Bayesian meta-analysis models for microarray data: a comparative study

With the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common approaches for meta-analysis of microarrays include either combining gene expression measures across studies or combining summaries such as p-values, probabiliti...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 8; no. 1; p. 80
Main Authors Conlon, Erin M, Song, Joon J, Liu, Anna
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 07.03.2007
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common approaches for meta-analysis of microarrays include either combining gene expression measures across studies or combining summaries such as p-values, probabilities or ranks. Here, we compare two Bayesian meta-analysis models that are analogous to these methods. Two Bayesian meta-analysis models for microarray data have recently been introduced. The first model combines standardized gene expression measures across studies into an overall mean, accounting for inter-study variability, while the second combines probabilities of differential expression without combining expression values. Both models produce the gene-specific posterior probability of differential expression, which is the basis for inference. Since the standardized expression integration model includes inter-study variability, it may improve accuracy of results versus the probability integration model. However, due to the small number of studies typical in microarray meta-analyses, the variability between studies is challenging to estimate. The probability integration model eliminates the need to model variability between studies, and thus its implementation is more straightforward. We found in simulations of two and five studies that combining probabilities outperformed combining standardized gene expression measures for three comparison values: the percent of true discovered genes in meta-analysis versus individual studies; the percent of true genes omitted in meta-analysis versus separate studies, and the number of true discovered genes for fixed levels of Bayesian false discovery. We identified similar results when pooling two independent studies of Bacillus subtilis. We assumed that each study was produced from the same microarray platform with only two conditions: a treatment and control, and that the data sets were pre-scaled. The Bayesian meta-analysis model that combines probabilities across studies does not aggregate gene expression measures, thus an inter-study variability parameter is not included in the model. This results in a simpler modeling approach than aggregating expression measures, which accounts for variability across studies. The probability integration model identified more true discovered genes and fewer true omitted genes than combining expression measures, for our data sets.
AbstractList Abstract Background With the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common approaches for meta-analysis of microarrays include either combining gene expression measures across studies or combining summaries such as p-values, probabilities or ranks. Here, we compare two Bayesian meta-analysis models that are analogous to these methods. Results Two Bayesian meta-analysis models for microarray data have recently been introduced. The first model combines standardized gene expression measures across studies into an overall mean, accounting for inter-study variability, while the second combines probabilities of differential expression without combining expression values. Both models produce the gene-specific posterior probability of differential expression, which is the basis for inference. Since the standardized expression integration model includes inter-study variability, it may improve accuracy of results versus the probability integration model. However, due to the small number of studies typical in microarray meta-analyses, the variability between studies is challenging to estimate. The probability integration model eliminates the need to model variability between studies, and thus its implementation is more straightforward. We found in simulations of two and five studies that combining probabilities outperformed combining standardized gene expression measures for three comparison values: the percent of true discovered genes in meta-analysis versus individual studies; the percent of true genes omitted in meta-analysis versus separate studies, and the number of true discovered genes for fixed levels of Bayesian false discovery. We identified similar results when pooling two independent studies of Bacillus subtilis. We assumed that each study was produced from the same microarray platform with only two conditions: a treatment and control, and that the data sets were pre-scaled. Conclusion The Bayesian meta-analysis model that combines probabilities across studies does not aggregate gene expression measures, thus an inter-study variability parameter is not included in the model. This results in a simpler modeling approach than aggregating expression measures, which accounts for variability across studies. The probability integration model identified more true discovered genes and fewer true omitted genes than combining expression measures, for our data sets.
With the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common approaches for meta-analysis of microarrays include either combining gene expression measures across studies or combining summaries such as p-values, probabilities or ranks. Here, we compare two Bayesian meta-analysis models that are analogous to these methods. Results Two Bayesian meta-analysis models for microarray data have recently been introduced. The first model combines standardized gene expression measures across studies into an overall mean, accounting for inter- study variability, while the second combines probabilities of differential expression without combining expression values. Both models produce the gene- specific posterior probability of differential expression, which is the basis for inference. Since the standardized expression integration model includes inter-study variability, it may improve accuracy of results versus the probability integration model. However, due to the small number of studies typical in microarray meta-analyses, the variability between studies is challenging to estimate. The probability integration model eliminates the need to model variability between studies, and thus its implementation is more straightforward. We found in simulations of two and five studies that combining probabilities outperformed combining standardized gene expression measures for three comparison values: the percent of true discovered genes in meta-analysis versus individual studies; the percent of true genes omitted in meta-analysis versus separate studies, and the number of true discovered genes for fixed levels of Bayesian false discovery. We identified similar results when pooling two independent studies of Bacillus subtilis. We assumed that each study was produced from the same microarray platform with only two conditions: a treatment and control, and that the data sets were pre-scaled. Conclusion The Bayesian meta-analysis model that combines probabilities across studies does not aggregate gene expression measures, thus an inter-study variability parameter is not included in the model. This results in a simpler modeling approach than aggregating expression measures, which accounts for variability across studies. The probability integration model identified more true discovered genes and fewer true omitted genes than combining expression measures, for our data sets.
BACKGROUNDWith the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common approaches for meta-analysis of microarrays include either combining gene expression measures across studies or combining summaries such as p-values, probabilities or ranks. Here, we compare two Bayesian meta-analysis models that are analogous to these methods. RESULTSTwo Bayesian meta-analysis models for microarray data have recently been introduced. The first model combines standardized gene expression measures across studies into an overall mean, accounting for inter-study variability, while the second combines probabilities of differential expression without combining expression values. Both models produce the gene-specific posterior probability of differential expression, which is the basis for inference. Since the standardized expression integration model includes inter-study variability, it may improve accuracy of results versus the probability integration model. However, due to the small number of studies typical in microarray meta-analyses, the variability between studies is challenging to estimate. The probability integration model eliminates the need to model variability between studies, and thus its implementation is more straightforward. We found in simulations of two and five studies that combining probabilities outperformed combining standardized gene expression measures for three comparison values: the percent of true discovered genes in meta-analysis versus individual studies; the percent of true genes omitted in meta-analysis versus separate studies, and the number of true discovered genes for fixed levels of Bayesian false discovery. We identified similar results when pooling two independent studies of Bacillus subtilis. We assumed that each study was produced from the same microarray platform with only two conditions: a treatment and control, and that the data sets were pre-scaled. CONCLUSIONThe Bayesian meta-analysis model that combines probabilities across studies does not aggregate gene expression measures, thus an inter-study variability parameter is not included in the model. This results in a simpler modeling approach than aggregating expression measures, which accounts for variability across studies. The probability integration model identified more true discovered genes and fewer true omitted genes than combining expression measures, for our data sets.
BACKGROUND: With the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common approaches for meta-analysis of microarrays include either combining gene expression measures across studies or combining summaries such as p-values, probabilities or ranks. Here, we compare two Bayesian meta-analysis models that are analogous to these methods. RESULTS: Two Bayesian meta-analysis models for microarray data have recently been introduced. The first model combines standardized gene expression measures across studies into an overall mean, accounting for inter-study variability, while the second combines probabilities of differential expression without combining expression values. Both models produce the gene-specific posterior probability of differential expression, which is the basis for inference. Since the standardized expression integration model includes inter-study variability, it may improve accuracy of results versus the probability integration model. However, due to the small number of studies typical in microarray meta-analyses, the variability between studies is challenging to estimate. The probability integration model eliminates the need to model variability between studies, and thus its implementation is more straightforward. We found in simulations of two and five studies that combining probabilities outperformed combining standardized gene expression measures for three comparison values: the percent of true discovered genes in meta-analysis versus individual studies; the percent of true genes omitted in meta-analysis versus separate studies, and the number of true discovered genes for fixed levels of Bayesian false discovery. We identified similar results when pooling two independent studies of Bacillus subtilis. We assumed that each study was produced from the same microarray platform with only two conditions: a treatment and control, and that the data sets were pre-scaled. CONCLUSION: The Bayesian meta-analysis model that combines probabilities across studies does not aggregate gene expression measures, thus an inter-study variability parameter is not included in the model. This results in a simpler modeling approach than aggregating expression measures, which accounts for variability across studies. The probability integration model identified more true discovered genes and fewer true omitted genes than combining expression measures, for our data sets.
With the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common approaches for meta-analysis of microarrays include either combining gene expression measures across studies or combining summaries such as p-values, probabilities or ranks. Here, we compare two Bayesian meta-analysis models that are analogous to these methods. Two Bayesian meta-analysis models for microarray data have recently been introduced. The first model combines standardized gene expression measures across studies into an overall mean, accounting for inter-study variability, while the second combines probabilities of differential expression without combining expression values. Both models produce the gene-specific posterior probability of differential expression, which is the basis for inference. Since the standardized expression integration model includes inter-study variability, it may improve accuracy of results versus the probability integration model. However, due to the small number of studies typical in microarray meta-analyses, the variability between studies is challenging to estimate. The probability integration model eliminates the need to model variability between studies, and thus its implementation is more straightforward. We found in simulations of two and five studies that combining probabilities outperformed combining standardized gene expression measures for three comparison values: the percent of true discovered genes in meta-analysis versus individual studies; the percent of true genes omitted in meta-analysis versus separate studies, and the number of true discovered genes for fixed levels of Bayesian false discovery. We identified similar results when pooling two independent studies of Bacillus subtilis. We assumed that each study was produced from the same microarray platform with only two conditions: a treatment and control, and that the data sets were pre-scaled. The Bayesian meta-analysis model that combines probabilities across studies does not aggregate gene expression measures, thus an inter-study variability parameter is not included in the model. This results in a simpler modeling approach than aggregating expression measures, which accounts for variability across studies. The probability integration model identified more true discovered genes and fewer true omitted genes than combining expression measures, for our data sets.
ArticleNumber 80
Audience Academic
Author Liu, Anna
Song, Joon J
Conlon, Erin M
AuthorAffiliation 2 Department of Mathematics, University of Arkansas, Fayetteville, Arkansas, USA
1 Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, USA
AuthorAffiliation_xml – name: 1 Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, USA
– name: 2 Department of Mathematics, University of Arkansas, Fayetteville, Arkansas, USA
Author_xml – sequence: 1
  givenname: Erin M
  surname: Conlon
  fullname: Conlon, Erin M
  email: econlon@mathstat.umass.edu
  organization: Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, USA. econlon@mathstat.umass.edu
– sequence: 2
  givenname: Joon J
  surname: Song
  fullname: Song, Joon J
– sequence: 3
  givenname: Anna
  surname: Liu
  fullname: Liu, Anna
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17343745$$D View this record in MEDLINE/PubMed
BookMark eNqFktuL1DAUxousuBd99VEKguBD19yT-rAwLq4OLAhensNpmoxZ2mZM2sX-92acYd3iiuQh4Zzv_JJ855wWR0MYbFE8x-gcYyXeYCZxRTDilaoUelSc3AWO7p2Pi9OUbhDCUiH-pDjGkjIqGT8prt7BbJOHoeztCBUM0M3Jp7IPre1S6UIse29igBhhLlsY4W0JpQn9FiKM_taWaZza-Wnx2EGX7LPDflZ8u3r_9fJjdf3pw_pydV01grGxqtumlqhhnHKBFRPKOOIsraHOn3GIcesUp9IQhGtpjGwNwbVTgiKJFEOOnhXrPbcNcKO30fcQZx3A69-BEDca4uhNZ7UguYQgxpwgDCNRo9YZrgSxhsvaysy62LO2U9Pb1thhjNAtoMvM4L_rTbjVWHGMCM6A1R7Q-PAPwDKTbdO7nuhdT7TSCmXGq8MjYvgx2TTq3idjuw4GG6akJaKSC4X_K8S14kTULAtf7oUbyC74wYV8t9mJ9Qpn1zFFdKc6f0CVV2tzv_OMOZ_ji4LXi4KsGe3PcQNTSnr95fOD8Dw4KUXr7jzBSO_G9m8XXtxvxR_5YU7pLzq55ew
CitedBy_id crossref_primary_10_1007_s10142_007_0058_3
crossref_primary_10_1093_bioinformatics_btp290
crossref_primary_10_1093_bioinformatics_btv631
crossref_primary_10_1371_journal_pone_0052137
crossref_primary_10_1371_journal_pcbi_1000616
crossref_primary_10_1016_j_physa_2022_128322
crossref_primary_10_1214_10_AOAS393
crossref_primary_10_1371_journal_pone_0293939
crossref_primary_10_1198_jasa_2009_ap07611
crossref_primary_10_1186_1471_2105_11_515
crossref_primary_10_1080_02664760802562480
crossref_primary_10_1890_12_1810_1
crossref_primary_10_1093_bioinformatics_btq686
crossref_primary_10_1007_s12561_016_9172_x
crossref_primary_10_1214_13_BA806
crossref_primary_10_1186_1471_2105_10_1
crossref_primary_10_1055_s_0040_1721706
crossref_primary_10_1186_1471_2105_9_335
crossref_primary_10_1093_nar_gkr1265
crossref_primary_10_1186_1471_2105_9_512
crossref_primary_10_1002_wics_111
crossref_primary_10_1186_1471_2105_9_354
crossref_primary_10_1186_1471_2164_9_503
crossref_primary_10_1186_s12920_018_0427_x
crossref_primary_10_1016_j_preghy_2019_12_007
crossref_primary_10_1016_j_schres_2015_08_010
crossref_primary_10_1093_bioinformatics_btq096
crossref_primary_10_1093_biostatistics_kxv014
crossref_primary_10_1186_s12859_016_1044_3
crossref_primary_10_1093_bioinformatics_btp669
crossref_primary_10_1002_sta4_164
crossref_primary_10_1093_bioinformatics_btp444
crossref_primary_10_1016_j_ygeno_2019_09_019
crossref_primary_10_3892_ol_2017_5838
crossref_primary_10_1371_journal_pone_0130812
crossref_primary_10_2135_cropsci2012_02_0111
Cites_doi 10.1016/j.ygeno.2004.01.004
10.1198/016214501753382129
10.1093/oso/9780198526155.003.0008
10.1002/sim.1548
10.1111/j.1467-9876.2005.05593.x
10.1093/bioinformatics/btg1010
10.1089/106652701300099074
10.1186/1471-2105-6-128
10.1093/bioinformatics/17.6.509
10.1002/1096-9896(200109)195:1<53::AID-PATH891>3.0.CO;2-H
10.1186/1471-2105-6-57
10.1111/1467-9868.00347
10.1158/1078-0432.CCR-03-0490
10.1093/nar/29.12.2549
10.1073/pnas.091062498
10.1002/sim.4780142408
10.1198/016214503000224
10.1198/016214502753479257
10.1093/bioinformatics/bth381
10.1016/j.jmva.2004.02.007
10.1007/0-387-23077-7_5
10.1201/9780429258480
10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3.0.CO;2-P
10.1111/1467-9868.00346
10.1186/1471-2105-5-81
10.1089/106652702760277381
10.1016/S0169-5002(96)90222-6
10.1186/1471-2105-6-265
10.1093/bioinformatics/18.4.546
10.1080/01621459.1983.10477968
10.1073/pnas.0401994101
10.1152/physiolgenomics.00080.2003
10.1038/35015701
10.1016/S0022-2836(03)00205-5
10.1186/1471-2164-5-94
10.1093/bioinformatics/18.3.405
10.1007/0-387-21679-0_12
10.1198/016214505000000051
10.1093/bioinformatics/bti647
10.1186/1471-2105-7-247
10.1007/s10142-003-0087-5
10.1517/14622416.3.3.293
10.1093/biostatistics/5.2.155
10.1002/jcb.10073
10.1093/bioinformatics/btl183
10.1093/biostatistics/4.4.597
10.1201/9780203909935
ContentType Journal Article
Copyright COPYRIGHT 2007 BioMed Central Ltd.
Copyright © 2007 Conlon et al; licensee BioMed Central Ltd. 2007 Conlon et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2007 BioMed Central Ltd.
– notice: Copyright © 2007 Conlon et al; licensee BioMed Central Ltd. 2007 Conlon et al; licensee BioMed Central Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISR
7QL
7QO
8FD
C1K
FR3
P64
7X8
5PM
DOA
DOI 10.1186/1471-2105-8-80
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Science
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Engineering Research Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 80
ExternalDocumentID oai_doaj_org_article_620842044f62410690dfc5862ec579e7
oai_biomedcentral_com_1471_2105_8_80
A161813034
10_1186_1471_2105_8_80
17343745
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
-A0
0R~
123
23N
2VQ
2WC
4.4
53G
5VS
6J9
AAFWJ
AAJSJ
AAKPC
ABDBF
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
C1A
C24
C6C
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
M48
MK~
ML0
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFPKN
CITATION
7X7
ABVAZ
AFGXO
AFNRJ
7QL
7QO
8FD
C1K
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-b644t-9db970b4535618468cf2fe39a9118f045ef8537c20197cc7dc219f863070840f3
IEDL.DBID RBZ
ISSN 1471-2105
IngestDate Tue Oct 22 15:14:06 EDT 2024
Tue Sep 17 20:47:37 EDT 2024
Wed May 22 07:11:43 EDT 2024
Sat Aug 17 03:22:26 EDT 2024
Fri Aug 16 05:00:00 EDT 2024
Fri Feb 23 00:22:39 EST 2024
Fri Feb 02 04:41:30 EST 2024
Sat Sep 28 20:55:45 EDT 2024
Thu Sep 12 18:56:41 EDT 2024
Wed Oct 16 00:39:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b644t-9db970b4535618468cf2fe39a9118f045ef8537c20197cc7dc219f863070840f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1471-2105-8-80
PMID 17343745
PQID 19852694
PQPubID 23462
ParticipantIDs doaj_primary_oai_doaj_org_article_620842044f62410690dfc5862ec579e7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1851021
biomedcentral_primary_oai_biomedcentral_com_1471_2105_8_80
proquest_miscellaneous_70375681
proquest_miscellaneous_19852694
gale_infotracmisc_A161813034
gale_infotracacademiconefile_A161813034
gale_incontextgauss_ISR_A161813034
crossref_primary_10_1186_1471_2105_8_80
pubmed_primary_17343745
PublicationCentury 2000
PublicationDate 2007-03-07
PublicationDateYYYYMMDD 2007-03-07
PublicationDate_xml – month: 03
  year: 2007
  text: 2007-03-07
  day: 07
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2007
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References D Ghosh (1452_CR14) 2003; 3
EE Schadt (1452_CR59) 2001; 37
A Gelman (1452_CR39) 2003
SL Normand (1452_CR35) 1999; 18
LV Hedges (1452_CR43) 1985
S Dudoit (1452_CR44) 2002; 12
H Ishwaran (1452_CR29) 2003; 98
B Efron (1452_CR19) 2001; 96
KA Do (1452_CR28) 2005; 54
C Genovese (1452_CR57) 2003
CM Kendziorski (1452_CR26) 2003; 22
DK Pauler (1452_CR37) 2000
DJ Sargent (1452_CR38) 2000
TD Wu (1452_CR47) 2001; 195
JP Townsend (1452_CR18) 2002
F Dominici (1452_CR45) 2000
P Hu (1452_CR4) 2005; 6
R Shen (1452_CR10) 2004; 5
P Warnat (1452_CR12) 2005; 6
G Hardiman (1452_CR48) 2002; 3
P Baldi (1452_CR16) 2001; 17
J Wang (1452_CR1) 2004; 20
JG Ibrahim (1452_CR21) 2002; 97
JS Liu (1452_CR51) 2001
JS Storey (1452_CR55) 2003
DR Rhodes (1452_CR8) 2004; 101
JR Stevens (1452_CR3) 2005; 6
H Ishwaran (1452_CR30) 2005; 100
EM Conlon (1452_CR58) 2004; 90
RL Tweedie (1452_CR32) 1996; 14
G Parmigiani (1452_CR9) 2004; 10
EM Conlon (1452_CR15) 2006; 7
R Gottardo (1452_CR23) 2003; 4
P Eichenberger (1452_CR50) 2003; 327
VG Tusher (1452_CR53) 2001; 98
T Park (1452_CR6) 2006; 22
N Mah (1452_CR42) 2004; 16
EM Southern (1452_CR49) 2000; 170
DK Stangl (1452_CR31) 2000
AK Jarvinen (1452_CR41) 2004; 83
WH DuMouchel (1452_CR33) 1983; 78
1452_CR2
GC Tseng (1452_CR17) 2001; 29
MA Newton (1452_CR27) 2004; 5
H Jiang (1452_CR13) 2004; 5
Y Benjamini (1452_CR52) 1995; 85
JD Storey (1452_CR54) 2002; 64
1452_CR61
W DuMouchel (1452_CR36) 2000
P Broët (1452_CR22) 2002; 9
WP Kuo (1452_CR40) 2002; 18
L Xu (1452_CR11) 2005; 21
TC Smith (1452_CR34) 1995; 14
W Pan (1452_CR25) 2002; 18
DJ Lockhart (1452_CR46) 2000; 405
JS Morris (1452_CR5) 2005
I Lönnstedt (1452_CR24) 2002; 12
DR Rhodes (1452_CR7) 2002; 62
C Genovese (1452_CR56) 2002; 64
M Kendall (1452_CR60) 1992
MA Newton (1452_CR20) 2001; 8
References_xml – volume: 83
  start-page: 1164
  year: 2004
  ident: 1452_CR41
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2004.01.004
  contributor:
    fullname: AK Jarvinen
– volume: 96
  start-page: 1151
  year: 2001
  ident: 1452_CR19
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214501753382129
  contributor:
    fullname: B Efron
– start-page: 145
  volume-title: Bayesian Statistics 7
  year: 2003
  ident: 1452_CR57
  doi: 10.1093/oso/9780198526155.003.0008
  contributor:
    fullname: C Genovese
– volume: 22
  start-page: 3899
  year: 2003
  ident: 1452_CR26
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.1548
  contributor:
    fullname: CM Kendziorski
– volume: 54
  start-page: 627
  year: 2005
  ident: 1452_CR28
  publication-title: Journal of the Royal Statistical Society C
  doi: 10.1111/j.1467-9876.2005.05593.x
  contributor:
    fullname: KA Do
– ident: 1452_CR2
  doi: 10.1093/bioinformatics/btg1010
– volume: 8
  start-page: 37
  year: 2001
  ident: 1452_CR20
  publication-title: Journal of Computational Biology
  doi: 10.1089/106652701300099074
  contributor:
    fullname: MA Newton
– start-page: 205
  volume-title: Meta-Analysis in Medicine and Health Policy
  year: 2000
  ident: 1452_CR37
  contributor:
    fullname: DK Pauler
– volume: 170
  start-page: 1
  year: 2000
  ident: 1452_CR49
  publication-title: Methods Mol Biol
  contributor:
    fullname: EM Southern
– volume: 6
  start-page: 128
  year: 2005
  ident: 1452_CR4
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-128
  contributor:
    fullname: P Hu
– volume: 17
  start-page: 509
  year: 2001
  ident: 1452_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.6.509
  contributor:
    fullname: P Baldi
– volume: 195
  start-page: 53
  year: 2001
  ident: 1452_CR47
  publication-title: Journal of Pathology
  doi: 10.1002/1096-9896(200109)195:1<53::AID-PATH891>3.0.CO;2-H
  contributor:
    fullname: TD Wu
– volume: 6
  start-page: 57
  year: 2005
  ident: 1452_CR3
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-57
  contributor:
    fullname: JR Stevens
– volume-title: Statistical Methods for Meta-Analysis
  year: 1985
  ident: 1452_CR43
  contributor:
    fullname: LV Hedges
– volume: 64
  start-page: 499
  year: 2002
  ident: 1452_CR56
  publication-title: Journal of the Royal Statistical Society B
  doi: 10.1111/1467-9868.00347
  contributor:
    fullname: C Genovese
– volume: 10
  start-page: 2922
  year: 2004
  ident: 1452_CR9
  publication-title: Clinical Cancer Research
  doi: 10.1158/1078-0432.CCR-03-0490
  contributor:
    fullname: G Parmigiani
– volume: 29
  start-page: 2549
  year: 2001
  ident: 1452_CR17
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.12.2549
  contributor:
    fullname: GC Tseng
– volume: 98
  start-page: 5116
  year: 2001
  ident: 1452_CR53
  publication-title: Proceedings of the National Academy of Sciences USA
  doi: 10.1073/pnas.091062498
  contributor:
    fullname: VG Tusher
– start-page: 255
  volume-title: Meta-Analysis in Medicine and Health Policy
  year: 2000
  ident: 1452_CR38
  contributor:
    fullname: DJ Sargent
– volume: 14
  start-page: 2685
  year: 1995
  ident: 1452_CR34
  publication-title: Stat Med
  doi: 10.1002/sim.4780142408
  contributor:
    fullname: TC Smith
– volume: 98
  start-page: 438
  year: 2003
  ident: 1452_CR29
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214503000224
  contributor:
    fullname: H Ishwaran
– volume: 97
  start-page: 88
  year: 2002
  ident: 1452_CR21
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214502753479257
  contributor:
    fullname: JG Ibrahim
– volume: 20
  start-page: 3166
  year: 2004
  ident: 1452_CR1
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth381
  contributor:
    fullname: J Wang
– volume: 90
  start-page: 1
  year: 2004
  ident: 1452_CR58
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2004.02.007
  contributor:
    fullname: EM Conlon
– start-page: 51
  volume-title: Methods of Microarray Data Analysis IV
  year: 2005
  ident: 1452_CR5
  doi: 10.1007/0-387-23077-7_5
  contributor:
    fullname: JS Morris
– volume-title: Bayesian Data Analysis
  year: 2003
  ident: 1452_CR39
  doi: 10.1201/9780429258480
  contributor:
    fullname: A Gelman
– volume: 18
  start-page: 321
  year: 1999
  ident: 1452_CR35
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3.0.CO;2-P
  contributor:
    fullname: SL Normand
– volume: 64
  start-page: 479
  year: 2002
  ident: 1452_CR54
  publication-title: Journal of the Royal Statistical Society B
  doi: 10.1111/1467-9868.00346
  contributor:
    fullname: JD Storey
– volume: 5
  start-page: 81
  year: 2004
  ident: 1452_CR13
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-5-81
  contributor:
    fullname: H Jiang
– volume: 9
  start-page: 671
  year: 2002
  ident: 1452_CR22
  publication-title: Journal of'Computational Biology
  doi: 10.1089/106652702760277381
  contributor:
    fullname: P Broët
– volume: 85
  start-page: 289
  year: 1995
  ident: 1452_CR52
  publication-title: Journal of the Royal Statistical Society B
  contributor:
    fullname: Y Benjamini
– volume: 62
  start-page: 4427
  year: 2002
  ident: 1452_CR7
  publication-title: Cancer Research
  contributor:
    fullname: DR Rhodes
– start-page: 105
  volume-title: Meta-Analysis in Medicine and Health Policy
  year: 2000
  ident: 1452_CR45
  contributor:
    fullname: F Dominici
– volume: 14
  start-page: S171
  issue: Suppl 1
  year: 1996
  ident: 1452_CR32
  publication-title: Lung Cancer
  doi: 10.1016/S0169-5002(96)90222-6
  contributor:
    fullname: RL Tweedie
– volume: 12
  start-page: 111
  year: 2002
  ident: 1452_CR44
  publication-title: Statistica Sinica
  contributor:
    fullname: S Dudoit
– volume: 6
  start-page: 265
  year: 2005
  ident: 1452_CR12
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-265
  contributor:
    fullname: P Warnat
– volume: 18
  start-page: 546
  year: 2002
  ident: 1452_CR25
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.4.546
  contributor:
    fullname: W Pan
– volume: 78
  start-page: 293
  year: 1983
  ident: 1452_CR33
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1983.10477968
  contributor:
    fullname: WH DuMouchel
– volume: 101
  start-page: 9309
  year: 2004
  ident: 1452_CR8
  publication-title: Proc Natl AcadSci USA
  doi: 10.1073/pnas.0401994101
  contributor:
    fullname: DR Rhodes
– ident: 1452_CR61
– volume: 16
  start-page: 361
  year: 2004
  ident: 1452_CR42
  publication-title: Physiol Genomics
  doi: 10.1152/physiolgenomics.00080.2003
  contributor:
    fullname: N Mah
– volume: 405
  start-page: 827
  year: 2000
  ident: 1452_CR46
  publication-title: Nature
  doi: 10.1038/35015701
  contributor:
    fullname: DJ Lockhart
– volume: 327
  start-page: 945
  year: 2003
  ident: 1452_CR50
  publication-title: Journal of Molecular Biology
  doi: 10.1016/S0022-2836(03)00205-5
  contributor:
    fullname: P Eichenberger
– volume: 5
  start-page: 94
  year: 2004
  ident: 1452_CR10
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-5-94
  contributor:
    fullname: R Shen
– volume: 18
  start-page: 405
  year: 2002
  ident: 1452_CR40
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.3.405
  contributor:
    fullname: WP Kuo
– volume-title: Monte Carlo Strategies in Scientific Computing
  year: 2001
  ident: 1452_CR51
  contributor:
    fullname: JS Liu
– start-page: 127
  volume-title: Meta-Analysis in Medicine and Health Policy
  year: 2000
  ident: 1452_CR36
  contributor:
    fullname: W DuMouchel
– start-page: 272
  volume-title: The Analysis of Gene Expression Data: Methods and Software
  year: 2003
  ident: 1452_CR55
  doi: 10.1007/0-387-21679-0_12
  contributor:
    fullname: JS Storey
– volume: 100
  start-page: 764
  year: 2005
  ident: 1452_CR30
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214505000000051
  contributor:
    fullname: H Ishwaran
– volume: 21
  start-page: 3905
  year: 2005
  ident: 1452_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti647
  contributor:
    fullname: L Xu
– volume: 7
  start-page: 247
  year: 2006
  ident: 1452_CR15
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-247
  contributor:
    fullname: EM Conlon
– volume-title: Kendall's Advanced Theory of Statistics
  year: 1992
  ident: 1452_CR60
  contributor:
    fullname: M Kendall
– volume: 3
  start-page: 180
  year: 2003
  ident: 1452_CR14
  publication-title: Functional & Integrative Genomics
  doi: 10.1007/s10142-003-0087-5
  contributor:
    fullname: D Ghosh
– volume: 3
  start-page: 293
  year: 2002
  ident: 1452_CR48
  publication-title: Pharmacogenomics
  doi: 10.1517/14622416.3.3.293
  contributor:
    fullname: G Hardiman
– volume: 5
  start-page: 155
  year: 2004
  ident: 1452_CR27
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/5.2.155
  contributor:
    fullname: MA Newton
– volume: 37
  start-page: 120
  year: 2001
  ident: 1452_CR59
  publication-title: J Cell Biochem Suppl
  doi: 10.1002/jcb.10073
  contributor:
    fullname: EE Schadt
– volume: 22
  start-page: 1682
  year: 2006
  ident: 1452_CR6
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl183
  contributor:
    fullname: T Park
– volume: 4
  start-page: 597
  year: 2003
  ident: 1452_CR23
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.4.597
  contributor:
    fullname: R Gottardo
– start-page: 1
  volume-title: Meta-Analysis in Medicine and Health Policy
  year: 2000
  ident: 1452_CR31
  doi: 10.1201/9780203909935
  contributor:
    fullname: DK Stangl
– volume-title: Genome Biology
  year: 2002
  ident: 1452_CR18
  contributor:
    fullname: JP Townsend
– volume: 12
  start-page: 31
  year: 2002
  ident: 1452_CR24
  publication-title: Statistica Sinica
  contributor:
    fullname: I Lönnstedt
SSID ssj0017805
Score 2.1315687
Snippet With the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common approaches for...
BACKGROUNDWith the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common approaches...
BACKGROUND: With the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common...
Abstract Background With the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 80
SubjectTerms Analysis
Bacillus subtilis
Bacillus subtilis - genetics
Bayes Theorem
Bayesian statistical decision theory
DNA microarrays
Gene Expression Profiling - methods
Gene Expression Profiling - statistics & numerical data
Genes, Bacterial - genetics
Information measurement
Meta-Analysis as Topic
Methodology
Methods
Models, Biological
Models, Statistical
Oligonucleotide Array Sequence Analysis - methods
Oligonucleotide Array Sequence Analysis - statistics & numerical data
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQUiUuqC0tDdBiVZV6snASO3a4QdUVcODQFombZTt2W6lk0X4c9t93xsnCWkjthWs8u_KOx57n7Mx7hHzqOm5VkJa5yllsyRFMR4jltraBB8-t8Int87q5uBFXt_J2Q-oLa8IGeuDBcSdNxbWouBCxgWSDvLpd9BJwePBStWHoIy_l-jI1_n-ATP2pr0iVDC41cqRrLHVz8vCMaYZkkFmf-58sPSUW_6dn9UayygspNzLT5CXZHSElPRt-yiuyFfrX5MUgMrnaI5NzuwrYKknvwsIyO7KQ0KSBM6cAWukdVuXZ2cyuKFaMnlJL_SMrOE0UtG_IzeTrjy8XbFRPYA4wzoK1nWsVd0LWEkVdGu1jFUPdWjjedAQkFyKkauUBAbTKe9V5OLyibvAQgFtfrN-S7X7ah3eEVqXjETa3UE4Lq5BTPojIZVd1gBhdVZDTzInmfmDKMMhdnY_A7A2ugMEVMNpoXpDPa48_fC7dTHTzxPIcFyT79vQA4sWM8WL-Fy8F-YjLaZD7osfimp92OZ-by-_fzBmKB2BOFzCn0ShOYdrejr0K4A6ky8osjzJL2Jw-Gz5eR43BIaxo68N0OTdlq1Hc_R8WCuWJG10WZH-Iskf3qFrUSsiCqCz-Ms_kI_3vX4k7HOAZirkfPIcrD8nO8Ka7Zlwdke3FbBneA0RbuA9pN_4F2woz1Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: PubMed (Medline)
  dbid: RPM
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJINBLadOX27QVpdCTs7YlW3JuSciSBlpK20BuQpKlJJD1hn0c9t93RpabiEAPvVrjZRjN0zvzDSGfu67QwtU6N5XROJLDc-lBl1umXeFsobkNaJ_fm7MLfn5ZX26RepyFCU371twc9Lezg_7mOvRW3s3sZOwTm_z4dgIxBjdST7bJtmBsLNHjXwcI0h_RGUvZTErwvjnUNXUuwRsjRqhgnAkcX0om3G-TwBTw-x976QdhKm2hfBCTps_I05hM0qOB6edky_V7ZHdYL7l5QabHeuNwSJLO3ErnOuKP0LD9ZkkhXaUz7MfTi4XeUOwVPaSa2ns8cBrAZ1-Si-np75OzPO5NyA1kN6u87UwrCsNrVuM6l0ZaX3nHWg2OTXrI4ZyHIC0sxP5WWCs6C27LywbNH-o9z16RnX7euzeEVqUpPJg1F0ZyLRBN3nFf1F3VQa5oqowcJkJUdwNGhkLU6vQEuFd4GQovQ0kli4x8GSX-971Qk8jmEeUxXkjy6-HBfHGlomaopgLuq4Jz30BaggjMnbc1VGzO1qJ1IiOf8DoVol702FZzpdfLpfr666c6wrUBGM058BSJ_BzYtjpOKYA4ECgrodxPKMEsbXL8cdQahUfYy9a7-XqpylbiWvd_UAhcTNzIMiOvBy27F09U3oyIRP8SyaQnYEQBNTwazdv_fvMdeTJ82GZ5IfbJzmqxdu8hI1uZD8EC_wAuhDQX
  priority: 500
  providerName: National Library of Medicine
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdgCImXaXyHDbAQEk-GNLFjZxJCG6IaSPAAVNqbZTv2mLSlW9JK9L_nzsnoTBG81pfWOt9nev79CHnZNLmRXhhmC2vwSg5nKoAt16XxuXe54S6ifX6pjmb807E4Xs8_jQrs_9raIZ_UrDt7_fNy9Q4c_m10eFW9mUCAZdC6CKYg4N4ktwpecrT2z3z9jwJi94-gjZvP_HHb_SxJUhHLfzNiX0tZ6Tjltfw03SHbY2FJDwZLuEtu-PYeuT1QTa7uk-mhWXm8MEnP_cIwM2KR0MiE01MoXek5zuaZrjMrinOj-9RQt8YGpxGI9gGZTT98f3_ERg4FZqHSWbC6sbXMLRelQGqXSrlQBF_WBoKcClDP-QAJWzqoA2rpnGwchLCgKgwF0PuF8iHZauetf0xoMbF5ABfn0ipuJCLLex5y0RQN1I22yMh-okR9MeBlaESwTldg9xpPQOMJaKVVnpFXVxr__VzsT1S1IXmIB5J8e_xg3p3o0d10VcDui5zzUEGJgmjMTXACujfvhKy9zMgLPE6NCBgtjticmGXf64_fvuoDpBDAzM5hT6NQmMO2nRlvLIA6EDQrkdxLJMFFXbL8_MpqNC7hXFvr58teT2qFFO__kJBIUlypSUYeDVa2Vo8seSm5yIhM7C_RTLrSnv6ICOJQpCGl-5P__uouuTO8zC5ZLvfI1qJb-qdQhS3ss-hevwAy7y8A
  priority: 102
  providerName: Scholars Portal
Title Bayesian meta-analysis models for microarray data: a comparative study
URI https://www.ncbi.nlm.nih.gov/pubmed/17343745
https://search.proquest.com/docview/19852694
https://search.proquest.com/docview/70375681
http://dx.doi.org/10.1186/1471-2105-8-80
https://pubmed.ncbi.nlm.nih.gov/PMC1851021
https://doaj.org/article/620842044f62410690dfc5862ec579e7
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagFRIXxJtAu1gIiZOFkzix09tuxaqsBAdKpYqLZTt2QaJZtI_D_ntmnLRbd6VeetlDPFlZ87Yz8w0hH9uWG-krw2xhDbbkCKYC6HJTGs-940a4iPb5vT45E7Pz6nx733HrC36u6s85uE8GB5OKKXCnD8l-gRDneC6f_Lr-XoDI_LGPaKAd4Bl337_V1_43CUcRtX_XN98ITmnh5I1INH1KngwpJB33Mn9GHvjuOXnUD5XcvCDTidl4bI2kl35lmBlQR2icebOkkKTSS6zCM4uF2VCsED2ihrotCjiNkLMvydn0y8_jEzZMS2AWcpoVa1rbSG5FVVY4xKVWLhTBl40Bd6YCZG4-QGiWDiJ-I52TrQNnFVSNRg-nvFC-InvdvPNvCC1yywMYs5BWCSMRQ96LwKu2aCFDtEVGjhIm6n89MoZGrOp0BXavUQIaJaCVVjwjn644fv1ePImoeodyggJJ_j0-APXQg2HpuoDdF1yIUEMygrjLbXAVnNO8q2TjZUY-oDg1Yl10WExzYdbLpf56-kOPcVgAxnABexqIwhy27czQmwDsQHishPIgoQRjdMny-yut0biEFWydn6-XOm8UDnO_g0LiOOJa5Rl53WvZlj2yFKUUVUZkon8JZ9KV7s_viBUO6RgOb397H4m9I4_7G-2ScXlA9laLtT-EVGxlR2R_PJ6dzkbxKgN-vwk1ipY5ivdm_wGGKDHP
link.rule.ids 108,230,315,733,786,790,870,891,2115,2236,24346,24965,27955,27956,53825,53827,76167,76168
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagFYILojzaQKEWQuIUyCZO7PTWRay2UHoorVRxsWzHbit1E7SPw_57Zhxvu2YlLlzjSeTMjOeRzHxDyIemyRS3pUp1rhW25LBUONDlulA2syZTzHi0z9NqfMG-XZaXYRwQ9sLoidE3XQANRaDiT-tt6Lfedq9KxvoTL6rPA7CwKeQuZSrA4j4k25CbV1jfdTb8dfdLAcH7fatRoA0Ijpv3_9X6fht5LA_sv2m-1_xXXFu55qxGz8jTEGXSo_4VdsgD2z4nj_q5k8sXZDRUS4vdk3Ri5ypVAZiE-rE4MwpcoRMs1FPTqVpSLCI9pIqae6Bw6lFpX5KL0dfzL-M0DFRINYQ987RudM0zzcqixDkvlTAud7aoFVg84SC4sw68NzcQFNTcGN4YsGdOVGgXIBF0xSuy1Xat3SM0H-jMwXlnXAumOMLMW-aysskbCCJ1npDDiInydw-eIRHOOl6B3UuUgEQJSCFFlpCPK47f3eeTFVFtUA5RINHT_YVueiWDnsgqh93nGWOugngFoZkbZ0pI5awpeW15Qt6jOCXCYbRYb3OlFrOZPP55Jo9wngC6eQZ7CkSug20bFdoXgB2IoBVR7keUcF5NtHyw0hqJS1jk1tpuMZODWuC8939QcJxYXIlBQnZ7LbtnDy9YwVmZEB7pX8SZeKW9ufZw4hCx4Xz31_8jsQPyeHz-40SeHJ9-f0Oe9B_AizTj-2RrPl3YtxC5zfU7fyL_ABLxPq8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCNQL4tkGWmohJE6h2cSJnd66lFULqEKFShUXy3bstmo3qfZx2H_PjOO2a1biwm21nqyseU925htCPjRNprgtVapzrXAkh6XCgS7XhbKZNZlixqN9HleHp-zrWXkWxqNxFkaPjb7sAmgoAhV_Wh5Dv_a-Gz6Yq92bxvUmL6rdAbjYFIqXMhXgch-SR1CcV1iKnQx_3_2ngOj9ftYo0AYIx9Xn_5p9v45Clkf2X_XfSwEsbq5cilajZ-RpSDPpfq8Xz8kD274gj_vFk4uXZDRUC4vjk3RsZypVAZmE-r04UwpsoWPs1FOTiVpQ7CLdo4qae6Rw6mFpX5HT0Zdfnw_TsFEh1ZD3zNK60TXPNCuLEhe9VMK43NmiVuDyhIPszjoI39xAVlBzY3hjwKE5UaFjgErQFa_JWtu1dpPQfKAzBwbPuBZMccSZt8xlZZM3kEXqPCF7ERPlTY-eIRHPOj6B20uUgEQJSCFFlpCPtxy_e85XK6JaoRyiQKJf9190k3MZjE9WOdw-zxhzFSQsiM3cOFNCLWdNyWvLE_IexSkRD6PFhptzNZ9O5dHPE7mPCwUwzjO4UyByHWqgCvMLwA6E0IootyJKMFgTHe_cao3EI-xya203n8pBLXDh-z8oOK4srsQgIRu9lt2zhxes4KxMCI_0L-JMfNJeXng8cUjZcMH7m_-R2A558uNgJL8fHX97S9b7F-BFmvEtsjabzO02ZG4z_c4b5B-BID56
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+meta-analysis+models+for+microarray+data%3A+a+comparative+study&rft.jtitle=BMC+bioinformatics&rft.au=Conlon%2C+Erin+M&rft.au=Song%2C+Joon+J&rft.au=Liu%2C+Anna&rft.date=2007-03-07&rft.eissn=1471-2105&rft.volume=8&rft.spage=80&rft.epage=80&rft_id=info:doi/10.1186%2F1471-2105-8-80&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon