5698
  issue: 10
  year: 1999
  ident: 3429_CR21
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.10.5698
– volume: 53
  start-page: 1124
  issue: 3
  year: 2009
  ident: 3429_CR28
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01057-08
– volume: 428
  start-page: 86
  issue: 2
  year: 2012
  ident: 3429_CR45
  publication-title: Virology
  doi: 10.1016/j.virol.2012.03.008
– volume: 73
  start-page: 789
  issue: 3
  year: 2008
  ident: 3429_CR9
  publication-title: Mol Pharmacol
  doi: 10.1124/mol.107.042101
– volume: 99
  start-page: 395
  issue: 1
  year: 2002
  ident: 3429_CR54
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.012519099
– volume: 338
  start-page: 182
  issue: 1
  year: 2005
  ident: 3429_CR53
  publication-title: Virology
  doi: 10.1016/j.virol.2005.04.035
– volume: 56
  start-page: 1931
  issue: 4
  year: 2012
  ident: 3429_CR38
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.06061-11
– volume: 201
  start-page: 803
  issue: 6
  year: 2010
  ident: 3429_CR25
  publication-title: J Infect Dis
  doi: 10.1086/650697
– volume: 82
  start-page: 8210
  issue: 16
  year: 2008
  ident: 3429_CR33
  publication-title: J Virol
  doi: 10.1128/JVI.00444-08
– volume: 16
  start-page: 153
  issue: 2
  year: 2009
  ident: 3429_CR71
  publication-title: Chem Biol
  doi: 10.1016/j.chembiol.2008.12.007
– volume: 106
  start-page: 5318
  issue: 13
  year: 2009
  ident: 3429_CR44
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0811713106
– volume: 8
  start-page: 45
  issue: 1
  year: 2011
  ident: 3429_CR2
  publication-title: Curr HIV/AIDS Rep
  doi: 10.1007/s11904-010-0069-x
– volume: 201
  start-page: 1470
  issue: 10
  year: 2010
  ident: 3429_CR31
  publication-title: J Infect Dis
  doi: 10.1086/652189
– volume-title: Virology
  year: 2013
  ident: 3429_CR57
– volume: 5
  start-page: e1000548
  issue: 8
  year: 2009
  ident: 3429_CR48
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000548
– volume: 75
  start-page: 1165
  issue: 3
  year: 2001
  ident: 3429_CR80
  publication-title: J Virol
  doi: 10.1128/JVI.75.3.1165-1171.2001
– volume-title: Program and abstracts of the 6th European Drug Resistance Workshop, Budapest, March 26–28 Poster 51
  year: 2008
  ident: 3429_CR56
– start-page: 2869
  volume-title: Kucers’ The Use of Antibiotics
  year: 2010
  ident: 3429_CR18
  doi: 10.1201/b13787-282
– volume: 83
  start-page: 12151
  issue: 23
  year: 2009
  ident: 3429_CR50
  publication-title: J Virol
  doi: 10.1128/JVI.01351-09
– volume-title: Program and Abstracts of the 18th Conference on Retroviruses and Opportunistic Infections
  year: 2011
  ident: 3429_CR52
– volume: 8
  start-page: 89
  issue: 1
  year: 2011
  ident: 3429_CR58
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-8-89
– volume: 317
  start-page: 1930
  issue: 5846
  year: 2007
  ident: 3429_CR73
  publication-title: Science
  doi: 10.1126/science.1145373
– reference: 21216423 - Virology. 2011 Feb 20;410(2):418-28
– reference: 8627686 - J Virol. 1996 Mar;70(3):1651-67
– reference: 20055594 - AIDS Res Hum Retroviruses. 2010 Jan;26(1):13-24
– reference: 17166540 - Virology. 2007 Apr 25;361(1):212-28
– reference: 19075068 - Antimicrob Agents Chemother. 2009 Mar;53(3):1124-31
– reference: 15280474 - J Virol. 2004 Aug;78(16):8654-62
– reference: 8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815
– reference: 21345957 - J Virol. 2011 May;85(9):4330-42
– reference: 15644495 - Mol Pharmacol. 2005 Apr;67(4):1268-82
– reference: 21235238 - Biochemistry. 2011 Mar 8;50(9):1524-34
– reference: 19692480 - J Virol. 2009 Nov;83(21):11016-26
– reference: 20373959 - J Infect Dis. 2010 May 15;201(10):1470-80
– reference: 19479085 - PLoS One. 2009;4(5):e5683
– reference: 17182681 - J Virol. 2007 Mar;81(5):2359-71
– reference: 20570309 - Virology. 2010 Sep 1;404(2):269-78
– reference: 23602007 - Virology. 2013 Jul 20;442(1):51-8
– reference: 22090117 - J Virol. 2012 Jan;86(2):1119-28
– reference: 22424737 - Virology. 2012 Jun 5;427(2):158-65
– reference: 19321618 - J Virol. 2009 Jun;83(11):5430-41
– reference: 18783318 - J Infect Dis. 2008 Oct 15;198(8):1113-22
– reference: 12183462 - J Biol Chem. 2002 Oct 25;277(43):40397-402
– reference: 18495779 - J Virol. 2008 Aug;82(16):8210-4
– reference: 10074102 - J Virol. 1999 Apr;73(4):2576-86
– reference: 22520838 - Virology. 2012 Jul 5;428(2):86-97
– reference: 23135713 - J Virol. 2013 Jan;87(2):923-34
– reference: 16251317 - Antimicrob Agents Chemother. 2005 Nov;49(11):4721-32
– reference: 16304152 - Antimicrob Agents Chemother. 2005 Dec;49(12):4911-9
– reference: 17722977 - PLoS Pathog. 2007 Aug 24;3(8):e117
– reference: 16641282 - J Virol. 2006 May;80(10):4909-20
– reference: 18096812 - Mol Pharmacol. 2008 Mar;73(3):789-800
– reference: 10756060 - J Virol. 2000 May;74(9):4433-40
– reference: 19289833 - Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5318-23
– reference: 16476734 - J Biol Chem. 2006 May 5;281(18):12688-98
– reference: 10220446 - Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5215-20
– reference: 20702642 - J Virol. 2010 Oct;84(20):10863-76
– reference: 20559045 - AIDS. 2010 Jun 1;24(9):1382-4
– reference: 22933279 - J Virol. 2012 Nov;86(22):12417-21
– reference: 21613393 - J Virol. 2011 Aug;85(15):7563-71
– reference: 19680536 - PLoS Pathog. 2009 Aug;5(8):e1000548
– reference: 12163614 - J Virol. 2002 Sep;76(17):8953-7
– reference: 9525605 - J Virol. 1998 Apr;72(4):2855-64
– reference: 22252820 - Antimicrob Agents Chemother. 2012 Apr;56(4):1931-5
– reference: 10089882 - Cell. 1999 Mar 5;96(5):667-76
– reference: 16494916 - Virology. 2006 May 25;349(1):41-54
– reference: 19246006 - Chem Biol. 2009 Feb 27;16(2):153-61
– reference: 21188555 - Curr HIV/AIDS Rep. 2011 Mar;8(1):45-53
– reference: 22054077 - Retrovirology. 2011;8:89
– reference: 21835796 - J Virol. 2011 Oct;85(20):10699-709
– reference: 23217618 - Virology. 2013 Jan 5;435(1):81-91
– reference: 11152489 - J Virol. 2001 Feb;75(3):1165-71
– reference: 16284180 - Science. 2005 Nov 11;310(5750):1025-8
– reference: 20410277 - J Virol. 2010 Jul;84(13):6505-14
– reference: 11782552 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):395-400
– reference: 9445013 - J Virol. 1998 Feb;72(2):1160-4
– reference: 21509944 - Chem Asian J. 2011 Jun 6;6(6):1316-20
– reference: 14990699 - J Virol. 2004 Mar;78(6):2790-807
– reference: 21209592 - J Acquir Immune Defic Syndr. 2011 Mar 1;56(3):222-9
– reference: 19303620 - Virology. 2009 May 10;387(2):296-302
– reference: 20172579 - Virology. 2010 Apr 25;400(1):145-55
– reference: 10329384 - Biochem Biophys Res Commun. 1999 May 10;258(2):313-21
– reference: 19075055 - Antimicrob Agents Chemother. 2009 Mar;53(3):1116-23
– reference: 19776131 - J Virol. 2009 Dec;83(23):12151-63
– reference: 10779565 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5639-44
– reference: 15850827 - Prog Med Chem. 2005;43:239-71
– reference: 20151839 - J Infect Dis. 2010 Mar 15;201(6):803-13
– reference: 17570119 - J Infect Dis. 2007 Jul 15;196(2):304-12
– reference: 18076768 - Retrovirology. 2007;4:89
– reference: 23077246 - J Leukoc Biol. 2013 Jan;93(1):113-26
– reference: 17901336 - Science. 2007 Sep 28;317(5846):1930-4
– reference: 10823934 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):5762-7
– reference: 10318947 - Proc Natl Acad Sci U S A. 1999 May 11;96(10):5698-703
– reference: 21356539 - Virology. 2011 Apr 25;413(1):47-59
– reference: 18832245 - N Engl J Med. 2008 Oct 2;359(14):1442-55
– reference: 20856130 - J Acquir Immune Defic Syndr. 2010 Dec;55(4):420-7
– reference: 12692222 - J Virol. 2003 May;77(9):5201-8
– reference: 18190945 - Virology. 2008 Apr 10;373(2):387-99
– reference: 15935415 - Virology. 2005 Jul 20;338(1):182-99
– reference: 22297516 - Adv Exp Med Biol. 2012;726:223-42
SSID ssj0031808
Score 2.280035
Snippet The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the...
Background The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such...
Doc number: 43 Abstract Background: The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5...
Background: The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such...
BACKGROUND: The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such...
SourceID pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 43
SubjectTerms Acquired immune deficiency syndrome
AIDS
Anti-HIV Agents - pharmacology
Anti-HIV Agents - therapeutic use
Antiviral agents
Binding sites
Biological products industry
Chemokines
Councils
Crystal structure
Cyclohexanes - pharmacology
Cyclohexanes - therapeutic use
Genetic aspects
Genetic research
Genetic Variation
Glycoproteins
Histidine
HIV
HIV (Viruses)
HIV Envelope Protein gp120 - genetics
HIV Infections - drug therapy
HIV Infections - virology
HIV-1 - drug effects
HIV-1 - genetics
HIV-1 - isolation & purification
HIV-1 - physiology
Human immunodeficiency virus
Human immunodeficiency virus 1
Humans
Medical research
Molecular Sequence Data
Mutation, Missense
NMR
Nuclear magnetic resonance
Peptides
Sequence Analysis, DNA
Sulfates
Treatment Failure
Triazoles - pharmacology
Triazoles - therapeutic use
Tyrosine
Virus Internalization - drug effects
Viruses
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1di9QwMOiJ4Iv4bfWUCIK-1Ms2adLigyyLxyrog3iybyFNk_Ngt12v3Qf_jr_UmTZdN4r3nJkm6UwmM5kvQl5aVpdlbqrU1jxLhRAuLbhHnytzIA8tZ4NH99NnuTwTH1f5Kjy4dSGscpKJg6CuW4tv5CfYn4Fhj6zy3fZHil2j0LsaWmhcJzewdBmGdKnV3uACdmVFKOczK-QJKN-wHDAHUfZgmk6U4r6Obqa_5fPBBRUHTx7cRqd3yO2gRtL5SPe75Jpr7pGbY2PJn_fJrzmFXcGS6cZhau9Ft6Gtp1MaJF1--JbOKFjaqD0C2WnfUtAE6WLxJafwr815ixV16cZcGkyEs7RGl3zvaI1xHJiOdYi9xsijDhBriu-Bw1Tj9OfbWcYOQTe70fffPSBnp--_LpZp6MaQVlLIPi08K5kslcfyOzKrrIVbT1TeVlKKvDZg7KrcVzaXzknvrHSFFdwXXmIFGO_5Q3LUtI17TKiBC8IJ4etKGWEYN9xlRgF7iFmWKVUm5G1EGb0dK29orIUdj8BuNNJVI101WDSCJ-TNREdtQ6Fz7Lex1oPBU8h_EV7vEaaZ_gv6ChlD4-mHb1oTkhhgX1hHS89zjsCgRibkOIKEU2vj4Ym1dJAanf7D4wl5sR9GTIyEa1y7QxhRKoZlHq-CybFLO5ciIY9Gbt1vLOMS86EBW0V8HP3jeKS5-D7UHYfvgTrNnly99KfkVja0DBEggY_JUX-5c89Aceur58Pp_A2YxkQ0
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgCIkXxDeFgYyEBC8ZbnyxEyGEqoqpII0HRNHeLMext0ltMtpUYv8Ofyl3-SjNGHv2XVzbv_Pd1ffB2GsniixLbB65QsYRAPgolYHeXIXH-9BJ0bzoHn1Vszl8OU6O_7YD6jZwfaVrR_2k5qvFwa-fFx9R4D80Ap-qd2hU4zTo5tGdAvImu4VqSZOUHsH2SQGxK9Kuts8VTJfy3RcDNXX5st7RVsNIyh3VdHiP3e1sSj5pQXCf3fDlA3a77TJ58ZD9nnCEFcKNLz3l-Z6tl7wKvM-J5LPPP6IxR7ebTEnEAK8rjmYhn06_JRw33p5UVF6XL-3KUlac4wW9z9eeFxTUQblZu9wLCkNaI2PB6c_BZqp2-pPzcSx2SZebNhBg_YjNDz99n86irjVDlCtQdZQGkQmV6UC1eFScO4cqEPLgcqUgKSx6vjoJuUuU9yp4p3zqQIY0KCoHE4J8zPbKqvRPGbeoLTxAKHJtwQpppY-tRqzAOI61zkbs_eBkzHlbhsNQYezhCK7G0LkaOleD7g3IETvoz9G4ruo5Nd9YmMb7SdW_DG-3DP1M_yV9Q8AwBE78prNdRgOui4pqmUkiiRhtyhHbH1CiCLvhcA8t00uAoYYkgprC4Q682g4TJ4XFlb7aEA1kWlDNx-toEmrZLhWM2JMWrduFxVJRcjRy6wGOB3s8HCnPTpsi5Pg9tK3Fs-t_-nN2J276hwBex_tsr15t_Au04ur8ZSOdfwBCCUaD
  priority: 102
  providerName: Scholars Portal
Title A common mechanism of clinical HIV-1 resistance to the CCR5 antagonist maraviroc despite divergent resistance levels and lack of common gp120 resistance mutations
URI https://www.ncbi.nlm.nih.gov/pubmed/23602046
https://www.proquest.com/docview/1353019729
https://www.proquest.com/docview/1349704926
https://www.proquest.com/docview/1352295364
http://dx.doi.org/10.1186/1742-4690-10-43
https://pubmed.ncbi.nlm.nih.gov/PMC3648390
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbhMx0KKtkLgg3gRKZCQkuCw461l7V5zSqFVAaoUqiiIultdrl0rJbtUkB36HL2VmHyEbHhcue_GMLXvG89jxzDD2yokiyxKbR66QcQQAPkploJir8CgPnRR1RPf0TE0v4OMsmf0qFr0TwR-l6h2azDgJOnEkMUDusYMYUA2SY370tRO6yJl187kNcFvF5w8T7GS2z3sKaVcsb-ml_pvJLSV0co_dba1HPm7IfZ_d8uUDdrvpJ_n9Ifsx5shAyFh84Smj92q54FXgXfYjn374Eo04OthkNCK1-ariaADyyeQ84XjE9rKiQrp8YW8s5b85XlAkfuV5Qc83KAtrG3tOD46WiFhw-g1YL9Usf3k9isU26GLdhPyXj9jFyfHnyTRqmzBEuQK1itIgMqEyHajqjopz51DZQR5crhQkhUUfVychd4nyXgXvlE8dyJAGRYVfQpCP2X5Zlf4p4xb1ggcIRa4tWCGt9LHVyBUwimOtswF736OMuW4Kbhgqgd0fwd0Yoqshuhp0ZEAO2NuOjsa19c2pzcbc1H5Oqn5HeLNB6Fb6K-hrYgxDlx7ndLbNXcB9UfksM04kAaP1OGCHPUi8rK4_3LGWaYXF0lDrEUHt3_AEXm6GCZMewJW-WhMMZFpQdcd_wSTUnF0qGLAnDbduNhZLRWnQiK17fNw74_5IefWtLjeO86EVLZ79F3Wesztx3UgEUC4fsv3Vzdq_QHNulQ_Znp7pITs4Oj77dD6sf4rg9xTSYX3FfwIsr0sa
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMx0CqpEL0g3gQKGAkEl6WO7fXuCiEUQquEthGq2qo34_XabaUkG5pEqL_DB_CNzOwjZEH01rNn7LVnPI_1PAh5ZVmWJKFJA5sJHkgpXRALj2-uzIE8tIIVL7r7Q9U_kl9OwpM18qvOhcGwylomFoI6yy3-I9_C_gwMe2QlH6ffA-waha-rdQuNki123eUPcNlmHwafgb6vOd_ZPuz1g6qrQJAqqeZB7FnCVBJ5LCOjeGotSG-ZepsqJcPMgNMWhT61oXJOeWeVi60UPvYKK5l4L2DeG2RdCnBlWmT90_bw60Et--GCsLgqINSJ1RaY-3AA4ICitMPEoEZS_aihC__WCCsqsRmuuaL_du6Q25XhSrslp90la25yj9wsW1le3ic_uxTOEQ6Jjh0mE5_PxjT3tE68pP3BcdCh4NujvQqMRuc5BduT9noHIQXqmtMca_jSsbkwmHpnaYZBAHNHM4wcwQSwVewRxjrNADGj-AeyWKpc_nTa4WwVdLwoow1mD8jRtVDqIWlN8ol7TKgBleSk9FkaGWmYMMJxEwFDyg7nUZS0yfsGZfS0rPWhsfp2cwR2o5GuGumqwYeSok3e1XTUtiqtjh0-RrpwsWL1L8LbJUK90n9B3yBjaJQ3MKc1VdoE7Asrd-luKBAYDNc22WxAgpywzeGatXQlp2b6z61qk5fLYcTE2LuJyxcII5OIYWHJq2BC7AsvlGyTRyW3LjfG4aZwJgE7avBx44ybI5Pzs6LSOcwHBjx7cvWnvyC3-of7e3pvMNx9SjZ40bBEgvzfJK35xcI9A7Nxnj6v7iol365bPPwG222C6Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagCMQF8SalgJGQ4LKts37tilMIRCmPClUUVVwsr9cuVZPdKNkc-Dv8Umb2EWXL48JtJc-sZc94PGN7viHkhWN5mkqbRS7ncSSE8FHCA965Mg_20HFW3-h-OlLTE_H-VJ62kEKYC7P0FYbSy_pMeX87BX1W2234cBcHizw0yz1RB-BSQycQ5KFFEfwquaal1LhGj99864wyaG5dnG5D3KL8_OEHlzLfZ70N67LZ3tq3-m8qtzapyW1yq_Uu6ahRhzvkii_ukutNvckf98jPEYXRgeLRuceM3_PVnJaBdtmRdHr4NRpSCMDRqQRtoFVJwUGk4_GxpCACe1Yi0C6d26XF2XM0x5v6ytMcn3dgltY29wwfJK2AMad4TFh31XR_thjGbJt0vm6eBKzuk5PJuy_jadQWaYgyJVQVJYGlTKU6ICqPijPnYDMUWXCZUkLmFmJgLUPmpPJeBe-UT5zgIQkKgWFC4A_ITlEW_hGhFvYNL0TIM22FZdxyH1sNWiOGcax1OiCve5IxiwaQwyBEdr8FRmNQrgblaiDQEXxA9js5Gtfin2MZjpmp46BE_c7wasPQ9fRX0peoGAaNAmqobXMbYFwIr2VGkiMxeJcDstejhMXs-s2dapnWmKwMliZhWB4OZuD5phk58YFc4cs10ohUM0R__BeNxOLtXIkBedho62ZgMVeYJg3cuqfHvTnutxTn32s4cvgfeNls97-k84zc-Px2Yj4eHn14TG7Gdc0RASZ8j-xUy7V_Ap5flT2t1_QvakZWfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+common+mechanism+of+clinical+HIV-1+resistance+to+the+CCR5+antagonist+maraviroc+despite+divergent+resistance+levels+and+lack+of+common+gp120+resistance+mutations&rft.jtitle=Retrovirology&rft.au=Roche%2C+Michael&rft.au=Salimi%2C+Hamid&rft.au=Duncan%2C+Renee&rft.au=Wilkinson%2C+Brendan+L&rft.date=2013-04-20&rft.pub=BioMed+Central&rft.eissn=1742-4690&rft.volume=10&rft_id=info:doi/10.1186%2F1742-4690-10-43&rft.externalDocID=2974228741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-4690&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-4690&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-4690&client=summon