A common mechanism of clinical HIV-1 resistance to the CCR5 antagonist maraviroc despite divergent resistance levels and lack of common gp120 resistance mutations
The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for c...
Saved in:
Published in | Retrovirology Vol. 10; no. 1; p. 43 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
20.04.2013
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC.
Envs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively "weak" and "strong" resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus.
Clinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs. |
---|---|
AbstractList | Background The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC. Results Envs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively "weak" and "strong" resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus. Conclusions Clinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs. Keywords: HIV-1, Maraviroc, Resistance, Env, gp120, V3 loop, CCR5 N-terminus, CCR5 ECLs The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC. Envs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively "weak" and "strong" resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus. Clinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs. Doc number: 43 Abstract Background: The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo , we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC. Results: Envs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively "weak" and "strong" resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus. Conclusions: Clinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs. The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC. Envs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively "weak" and "strong" resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus. Clinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs. BACKGROUND: The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC. RESULTS: Envs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively "weak" and "strong" resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus. CONCLUSIONS: Clinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs. The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC.BACKGROUNDThe CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC.Envs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively "weak" and "strong" resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus.RESULTSEnvs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively "weak" and "strong" resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus.Clinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs.CONCLUSIONSClinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs. |
ArticleNumber | 43 |
Audience | Academic |
Author | Salimi, Hamid Gray, Lachlan R Churchill, Melissa J Wilkinson, Brendan L Zappi, Helena Chikere, Kelechi Lee, Benhur Ramsland, Paul A Westby, Mike Lewin, Sharon R Moore, Miranda S Duncan, Renee Payne, Richard J Gorry, Paul R Sterjovski, Jasminka Ellett, Anne Roche, Michael Flynn, Jacqueline K Webb, Nicholas E Jubb, Becky |
AuthorAffiliation | 5 Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia 13 Infectious Diseases Unit, The Alfred Hospital, Melbourne, Victoria, Australia 7 Department of Immunology, Monash University, Melbourne, Victoria, Australia 9 Department of Surgery (Austin Health), University of Melbourne, Victoria, Australia 8 Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia 3 Department of Microbiology, Monash University, Melbourne, Victoria, Australia 14 Present address: Fred Hutchinson Cancer Research Center, Seattle, WA, USA 10 School of Chemistry, The University of Sydney, New South Wales, Australia 12 Pfizer Global Research and Development, Sandwich, UK 2 Center for Immunology, Monash University, Melbourne, Victoria, Australia 11 Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA 4 Department of Infectious Diseases, Monash University, Melbourne, Victoria, Austr |
AuthorAffiliation_xml | – name: 13 Infectious Diseases Unit, The Alfred Hospital, Melbourne, Victoria, Australia – name: 6 Department of Medicine, Monash University, Melbourne, Victoria, Australia – name: 10 School of Chemistry, The University of Sydney, New South Wales, Australia – name: 11 Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA – name: 14 Present address: Fred Hutchinson Cancer Research Center, Seattle, WA, USA – name: 7 Department of Immunology, Monash University, Melbourne, Victoria, Australia – name: 1 Center for Virology, Monash University, Melbourne, Victoria, Australia – name: 3 Department of Microbiology, Monash University, Melbourne, Victoria, Australia – name: 9 Department of Surgery (Austin Health), University of Melbourne, Victoria, Australia – name: 5 Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia – name: 4 Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia – name: 12 Pfizer Global Research and Development, Sandwich, UK – name: 8 Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia – name: 2 Center for Immunology, Monash University, Melbourne, Victoria, Australia |
Author_xml | – sequence: 1 givenname: Michael surname: Roche fullname: Roche, Michael – sequence: 2 givenname: Hamid surname: Salimi fullname: Salimi, Hamid – sequence: 3 givenname: Renee surname: Duncan fullname: Duncan, Renee – sequence: 4 givenname: Brendan L surname: Wilkinson fullname: Wilkinson, Brendan L – sequence: 5 givenname: Kelechi surname: Chikere fullname: Chikere, Kelechi – sequence: 6 givenname: Miranda S surname: Moore fullname: Moore, Miranda S – sequence: 7 givenname: Nicholas E surname: Webb fullname: Webb, Nicholas E – sequence: 8 givenname: Helena surname: Zappi fullname: Zappi, Helena – sequence: 9 givenname: Jasminka surname: Sterjovski fullname: Sterjovski, Jasminka – sequence: 10 givenname: Jacqueline K surname: Flynn fullname: Flynn, Jacqueline K – sequence: 11 givenname: Anne surname: Ellett fullname: Ellett, Anne – sequence: 12 givenname: Lachlan R surname: Gray fullname: Gray, Lachlan R – sequence: 13 givenname: Benhur surname: Lee fullname: Lee, Benhur – sequence: 14 givenname: Becky surname: Jubb fullname: Jubb, Becky – sequence: 15 givenname: Mike surname: Westby fullname: Westby, Mike – sequence: 16 givenname: Paul A surname: Ramsland fullname: Ramsland, Paul A – sequence: 17 givenname: Sharon R surname: Lewin fullname: Lewin, Sharon R – sequence: 18 givenname: Richard J surname: Payne fullname: Payne, Richard J – sequence: 19 givenname: Melissa J surname: Churchill fullname: Churchill, Melissa J – sequence: 20 givenname: Paul R surname: Gorry fullname: Gorry, Paul R |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23602046$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1vEzEQXaEi-gFnbsgSFy7b2uuPrC9IbQS0UiUkBFwtr3ecuHjtsHYi8Xf4pXhJW5KqlZAPtsbvvZl5M8fVQYgBquo1waeEtOKMzFhTMyFxTXDN6LPq6D5ysPM-rI5TusGYkha3L6rDhgrcYCaOqt_nyMRhiAENYJY6uDSgaJHxLjijPbq8-l4TNEJyKetgAOWI8hLQfP6FIx2yXsTCyWjQo964MRrUQ1q5DKh3GxgXEPIu28MGfCrEHnltfvxNtU2_WJEG70KHddbZxZBeVs-t9gle3d4n1bePH77OL-vrz5-u5ufXdSeYyHVrscRCzizmXIimM6YhDeus6YRgvNeE0hm3neECQFgwAlrDqG2t4FIKa-lJ9X6ru1p3A_SmlD5qr1ajK839UlE7tf8T3FIt4kZRwVoqcRG42Ap0Lj4hsP9TWlfTjNQ0I0WwYrSIvLutYow_15CyGlwy4L0OENdJEcqbRvKS8z-gTM4wk40o0LcPoDdxPYZi5yRIMZGzRv5DLbQH5YKNpUwziapzTqciuZjaPH0EVU4PgzNlP60r8T3Cm11j7w2528IC4FuAGWNKI1hl3Hb4Rdn5yZlp2x_x6uwB7076KcYfqFIBJw |
CitedBy_id | crossref_primary_10_1016_j_virol_2016_03_010 crossref_primary_10_1039_c4mb00018h crossref_primary_10_1186_s12981_015_0066_7 crossref_primary_10_1016_j_jviromet_2014_04_004 crossref_primary_10_1128_msystems_00388_21 crossref_primary_10_2217_fvl_14_104 crossref_primary_10_7883_yoken_JJID_2015_310 crossref_primary_10_1089_aid_2015_0131 crossref_primary_10_1189_jlb_0713368 crossref_primary_10_3390_v16040500 crossref_primary_10_1042_BCJ20160772 crossref_primary_10_1016_j_virol_2024_110375 crossref_primary_10_1074_jbc_M116_721050 crossref_primary_10_1071_MA14031 crossref_primary_10_1128_CMR_00168_19 crossref_primary_10_1517_14728222_2015_1010513 crossref_primary_10_36233_0507_4088_140 crossref_primary_10_1128_AAC_02285_15 crossref_primary_10_1186_1742_4690_11_48 crossref_primary_10_4049_jimmunol_1800343 crossref_primary_10_1021_cb500337r crossref_primary_10_1179_1528433614Z_0000000002 crossref_primary_10_1128_MMBR_00065_15 crossref_primary_10_1517_17460441_2015_1041497 crossref_primary_10_1186_s12977_015_0177_1 crossref_primary_10_1002_chem_202402268 crossref_primary_10_1128_AAC_03559_14 crossref_primary_10_1089_aid_2015_0318 crossref_primary_10_1089_aid_2017_0097 crossref_primary_10_1128_aac_01210_23 crossref_primary_10_1021_acs_jmedchem_1c01758 crossref_primary_10_1038_s41598_018_20814_2 crossref_primary_10_1371_journal_pone_0204099 crossref_primary_10_1177_1087057113505906 crossref_primary_10_1080_13543784_2016_1254615 crossref_primary_10_1021_acs_accounts_5b00255 crossref_primary_10_1016_j_bpj_2019_07_043 crossref_primary_10_3390_biomedicines12040915 crossref_primary_10_1093_jac_dkv026 crossref_primary_10_1128_AAC_01534_13 crossref_primary_10_3389_fmicb_2017_00390 crossref_primary_10_1021_acs_biochem_7b00875 crossref_primary_10_1177_20402066211030380 crossref_primary_10_1186_s12977_020_00532_2 crossref_primary_10_1016_j_virol_2013_03_026 crossref_primary_10_1039_C6OB00950F crossref_primary_10_1128_jvi_01851_21 crossref_primary_10_4049_jimmunol_2000165 crossref_primary_10_1186_s12977_016_0309_2 crossref_primary_10_1007_s13365_017_0600_6 crossref_primary_10_1016_j_virol_2024_110362 crossref_primary_10_1097_QAD_0000000000001043 crossref_primary_10_1038_s41573_023_00692_8 |
Cites_doi | 10.1086/518797 10.1128/JVI.73.4.2576-2586.1999 10.1016/S0092-8674(00)80577-2 10.1073/pnas.090576697 10.1189/jlb.0612308 10.1016/j.virol.2010.12.052 10.1126/science.1118398 10.1016/j.virol.2009.02.044 10.1016/j.virol.2006.01.018 10.1089/aid.2009.0132 10.1128/jvi.70.3.1651-1667.1996 10.1006/jmbi.1993.1626 10.1128/JVI.01109-10 10.1128/JVI.78.16.8654-8662.2004 10.1073/pnas.96.9.5215 10.1056/NEJMoa0803154 10.1128/JVI.00630-11 10.1186/1742-4690-4-89 10.1128/JVI.06421-11 10.1016/j.virol.2007.12.009 10.1128/AAC.49.11.4721-4732.2005 10.1128/JVI.01242-09 10.1016/j.virol.2010.12.010 10.1016/j.virol.2012.09.043 10.1128/JVI.72.2.1160-1164.1998 10.1128/JVI.78.6.2790-2807.2004 10.1128/JVI.00374-10 10.1128/AAC.01055-08 10.1097/QAI.0b013e3181ff63ee 10.1016/j.virol.2012.02.006 10.1074/jbc.M512688200 10.1128/JVI.80.10.4909-4920.2006 10.1124/mol.104.008565 10.1016/j.virol.2006.11.004 10.1097/QAD.0b013e328338b7a6 10.1073/pnas.97.11.5762 10.1128/JVI.02648-08 10.1086/592052 10.1006/bbrc.1999.0633 10.1016/j.virol.2010.05.006 10.1128/JVI.77.9.5201-5208.2003 10.1021/bi101240v 10.1128/JVI.76.17.8953-8957.2002 10.1097/QAI.0b013e3181f25574 10.1128/JVI.74.9.4433-4440.2000 10.1371/journal.pone.0005683 10.1128/JVI.02006-06 10.1128/JVI.05510-11 10.1128/JVI.01863-12 10.1128/JVI.00967-12 10.1007/978-1-4614-0980-9_10 10.1016/S0079-6468(05)43007-6 10.1371/journal.ppat.0030117 10.1074/jbc.M206784200 10.1016/j.virol.2010.01.037 10.1128/JVI.00106-11 10.1002/asia.201100232 10.1128/JVI.72.4.2855-2864.1998 10.1128/AAC.49.12.4911-4919.2005 10.1073/pnas.96.10.5698 10.1128/AAC.01057-08 10.1016/j.virol.2012.03.008 10.1124/mol.107.042101 10.1073/pnas.012519099 10.1016/j.virol.2005.04.035 10.1128/AAC.06061-11 10.1086/650697 10.1128/JVI.00444-08 10.1016/j.chembiol.2008.12.007 10.1073/pnas.0811713106 10.1007/s11904-010-0069-x 10.1086/652189 10.1371/journal.ppat.1000548 10.1128/JVI.75.3.1165-1171.2001 10.1201/b13787-282 10.1128/JVI.01351-09 10.1186/1742-4690-8-89 10.1126/science.1145373 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2013 BioMed Central Ltd. 2013 Roche et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2013 Roche et al.; licensee BioMed Central Ltd. 2013 Roche et al.; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2013 BioMed Central Ltd. – notice: 2013 Roche et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright © 2013 Roche et al.; licensee BioMed Central Ltd. 2013 Roche et al.; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7U9 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1186/1742-4690-10-43 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1742-4690 |
EndPage | 43 |
ExternalDocumentID | PMC3648390 oai_biomedcentral_com_1742_4690_10_43 2974228741 A534690560 23602046 10_1186_1742_4690_10_43 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Thailand |
GeographicLocations_xml | – name: Thailand |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: P30 AI028697 |
GroupedDBID | --- 0R~ 123 29P 2WC 4.4 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB CGR CUY CVF ECM EIF NPM PJZUB PPXIY PMFND 3V. 7U9 7XB 8FK AZQEC DWQXO H94 K9. PKEHL PQEST PQUKI PRINS 7X8 -A0 ABVAZ ACRMQ ADINQ AFGXO AFNRJ C24 5PM |
ID | FETCH-LOGICAL-b646t-8f090697f055662bcc2124bfcb6645da13375fbc56ee6fec6e8c43f8f65996ff3 |
IEDL.DBID | RBZ |
ISSN | 1742-4690 |
IngestDate | Thu Aug 21 14:12:48 EDT 2025 Wed May 22 07:14:25 EDT 2024 Fri Jul 11 14:39:35 EDT 2025 Fri Jul 11 10:27:25 EDT 2025 Fri Jul 25 04:33:14 EDT 2025 Tue Jun 17 22:04:54 EDT 2025 Tue Jun 10 21:01:05 EDT 2025 Mon Jul 21 06:04:32 EDT 2025 Tue Jul 01 03:39:40 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b646t-8f090697f055662bcc2124bfcb6645da13375fbc56ee6fec6e8c43f8f65996ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://dx.doi.org/10.1186/1742-4690-10-43 |
PMID | 23602046 |
PQID | 1353019729 |
PQPubID | 54665 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3648390 biomedcentral_primary_oai_biomedcentral_com_1742_4690_10_43 proquest_miscellaneous_1352295364 proquest_miscellaneous_1349704926 proquest_journals_1353019729 gale_infotracmisc_A534690560 gale_infotracacademiconefile_A534690560 pubmed_primary_23602046 crossref_citationtrail_10_1186_1742_4690_10_43 crossref_primary_10_1186_1742_4690_10_43 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-04-20 |
PublicationDateYYYYMMDD | 2013-04-20 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Retrovirology |
PublicationTitleAlternate | Retrovirology |
PublicationYear | 2013 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | JM Strizki (3429_CR19) 2005; 49 J Sterjovski (3429_CR62) 2010; 404 R Berro (3429_CR48) 2009; 5 J Sterjovski (3429_CR82) 2011; 410 P Dorr (3429_CR16) 2005; 49 EG Cormier (3429_CR8) 2000; 97 M Baba (3429_CR21) 1999; 96 JF Demarest (3429_CR29) 2009; 53 M Roche (3429_CR58) 2011; 8 L Gray (3429_CR78) 2009; 83 R Kondru (3429_CR9) 2008; 73 PR Gorry (3429_CR18) 2010 TJ Henrich (3429_CR38) 2012; 56 RM Gulick (3429_CR26) 2007; 196 B Jubb (3429_CR52) 2011 G Fatkenheuer (3429_CR24) 2008; 359 M Farzan (3429_CR7) 1998; 72 JA Kwong (3429_CR68) 2011; 85 PM McNicholas (3429_CR46) 2011; 56 JC Tilton (3429_CR15) 2010; 84 JC Tilton (3429_CR39) 2010; 26 P Inc (3429_CR47) 2007 RA Ogert (3429_CR50) 2009; 83 A Sali (3429_CR83) 1993; 234 F Gao (3429_CR77) 1996; 70 AM Tsibris (3429_CR23) 2009; 4 M Roche (3429_CR51) 2011; 85 EG Cormier (3429_CR3) 2002; 76 D Taleski (3429_CR70) 2011; 6 AN Ratcliff (3429_CR63) 2012; 87 M Farzan (3429_CR69) 2002; 277 J Sterjovski (3429_CR61) 2007; 4 RA Ogert (3429_CR32) 2010; 400 CB Wilen (3429_CR1) 2012; 726 CC Huang (3429_CR73) 2007; 317 X Yang (3429_CR80) 2001; 75 T Dragic (3429_CR10) 2000; 97 O Putcharoen (3429_CR30) 2012; 86 P McNicholas (3429_CR31) 2010; 201 Y Soda (3429_CR76) 1999; 258 B Lee (3429_CR81) 1999; 96 A Trkola (3429_CR54) 2002; 99 SH Johnston (3429_CR59) 2009; 83 F Tsamis (3429_CR13) 2003; 77 J Mori (3429_CR56) 2008 M Westby (3429_CR22) 2006; 80 K Maeda (3429_CR20) 2004; 78 LS Simpson (3429_CR71) 2009; 16 RA Ogert (3429_CR37) 2008; 373 K Maeda (3429_CR11) 2006; 281 B Etemad-Moghadam (3429_CR66) 2000; 74 C Watson (3429_CR14) 2005; 67 SE Kuhmann (3429_CR40) 2004; 78 CG Anastassopoulou (3429_CR43) 2011; 413 A Brelot (3429_CR6) 1999; 73 MM Laakso (3429_CR49) 2007; 3 K Cashin (3429_CR64) 2011; 85 M Farzan (3429_CR5) 1999; 96 M Westby (3429_CR34) 2007; 81 K Chikere (3429_CR60) 2013; 435 RJ Landovitz (3429_CR27) 2008; 198 KM Kitrinos (3429_CR28) 2009; 53 F Gao (3429_CR79) 1996; 70 R Berro (3429_CR74) 2012; 427 JJ Chiang (3429_CR67) 2012; 86 A Wood (3429_CR17) 2005; 43 P Pugach (3429_CR36) 2009; 387 AJ Marozsan (3429_CR53) 2005; 338 PR Gorry (3429_CR2) 2011; 8 P Pugach (3429_CR35) 2007; 361 TJ Henrich (3429_CR41) 2010; 55 JZ Zhu (3429_CR72) 2011; 50 H Salimi (3429_CR65) 2013; 93 C Seibert (3429_CR12) 2006; 349 JM Pfaff (3429_CR42) 2010; 84 CG Anastassopoulou (3429_CR45) 2012; 428 CC Huang (3429_CR4) 2005; 310 AM Tsibris (3429_CR33) 2008; 82 JK Flynn (3429_CR57) 2013 EJ Platt (3429_CR75) 1998; 72 P Delobel (3429_CR55) 2010; 24 DA Cooper (3429_CR25) 2010; 201 CG Anastassopoulou (3429_CR44) 2009; 106 18096812 - Mol Pharmacol. 2008 Mar;73(3):789-800 16284180 - Science. 2005 Nov 11;310(5750):1025-8 17182681 - J Virol. 2007 Mar;81(5):2359-71 17722977 - PLoS Pathog. 2007 Aug 24;3(8):e117 10823934 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):5762-7 10089882 - Cell. 1999 Mar 5;96(5):667-76 18076768 - Retrovirology. 2007;4:89 21356539 - Virology. 2011 Apr 25;413(1):47-59 19303620 - Virology. 2009 May 10;387(2):296-302 10318947 - Proc Natl Acad Sci U S A. 1999 May 11;96(10):5698-703 20559045 - AIDS. 2010 Jun 1;24(9):1382-4 20055594 - AIDS Res Hum Retroviruses. 2010 Jan;26(1):13-24 16476734 - J Biol Chem. 2006 May 5;281(18):12688-98 17901336 - Science. 2007 Sep 28;317(5846):1930-4 20373959 - J Infect Dis. 2010 May 15;201(10):1470-80 19075068 - Antimicrob Agents Chemother. 2009 Mar;53(3):1124-31 20410277 - J Virol. 2010 Jul;84(13):6505-14 22252820 - Antimicrob Agents Chemother. 2012 Apr;56(4):1931-5 14990699 - J Virol. 2004 Mar;78(6):2790-807 10329384 - Biochem Biophys Res Commun. 1999 May 10;258(2):313-21 15850827 - Prog Med Chem. 2005;43:239-71 18495779 - J Virol. 2008 Aug;82(16):8210-4 22520838 - Virology. 2012 Jul 5;428(2):86-97 21345957 - J Virol. 2011 May;85(9):4330-42 21613393 - J Virol. 2011 Aug;85(15):7563-71 23602007 - Virology. 2013 Jul 20;442(1):51-8 11152489 - J Virol. 2001 Feb;75(3):1165-71 18783318 - J Infect Dis. 2008 Oct 15;198(8):1113-22 23077246 - J Leukoc Biol. 2013 Jan;93(1):113-26 19692480 - J Virol. 2009 Nov;83(21):11016-26 10220446 - Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5215-20 20151839 - J Infect Dis. 2010 Mar 15;201(6):803-13 21216423 - Virology. 2011 Feb 20;410(2):418-28 20856130 - J Acquir Immune Defic Syndr. 2010 Dec;55(4):420-7 16304152 - Antimicrob Agents Chemother. 2005 Dec;49(12):4911-9 10756060 - J Virol. 2000 May;74(9):4433-40 22054077 - Retrovirology. 2011;8:89 15935415 - Virology. 2005 Jul 20;338(1):182-99 11782552 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):395-400 15280474 - J Virol. 2004 Aug;78(16):8654-62 8627686 - J Virol. 1996 Mar;70(3):1651-67 22933279 - J Virol. 2012 Nov;86(22):12417-21 9525605 - J Virol. 1998 Apr;72(4):2855-64 10779565 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5639-44 15644495 - Mol Pharmacol. 2005 Apr;67(4):1268-82 19246006 - Chem Biol. 2009 Feb 27;16(2):153-61 20172579 - Virology. 2010 Apr 25;400(1):145-55 12163614 - J Virol. 2002 Sep;76(17):8953-7 21188555 - Curr HIV/AIDS Rep. 2011 Mar;8(1):45-53 21235238 - Biochemistry. 2011 Mar 8;50(9):1524-34 18832245 - N Engl J Med. 2008 Oct 2;359(14):1442-55 20570309 - Virology. 2010 Sep 1;404(2):269-78 16251317 - Antimicrob Agents Chemother. 2005 Nov;49(11):4721-32 19075055 - Antimicrob Agents Chemother. 2009 Mar;53(3):1116-23 21209592 - J Acquir Immune Defic Syndr. 2011 Mar 1;56(3):222-9 19479085 - PLoS One. 2009;4(5):e5683 10074102 - J Virol. 1999 Apr;73(4):2576-86 19680536 - PLoS Pathog. 2009 Aug;5(8):e1000548 12692222 - J Virol. 2003 May;77(9):5201-8 22424737 - Virology. 2012 Jun 5;427(2):158-65 19321618 - J Virol. 2009 Jun;83(11):5430-41 16641282 - J Virol. 2006 May;80(10):4909-20 17166540 - Virology. 2007 Apr 25;361(1):212-28 22297516 - Adv Exp Med Biol. 2012;726:223-42 23135713 - J Virol. 2013 Jan;87(2):923-34 12183462 - J Biol Chem. 2002 Oct 25;277(43):40397-402 21835796 - J Virol. 2011 Oct;85(20):10699-709 9445013 - J Virol. 1998 Feb;72(2):1160-4 18190945 - Virology. 2008 Apr 10;373(2):387-99 22090117 - J Virol. 2012 Jan;86(2):1119-28 19776131 - J Virol. 2009 Dec;83(23):12151-63 8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815 16494916 - Virology. 2006 May 25;349(1):41-54 17570119 - J Infect Dis. 2007 Jul 15;196(2):304-12 21509944 - Chem Asian J. 2011 Jun 6;6(6):1316-20 20702642 - J Virol. 2010 Oct;84(20):10863-76 19289833 - Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5318-23 23217618 - Virology. 2013 Jan 5;435(1):81-91 |
References_xml | – volume: 196 start-page: 304 issue: 2 year: 2007 ident: 3429_CR26 publication-title: J Infect Dis doi: 10.1086/518797 – volume: 73 start-page: 2576 issue: 4 year: 1999 ident: 3429_CR6 publication-title: J Virol doi: 10.1128/JVI.73.4.2576-2586.1999 – volume: 96 start-page: 667 issue: 5 year: 1999 ident: 3429_CR5 publication-title: Cell doi: 10.1016/S0092-8674(00)80577-2 – volume: 97 start-page: 5639 issue: 10 year: 2000 ident: 3429_CR10 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.090576697 – volume: 93 start-page: 113 year: 2013 ident: 3429_CR65 publication-title: J Leukoc Biol doi: 10.1189/jlb.0612308 – volume: 413 start-page: 47 issue: 1 year: 2011 ident: 3429_CR43 publication-title: Virology doi: 10.1016/j.virol.2010.12.052 – volume: 310 start-page: 1025 issue: 5750 year: 2005 ident: 3429_CR4 publication-title: Science doi: 10.1126/science.1118398 – volume: 387 start-page: 296 issue: 2 year: 2009 ident: 3429_CR36 publication-title: Virology doi: 10.1016/j.virol.2009.02.044 – volume: 349 start-page: 41 issue: 1 year: 2006 ident: 3429_CR12 publication-title: Virology doi: 10.1016/j.virol.2006.01.018 – volume: 26 start-page: 13 issue: 1 year: 2010 ident: 3429_CR39 publication-title: AIDS Res Hum Retroviruses doi: 10.1089/aid.2009.0132 – volume: 70 start-page: 1651 issue: 3 year: 1996 ident: 3429_CR79 publication-title: J Virol doi: 10.1128/jvi.70.3.1651-1667.1996 – volume: 234 start-page: 779 issue: 3 year: 1993 ident: 3429_CR83 publication-title: J Mol Biol doi: 10.1006/jmbi.1993.1626 – volume: 84 start-page: 10863 year: 2010 ident: 3429_CR15 publication-title: J Virol doi: 10.1128/JVI.01109-10 – volume: 78 start-page: 8654 issue: 16 year: 2004 ident: 3429_CR20 publication-title: J Virol doi: 10.1128/JVI.78.16.8654-8662.2004 – volume: 96 start-page: 5215 issue: 9 year: 1999 ident: 3429_CR81 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.9.5215 – volume: 359 start-page: 1442 issue: 14 year: 2008 ident: 3429_CR24 publication-title: N Engl J Med doi: 10.1056/NEJMoa0803154 – volume: 85 start-page: 7563 issue: 15 year: 2011 ident: 3429_CR68 publication-title: J Virol doi: 10.1128/JVI.00630-11 – volume: 4 start-page: 89 year: 2007 ident: 3429_CR61 publication-title: Retrovirology doi: 10.1186/1742-4690-4-89 – volume: 86 start-page: 1119 issue: 2 year: 2012 ident: 3429_CR30 publication-title: J Virol doi: 10.1128/JVI.06421-11 – volume: 373 start-page: 387 issue: 2 year: 2008 ident: 3429_CR37 publication-title: Virology doi: 10.1016/j.virol.2007.12.009 – volume: 49 start-page: 4721 issue: 11 year: 2005 ident: 3429_CR16 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.49.11.4721-4732.2005 – volume: 83 start-page: 11016 year: 2009 ident: 3429_CR59 publication-title: J Virol doi: 10.1128/JVI.01242-09 – volume: 410 start-page: 418 year: 2011 ident: 3429_CR82 publication-title: Virology doi: 10.1016/j.virol.2010.12.010 – volume: 435 start-page: 81 year: 2013 ident: 3429_CR60 publication-title: Virology doi: 10.1016/j.virol.2012.09.043 – volume: 72 start-page: 1160 issue: 2 year: 1998 ident: 3429_CR7 publication-title: J Virol doi: 10.1128/JVI.72.2.1160-1164.1998 – volume: 78 start-page: 2790 issue: 6 year: 2004 ident: 3429_CR40 publication-title: J Virol doi: 10.1128/JVI.78.6.2790-2807.2004 – volume: 84 start-page: 6505 issue: 13 year: 2010 ident: 3429_CR42 publication-title: J Virol doi: 10.1128/JVI.00374-10 – volume: 53 start-page: 1116 issue: 3 year: 2009 ident: 3429_CR29 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01055-08 – volume: 56 start-page: 222 issue: 3 year: 2011 ident: 3429_CR46 publication-title: J Acquir Immune Defic Syndr doi: 10.1097/QAI.0b013e3181ff63ee – volume: 427 start-page: 158 issue: 2 year: 2012 ident: 3429_CR74 publication-title: Virology doi: 10.1016/j.virol.2012.02.006 – volume: 281 start-page: 12688 issue: 18 year: 2006 ident: 3429_CR11 publication-title: J Biol Chem doi: 10.1074/jbc.M512688200 – volume: 80 start-page: 4909 issue: 10 year: 2006 ident: 3429_CR22 publication-title: J Virol doi: 10.1128/JVI.80.10.4909-4920.2006 – volume: 67 start-page: 1268 issue: 4 year: 2005 ident: 3429_CR14 publication-title: Mol Pharmacol doi: 10.1124/mol.104.008565 – volume: 361 start-page: 212 issue: 1 year: 2007 ident: 3429_CR35 publication-title: Virology doi: 10.1016/j.virol.2006.11.004 – volume: 24 start-page: 1382 issue: 9 year: 2010 ident: 3429_CR55 publication-title: AIDS doi: 10.1097/QAD.0b013e328338b7a6 – volume: 97 start-page: 5762 issue: 11 year: 2000 ident: 3429_CR8 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.11.5762 – volume: 83 start-page: 5430 issue: 11 year: 2009 ident: 3429_CR78 publication-title: J Virol doi: 10.1128/JVI.02648-08 – volume: 198 start-page: 1113 issue: 8 year: 2008 ident: 3429_CR27 publication-title: J Infect Dis doi: 10.1086/592052 – volume: 258 start-page: 313 issue: 2 year: 1999 ident: 3429_CR76 publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1999.0633 – volume: 70 start-page: 1651 issue: 3 year: 1996 ident: 3429_CR77 publication-title: The WHO and NIAID Networks for HIV Isolation and Characterization. J Virol – volume: 404 start-page: 269 year: 2010 ident: 3429_CR62 publication-title: Virology doi: 10.1016/j.virol.2010.05.006 – volume: 77 start-page: 5201 issue: 9 year: 2003 ident: 3429_CR13 publication-title: J Virol doi: 10.1128/JVI.77.9.5201-5208.2003 – volume: 50 start-page: 1524 issue: 9 year: 2011 ident: 3429_CR72 publication-title: Biochemistry doi: 10.1021/bi101240v – volume: 76 start-page: 8953 issue: 17 year: 2002 ident: 3429_CR3 publication-title: J Virol doi: 10.1128/JVI.76.17.8953-8957.2002 – volume: 55 start-page: 420 issue: 4 year: 2010 ident: 3429_CR41 publication-title: J Acquir Immune Defic Syndr doi: 10.1097/QAI.0b013e3181f25574 – volume: 74 start-page: 4433 issue: 9 year: 2000 ident: 3429_CR66 publication-title: J Virol doi: 10.1128/JVI.74.9.4433-4440.2000 – volume: 4 start-page: e5683 issue: 5 year: 2009 ident: 3429_CR23 publication-title: PLoS One doi: 10.1371/journal.pone.0005683 – volume: 81 start-page: 2359 issue: 5 year: 2007 ident: 3429_CR34 publication-title: J Virol doi: 10.1128/JVI.02006-06 – volume: 85 start-page: 10699 year: 2011 ident: 3429_CR64 publication-title: J Virol doi: 10.1128/JVI.05510-11 – volume: 87 start-page: 923 year: 2012 ident: 3429_CR63 publication-title: J Virol doi: 10.1128/JVI.01863-12 – volume-title: Maraviroc Tablets NDA 22–128: Antiviral Drugs Advisory Committee (AVDAC) Briefing Document year: 2007 ident: 3429_CR47 – volume: 86 start-page: 12417 issue: 22 year: 2012 ident: 3429_CR67 publication-title: J Virol doi: 10.1128/JVI.00967-12 – volume: 726 start-page: 223 year: 2012 ident: 3429_CR1 publication-title: Adv Exp Med Biol doi: 10.1007/978-1-4614-0980-9_10 – volume: 43 start-page: 239 year: 2005 ident: 3429_CR17 publication-title: Prog Med Chem doi: 10.1016/S0079-6468(05)43007-6 – volume: 3 start-page: e117 issue: 8 year: 2007 ident: 3429_CR49 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.0030117 – volume: 277 start-page: 40397 issue: 43 year: 2002 ident: 3429_CR69 publication-title: J Biol Chem doi: 10.1074/jbc.M206784200 – volume: 400 start-page: 145 issue: 1 year: 2010 ident: 3429_CR32 publication-title: Virology doi: 10.1016/j.virol.2010.01.037 – volume: 85 start-page: 4330 year: 2011 ident: 3429_CR51 publication-title: J Virol doi: 10.1128/JVI.00106-11 – volume: 6 start-page: 1316 year: 2011 ident: 3429_CR70 publication-title: Chem Asian J doi: 10.1002/asia.201100232 – volume: 72 start-page: 2855 issue: 4 year: 1998 ident: 3429_CR75 publication-title: J Virol doi: 10.1128/JVI.72.4.2855-2864.1998 – volume: 49 start-page: 4911 issue: 12 year: 2005 ident: 3429_CR19 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.49.12.4911-4919.2005 – volume: 96 start-page: 5698 issue: 10 year: 1999 ident: 3429_CR21 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.10.5698 – volume: 53 start-page: 1124 issue: 3 year: 2009 ident: 3429_CR28 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01057-08 – volume: 428 start-page: 86 issue: 2 year: 2012 ident: 3429_CR45 publication-title: Virology doi: 10.1016/j.virol.2012.03.008 – volume: 73 start-page: 789 issue: 3 year: 2008 ident: 3429_CR9 publication-title: Mol Pharmacol doi: 10.1124/mol.107.042101 – volume: 99 start-page: 395 issue: 1 year: 2002 ident: 3429_CR54 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.012519099 – volume: 338 start-page: 182 issue: 1 year: 2005 ident: 3429_CR53 publication-title: Virology doi: 10.1016/j.virol.2005.04.035 – volume: 56 start-page: 1931 issue: 4 year: 2012 ident: 3429_CR38 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.06061-11 – volume: 201 start-page: 803 issue: 6 year: 2010 ident: 3429_CR25 publication-title: J Infect Dis doi: 10.1086/650697 – volume: 82 start-page: 8210 issue: 16 year: 2008 ident: 3429_CR33 publication-title: J Virol doi: 10.1128/JVI.00444-08 – volume: 16 start-page: 153 issue: 2 year: 2009 ident: 3429_CR71 publication-title: Chem Biol doi: 10.1016/j.chembiol.2008.12.007 – volume: 106 start-page: 5318 issue: 13 year: 2009 ident: 3429_CR44 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0811713106 – volume: 8 start-page: 45 issue: 1 year: 2011 ident: 3429_CR2 publication-title: Curr HIV/AIDS Rep doi: 10.1007/s11904-010-0069-x – volume: 201 start-page: 1470 issue: 10 year: 2010 ident: 3429_CR31 publication-title: J Infect Dis doi: 10.1086/652189 – volume-title: Virology year: 2013 ident: 3429_CR57 – volume: 5 start-page: e1000548 issue: 8 year: 2009 ident: 3429_CR48 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000548 – volume: 75 start-page: 1165 issue: 3 year: 2001 ident: 3429_CR80 publication-title: J Virol doi: 10.1128/JVI.75.3.1165-1171.2001 – volume-title: Program and abstracts of the 6th European Drug Resistance Workshop, Budapest, March 26–28 Poster 51 year: 2008 ident: 3429_CR56 – start-page: 2869 volume-title: Kucers’ The Use of Antibiotics year: 2010 ident: 3429_CR18 doi: 10.1201/b13787-282 – volume: 83 start-page: 12151 issue: 23 year: 2009 ident: 3429_CR50 publication-title: J Virol doi: 10.1128/JVI.01351-09 – volume-title: Program and Abstracts of the 18th Conference on Retroviruses and Opportunistic Infections year: 2011 ident: 3429_CR52 – volume: 8 start-page: 89 issue: 1 year: 2011 ident: 3429_CR58 publication-title: Retrovirology doi: 10.1186/1742-4690-8-89 – volume: 317 start-page: 1930 issue: 5846 year: 2007 ident: 3429_CR73 publication-title: Science doi: 10.1126/science.1145373 – reference: 21216423 - Virology. 2011 Feb 20;410(2):418-28 – reference: 8627686 - J Virol. 1996 Mar;70(3):1651-67 – reference: 20055594 - AIDS Res Hum Retroviruses. 2010 Jan;26(1):13-24 – reference: 17166540 - Virology. 2007 Apr 25;361(1):212-28 – reference: 19075068 - Antimicrob Agents Chemother. 2009 Mar;53(3):1124-31 – reference: 15280474 - J Virol. 2004 Aug;78(16):8654-62 – reference: 8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815 – reference: 21345957 - J Virol. 2011 May;85(9):4330-42 – reference: 15644495 - Mol Pharmacol. 2005 Apr;67(4):1268-82 – reference: 21235238 - Biochemistry. 2011 Mar 8;50(9):1524-34 – reference: 19692480 - J Virol. 2009 Nov;83(21):11016-26 – reference: 20373959 - J Infect Dis. 2010 May 15;201(10):1470-80 – reference: 19479085 - PLoS One. 2009;4(5):e5683 – reference: 17182681 - J Virol. 2007 Mar;81(5):2359-71 – reference: 20570309 - Virology. 2010 Sep 1;404(2):269-78 – reference: 23602007 - Virology. 2013 Jul 20;442(1):51-8 – reference: 22090117 - J Virol. 2012 Jan;86(2):1119-28 – reference: 22424737 - Virology. 2012 Jun 5;427(2):158-65 – reference: 19321618 - J Virol. 2009 Jun;83(11):5430-41 – reference: 18783318 - J Infect Dis. 2008 Oct 15;198(8):1113-22 – reference: 12183462 - J Biol Chem. 2002 Oct 25;277(43):40397-402 – reference: 18495779 - J Virol. 2008 Aug;82(16):8210-4 – reference: 10074102 - J Virol. 1999 Apr;73(4):2576-86 – reference: 22520838 - Virology. 2012 Jul 5;428(2):86-97 – reference: 23135713 - J Virol. 2013 Jan;87(2):923-34 – reference: 16251317 - Antimicrob Agents Chemother. 2005 Nov;49(11):4721-32 – reference: 16304152 - Antimicrob Agents Chemother. 2005 Dec;49(12):4911-9 – reference: 17722977 - PLoS Pathog. 2007 Aug 24;3(8):e117 – reference: 16641282 - J Virol. 2006 May;80(10):4909-20 – reference: 18096812 - Mol Pharmacol. 2008 Mar;73(3):789-800 – reference: 10756060 - J Virol. 2000 May;74(9):4433-40 – reference: 19289833 - Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5318-23 – reference: 16476734 - J Biol Chem. 2006 May 5;281(18):12688-98 – reference: 10220446 - Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5215-20 – reference: 20702642 - J Virol. 2010 Oct;84(20):10863-76 – reference: 20559045 - AIDS. 2010 Jun 1;24(9):1382-4 – reference: 22933279 - J Virol. 2012 Nov;86(22):12417-21 – reference: 21613393 - J Virol. 2011 Aug;85(15):7563-71 – reference: 19680536 - PLoS Pathog. 2009 Aug;5(8):e1000548 – reference: 12163614 - J Virol. 2002 Sep;76(17):8953-7 – reference: 9525605 - J Virol. 1998 Apr;72(4):2855-64 – reference: 22252820 - Antimicrob Agents Chemother. 2012 Apr;56(4):1931-5 – reference: 10089882 - Cell. 1999 Mar 5;96(5):667-76 – reference: 16494916 - Virology. 2006 May 25;349(1):41-54 – reference: 19246006 - Chem Biol. 2009 Feb 27;16(2):153-61 – reference: 21188555 - Curr HIV/AIDS Rep. 2011 Mar;8(1):45-53 – reference: 22054077 - Retrovirology. 2011;8:89 – reference: 21835796 - J Virol. 2011 Oct;85(20):10699-709 – reference: 23217618 - Virology. 2013 Jan 5;435(1):81-91 – reference: 11152489 - J Virol. 2001 Feb;75(3):1165-71 – reference: 16284180 - Science. 2005 Nov 11;310(5750):1025-8 – reference: 20410277 - J Virol. 2010 Jul;84(13):6505-14 – reference: 11782552 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):395-400 – reference: 9445013 - J Virol. 1998 Feb;72(2):1160-4 – reference: 21509944 - Chem Asian J. 2011 Jun 6;6(6):1316-20 – reference: 14990699 - J Virol. 2004 Mar;78(6):2790-807 – reference: 21209592 - J Acquir Immune Defic Syndr. 2011 Mar 1;56(3):222-9 – reference: 19303620 - Virology. 2009 May 10;387(2):296-302 – reference: 20172579 - Virology. 2010 Apr 25;400(1):145-55 – reference: 10329384 - Biochem Biophys Res Commun. 1999 May 10;258(2):313-21 – reference: 19075055 - Antimicrob Agents Chemother. 2009 Mar;53(3):1116-23 – reference: 19776131 - J Virol. 2009 Dec;83(23):12151-63 – reference: 10779565 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5639-44 – reference: 15850827 - Prog Med Chem. 2005;43:239-71 – reference: 20151839 - J Infect Dis. 2010 Mar 15;201(6):803-13 – reference: 17570119 - J Infect Dis. 2007 Jul 15;196(2):304-12 – reference: 18076768 - Retrovirology. 2007;4:89 – reference: 23077246 - J Leukoc Biol. 2013 Jan;93(1):113-26 – reference: 17901336 - Science. 2007 Sep 28;317(5846):1930-4 – reference: 10823934 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):5762-7 – reference: 10318947 - Proc Natl Acad Sci U S A. 1999 May 11;96(10):5698-703 – reference: 21356539 - Virology. 2011 Apr 25;413(1):47-59 – reference: 18832245 - N Engl J Med. 2008 Oct 2;359(14):1442-55 – reference: 20856130 - J Acquir Immune Defic Syndr. 2010 Dec;55(4):420-7 – reference: 12692222 - J Virol. 2003 May;77(9):5201-8 – reference: 18190945 - Virology. 2008 Apr 10;373(2):387-99 – reference: 15935415 - Virology. 2005 Jul 20;338(1):182-99 – reference: 22297516 - Adv Exp Med Biol. 2012;726:223-42 |
SSID | ssj0031808 |
Score | 2.280035 |
Snippet | The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the... Background The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such... Doc number: 43 Abstract Background: The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5... Background: The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such... BACKGROUND: The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such... |
SourceID | pubmedcentral biomedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 43 |
SubjectTerms | Acquired immune deficiency syndrome AIDS Anti-HIV Agents - pharmacology Anti-HIV Agents - therapeutic use Antiviral agents Binding sites Biological products industry Chemokines Councils Crystal structure Cyclohexanes - pharmacology Cyclohexanes - therapeutic use Genetic aspects Genetic research Genetic Variation Glycoproteins Histidine HIV HIV (Viruses) HIV Envelope Protein gp120 - genetics HIV Infections - drug therapy HIV Infections - virology HIV-1 - drug effects HIV-1 - genetics HIV-1 - isolation & purification HIV-1 - physiology Human immunodeficiency virus Human immunodeficiency virus 1 Humans Medical research Molecular Sequence Data Mutation, Missense NMR Nuclear magnetic resonance Peptides Sequence Analysis, DNA Sulfates Treatment Failure Triazoles - pharmacology Triazoles - therapeutic use Tyrosine Virus Internalization - drug effects Viruses |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1di9QwMOiJ4Iv4bfWUCIK-1Ms2adLigyyLxyrog3iybyFNk_Ngt12v3Qf_jr_UmTZdN4r3nJkm6UwmM5kvQl5aVpdlbqrU1jxLhRAuLbhHnytzIA8tZ4NH99NnuTwTH1f5Kjy4dSGscpKJg6CuW4tv5CfYn4Fhj6zy3fZHil2j0LsaWmhcJzewdBmGdKnV3uACdmVFKOczK-QJKN-wHDAHUfZgmk6U4r6Obqa_5fPBBRUHTx7cRqd3yO2gRtL5SPe75Jpr7pGbY2PJn_fJrzmFXcGS6cZhau9Ft6Gtp1MaJF1--JbOKFjaqD0C2WnfUtAE6WLxJafwr815ixV16cZcGkyEs7RGl3zvaI1xHJiOdYi9xsijDhBriu-Bw1Tj9OfbWcYOQTe70fffPSBnp--_LpZp6MaQVlLIPi08K5kslcfyOzKrrIVbT1TeVlKKvDZg7KrcVzaXzknvrHSFFdwXXmIFGO_5Q3LUtI17TKiBC8IJ4etKGWEYN9xlRgF7iFmWKVUm5G1EGb0dK29orIUdj8BuNNJVI101WDSCJ-TNREdtQ6Fz7Lex1oPBU8h_EV7vEaaZ_gv6ChlD4-mHb1oTkhhgX1hHS89zjsCgRibkOIKEU2vj4Ym1dJAanf7D4wl5sR9GTIyEa1y7QxhRKoZlHq-CybFLO5ciIY9Gbt1vLOMS86EBW0V8HP3jeKS5-D7UHYfvgTrNnly99KfkVja0DBEggY_JUX-5c89Aceur58Pp_A2YxkQ0 priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgCIkXxDeFgYyEBC8ZbnyxEyGEqoqpII0HRNHeLMext0ltMtpUYv8Ofyl3-SjNGHv2XVzbv_Pd1ffB2GsniixLbB65QsYRAPgolYHeXIXH-9BJ0bzoHn1Vszl8OU6O_7YD6jZwfaVrR_2k5qvFwa-fFx9R4D80Ap-qd2hU4zTo5tGdAvImu4VqSZOUHsH2SQGxK9Kuts8VTJfy3RcDNXX5st7RVsNIyh3VdHiP3e1sSj5pQXCf3fDlA3a77TJ58ZD9nnCEFcKNLz3l-Z6tl7wKvM-J5LPPP6IxR7ebTEnEAK8rjmYhn06_JRw33p5UVF6XL-3KUlac4wW9z9eeFxTUQblZu9wLCkNaI2PB6c_BZqp2-pPzcSx2SZebNhBg_YjNDz99n86irjVDlCtQdZQGkQmV6UC1eFScO4cqEPLgcqUgKSx6vjoJuUuU9yp4p3zqQIY0KCoHE4J8zPbKqvRPGbeoLTxAKHJtwQpppY-tRqzAOI61zkbs_eBkzHlbhsNQYezhCK7G0LkaOleD7g3IETvoz9G4ruo5Nd9YmMb7SdW_DG-3DP1M_yV9Q8AwBE78prNdRgOui4pqmUkiiRhtyhHbH1CiCLvhcA8t00uAoYYkgprC4Q682g4TJ4XFlb7aEA1kWlDNx-toEmrZLhWM2JMWrduFxVJRcjRy6wGOB3s8HCnPTpsi5Pg9tK3Fs-t_-nN2J276hwBex_tsr15t_Au04ur8ZSOdfwBCCUaD priority: 102 providerName: Scholars Portal |
Title | A common mechanism of clinical HIV-1 resistance to the CCR5 antagonist maraviroc despite divergent resistance levels and lack of common gp120 resistance mutations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23602046 https://www.proquest.com/docview/1353019729 https://www.proquest.com/docview/1349704926 https://www.proquest.com/docview/1352295364 http://dx.doi.org/10.1186/1742-4690-10-43 https://pubmed.ncbi.nlm.nih.gov/PMC3648390 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbhMx0KKtkLgg3gRKZCQkuCw461l7V5zSqFVAaoUqiiIultdrl0rJbtUkB36HL2VmHyEbHhcue_GMLXvG89jxzDD2yokiyxKbR66QcQQAPkploJir8CgPnRR1RPf0TE0v4OMsmf0qFr0TwR-l6h2azDgJOnEkMUDusYMYUA2SY370tRO6yJl187kNcFvF5w8T7GS2z3sKaVcsb-ml_pvJLSV0co_dba1HPm7IfZ_d8uUDdrvpJ_n9Ifsx5shAyFh84Smj92q54FXgXfYjn374Eo04OthkNCK1-ariaADyyeQ84XjE9rKiQrp8YW8s5b85XlAkfuV5Qc83KAtrG3tOD46WiFhw-g1YL9Usf3k9isU26GLdhPyXj9jFyfHnyTRqmzBEuQK1itIgMqEyHajqjopz51DZQR5crhQkhUUfVychd4nyXgXvlE8dyJAGRYVfQpCP2X5Zlf4p4xb1ggcIRa4tWCGt9LHVyBUwimOtswF736OMuW4Kbhgqgd0fwd0Yoqshuhp0ZEAO2NuOjsa19c2pzcbc1H5Oqn5HeLNB6Fb6K-hrYgxDlx7ndLbNXcB9UfksM04kAaP1OGCHPUi8rK4_3LGWaYXF0lDrEUHt3_AEXm6GCZMewJW-WhMMZFpQdcd_wSTUnF0qGLAnDbduNhZLRWnQiK17fNw74_5IefWtLjeO86EVLZ79F3Wesztx3UgEUC4fsv3Vzdq_QHNulQ_Znp7pITs4Oj77dD6sf4rg9xTSYX3FfwIsr0sa |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMx0CqpEL0g3gQKGAkEl6WO7fXuCiEUQquEthGq2qo34_XabaUkG5pEqL_DB_CNzOwjZEH01rNn7LVnPI_1PAh5ZVmWJKFJA5sJHkgpXRALj2-uzIE8tIIVL7r7Q9U_kl9OwpM18qvOhcGwylomFoI6yy3-I9_C_gwMe2QlH6ffA-waha-rdQuNki123eUPcNlmHwafgb6vOd_ZPuz1g6qrQJAqqeZB7FnCVBJ5LCOjeGotSG-ZepsqJcPMgNMWhT61oXJOeWeVi60UPvYKK5l4L2DeG2RdCnBlWmT90_bw60Et--GCsLgqINSJ1RaY-3AA4ICitMPEoEZS_aihC__WCCsqsRmuuaL_du6Q25XhSrslp90la25yj9wsW1le3ic_uxTOEQ6Jjh0mE5_PxjT3tE68pP3BcdCh4NujvQqMRuc5BduT9noHIQXqmtMca_jSsbkwmHpnaYZBAHNHM4wcwQSwVewRxjrNADGj-AeyWKpc_nTa4WwVdLwoow1mD8jRtVDqIWlN8ol7TKgBleSk9FkaGWmYMMJxEwFDyg7nUZS0yfsGZfS0rPWhsfp2cwR2o5GuGumqwYeSok3e1XTUtiqtjh0-RrpwsWL1L8LbJUK90n9B3yBjaJQ3MKc1VdoE7Asrd-luKBAYDNc22WxAgpywzeGatXQlp2b6z61qk5fLYcTE2LuJyxcII5OIYWHJq2BC7AsvlGyTRyW3LjfG4aZwJgE7avBx44ybI5Pzs6LSOcwHBjx7cvWnvyC3-of7e3pvMNx9SjZ40bBEgvzfJK35xcI9A7Nxnj6v7iol365bPPwG222C6Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagCMQF8SalgJGQ4LKts37tilMIRCmPClUUVVwsr9cuVZPdKNkc-Dv8Umb2EWXL48JtJc-sZc94PGN7viHkhWN5mkqbRS7ncSSE8FHCA965Mg_20HFW3-h-OlLTE_H-VJ62kEKYC7P0FYbSy_pMeX87BX1W2234cBcHizw0yz1RB-BSQycQ5KFFEfwquaal1LhGj99864wyaG5dnG5D3KL8_OEHlzLfZ70N67LZ3tq3-m8qtzapyW1yq_Uu6ahRhzvkii_ukutNvckf98jPEYXRgeLRuceM3_PVnJaBdtmRdHr4NRpSCMDRqQRtoFVJwUGk4_GxpCACe1Yi0C6d26XF2XM0x5v6ytMcn3dgltY29wwfJK2AMad4TFh31XR_thjGbJt0vm6eBKzuk5PJuy_jadQWaYgyJVQVJYGlTKU6ICqPijPnYDMUWXCZUkLmFmJgLUPmpPJeBe-UT5zgIQkKgWFC4A_ITlEW_hGhFvYNL0TIM22FZdxyH1sNWiOGcax1OiCve5IxiwaQwyBEdr8FRmNQrgblaiDQEXxA9js5Gtfin2MZjpmp46BE_c7wasPQ9fRX0peoGAaNAmqobXMbYFwIr2VGkiMxeJcDstejhMXs-s2dapnWmKwMliZhWB4OZuD5phk58YFc4cs10ohUM0R__BeNxOLtXIkBedho62ZgMVeYJg3cuqfHvTnutxTn32s4cvgfeNls97-k84zc-Px2Yj4eHn14TG7Gdc0RASZ8j-xUy7V_Ap5flT2t1_QvakZWfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+common+mechanism+of+clinical+HIV-1+resistance+to+the+CCR5+antagonist+maraviroc+despite+divergent+resistance+levels+and+lack+of+common+gp120+resistance+mutations&rft.jtitle=Retrovirology&rft.au=Roche%2C+Michael&rft.au=Salimi%2C+Hamid&rft.au=Duncan%2C+Renee&rft.au=Wilkinson%2C+Brendan+L&rft.date=2013-04-20&rft.pub=BioMed+Central&rft.eissn=1742-4690&rft.volume=10&rft_id=info:doi/10.1186%2F1742-4690-10-43&rft.externalDocID=2974228741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-4690&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-4690&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-4690&client=summon |