Modularization of biochemical networks based on classification of Petri net t-invariants
Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion....
Saved in:
Published in | BMC bioinformatics Vol. 9; no. 1; p. 90 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
08.02.2008
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior.With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system.
Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied.
We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability.
We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis. |
---|---|
AbstractList | Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior.With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system.
Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied.
We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability.
We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis. Abstract Background Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior. With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Methods Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. Results We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. Conclusion We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis. Background Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior. With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Methods Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. Results We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. Conclusion We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis. BACKGROUNDStructural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior.With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. METHODSHere, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. RESULTSWe considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. CONCLUSIONWe propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis. |
ArticleNumber | 90 |
Audience | Academic |
Author | Heiner, Monika Junker, Björn H Koch, Ina Speer, Astrid Winder, Katja Grunwald, Stefanie Schreiber, Falk Sackmann, Andrea Grafahrend-Belau, Eva |
AuthorAffiliation | 5 Max Planck Institute for Molecular Genetics, Dept. Computational Molecular Biology, Ihnestr. 73, 14195 Berlin, Germany 1 Technical University of Applied Sciences Berlin, FB VI/FB V, Bioinformatics/Biotechnology, Seestr. 64, 13347 Berlin, Germany 2 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Dept. of Molecular Genetics, Corrensstrasse 3, 06466 Gatersleben, Germany 3 Brandendenburg University of Technology at Cottbus, Dept. of Computer Science, Postbox 10 13 44, 03013 Cottbus, Germany 4 Poznań University of Technology, Institute of Computing Science, ul. Piotrowo 2, 60-965 Poznań, Poland |
AuthorAffiliation_xml | – name: 5 Max Planck Institute for Molecular Genetics, Dept. Computational Molecular Biology, Ihnestr. 73, 14195 Berlin, Germany – name: 4 Poznań University of Technology, Institute of Computing Science, ul. Piotrowo 2, 60-965 Poznań, Poland – name: 1 Technical University of Applied Sciences Berlin, FB VI/FB V, Bioinformatics/Biotechnology, Seestr. 64, 13347 Berlin, Germany – name: 2 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Dept. of Molecular Genetics, Corrensstrasse 3, 06466 Gatersleben, Germany – name: 3 Brandendenburg University of Technology at Cottbus, Dept. of Computer Science, Postbox 10 13 44, 03013 Cottbus, Germany |
Author_xml | – sequence: 1 givenname: Eva surname: Grafahrend-Belau fullname: Grafahrend-Belau, Eva email: grafahr@ipk-gatersleben.de organization: Technical University of Applied Sciences Berlin, FB VI/FB V, Bioinformatics/Biotechnology, Seestr, 64, 13347 Berlin, Germany. grafahr@ipk-gatersleben.de – sequence: 2 givenname: Falk surname: Schreiber fullname: Schreiber, Falk – sequence: 3 givenname: Monika surname: Heiner fullname: Heiner, Monika – sequence: 4 givenname: Andrea surname: Sackmann fullname: Sackmann, Andrea – sequence: 5 givenname: Björn H surname: Junker fullname: Junker, Björn H – sequence: 6 givenname: Stefanie surname: Grunwald fullname: Grunwald, Stefanie – sequence: 7 givenname: Astrid surname: Speer fullname: Speer, Astrid – sequence: 8 givenname: Katja surname: Winder fullname: Winder, Katja – sequence: 9 givenname: Ina surname: Koch fullname: Koch, Ina |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18257938$$D View this record in MEDLINE/PubMed |
BookMark | eNqFktuL1DAUh4usuBd99VEKguBD19zaNC_CsHgZWFG8gG_hJD2dzdppdpPMevnrTZ1x3eKK9KHlnC9fyu-cw2Jv9CMWxUNKjiltm2dUSFoxSupKVYrcKQ6uC3s3vveLwxjPCaGyJfW9Yp-2rJaKtwfF5ze-2wwQ3A9Izo-l70vjvD3DtbMwlCOmrz58iaWBiF2ZATtAjK7P3d_8O0zBTWSZKjdeZReMKd4v7vYwRHywex8Vn16--Hjyujp9-2p5sjitTCNEqsB22NQcTQNSIBhVt9ZyJEhNJ1smaqsUEG5kg7XlrOcWG-hEa6GuDceaHxXLrbfzcK4vgltD-K49OP2r4MNKQ0jODqgbhj1YwaWkVHRUqhwPU5T1YIxSfZddz7eui41ZY2dxTAGGmXTeGd2ZXvkrzZiUgrAsWGwFOcN_COYd69d6mpKepqSVViQ7nux-IvjLDcak1y5aHAYY0W-ilkQIISX_L8gIF41kk_HxFlxBTsGNvc932wnWCyolU1I0NFPHt1D56aZdyFvXu1yfHXg6O5CZhN_SCjYx6uWH97fKbfAxBuyvM6FET4v8dwqPbo7iD77bXP4TZsLwJw |
CitedBy_id | crossref_primary_10_7243_2050_1412_1_2 crossref_primary_10_1152_ajpcell_00487_2022 crossref_primary_10_3390_ijms20163909 crossref_primary_10_1016_j_biosystems_2022_104793 crossref_primary_10_3389_fgene_2017_00085 crossref_primary_10_1007_s11047_010_9178_0 crossref_primary_10_1016_j_compbiomed_2023_107729 crossref_primary_10_3390_ijms21093348 crossref_primary_10_1016_j_biosystems_2018_01_002 crossref_primary_10_1371_journal_pone_0173020 crossref_primary_10_1016_j_dam_2008_06_053 crossref_primary_10_1016_j_biosystems_2008_02_005 crossref_primary_10_1587_transfun_E93_A_2717 crossref_primary_10_1007_s00287_013_0757_1 crossref_primary_10_1109_TCBB_2010_117 crossref_primary_10_1039_b816841p crossref_primary_10_3390_biology11030430 crossref_primary_10_1093_bioinformatics_bts307 crossref_primary_10_1093_bioinformatics_btt165 crossref_primary_10_1007_s00287_009_0355_4 crossref_primary_10_1039_c3mb25593j crossref_primary_10_1016_j_entcs_2013_07_008 crossref_primary_10_3390_biomedicines12010131 crossref_primary_10_3390_ijms221910518 crossref_primary_10_3390_ijms21228574 crossref_primary_10_1007_s00449_010_0507_6 crossref_primary_10_1007_s11047_010_9180_6 crossref_primary_10_3390_a10010004 crossref_primary_10_1007_s12539_018_0310_7 crossref_primary_10_1186_1748_7188_5_36 crossref_primary_10_1186_1748_7188_7_15 crossref_primary_10_1186_s12918_017_0448_7 crossref_primary_10_1016_j_biosystems_2008_12_003 crossref_primary_10_1016_j_tcs_2011_06_013 crossref_primary_10_1007_s10270_014_0421_5 crossref_primary_10_3389_fdata_2023_1268503 crossref_primary_10_3390_metabo5040766 crossref_primary_10_3390_metabo3030673 crossref_primary_10_3390_ijms23031189 crossref_primary_10_1016_j_copbio_2010_07_002 crossref_primary_10_3390_ijms19113476 |
Cites_doi | 10.1111/j.1742-4658.2005.04924.x 10.1016/j.biosystems.2004.03.003 10.1093/bib/bbm029 10.1007/11885191_9 10.1049/ip-syb:20060013 10.1093/bioinformatics/bti1130 10.1017/CBO9780511790492 10.1016/j.jtbi.2005.03.018 10.1016/j.peptides.2003.10.022 10.1080/01969727408546059 10.1006/jtbi.2000.1073 10.1093/ietfec/e89-a.11.3166 10.1111/j.2044-8317.1976.tb00714.x 10.1016/0377-0427(87)90125-7 10.1007/978-3-663-09262-9 10.1016/j.biosystems.2008.02.005 10.1142/S0219720004000764 10.1093/bioinformatics/bti517 10.1002/9780470253489.ch7 10.1093/bioinformatics/bth167 10.1126/science.1104568 10.1073/pnas.97.10.5528 10.1007/978-3-642-18638-7_3 10.1002/bit.1171 10.1145/321356.321364 10.1109/PROC.1968.6414 10.1186/1471-2105-7-482 10.1128/JB.184.16.4582-4593.2002 10.1016/S0022-5193(03)00237-6 10.1158/0008-5472.CAN-04-3995 10.1109/TPAMI.1979.4766909 10.1177/0037549703040940 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2008 BioMed Central Ltd. Copyright © 2008 Grafahrend-Belau et al; licensee BioMed Central Ltd. 2008 Grafahrend-Belau et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2008 BioMed Central Ltd. – notice: Copyright © 2008 Grafahrend-Belau et al; licensee BioMed Central Ltd. 2008 Grafahrend-Belau et al; licensee BioMed Central Ltd. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION ISR 7QO 7TM 8FD FR3 M7N P64 7X8 5PM DOA |
DOI | 10.1186/1471-2105-9-90 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Science Biotechnology Research Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2105 |
EndPage | 90 |
ExternalDocumentID | oai_doaj_org_article_62efac4377114d1794712912fabb99fd oai_biomedcentral_com_1471_2105_9_90 A177297461 10_1186_1471_2105_9_90 18257938 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | --- -A0 0R~ 123 23N 2VQ 2WC 4.4 53G 5VS 6J9 AAFWJ AAJSJ AAKPC ABDBF ACGFO ACGFS ACIHN ACIWK ACPRK ACRMQ ADBBV ADINQ ADRAZ ADUKV AEAQA AENEX AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC C1A C24 C6C CGR CS3 CUY CVF DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS ECM EIF EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO IHR INH INR IPNFZ ISR ITC KQ8 M48 MK~ ML0 M~E NPM O5R O5S OK1 P2P PGMZT PIMPY PQQKQ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS W2D WOQ WOW XH6 XSB AAYXX AFPKN CITATION 7X7 ABVAZ AFGXO AFNRJ 7QO 7TM 8FD FR3 M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-b644t-acde653eb6a74eab958cc3e0e1bd78245c99a03b76e5c32f3ce6ad48ca55b3e53 |
IEDL.DBID | RPM |
ISSN | 1471-2105 |
IngestDate | Tue Oct 22 15:11:05 EDT 2024 Tue Sep 17 21:08:10 EDT 2024 Wed May 22 07:12:55 EDT 2024 Fri Oct 25 02:00:33 EDT 2024 Fri Oct 25 07:31:12 EDT 2024 Fri Feb 23 00:21:09 EST 2024 Fri Feb 02 04:40:32 EST 2024 Sat Sep 28 21:19:09 EDT 2024 Thu Sep 12 18:56:45 EDT 2024 Tue Oct 15 23:32:23 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b644t-acde653eb6a74eab958cc3e0e1bd78245c99a03b76e5c32f3ce6ad48ca55b3e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277402/ |
PMID | 18257938 |
PQID | 20346720 |
PQPubID | 23462 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_62efac4377114d1794712912fabb99fd pubmedcentral_primary_oai_pubmedcentral_nih_gov_2277402 biomedcentral_primary_oai_biomedcentral_com_1471_2105_9_90 proquest_miscellaneous_70444773 proquest_miscellaneous_20346720 gale_infotracmisc_A177297461 gale_infotracacademiconefile_A177297461 gale_incontextgauss_ISR_A177297461 crossref_primary_10_1186_1471_2105_9_90 pubmed_primary_18257938 |
PublicationCentury | 2000 |
PublicationDate | 2008-02-08 |
PublicationDateYYYYMMDD | 2008-02-08 |
PublicationDate_xml | – month: 02 year: 2008 text: 2008-02-08 day: 08 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | BMC bioinformatics |
PublicationTitleAlternate | BMC Bioinformatics |
PublicationYear | 2008 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | 15037506 - Bioinformatics. 2004 Aug 12;20(12):1870-6 15374648 - Peptides. 2004 Sep;25(9):1465-76 15567849 - Science. 2004 Nov 26;306(5701):1508-9 15617157 - J Bioinform Comput Biol. 2004 Dec;2(4):595-613 3221794 - Mol Biol Evol. 1988 Nov;5(6):729-31 12954096 - In Silico Biol. 2003;3(3):389-404 11536134 - Biotechnol Bioeng. 2001 Oct 5;75(1):120-9 14575652 - J Theor Biol. 2003 Nov 21;225(2):185-94 17081284 - BMC Bioinformatics. 2006;7:482 15904935 - J Theor Biol. 2005 Oct 21;236(4):349-65 3447015 - Mol Biol Evol. 1987 Jul;4(4):406-25 10716907 - J Theor Biol. 2000 Apr 7;203(3):229-48 12142428 - J Bacteriol. 2002 Aug;184(16):4582-93 21868852 - IEEE Trans Pattern Anal Mach Intell. 1979 Feb;1(2):224-7 16204102 - Bioinformatics. 2005 Sep 1;21 Suppl 2:ii190-6 10805808 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5528-33 15245801 - Biosystems. 2004 Jul;75(1-3):15-28 18372101 - Biosystems. 2008 May;92(2):189-205 16986319 - Syst Biol (Stevenage). 2006 Sep;153(5):369-71 17626066 - Brief Bioinform. 2007 Jul;8(4):210-9 16464248 - BMC Bioinformatics. 2006;7:56 15899785 - Cancer Res. 2005 May 15;65(10):3980-5 15914541 - Bioinformatics. 2005 Aug 1;21(15):3201-12 12954095 - In Silico Biol. 2003;3(3):347-65 16218958 - FEBS J. 2005 Oct;272(20):5278-90 H Ma (2075_CR22) 2004; 20 L Bardwell (2075_CR44) 2004; 25 M Chen (2075_CR13) 2003; 3 N Saitou (2075_CR36) 1987; 4 S Schuster (2075_CR6) 2005; 272 K Backhaus (2075_CR34) 2003 AL Gartel (2075_CR46) 2005; 65 ND Price (2075_CR7) 2003; 225 C Chaouiya (2075_CR16) 2007; 8 J Handl (2075_CR33) 2005; 21 T Murata (2075_CR27) 1989 D Steinhausen (2075_CR35) 1977 I Koch (2075_CR19) 2008 J Dunn (2075_CR41) 1974; 4 M Heiner (2075_CR20) 2004 JS Edwards (2075_CR1) 2000; 97 K Lautenbach (2075_CR5) 1973 B Baumgarten (2075_CR25) 1996 L Hubert (2075_CR43) 1976; 29 T Dwyer (2075_CR52) 2004 H Matsuno (2075_CR9) 2003; 3 R David (2075_CR26) 2005 JL Peterson (2075_CR28) 1981 E Simão (2075_CR15) 2005; 21 M Ederer (2075_CR21) 2003; 79 2075_CR48 S Pérès (2075_CR23) 2006; 5 2075_CR49 H Matsuno (2075_CR18) 2006; E89-A S Gunter (2075_CR39) 2001 A Schrijver (2075_CR30) 1998 S Hardy (2075_CR17) 2004; 2 CH Schilling (2075_CR2) 2002; 184 G Nagy (2075_CR47) 1969; 56 Y Wang (2075_CR45) 2004; 306 PJ Rousseeuw (2075_CR40) 1987; 20 LJ Steggles (2075_CR12) 2006 S Klamt (2075_CR31) 2006 R Durbin (2075_CR38) 1998 2075_CR50 RJ Parikh (2075_CR53) 1966; 13 2075_CR51 W Marwan (2075_CR14) 2005; 236 P Legendre (2075_CR32) 1998 JA Studier (2075_CR37) 1988; 5 R Srivastava (2075_CR11) 2001; 1 2075_CR24 S Schuster (2075_CR3) 1993 PH Starke (2075_CR29) 1990 DL Davies (2075_CR42) 1979; 1 M Heiner (2075_CR8) 2004; 75 CH Schilling (2075_CR4) 2000; 203 A Sackmann (2075_CR10) 2006; 7 |
References_xml | – ident: 2075_CR50 – volume: 272 start-page: 5287 issue: 20 year: 2005 ident: 2075_CR6 publication-title: FEBS Journal doi: 10.1111/j.1742-4658.2005.04924.x contributor: fullname: S Schuster – volume: 75 start-page: 1 year: 2004 ident: 2075_CR8 publication-title: BioSystems doi: 10.1016/j.biosystems.2004.03.003 contributor: fullname: M Heiner – volume: 8 start-page: 210 issue: 4 year: 2007 ident: 2075_CR16 publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbm029 contributor: fullname: C Chaouiya – volume: 3 start-page: 389 issue: 3 year: 2003 ident: 2075_CR9 publication-title: In Silico Biology contributor: fullname: H Matsuno – volume-title: Discrete, Continuous, and Hybrid Petri nets year: 2005 ident: 2075_CR26 contributor: fullname: R David – start-page: 127 volume-title: Proceedings of Computational Methods in Systems Biology (CMSB) year: 2006 ident: 2075_CR12 doi: 10.1007/11885191_9 contributor: fullname: LJ Steggles – volume: 5 start-page: 369 year: 2006 ident: 2075_CR23 publication-title: IEE Proceedings Systems Biology doi: 10.1049/ip-syb:20060013 contributor: fullname: S Pérès – start-page: 541 volume-title: Proceedings of the IEEE year: 1989 ident: 2075_CR27 contributor: fullname: T Murata – volume: 4 start-page: 406 year: 1987 ident: 2075_CR36 publication-title: Molecular Biology and Evolution contributor: fullname: N Saitou – volume: 21 start-page: 190 issue: Suppl 2 year: 2005 ident: 2075_CR15 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1130 contributor: fullname: E Simão – volume-title: Biological sequence analysis – Probabilistic models of proteins and nucleic acids year: 1998 ident: 2075_CR38 doi: 10.1017/CBO9780511790492 contributor: fullname: R Durbin – volume: 236 start-page: 349 issue: 4 year: 2005 ident: 2075_CR14 publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2005.03.018 contributor: fullname: W Marwan – volume: 25 start-page: 1465 year: 2004 ident: 2075_CR44 publication-title: Peptides doi: 10.1016/j.peptides.2003.10.022 contributor: fullname: L Bardwell – volume: 5 start-page: 729 year: 1988 ident: 2075_CR37 publication-title: Molecular Biology and Evolution contributor: fullname: JA Studier – volume: 4 start-page: 95 year: 1974 ident: 2075_CR41 publication-title: Journal of Cybernetics doi: 10.1080/01969727408546059 contributor: fullname: J Dunn – volume: 203 start-page: 229 year: 2000 ident: 2075_CR4 publication-title: Journal of Theoretical Biology doi: 10.1006/jtbi.2000.1073 contributor: fullname: CH Schilling – volume-title: Numerical ecology year: 1998 ident: 2075_CR32 contributor: fullname: P Legendre – volume: E89-A start-page: 3166 issue: 11 year: 2006 ident: 2075_CR18 publication-title: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences doi: 10.1093/ietfec/e89-a.11.3166 contributor: fullname: H Matsuno – volume: 29 start-page: 190 year: 1976 ident: 2075_CR43 publication-title: British Journal of Mathematical and Statistical Psychology doi: 10.1111/j.2044-8317.1976.tb00714.x contributor: fullname: L Hubert – start-page: 229 volume-title: Proceedings of the Third IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition year: 2001 ident: 2075_CR39 contributor: fullname: S Gunter – volume: 20 start-page: 53 year: 1987 ident: 2075_CR40 publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/0377-0427(87)90125-7 contributor: fullname: PJ Rousseeuw – volume-title: Analysis of Petri net models (in German) year: 1990 ident: 2075_CR29 doi: 10.1007/978-3-663-09262-9 contributor: fullname: PH Starke – ident: 2075_CR24 doi: 10.1016/j.biosystems.2008.02.005 – volume: 3 start-page: 347 issue: 3 year: 2003 ident: 2075_CR13 publication-title: In Silico Biology contributor: fullname: M Chen – volume-title: BMC Bioinformatics year: 2006 ident: 2075_CR31 contributor: fullname: S Klamt – volume: 2 start-page: 595 issue: 4 year: 2004 ident: 2075_CR17 publication-title: J Bioinform Comput Biol doi: 10.1142/S0219720004000764 contributor: fullname: S Hardy – volume-title: Petri Nets. Basic principles and applications (in German) year: 1996 ident: 2075_CR25 contributor: fullname: B Baumgarten – volume: 21 start-page: 3201 issue: 15 year: 2005 ident: 2075_CR33 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti517 contributor: fullname: J Handl – start-page: 139 volume-title: Analysis of biological networks year: 2008 ident: 2075_CR19 doi: 10.1002/9780470253489.ch7 contributor: fullname: I Koch – volume: 20 start-page: 1870 issue: 12 year: 2004 ident: 2075_CR22 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth167 contributor: fullname: H Ma – volume: 306 start-page: 1508 year: 2004 ident: 2075_CR45 publication-title: Science doi: 10.1126/science.1104568 contributor: fullname: Y Wang – volume: 97 start-page: 5528 issue: 10 year: 2000 ident: 2075_CR1 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.10.5528 contributor: fullname: JS Edwards – volume-title: Theory of linear and integer programming year: 1998 ident: 2075_CR30 contributor: fullname: A Schrijver – start-page: 55 volume-title: Graph Drawing Software, Mathematics and Visualization year: 2004 ident: 2075_CR52 doi: 10.1007/978-3-642-18638-7_3 contributor: fullname: T Dwyer – volume-title: Berichte der GMD year: 1973 ident: 2075_CR5 contributor: fullname: K Lautenbach – volume: 1 start-page: 120 issue: 75 year: 2001 ident: 2075_CR11 publication-title: Biotechnology and Bioengineering doi: 10.1002/bit.1171 contributor: fullname: R Srivastava – volume: 13 start-page: 570 year: 1966 ident: 2075_CR53 publication-title: Journal Assoc. Comp. Mach doi: 10.1145/321356.321364 contributor: fullname: RJ Parikh – volume: 56 start-page: 836 year: 1969 ident: 2075_CR47 publication-title: Proceedings of the IEEE doi: 10.1109/PROC.1968.6414 contributor: fullname: G Nagy – ident: 2075_CR49 – volume: 7 start-page: 482 year: 2006 ident: 2075_CR10 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-482 contributor: fullname: A Sackmann – volume: 184 start-page: 4582 year: 2002 ident: 2075_CR2 publication-title: Journal of Bacteriology doi: 10.1128/JB.184.16.4582-4593.2002 contributor: fullname: CH Schilling – start-page: 101 volume-title: Proceedings of the Second Gauss Symposium, München year: 1993 ident: 2075_CR3 contributor: fullname: S Schuster – volume-title: Petri Net Theory and the Modeling of Systems year: 1981 ident: 2075_CR28 contributor: fullname: JL Peterson – ident: 2075_CR51 – volume: 225 start-page: 185 year: 2003 ident: 2075_CR7 publication-title: Journal of Theoretical Biology doi: 10.1016/S0022-5193(03)00237-6 contributor: fullname: ND Price – start-page: 216 volume-title: Proceedings of the 25th International Conference on Applications and Theory of Petri Nets year: 2004 ident: 2075_CR20 contributor: fullname: M Heiner – volume-title: Multivariate analysis methods. An application-oriented introduction (in German) year: 2003 ident: 2075_CR34 contributor: fullname: K Backhaus – volume: 65 start-page: 3980 issue: 10 year: 2005 ident: 2075_CR46 publication-title: Cancer Research doi: 10.1158/0008-5472.CAN-04-3995 contributor: fullname: AL Gartel – volume: 1 start-page: 224 issue: 4 year: 1979 ident: 2075_CR42 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.1979.4766909 contributor: fullname: DL Davies – volume: 79 start-page: 703 issue: 12 year: 2003 ident: 2075_CR21 publication-title: Simulation doi: 10.1177/0037549703040940 contributor: fullname: M Ederer – volume-title: Cluster analysis. An Introduction to methods for automatic classification (in German) year: 1977 ident: 2075_CR35 contributor: fullname: D Steinhausen – ident: 2075_CR48 |
SSID | ssj0017805 |
Score | 2.231642 |
Snippet | Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological... Background Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of... BACKGROUNDStructural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of... BACKGROUND: Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of... Abstract Background Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing... |
SourceID | doaj pubmedcentral biomedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 90 |
SubjectTerms | Algorithms Computational biology Computer Simulation Genes Models, Biological Multigene Family - physiology Proteome - metabolism Saccharomyces cerevisiae Signal Transduction - physiology Transduction |
SummonAdditionalLinks | – databaseName: Open Access: BioMedCentral Open Access Titles dbid: RBZ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQERIXVL5TCkQIqSeLxJ8xtxZRFaRyKFRacbFsx4ZKKEHsLhL_npnE3dZdceK6fomyfh7PTDLzTMhrb6QMQbW0VzxS8FCCglsQ2OyeeFBRtZOI6-kndXIuPi7k4up9x40v-G2n3rSwfVJITCQ11EByfhtPS0YTPDv6uvlegMr8Ux9RxmZ5xu3rb_S1_yjc0aTav703X3NOZeHkNU90vEvu5RCyPpw5v09uxeEBuTMfKvnnIVmcjj3WluYGy3pMNTxLyMIA9TDXfS9r9F99DYCAATRWDG3w0zFbiKxX9GL4DffCaplH5Pz4_Zd3JzSfn0A9RDkr6kIfleTRK6dFdEBLFwKPTWx9D4GBkMEY13CvVZSBM-AmKteLLjgpPY-SPyY7wzjEp6RmSXVBqNSlJgrjtGNOpVZ4zqJ30rQVeVtMq_05a2VYVK8uR8CQLHJikRNrrGkqcnDJwea6KTfp1BbyCCkq7j79AAvGZlOzisXkguBaQ67X44ajIahpWXLeG5P6irxCgi2qXwxYXvPNrZdL--HzmT1sMdnQQsEfOsigNMJjB5e7FWA6UDCrQO4XSDDPUAy_vFxHFoewpm2I43ppWcPBS7Hm3wiNYn5a84o8mdfd1fRAYg87a1cRXazIYmbKkeHi-6QezhhE_A3b-x_GnpG7c90Mo023T3ZWv9bxOQRnK_9issu_SR03Kg priority: 500 providerName: BioMedCentral – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEF-kIHgRv422GkToaWmyn9ne2mKpQj2ohXdbdje7WiiJ-N4T_O-d2eQ931LEi9fMJCQzszsz5De_JeStN1KGoFraKx4pZChBIS0IHHZPPKio2kzievlRXVyJDwu52DnqCzFhEz3wZLgjxWJyQXCtoXLvMXw0pKiWJee9ManPu29jNs3U_P8AmfrzXJFuKYjlTNfYdupoe40aijtxMed-U6SnzOJ_e6_eSVYlkHInM50_IPfnkrI-mT7lIbkTh0fk7nTI5K_HZHE59og1nQcu6zHV8C5hJgqohwkHvqwxn_U1KAQsqBFBtNXPx26hZr2i18NPeBaiZ56Qq_N3X84u6HyeAvVQ9ayoC31UkkevnBbRgZu6EHhsYut7KBSEDMa4hnutogycga-icr3ogpPS8yj5U7I3jEN8TmqWVBeESl1qojBOO-ZUaoXnLHonTVuR48Ks9vvEnWGRzbqUwMKy6BOLPrHGmqYihxsfbO_LvUqnbmmeoouKp-cLEEF2jiD7rwiqyBt0sEU2jAHhNl_derm07z9_sictNh9aKPigw1kpjfDawc3TC2AOJNAqNPcLTViuoRC_3sSRRRFi3IY4rpeWNRyyFmv-rqGR3E9rXpFnU9z9MQ80-rDTdhXRRUQWliklw_W3zCbOGHQADXvxP0z5ktyb8DSMNt0-2Vv9WMcDKNpW_lVen78BIA0_GQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA9yIvgifrt6ahHhnqJtPhtB5BSPUzgf1IV9C0mangdHq9td8f57Z9rc7cXVF1-bSWjnIzNDf_mFkOfeSBmCqmijeKSQoQSFtCDwsHvLg4qqGklcjz6pw7n4uJCLDf4pKXD4a2uH90nNl6cvfv04ewMB_3oM-Fq9rGCDpdC6SGqogfb9KkNSLoTxic0fBeTuT6SN23OQOhRaJfDV-o-D76dZvhpp_bc370vZK0dWXkpVBzfJjVRjFvuTU9wiV2J3m1ybbp08u0MWR32D4NN0ArPo2wLeJSTmgKKbgOFDgQmuKUAgYIWNkKIL-fEeLpQsVvSk-wlrIZzmLpkfvP_67pCmCxaohzJoRV1oopI8euW0iA7sVofAYxkr30DlIGQwxpXcaxVl4AyMF5VrRB2clJ5Hye-Rna7v4gNSsFbVQai2bssojNOOOdVWwnMWvZOmmpFXmVrt94lMwyK9dT4CkWbRPBbNY4015YzsndvgYt7YvNRqS_ItmihbfXzQL49tikWrWGxdEFxraAYb3JE0VD0Va533xrTNjDxDA1ukx-gQf3Ps1sNgP3z5bPcr7Ea0UPBBe0mo7eG1g0vHGUAdyKiVSe5mkhC_IRt-eu5HFocQ9NbFfj1YVnJIY6z8t4RGtj-t-Yzcn_xuo57kzjOiM4_MNJOPdCffRnpxxqAlKNnD_575iFyfUDWMlvUu2Vkt1_ExlG4r_2SMyd_6DER1 priority: 102 providerName: Scholars Portal |
Title | Modularization of biochemical networks based on classification of Petri net t-invariants |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18257938 https://search.proquest.com/docview/20346720 https://search.proquest.com/docview/70444773 http://dx.doi.org/10.1186/1471-2105-9-90 https://pubmed.ncbi.nlm.nih.gov/PMC2277402 https://doaj.org/article/62efac4377114d1794712912fabb99fd |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdtx2AvY9_z1mVmDPqkxtaXrb2lZaULZIx2hbAXIclyG2jt0iSD_fc7yUpXrexlL36wzkbR3enu4t_9hNBHIzm3VpS4EdRhiFAMQ1hgvtm9pVY4UQYS19lXcXzGpnM-30J80wsTQPvWLPa7y6v9bnERsJXXV3a8wYmNv80OCYGkpSDjbbQNBrop0eOnA0_SH9kZy1qMS9h9MdQ1HEssw7lvUBOBUdZ_dbhfJoEp8Pff36XvhKkUQnknJh09QY9jMplPhkk_RVuue4YeDsdL_nqO5rO-8SjT2GqZ920Oc7GRIiDvBgT4MveRrMlBwPpU2mOHbuXDgVteMl_hRfcT3uVxMy_Q2dHn74fHOJ6kgA3kOyusbeMEp84IXTGnQUG1tdQVrjQNpAiMWyl1QU0lHLeUgJac0A2rrebcUMfpS7TT9Z17jXLSitoy0dZt4ZjUlSZatCUzlDijuSwz9ClZVnU9sGYoz2OdjoBLKa8e5dWjpJJFhvY2Orh9LlQptbgneeBVlLw93OhvzlW0FSWIa7VltKqg6mv81lNBelOSVhsjZdtk6INXsPI8GJ0H2pzr9XKpvpyeqEnpy46KCfhBe1Go7WHaVse-BVgOT52VSO4mkuCoNhl-v7Ej5Yc8uq1z_XqpSEEhXpHi3xKVp_WrKpqhV4Pd_VmeaM4ZqhKLTFYmHQG3Cjzi0Y3e_PeTb9GjAT5DcFHvop3Vzdq9gxxtZUbowWQyPZ2Own8ccJ2xGq4nBz9GwVt_A89CQlo |
link.rule.ids | 108,230,315,730,783,787,867,888,2109,2228,24332,24951,27938,27939,53806,53808,76148,76149 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL70eg0Agh9eTdxK_E3EpFtYVuhaBFe7Nsxykr2qTq7iLBr2ecOKVuxQGumXEUe8aeGeWbzwi9MZJza0WOK0EdhgjFMIQF5pvda2qFE3lH4jo9EJMj9mHGZ2uID70wHWjfmvmoOTkdNfNvHbby7NSOB5zY-NN0hxBIWjIyvoFuwn7NxFCkh58HnqY_8DPmpRjncP5iqGw4llh2N79BVQRuWV7pcT-JQlPH4H_9nL4UqGIQ5aWotHsPfR3m04NRvo9WSzOyv65QPf7zhO-juyFPTbd78QO05pqH6FZ_c-XPR2g2bSsPYA1dnGlbpzBJG9gH0qYHly9SHySrFBSsz9I9LOlCv7vLy2umSzxvfsC7PCTnMTrafX-4M8HhkgZsIJVaYm0rJzh1RuiCOQ22L62lLnO5qSD7YNxKqTNqCuG4pQQcwAldsdJqzg11nD5B603buGcoJbUoLRN1WWeOSV1ookWdM0OJM5rLPEFvI3ups56QQ3mK7FgCu1V5uytvdyWVzBK0NRj3YlxXAJXimuY7b_vo7d2D9vxYBasoQVytLaNFAQVl5U-1AjKnnNTaGCnrKkGvvecoT7HReAzPsV4tFmrvy2e1nfuKpmACJrQVlOoWPtvq0BIBy-FZuSLNjUgTzgAbiTcHB1Ve5IFzjWtXC0UyCqGQZH_XKDxjYFHQBD3tHfrP8oR9kqAicvVoZWIJOHBHUR4c9vl_j9xEtyeH0321v3fw8QW606N0CM7KDbS-PF-5l5AKLs2rbuP_BuAtX-A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgCMQLvweFwSKEtCc3iX8l5m0Mqg3oNAGTKl4s27FHxZZUa4sEfz3nxB3NJl72Wl-i2vfZd6d8_g6hN0Zybq3IcSWowxChGIawwMJld0-tcCJvRVzHh2L_mH2c8Mlaq6-WtG_NdFifng3r6Y-WWzk7s-mKJ5YejfcIgaQlI-ms8ulNdAv2bFauCvX4ASFI9UeNxrwUaQ5nMIbqhmOJZdv9DSojgGZ56Z77aS88tSr-V8_qtWDVJ1KuRabRffR9NaeOkPJzuFyYof1zSe7xWpN-gO7FfDXZ7UweohuufoRudx0sfz9Gk3FTBSJrvM2ZND6BidqoQpDUHcl8noRgWSVgYEO2HuhJF_ZtT69gmSzwtP4F7wrUnCfoePTh294-js0asIGUaoG1rZzg1BmhC-Y0YKC0lrrM5aaCLIRxK6XOqCmE45YSAIITumKl1Zwb6jjdRBt1U7tnKCFelJYJX_rMMakLTbTwOTOUOKO5zAfobc9natYJc6ggld0fgV2rgu9V8L2SSmYDtLNy8MVzbSFUiiuW74L_e29vf2jOT1T0jBLEeW0ZLQooLKtwuhWQQeXEa2Ok9NUAvQ7oUUFqow5cnhO9nM_VwdcvajcPlU3BBExoJxr5Bv621fFqBCxHUOfqWW71LOEssL3h7RVIVRgKBLraNcu5IhmFkEiy_1sUQTmwKOgAPe1A_W954l4ZoKIH997K9EcAxK1UeQTt82s_uY3uHL0fqc8Hh59eoLsdWYfgrNxCG4vzpXsJGeHCvGr3_l-tCGJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modularization+of+biochemical+networks+based+on+classification+of+Petri+net+t-invariants&rft.jtitle=BMC+bioinformatics&rft.au=Grafahrend-Belau%2C+Eva&rft.au=Schreiber%2C+Falk&rft.au=Heiner%2C+Monika&rft.au=Sackmann%2C+Andrea&rft.date=2008-02-08&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=9&rft.spage=90&rft.epage=90&rft_id=info:doi/10.1186%2F1471-2105-9-90&rft_id=info%3Apmid%2F18257938&rft.externalDBID=PMC2277402 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |