Modularization of biochemical networks based on classification of Petri net t-invariants

Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion....

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 9; no. 1; p. 90
Main Authors Grafahrend-Belau, Eva, Schreiber, Falk, Heiner, Monika, Sackmann, Andrea, Junker, Björn H, Grunwald, Stefanie, Speer, Astrid, Winder, Katja, Koch, Ina
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 08.02.2008
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior.With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis.
AbstractList Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior.With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis.
Abstract Background Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior. With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Methods Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. Results We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. Conclusion We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis.
Background Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior. With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Methods Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. Results We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. Conclusion We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis.
BACKGROUNDStructural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior.With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. METHODSHere, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. RESULTSWe considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. CONCLUSIONWe propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis.
ArticleNumber 90
Audience Academic
Author Heiner, Monika
Junker, Björn H
Koch, Ina
Speer, Astrid
Winder, Katja
Grunwald, Stefanie
Schreiber, Falk
Sackmann, Andrea
Grafahrend-Belau, Eva
AuthorAffiliation 5 Max Planck Institute for Molecular Genetics, Dept. Computational Molecular Biology, Ihnestr. 73, 14195 Berlin, Germany
1 Technical University of Applied Sciences Berlin, FB VI/FB V, Bioinformatics/Biotechnology, Seestr. 64, 13347 Berlin, Germany
2 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Dept. of Molecular Genetics, Corrensstrasse 3, 06466 Gatersleben, Germany
3 Brandendenburg University of Technology at Cottbus, Dept. of Computer Science, Postbox 10 13 44, 03013 Cottbus, Germany
4 Poznań University of Technology, Institute of Computing Science, ul. Piotrowo 2, 60-965 Poznań, Poland
AuthorAffiliation_xml – name: 5 Max Planck Institute for Molecular Genetics, Dept. Computational Molecular Biology, Ihnestr. 73, 14195 Berlin, Germany
– name: 4 Poznań University of Technology, Institute of Computing Science, ul. Piotrowo 2, 60-965 Poznań, Poland
– name: 1 Technical University of Applied Sciences Berlin, FB VI/FB V, Bioinformatics/Biotechnology, Seestr. 64, 13347 Berlin, Germany
– name: 2 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Dept. of Molecular Genetics, Corrensstrasse 3, 06466 Gatersleben, Germany
– name: 3 Brandendenburg University of Technology at Cottbus, Dept. of Computer Science, Postbox 10 13 44, 03013 Cottbus, Germany
Author_xml – sequence: 1
  givenname: Eva
  surname: Grafahrend-Belau
  fullname: Grafahrend-Belau, Eva
  email: grafahr@ipk-gatersleben.de
  organization: Technical University of Applied Sciences Berlin, FB VI/FB V, Bioinformatics/Biotechnology, Seestr, 64, 13347 Berlin, Germany. grafahr@ipk-gatersleben.de
– sequence: 2
  givenname: Falk
  surname: Schreiber
  fullname: Schreiber, Falk
– sequence: 3
  givenname: Monika
  surname: Heiner
  fullname: Heiner, Monika
– sequence: 4
  givenname: Andrea
  surname: Sackmann
  fullname: Sackmann, Andrea
– sequence: 5
  givenname: Björn H
  surname: Junker
  fullname: Junker, Björn H
– sequence: 6
  givenname: Stefanie
  surname: Grunwald
  fullname: Grunwald, Stefanie
– sequence: 7
  givenname: Astrid
  surname: Speer
  fullname: Speer, Astrid
– sequence: 8
  givenname: Katja
  surname: Winder
  fullname: Winder, Katja
– sequence: 9
  givenname: Ina
  surname: Koch
  fullname: Koch, Ina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18257938$$D View this record in MEDLINE/PubMed
BookMark eNqFktuL1DAUh4usuBd99VEKguBD19zaNC_CsHgZWFG8gG_hJD2dzdppdpPMevnrTZ1x3eKK9KHlnC9fyu-cw2Jv9CMWxUNKjiltm2dUSFoxSupKVYrcKQ6uC3s3vveLwxjPCaGyJfW9Yp-2rJaKtwfF5ze-2wwQ3A9Izo-l70vjvD3DtbMwlCOmrz58iaWBiF2ZATtAjK7P3d_8O0zBTWSZKjdeZReMKd4v7vYwRHywex8Vn16--Hjyujp9-2p5sjitTCNEqsB22NQcTQNSIBhVt9ZyJEhNJ1smaqsUEG5kg7XlrOcWG-hEa6GuDceaHxXLrbfzcK4vgltD-K49OP2r4MNKQ0jODqgbhj1YwaWkVHRUqhwPU5T1YIxSfZddz7eui41ZY2dxTAGGmXTeGd2ZXvkrzZiUgrAsWGwFOcN_COYd69d6mpKepqSVViQ7nux-IvjLDcak1y5aHAYY0W-ilkQIISX_L8gIF41kk_HxFlxBTsGNvc932wnWCyolU1I0NFPHt1D56aZdyFvXu1yfHXg6O5CZhN_SCjYx6uWH97fKbfAxBuyvM6FET4v8dwqPbo7iD77bXP4TZsLwJw
CitedBy_id crossref_primary_10_7243_2050_1412_1_2
crossref_primary_10_1152_ajpcell_00487_2022
crossref_primary_10_3390_ijms20163909
crossref_primary_10_1016_j_biosystems_2022_104793
crossref_primary_10_3389_fgene_2017_00085
crossref_primary_10_1007_s11047_010_9178_0
crossref_primary_10_1016_j_compbiomed_2023_107729
crossref_primary_10_3390_ijms21093348
crossref_primary_10_1016_j_biosystems_2018_01_002
crossref_primary_10_1371_journal_pone_0173020
crossref_primary_10_1016_j_dam_2008_06_053
crossref_primary_10_1016_j_biosystems_2008_02_005
crossref_primary_10_1587_transfun_E93_A_2717
crossref_primary_10_1007_s00287_013_0757_1
crossref_primary_10_1109_TCBB_2010_117
crossref_primary_10_1039_b816841p
crossref_primary_10_3390_biology11030430
crossref_primary_10_1093_bioinformatics_bts307
crossref_primary_10_1093_bioinformatics_btt165
crossref_primary_10_1007_s00287_009_0355_4
crossref_primary_10_1039_c3mb25593j
crossref_primary_10_1016_j_entcs_2013_07_008
crossref_primary_10_3390_biomedicines12010131
crossref_primary_10_3390_ijms221910518
crossref_primary_10_3390_ijms21228574
crossref_primary_10_1007_s00449_010_0507_6
crossref_primary_10_1007_s11047_010_9180_6
crossref_primary_10_3390_a10010004
crossref_primary_10_1007_s12539_018_0310_7
crossref_primary_10_1186_1748_7188_5_36
crossref_primary_10_1186_1748_7188_7_15
crossref_primary_10_1186_s12918_017_0448_7
crossref_primary_10_1016_j_biosystems_2008_12_003
crossref_primary_10_1016_j_tcs_2011_06_013
crossref_primary_10_1007_s10270_014_0421_5
crossref_primary_10_3389_fdata_2023_1268503
crossref_primary_10_3390_metabo5040766
crossref_primary_10_3390_metabo3030673
crossref_primary_10_3390_ijms23031189
crossref_primary_10_1016_j_copbio_2010_07_002
crossref_primary_10_3390_ijms19113476
Cites_doi 10.1111/j.1742-4658.2005.04924.x
10.1016/j.biosystems.2004.03.003
10.1093/bib/bbm029
10.1007/11885191_9
10.1049/ip-syb:20060013
10.1093/bioinformatics/bti1130
10.1017/CBO9780511790492
10.1016/j.jtbi.2005.03.018
10.1016/j.peptides.2003.10.022
10.1080/01969727408546059
10.1006/jtbi.2000.1073
10.1093/ietfec/e89-a.11.3166
10.1111/j.2044-8317.1976.tb00714.x
10.1016/0377-0427(87)90125-7
10.1007/978-3-663-09262-9
10.1016/j.biosystems.2008.02.005
10.1142/S0219720004000764
10.1093/bioinformatics/bti517
10.1002/9780470253489.ch7
10.1093/bioinformatics/bth167
10.1126/science.1104568
10.1073/pnas.97.10.5528
10.1007/978-3-642-18638-7_3
10.1002/bit.1171
10.1145/321356.321364
10.1109/PROC.1968.6414
10.1186/1471-2105-7-482
10.1128/JB.184.16.4582-4593.2002
10.1016/S0022-5193(03)00237-6
10.1158/0008-5472.CAN-04-3995
10.1109/TPAMI.1979.4766909
10.1177/0037549703040940
ContentType Journal Article
Copyright COPYRIGHT 2008 BioMed Central Ltd.
Copyright © 2008 Grafahrend-Belau et al; licensee BioMed Central Ltd. 2008 Grafahrend-Belau et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2008 BioMed Central Ltd.
– notice: Copyright © 2008 Grafahrend-Belau et al; licensee BioMed Central Ltd. 2008 Grafahrend-Belau et al; licensee BioMed Central Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISR
7QO
7TM
8FD
FR3
M7N
P64
7X8
5PM
DOA
DOI 10.1186/1471-2105-9-90
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Science
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

Engineering Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 90
ExternalDocumentID oai_doaj_org_article_62efac4377114d1794712912fabb99fd
oai_biomedcentral_com_1471_2105_9_90
A177297461
10_1186_1471_2105_9_90
18257938
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID ---
-A0
0R~
123
23N
2VQ
2WC
4.4
53G
5VS
6J9
AAFWJ
AAJSJ
AAKPC
ABDBF
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
C1A
C24
C6C
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
M48
MK~
ML0
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFPKN
CITATION
7X7
ABVAZ
AFGXO
AFNRJ
7QO
7TM
8FD
FR3
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-b644t-acde653eb6a74eab958cc3e0e1bd78245c99a03b76e5c32f3ce6ad48ca55b3e53
IEDL.DBID RPM
ISSN 1471-2105
IngestDate Tue Oct 22 15:11:05 EDT 2024
Tue Sep 17 21:08:10 EDT 2024
Wed May 22 07:12:55 EDT 2024
Fri Oct 25 02:00:33 EDT 2024
Fri Oct 25 07:31:12 EDT 2024
Fri Feb 23 00:21:09 EST 2024
Fri Feb 02 04:40:32 EST 2024
Sat Sep 28 21:19:09 EDT 2024
Thu Sep 12 18:56:45 EDT 2024
Tue Oct 15 23:32:23 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b644t-acde653eb6a74eab958cc3e0e1bd78245c99a03b76e5c32f3ce6ad48ca55b3e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277402/
PMID 18257938
PQID 20346720
PQPubID 23462
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_62efac4377114d1794712912fabb99fd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2277402
biomedcentral_primary_oai_biomedcentral_com_1471_2105_9_90
proquest_miscellaneous_70444773
proquest_miscellaneous_20346720
gale_infotracmisc_A177297461
gale_infotracacademiconefile_A177297461
gale_incontextgauss_ISR_A177297461
crossref_primary_10_1186_1471_2105_9_90
pubmed_primary_18257938
PublicationCentury 2000
PublicationDate 2008-02-08
PublicationDateYYYYMMDD 2008-02-08
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-08
  day: 08
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2008
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 15037506 - Bioinformatics. 2004 Aug 12;20(12):1870-6
15374648 - Peptides. 2004 Sep;25(9):1465-76
15567849 - Science. 2004 Nov 26;306(5701):1508-9
15617157 - J Bioinform Comput Biol. 2004 Dec;2(4):595-613
3221794 - Mol Biol Evol. 1988 Nov;5(6):729-31
12954096 - In Silico Biol. 2003;3(3):389-404
11536134 - Biotechnol Bioeng. 2001 Oct 5;75(1):120-9
14575652 - J Theor Biol. 2003 Nov 21;225(2):185-94
17081284 - BMC Bioinformatics. 2006;7:482
15904935 - J Theor Biol. 2005 Oct 21;236(4):349-65
3447015 - Mol Biol Evol. 1987 Jul;4(4):406-25
10716907 - J Theor Biol. 2000 Apr 7;203(3):229-48
12142428 - J Bacteriol. 2002 Aug;184(16):4582-93
21868852 - IEEE Trans Pattern Anal Mach Intell. 1979 Feb;1(2):224-7
16204102 - Bioinformatics. 2005 Sep 1;21 Suppl 2:ii190-6
10805808 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5528-33
15245801 - Biosystems. 2004 Jul;75(1-3):15-28
18372101 - Biosystems. 2008 May;92(2):189-205
16986319 - Syst Biol (Stevenage). 2006 Sep;153(5):369-71
17626066 - Brief Bioinform. 2007 Jul;8(4):210-9
16464248 - BMC Bioinformatics. 2006;7:56
15899785 - Cancer Res. 2005 May 15;65(10):3980-5
15914541 - Bioinformatics. 2005 Aug 1;21(15):3201-12
12954095 - In Silico Biol. 2003;3(3):347-65
16218958 - FEBS J. 2005 Oct;272(20):5278-90
H Ma (2075_CR22) 2004; 20
L Bardwell (2075_CR44) 2004; 25
M Chen (2075_CR13) 2003; 3
N Saitou (2075_CR36) 1987; 4
S Schuster (2075_CR6) 2005; 272
K Backhaus (2075_CR34) 2003
AL Gartel (2075_CR46) 2005; 65
ND Price (2075_CR7) 2003; 225
C Chaouiya (2075_CR16) 2007; 8
J Handl (2075_CR33) 2005; 21
T Murata (2075_CR27) 1989
D Steinhausen (2075_CR35) 1977
I Koch (2075_CR19) 2008
J Dunn (2075_CR41) 1974; 4
M Heiner (2075_CR20) 2004
JS Edwards (2075_CR1) 2000; 97
K Lautenbach (2075_CR5) 1973
B Baumgarten (2075_CR25) 1996
L Hubert (2075_CR43) 1976; 29
T Dwyer (2075_CR52) 2004
H Matsuno (2075_CR9) 2003; 3
R David (2075_CR26) 2005
JL Peterson (2075_CR28) 1981
E Simão (2075_CR15) 2005; 21
M Ederer (2075_CR21) 2003; 79
2075_CR48
S Pérès (2075_CR23) 2006; 5
2075_CR49
H Matsuno (2075_CR18) 2006; E89-A
S Gunter (2075_CR39) 2001
A Schrijver (2075_CR30) 1998
S Hardy (2075_CR17) 2004; 2
CH Schilling (2075_CR2) 2002; 184
G Nagy (2075_CR47) 1969; 56
Y Wang (2075_CR45) 2004; 306
PJ Rousseeuw (2075_CR40) 1987; 20
LJ Steggles (2075_CR12) 2006
S Klamt (2075_CR31) 2006
R Durbin (2075_CR38) 1998
2075_CR50
RJ Parikh (2075_CR53) 1966; 13
2075_CR51
W Marwan (2075_CR14) 2005; 236
P Legendre (2075_CR32) 1998
JA Studier (2075_CR37) 1988; 5
R Srivastava (2075_CR11) 2001; 1
2075_CR24
S Schuster (2075_CR3) 1993
PH Starke (2075_CR29) 1990
DL Davies (2075_CR42) 1979; 1
M Heiner (2075_CR8) 2004; 75
CH Schilling (2075_CR4) 2000; 203
A Sackmann (2075_CR10) 2006; 7
References_xml – ident: 2075_CR50
– volume: 272
  start-page: 5287
  issue: 20
  year: 2005
  ident: 2075_CR6
  publication-title: FEBS Journal
  doi: 10.1111/j.1742-4658.2005.04924.x
  contributor:
    fullname: S Schuster
– volume: 75
  start-page: 1
  year: 2004
  ident: 2075_CR8
  publication-title: BioSystems
  doi: 10.1016/j.biosystems.2004.03.003
  contributor:
    fullname: M Heiner
– volume: 8
  start-page: 210
  issue: 4
  year: 2007
  ident: 2075_CR16
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbm029
  contributor:
    fullname: C Chaouiya
– volume: 3
  start-page: 389
  issue: 3
  year: 2003
  ident: 2075_CR9
  publication-title: In Silico Biology
  contributor:
    fullname: H Matsuno
– volume-title: Discrete, Continuous, and Hybrid Petri nets
  year: 2005
  ident: 2075_CR26
  contributor:
    fullname: R David
– start-page: 127
  volume-title: Proceedings of Computational Methods in Systems Biology (CMSB)
  year: 2006
  ident: 2075_CR12
  doi: 10.1007/11885191_9
  contributor:
    fullname: LJ Steggles
– volume: 5
  start-page: 369
  year: 2006
  ident: 2075_CR23
  publication-title: IEE Proceedings Systems Biology
  doi: 10.1049/ip-syb:20060013
  contributor:
    fullname: S Pérès
– start-page: 541
  volume-title: Proceedings of the IEEE
  year: 1989
  ident: 2075_CR27
  contributor:
    fullname: T Murata
– volume: 4
  start-page: 406
  year: 1987
  ident: 2075_CR36
  publication-title: Molecular Biology and Evolution
  contributor:
    fullname: N Saitou
– volume: 21
  start-page: 190
  issue: Suppl 2
  year: 2005
  ident: 2075_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1130
  contributor:
    fullname: E Simão
– volume-title: Biological sequence analysis – Probabilistic models of proteins and nucleic acids
  year: 1998
  ident: 2075_CR38
  doi: 10.1017/CBO9780511790492
  contributor:
    fullname: R Durbin
– volume: 236
  start-page: 349
  issue: 4
  year: 2005
  ident: 2075_CR14
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2005.03.018
  contributor:
    fullname: W Marwan
– volume: 25
  start-page: 1465
  year: 2004
  ident: 2075_CR44
  publication-title: Peptides
  doi: 10.1016/j.peptides.2003.10.022
  contributor:
    fullname: L Bardwell
– volume: 5
  start-page: 729
  year: 1988
  ident: 2075_CR37
  publication-title: Molecular Biology and Evolution
  contributor:
    fullname: JA Studier
– volume: 4
  start-page: 95
  year: 1974
  ident: 2075_CR41
  publication-title: Journal of Cybernetics
  doi: 10.1080/01969727408546059
  contributor:
    fullname: J Dunn
– volume: 203
  start-page: 229
  year: 2000
  ident: 2075_CR4
  publication-title: Journal of Theoretical Biology
  doi: 10.1006/jtbi.2000.1073
  contributor:
    fullname: CH Schilling
– volume-title: Numerical ecology
  year: 1998
  ident: 2075_CR32
  contributor:
    fullname: P Legendre
– volume: E89-A
  start-page: 3166
  issue: 11
  year: 2006
  ident: 2075_CR18
  publication-title: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
  doi: 10.1093/ietfec/e89-a.11.3166
  contributor:
    fullname: H Matsuno
– volume: 29
  start-page: 190
  year: 1976
  ident: 2075_CR43
  publication-title: British Journal of Mathematical and Statistical Psychology
  doi: 10.1111/j.2044-8317.1976.tb00714.x
  contributor:
    fullname: L Hubert
– start-page: 229
  volume-title: Proceedings of the Third IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition
  year: 2001
  ident: 2075_CR39
  contributor:
    fullname: S Gunter
– volume: 20
  start-page: 53
  year: 1987
  ident: 2075_CR40
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/0377-0427(87)90125-7
  contributor:
    fullname: PJ Rousseeuw
– volume-title: Analysis of Petri net models (in German)
  year: 1990
  ident: 2075_CR29
  doi: 10.1007/978-3-663-09262-9
  contributor:
    fullname: PH Starke
– ident: 2075_CR24
  doi: 10.1016/j.biosystems.2008.02.005
– volume: 3
  start-page: 347
  issue: 3
  year: 2003
  ident: 2075_CR13
  publication-title: In Silico Biology
  contributor:
    fullname: M Chen
– volume-title: BMC Bioinformatics
  year: 2006
  ident: 2075_CR31
  contributor:
    fullname: S Klamt
– volume: 2
  start-page: 595
  issue: 4
  year: 2004
  ident: 2075_CR17
  publication-title: J Bioinform Comput Biol
  doi: 10.1142/S0219720004000764
  contributor:
    fullname: S Hardy
– volume-title: Petri Nets. Basic principles and applications (in German)
  year: 1996
  ident: 2075_CR25
  contributor:
    fullname: B Baumgarten
– volume: 21
  start-page: 3201
  issue: 15
  year: 2005
  ident: 2075_CR33
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti517
  contributor:
    fullname: J Handl
– start-page: 139
  volume-title: Analysis of biological networks
  year: 2008
  ident: 2075_CR19
  doi: 10.1002/9780470253489.ch7
  contributor:
    fullname: I Koch
– volume: 20
  start-page: 1870
  issue: 12
  year: 2004
  ident: 2075_CR22
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth167
  contributor:
    fullname: H Ma
– volume: 306
  start-page: 1508
  year: 2004
  ident: 2075_CR45
  publication-title: Science
  doi: 10.1126/science.1104568
  contributor:
    fullname: Y Wang
– volume: 97
  start-page: 5528
  issue: 10
  year: 2000
  ident: 2075_CR1
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.10.5528
  contributor:
    fullname: JS Edwards
– volume-title: Theory of linear and integer programming
  year: 1998
  ident: 2075_CR30
  contributor:
    fullname: A Schrijver
– start-page: 55
  volume-title: Graph Drawing Software, Mathematics and Visualization
  year: 2004
  ident: 2075_CR52
  doi: 10.1007/978-3-642-18638-7_3
  contributor:
    fullname: T Dwyer
– volume-title: Berichte der GMD
  year: 1973
  ident: 2075_CR5
  contributor:
    fullname: K Lautenbach
– volume: 1
  start-page: 120
  issue: 75
  year: 2001
  ident: 2075_CR11
  publication-title: Biotechnology and Bioengineering
  doi: 10.1002/bit.1171
  contributor:
    fullname: R Srivastava
– volume: 13
  start-page: 570
  year: 1966
  ident: 2075_CR53
  publication-title: Journal Assoc. Comp. Mach
  doi: 10.1145/321356.321364
  contributor:
    fullname: RJ Parikh
– volume: 56
  start-page: 836
  year: 1969
  ident: 2075_CR47
  publication-title: Proceedings of the IEEE
  doi: 10.1109/PROC.1968.6414
  contributor:
    fullname: G Nagy
– ident: 2075_CR49
– volume: 7
  start-page: 482
  year: 2006
  ident: 2075_CR10
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-482
  contributor:
    fullname: A Sackmann
– volume: 184
  start-page: 4582
  year: 2002
  ident: 2075_CR2
  publication-title: Journal of Bacteriology
  doi: 10.1128/JB.184.16.4582-4593.2002
  contributor:
    fullname: CH Schilling
– start-page: 101
  volume-title: Proceedings of the Second Gauss Symposium, München
  year: 1993
  ident: 2075_CR3
  contributor:
    fullname: S Schuster
– volume-title: Petri Net Theory and the Modeling of Systems
  year: 1981
  ident: 2075_CR28
  contributor:
    fullname: JL Peterson
– ident: 2075_CR51
– volume: 225
  start-page: 185
  year: 2003
  ident: 2075_CR7
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/S0022-5193(03)00237-6
  contributor:
    fullname: ND Price
– start-page: 216
  volume-title: Proceedings of the 25th International Conference on Applications and Theory of Petri Nets
  year: 2004
  ident: 2075_CR20
  contributor:
    fullname: M Heiner
– volume-title: Multivariate analysis methods. An application-oriented introduction (in German)
  year: 2003
  ident: 2075_CR34
  contributor:
    fullname: K Backhaus
– volume: 65
  start-page: 3980
  issue: 10
  year: 2005
  ident: 2075_CR46
  publication-title: Cancer Research
  doi: 10.1158/0008-5472.CAN-04-3995
  contributor:
    fullname: AL Gartel
– volume: 1
  start-page: 224
  issue: 4
  year: 1979
  ident: 2075_CR42
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1979.4766909
  contributor:
    fullname: DL Davies
– volume: 79
  start-page: 703
  issue: 12
  year: 2003
  ident: 2075_CR21
  publication-title: Simulation
  doi: 10.1177/0037549703040940
  contributor:
    fullname: M Ederer
– volume-title: Cluster analysis. An Introduction to methods for automatic classification (in German)
  year: 1977
  ident: 2075_CR35
  contributor:
    fullname: D Steinhausen
– ident: 2075_CR48
SSID ssj0017805
Score 2.231642
Snippet Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological...
Background Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of...
BACKGROUNDStructural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of...
BACKGROUND: Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of...
Abstract Background Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 90
SubjectTerms Algorithms
Computational biology
Computer Simulation
Genes
Models, Biological
Multigene Family - physiology
Proteome - metabolism
Saccharomyces cerevisiae
Signal Transduction - physiology
Transduction
SummonAdditionalLinks – databaseName: Open Access: BioMedCentral Open Access Titles
  dbid: RBZ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQERIXVL5TCkQIqSeLxJ8xtxZRFaRyKFRacbFsx4ZKKEHsLhL_npnE3dZdceK6fomyfh7PTDLzTMhrb6QMQbW0VzxS8FCCglsQ2OyeeFBRtZOI6-kndXIuPi7k4up9x40v-G2n3rSwfVJITCQ11EByfhtPS0YTPDv6uvlegMr8Ux9RxmZ5xu3rb_S1_yjc0aTav703X3NOZeHkNU90vEvu5RCyPpw5v09uxeEBuTMfKvnnIVmcjj3WluYGy3pMNTxLyMIA9TDXfS9r9F99DYCAATRWDG3w0zFbiKxX9GL4DffCaplH5Pz4_Zd3JzSfn0A9RDkr6kIfleTRK6dFdEBLFwKPTWx9D4GBkMEY13CvVZSBM-AmKteLLjgpPY-SPyY7wzjEp6RmSXVBqNSlJgrjtGNOpVZ4zqJ30rQVeVtMq_05a2VYVK8uR8CQLHJikRNrrGkqcnDJwea6KTfp1BbyCCkq7j79AAvGZlOzisXkguBaQ67X44ajIahpWXLeG5P6irxCgi2qXwxYXvPNrZdL--HzmT1sMdnQQsEfOsigNMJjB5e7FWA6UDCrQO4XSDDPUAy_vFxHFoewpm2I43ppWcPBS7Hm3wiNYn5a84o8mdfd1fRAYg87a1cRXazIYmbKkeHi-6QezhhE_A3b-x_GnpG7c90Mo023T3ZWv9bxOQRnK_9issu_SR03Kg
  priority: 500
  providerName: BioMedCentral
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEF-kIHgRv422GkToaWmyn9ne2mKpQj2ohXdbdje7WiiJ-N4T_O-d2eQ931LEi9fMJCQzszsz5De_JeStN1KGoFraKx4pZChBIS0IHHZPPKio2kzievlRXVyJDwu52DnqCzFhEz3wZLgjxWJyQXCtoXLvMXw0pKiWJee9ManPu29jNs3U_P8AmfrzXJFuKYjlTNfYdupoe40aijtxMed-U6SnzOJ_e6_eSVYlkHInM50_IPfnkrI-mT7lIbkTh0fk7nTI5K_HZHE59og1nQcu6zHV8C5hJgqohwkHvqwxn_U1KAQsqBFBtNXPx26hZr2i18NPeBaiZ56Qq_N3X84u6HyeAvVQ9ayoC31UkkevnBbRgZu6EHhsYut7KBSEDMa4hnutogycga-icr3ogpPS8yj5U7I3jEN8TmqWVBeESl1qojBOO-ZUaoXnLHonTVuR48Ks9vvEnWGRzbqUwMKy6BOLPrHGmqYihxsfbO_LvUqnbmmeoouKp-cLEEF2jiD7rwiqyBt0sEU2jAHhNl_derm07z9_sictNh9aKPigw1kpjfDawc3TC2AOJNAqNPcLTViuoRC_3sSRRRFi3IY4rpeWNRyyFmv-rqGR3E9rXpFnU9z9MQ80-rDTdhXRRUQWliklw_W3zCbOGHQADXvxP0z5ktyb8DSMNt0-2Vv9WMcDKNpW_lVen78BIA0_GQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA9yIvgifrt6ahHhnqJtPhtB5BSPUzgf1IV9C0mangdHq9td8f57Z9rc7cXVF1-bSWjnIzNDf_mFkOfeSBmCqmijeKSQoQSFtCDwsHvLg4qqGklcjz6pw7n4uJCLDf4pKXD4a2uH90nNl6cvfv04ewMB_3oM-Fq9rGCDpdC6SGqogfb9KkNSLoTxic0fBeTuT6SN23OQOhRaJfDV-o-D76dZvhpp_bc370vZK0dWXkpVBzfJjVRjFvuTU9wiV2J3m1ybbp08u0MWR32D4NN0ArPo2wLeJSTmgKKbgOFDgQmuKUAgYIWNkKIL-fEeLpQsVvSk-wlrIZzmLpkfvP_67pCmCxaohzJoRV1oopI8euW0iA7sVofAYxkr30DlIGQwxpXcaxVl4AyMF5VrRB2clJ5Hye-Rna7v4gNSsFbVQai2bssojNOOOdVWwnMWvZOmmpFXmVrt94lMwyK9dT4CkWbRPBbNY4015YzsndvgYt7YvNRqS_ItmihbfXzQL49tikWrWGxdEFxraAYb3JE0VD0Va533xrTNjDxDA1ukx-gQf3Ps1sNgP3z5bPcr7Ea0UPBBe0mo7eG1g0vHGUAdyKiVSe5mkhC_IRt-eu5HFocQ9NbFfj1YVnJIY6z8t4RGtj-t-Yzcn_xuo57kzjOiM4_MNJOPdCffRnpxxqAlKNnD_575iFyfUDWMlvUu2Vkt1_ExlG4r_2SMyd_6DER1
  priority: 102
  providerName: Scholars Portal
Title Modularization of biochemical networks based on classification of Petri net t-invariants
URI https://www.ncbi.nlm.nih.gov/pubmed/18257938
https://search.proquest.com/docview/20346720
https://search.proquest.com/docview/70444773
http://dx.doi.org/10.1186/1471-2105-9-90
https://pubmed.ncbi.nlm.nih.gov/PMC2277402
https://doaj.org/article/62efac4377114d1794712912fabb99fd
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdtx2AvY9_z1mVmDPqkxtaXrb2lZaULZIx2hbAXIclyG2jt0iSD_fc7yUpXrexlL36wzkbR3enu4t_9hNBHIzm3VpS4EdRhiFAMQ1hgvtm9pVY4UQYS19lXcXzGpnM-30J80wsTQPvWLPa7y6v9bnERsJXXV3a8wYmNv80OCYGkpSDjbbQNBrop0eOnA0_SH9kZy1qMS9h9MdQ1HEssw7lvUBOBUdZ_dbhfJoEp8Pff36XvhKkUQnknJh09QY9jMplPhkk_RVuue4YeDsdL_nqO5rO-8SjT2GqZ920Oc7GRIiDvBgT4MveRrMlBwPpU2mOHbuXDgVteMl_hRfcT3uVxMy_Q2dHn74fHOJ6kgA3kOyusbeMEp84IXTGnQUG1tdQVrjQNpAiMWyl1QU0lHLeUgJac0A2rrebcUMfpS7TT9Z17jXLSitoy0dZt4ZjUlSZatCUzlDijuSwz9ClZVnU9sGYoz2OdjoBLKa8e5dWjpJJFhvY2Orh9LlQptbgneeBVlLw93OhvzlW0FSWIa7VltKqg6mv81lNBelOSVhsjZdtk6INXsPI8GJ0H2pzr9XKpvpyeqEnpy46KCfhBe1Go7WHaVse-BVgOT52VSO4mkuCoNhl-v7Ej5Yc8uq1z_XqpSEEhXpHi3xKVp_WrKpqhV4Pd_VmeaM4ZqhKLTFYmHQG3Cjzi0Y3e_PeTb9GjAT5DcFHvop3Vzdq9gxxtZUbowWQyPZ2Own8ccJ2xGq4nBz9GwVt_A89CQlo
link.rule.ids 108,230,315,730,783,787,867,888,2109,2228,24332,24951,27938,27939,53806,53808,76148,76149
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL70eg0Agh9eTdxK_E3EpFtYVuhaBFe7Nsxykr2qTq7iLBr2ecOKVuxQGumXEUe8aeGeWbzwi9MZJza0WOK0EdhgjFMIQF5pvda2qFE3lH4jo9EJMj9mHGZ2uID70wHWjfmvmoOTkdNfNvHbby7NSOB5zY-NN0hxBIWjIyvoFuwn7NxFCkh58HnqY_8DPmpRjncP5iqGw4llh2N79BVQRuWV7pcT-JQlPH4H_9nL4UqGIQ5aWotHsPfR3m04NRvo9WSzOyv65QPf7zhO-juyFPTbd78QO05pqH6FZ_c-XPR2g2bSsPYA1dnGlbpzBJG9gH0qYHly9SHySrFBSsz9I9LOlCv7vLy2umSzxvfsC7PCTnMTrafX-4M8HhkgZsIJVaYm0rJzh1RuiCOQ22L62lLnO5qSD7YNxKqTNqCuG4pQQcwAldsdJqzg11nD5B603buGcoJbUoLRN1WWeOSV1ookWdM0OJM5rLPEFvI3ups56QQ3mK7FgCu1V5uytvdyWVzBK0NRj3YlxXAJXimuY7b_vo7d2D9vxYBasoQVytLaNFAQVl5U-1AjKnnNTaGCnrKkGvvecoT7HReAzPsV4tFmrvy2e1nfuKpmACJrQVlOoWPtvq0BIBy-FZuSLNjUgTzgAbiTcHB1Ve5IFzjWtXC0UyCqGQZH_XKDxjYFHQBD3tHfrP8oR9kqAicvVoZWIJOHBHUR4c9vl_j9xEtyeH0321v3fw8QW606N0CM7KDbS-PF-5l5AKLs2rbuP_BuAtX-A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgCMQLvweFwSKEtCc3iX8l5m0Mqg3oNAGTKl4s27FHxZZUa4sEfz3nxB3NJl72Wl-i2vfZd6d8_g6hN0Zybq3IcSWowxChGIawwMJld0-tcCJvRVzHh2L_mH2c8Mlaq6-WtG_NdFifng3r6Y-WWzk7s-mKJ5YejfcIgaQlI-ms8ulNdAv2bFauCvX4ASFI9UeNxrwUaQ5nMIbqhmOJZdv9DSojgGZ56Z77aS88tSr-V8_qtWDVJ1KuRabRffR9NaeOkPJzuFyYof1zSe7xWpN-gO7FfDXZ7UweohuufoRudx0sfz9Gk3FTBSJrvM2ZND6BidqoQpDUHcl8noRgWSVgYEO2HuhJF_ZtT69gmSzwtP4F7wrUnCfoePTh294-js0asIGUaoG1rZzg1BmhC-Y0YKC0lrrM5aaCLIRxK6XOqCmE45YSAIITumKl1Zwb6jjdRBt1U7tnKCFelJYJX_rMMakLTbTwOTOUOKO5zAfobc9natYJc6ggld0fgV2rgu9V8L2SSmYDtLNy8MVzbSFUiiuW74L_e29vf2jOT1T0jBLEeW0ZLQooLKtwuhWQQeXEa2Ok9NUAvQ7oUUFqow5cnhO9nM_VwdcvajcPlU3BBExoJxr5Bv621fFqBCxHUOfqWW71LOEssL3h7RVIVRgKBLraNcu5IhmFkEiy_1sUQTmwKOgAPe1A_W954l4ZoKIH997K9EcAxK1UeQTt82s_uY3uHL0fqc8Hh59eoLsdWYfgrNxCG4vzpXsJGeHCvGr3_l-tCGJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modularization+of+biochemical+networks+based+on+classification+of+Petri+net+t-invariants&rft.jtitle=BMC+bioinformatics&rft.au=Grafahrend-Belau%2C+Eva&rft.au=Schreiber%2C+Falk&rft.au=Heiner%2C+Monika&rft.au=Sackmann%2C+Andrea&rft.date=2008-02-08&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=9&rft.spage=90&rft.epage=90&rft_id=info:doi/10.1186%2F1471-2105-9-90&rft_id=info%3Apmid%2F18257938&rft.externalDBID=PMC2277402
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon