Translation of MMTV Gag requires nuclear events involving splicing motifs in addition to the viral Rem protein and RmRE
Background Retroviral Gag proteins are encoded in introns and, because of this localization, they are subject to the default pathways of pre-mRNA splicing. Retroviruses regulate splicing and translation through a variety of intertwined mechanisms, including 5'- post-transcriptional control elem...
Saved in:
Published in | Retrovirology Vol. 9; no. 1; p. 8 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
25.01.2012
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1742-4690 1742-4690 |
DOI | 10.1186/1742-4690-9-8 |
Cover
Abstract | Background
Retroviral Gag proteins are encoded in introns and, because of this localization, they are subject to the default pathways of pre-mRNA splicing. Retroviruses regulate splicing and translation through a variety of intertwined mechanisms, including 5'- post-transcriptional control elements, 3'- constitutive transport elements, and viral protein RNA interactions that couple unspliced and singly spliced mRNAs to transport machinery. Sequences within the
gag
gene termed inhibitory or instability sequences also appear to affect viral mRNA stability and translation, and the action of these sequences can be countered by silent mutation or the presence of RNA interaction proteins like HIV-1 Rev. Here, we explored the requirements for mouse mammary tumor virus (MMTV) Gag expression using a combination of
in vivo
and
in vitro
expression systems.
Results
We show that MMTV
gag
alleles are inhibited for translation despite possessing a functional open reading frame (ORF). The block to expression was post-transcriptional and targeted the mRNA but was not a function of mRNA transport or stability. Using bicistronic reporters, we show that inhibition of
gag
expression imparted a block to both cap-dependent and cap-independent translation onto the mRNA. Direct introduction of
in vitro
synthesized
gag
mRNA resulted in translation, implying a nuclear role in inhibition of expression. The inhibition of expression was overcome by intact proviral expression or by flanking
gag
with splice sites combined with a functional Rem-Rem response element (RmRE) interaction.
Conclusions
Expression of MMTV Gag requires nuclear interactions involving the viral Rem protein, its cognate binding target the RmRE, and surprisingly, both a splice donor and acceptor sequence to achieve appropriate signals for translation of the mRNA in the cytoplasm. |
---|---|
AbstractList | Retroviral Gag proteins are encoded in introns and, because of this localization, they are subject to the default pathways of pre-mRNA splicing. Retroviruses regulate splicing and translation through a variety of intertwined mechanisms, including 5'- post-transcriptional control elements, 3'- constitutive transport elements, and viral protein RNA interactions that couple unspliced and singly spliced mRNAs to transport machinery. Sequences within the gag gene termed inhibitory or instability sequences also appear to affect viral mRNA stability and translation, and the action of these sequences can be countered by silent mutation or the presence of RNA interaction proteins like HIV-1 Rev. Here, we explored the requirements for mouse mammary tumor virus (MMTV) Gag expression using a combination of in vivo and in vitro expression systems.
We show that MMTV gag alleles are inhibited for translation despite possessing a functional open reading frame (ORF). The block to expression was post-transcriptional and targeted the mRNA but was not a function of mRNA transport or stability. Using bicistronic reporters, we show that inhibition of gag expression imparted a block to both cap-dependent and cap-independent translation onto the mRNA. Direct introduction of in vitro synthesized gag mRNA resulted in translation, implying a nuclear role in inhibition of expression. The inhibition of expression was overcome by intact proviral expression or by flanking gag with splice sites combined with a functional Rem-Rem response element (RmRE) interaction.
Expression of MMTV Gag requires nuclear interactions involving the viral Rem protein, its cognate binding target the RmRE, and surprisingly, both a splice donor and acceptor sequence to achieve appropriate signals for translation of the mRNA in the cytoplasm. Background Retroviral Gag proteins are encoded in introns and, because of this localization, they are subject to the default pathways of pre-mRNA splicing. Retroviruses regulate splicing and translation through a variety of intertwined mechanisms, including 5'- post-transcriptional control elements, 3'- constitutive transport elements, and viral protein RNA interactions that couple unspliced and singly spliced mRNAs to transport machinery. Sequences within the gag gene termed inhibitory or instability sequences also appear to affect viral mRNA stability and translation, and the action of these sequences can be countered by silent mutation or the presence of RNA interaction proteins like HIV-1 Rev. Here, we explored the requirements for mouse mammary tumor virus (MMTV) Gag expression using a combination of in vivo and in vitro expression systems. Results We show that MMTV gag alleles are inhibited for translation despite possessing a functional open reading frame (ORF). The block to expression was post-transcriptional and targeted the mRNA but was not a function of mRNA transport or stability. Using bicistronic reporters, we show that inhibition of gag expression imparted a block to both cap-dependent and cap-independent translation onto the mRNA. Direct introduction of in vitro synthesized gag mRNA resulted in translation, implying a nuclear role in inhibition of expression. The inhibition of expression was overcome by intact proviral expression or by flanking gag with splice sites combined with a functional Rem-Rem response element (RmRE) interaction. Conclusions Expression of MMTV Gag requires nuclear interactions involving the viral Rem protein, its cognate binding target the RmRE, and surprisingly, both a splice donor and acceptor sequence to achieve appropriate signals for translation of the mRNA in the cytoplasm. Abstract Background: Retroviral Gag proteins are encoded in introns and, because of this localization, they are subject to the default pathways of pre-mRNA splicing. Retroviruses regulate splicing and translation through a variety of intertwined mechanisms, including 5'- post-transcriptional control elements, 3'- constitutive transport elements, and viral protein RNA interactions that couple unspliced and singly spliced mRNAs to transport machinery. Sequences within the gag gene termed inhibitory or instability sequences also appear to affect viral mRNA stability and translation, and the action of these sequences can be countered by silent mutation or the presence of RNA interaction proteins like HIV-1 Rev. Here, we explored the requirements for mouse mammary tumor virus (MMTV) Gag expression using a combination of in vivo and in vitro expression systems. Results: We show that MMTV gag alleles are inhibited for translation despite possessing a functional open reading frame (ORF). The block to expression was post-transcriptional and targeted the mRNA but was not a function of mRNA transport or stability. Using bicistronic reporters, we show that inhibition of gag expression imparted a block to both cap-dependent and cap-independent translation onto the mRNA. Direct introduction of in vitro synthesized gag mRNA resulted in translation, implying a nuclear role in inhibition of expression. The inhibition of expression was overcome by intact proviral expression or by flanking gag with splice sites combined with a functional Rem-Rem response element (RmRE) interaction. Conclusions: Expression of MMTV Gag requires nuclear interactions involving the viral Rem protein, its cognate binding target the RmRE, and surprisingly, both a splice donor and acceptor sequence to achieve appropriate signals for translation of the mRNA in the cytoplasm. Background Retroviral Gag proteins are encoded in introns and, because of this localization, they are subject to the default pathways of pre-mRNA splicing. Retroviruses regulate splicing and translation through a variety of intertwined mechanisms, including 5'- post-transcriptional control elements, 3'- constitutive transport elements, and viral protein RNA interactions that couple unspliced and singly spliced mRNAs to transport machinery. Sequences within the gag gene termed inhibitory or instability sequences also appear to affect viral mRNA stability and translation, and the action of these sequences can be countered by silent mutation or the presence of RNA interaction proteins like HIV-1 Rev. Here, we explored the requirements for mouse mammary tumor virus (MMTV) Gag expression using a combination of in vivo and in vitro expression systems. Results We show that MMTV gag alleles are inhibited for translation despite possessing a functional open reading frame (ORF). The block to expression was post-transcriptional and targeted the mRNA but was not a function of mRNA transport or stability. Using bicistronic reporters, we show that inhibition of gag expression imparted a block to both cap-dependent and cap-independent translation onto the mRNA. Direct introduction of in vitro synthesized gag mRNA resulted in translation, implying a nuclear role in inhibition of expression. The inhibition of expression was overcome by intact proviral expression or by flanking gag with splice sites combined with a functional Rem-Rem response element (RmRE) interaction. Conclusions Expression of MMTV Gag requires nuclear interactions involving the viral Rem protein, its cognate binding target the RmRE, and surprisingly, both a splice donor and acceptor sequence to achieve appropriate signals for translation of the mRNA in the cytoplasm. Retroviral Gag proteins are encoded in introns and, because of this localization, they are subject to the default pathways of pre-mRNA splicing. Retroviruses regulate splicing and translation through a variety of intertwined mechanisms, including 5'- post-transcriptional control elements, 3'- constitutive transport elements, and viral protein RNA interactions that couple unspliced and singly spliced mRNAs to transport machinery. Sequences within the gag gene termed inhibitory or instability sequences also appear to affect viral mRNA stability and translation, and the action of these sequences can be countered by silent mutation or the presence of RNA interaction proteins like HIV-1 Rev. Here, we explored the requirements for mouse mammary tumor virus (MMTV) Gag expression using a combination of in vivo and in vitro expression systems. We show that MMTV gag alleles are inhibited for translation despite possessing a functional open reading frame (ORF). The block to expression was post-transcriptional and targeted the mRNA but was not a function of mRNA transport or stability. Using bicistronic reporters, we show that inhibition of gag expression imparted a block to both cap-dependent and cap-independent translation onto the mRNA. Direct introduction of in vitro synthesized gag mRNA resulted in translation, implying a nuclear role in inhibition of expression. The inhibition of expression was overcome by intact proviral expression or by flanking gag with splice sites combined with a functional Rem-Rem response element (RmRE) interaction. Expression of MMTV Gag requires nuclear interactions involving the viral Rem protein, its cognate binding target the RmRE, and surprisingly, both a splice donor and acceptor sequence to achieve appropriate signals for translation of the mRNA in the cytoplasm. Retroviral Gag proteins are encoded in introns and, because of this localization, they are subject to the default pathways of pre-mRNA splicing. Retroviruses regulate splicing and translation through a variety of intertwined mechanisms, including 5'- post-transcriptional control elements, 3'- constitutive transport elements, and viral protein RNA interactions that couple unspliced and singly spliced mRNAs to transport machinery. Sequences within the gag gene termed inhibitory or instability sequences also appear to affect viral mRNA stability and translation, and the action of these sequences can be countered by silent mutation or the presence of RNA interaction proteins like HIV-1 Rev. Here, we explored the requirements for mouse mammary tumor virus (MMTV) Gag expression using a combination of in vivo and in vitro expression systems.BACKGROUNDRetroviral Gag proteins are encoded in introns and, because of this localization, they are subject to the default pathways of pre-mRNA splicing. Retroviruses regulate splicing and translation through a variety of intertwined mechanisms, including 5'- post-transcriptional control elements, 3'- constitutive transport elements, and viral protein RNA interactions that couple unspliced and singly spliced mRNAs to transport machinery. Sequences within the gag gene termed inhibitory or instability sequences also appear to affect viral mRNA stability and translation, and the action of these sequences can be countered by silent mutation or the presence of RNA interaction proteins like HIV-1 Rev. Here, we explored the requirements for mouse mammary tumor virus (MMTV) Gag expression using a combination of in vivo and in vitro expression systems.We show that MMTV gag alleles are inhibited for translation despite possessing a functional open reading frame (ORF). The block to expression was post-transcriptional and targeted the mRNA but was not a function of mRNA transport or stability. Using bicistronic reporters, we show that inhibition of gag expression imparted a block to both cap-dependent and cap-independent translation onto the mRNA. Direct introduction of in vitro synthesized gag mRNA resulted in translation, implying a nuclear role in inhibition of expression. The inhibition of expression was overcome by intact proviral expression or by flanking gag with splice sites combined with a functional Rem-Rem response element (RmRE) interaction.RESULTSWe show that MMTV gag alleles are inhibited for translation despite possessing a functional open reading frame (ORF). The block to expression was post-transcriptional and targeted the mRNA but was not a function of mRNA transport or stability. Using bicistronic reporters, we show that inhibition of gag expression imparted a block to both cap-dependent and cap-independent translation onto the mRNA. Direct introduction of in vitro synthesized gag mRNA resulted in translation, implying a nuclear role in inhibition of expression. The inhibition of expression was overcome by intact proviral expression or by flanking gag with splice sites combined with a functional Rem-Rem response element (RmRE) interaction.Expression of MMTV Gag requires nuclear interactions involving the viral Rem protein, its cognate binding target the RmRE, and surprisingly, both a splice donor and acceptor sequence to achieve appropriate signals for translation of the mRNA in the cytoplasm.CONCLUSIONSExpression of MMTV Gag requires nuclear interactions involving the viral Rem protein, its cognate binding target the RmRE, and surprisingly, both a splice donor and acceptor sequence to achieve appropriate signals for translation of the mRNA in the cytoplasm. |
ArticleNumber | 8 |
Audience | Academic |
Author | Sakalian, Michael Boeras, Ioana West, John T |
AuthorAffiliation | 1 Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA |
AuthorAffiliation_xml | – name: 1 Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA |
Author_xml | – sequence: 1 givenname: Ioana surname: Boeras fullname: Boeras, Ioana organization: Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center – sequence: 2 givenname: Michael surname: Sakalian fullname: Sakalian, Michael organization: Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center – sequence: 3 givenname: John T surname: West fullname: West, John T email: john-west@ouhsc.edu organization: Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22277305$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktP3DAQgKOKqjzaY6-V1R44hfqR2PGlAiGgSKBKq22vluPYwavEXuxkq_77OrsLZSkohzj2N19mxnOY7TnvdJZ9RPAEoYp-RazAeUE5zHlevckOHr_3nqz3s8MYFxASVMHqXbaPMWaMwPIg-z0P0sVODtY74A24vZ3_AleyBUHfjzboCNyoOi0D0CvthgisW_luZV0L4rKzalr0frBmOgGyaezaNHgw3GmwskF2YKZ7sAx-0BPhGjDrZxfvs7dGdlF_2L6Psp-XF_Pz7_nNj6vr87ObvKYFHnJFWIlVYSSsUvY1r7hmsFA1URQVpCgogkyWBjGilYao0U2daqOmVEbWTVOSo-x64228XIhlsL0Mf4SXVqw3fGiFDINNJYoCN6xCsNaY04LVsiZSQ2qkqQkjnOPk-rZxLce6141K_Ujl7Uh3T5y9E61fCYI5LniVBKcbQW39K4LdE-V7MV2imC5RcDEpjrc5BH8_6jiI3kalu0467ccoOKaopJhN5Odn5MKPwaVmJ6hEENOKJujLBmpl6oB1xqf_qkkpznCFEalKzhJ18gKVnkb3VqV5NDbt7wR8etqpxwof5i4BZAOo4GMM2ghlh_UQJrPtBIJimu7_is-fRT2IX-O3ecfEuVaHfy14OeAv_SMJeA |
CitedBy_id | crossref_primary_10_15789_2220_7619_TRO_17585 crossref_primary_10_3390_biology1020165 crossref_primary_10_1371_journal_pone_0072270 crossref_primary_10_1371_journal_pone_0131515 crossref_primary_10_1016_j_jmb_2018_08_025 crossref_primary_10_1186_s12977_014_0073_0 crossref_primary_10_1111_febs_13708 |
Cites_doi | 10.1074/jbc.M109.012476 10.1093/nar/gkn608 10.1128/MCB.12.3.1375 10.1093/nar/gkp1075 10.1146/annurev.micro.52.1.491 10.1099/vir.0.011460-0 10.1073/pnas.85.24.9655 10.1006/viro.1998.9233 10.1038/nrm2255 10.1093/nar/14.21.8231 10.1111/j.1600-0854.2006.00488.x 10.1158/0008-5472.CAN-04-2609 10.1128/jvi.71.12.9150-9156.1997 10.1128/MCB.8.11.4858 10.1128/JVI.76.20.10211-10218.2002 10.1371/journal.ppat.0020128 10.1073/pnas.87.19.7598 10.1016/j.virol.2004.12.007 10.1002/j.1460-2075.1982.tb01115.x 10.1128/jvi.46.3.818-828.1983 10.1128/MCB.23.18.6618-6630.2003 10.1083/jcb.200309145 10.1038/nsmb1092 10.1016/j.virol.2005.09.066 10.1016/j.virol.2008.10.038 10.1016/j.molcel.2009.06.016 10.1016/S1097-2765(00)80065-9 10.1093/nar/gki376 10.1186/1742-4690-6-8 10.1128/jvi.64.9.4313-4320.1990 10.1128/jvi.66.1.150-159.1992 10.1093/nar/11.20.6943 10.1016/j.bbamcr.2004.09.030 10.1128/JVI.02347-08 10.1016/S0960-9822(06)00335-6 10.1128/JVI.01747-08 10.1016/j.bbaexp.2003.09.015 10.1073/pnas.92.25.11940 10.1016/S0065-3527(08)60707-1 10.1128/jvi.62.8.2686-2695.1988 10.1016/S0065-230X(06)98003-8 10.1128/jvi.70.6.3834-3843.1996 10.2174/157016209787048474 10.1128/JVI.79.23.14737-14747.2005 10.1128/jvi.63.3.1265-1274.1989 10.1128/jvi.66.12.7176-7182.1992 10.1128/JVI.73.6.4847-4855.1999 10.1016/j.cell.2009.02.001 10.1016/0042-6822(85)90309-5 10.1186/1742-4690-3-18 10.1128/MCB.10.2.696 10.1038/338254a0 10.1038/sj.onc.1204328 10.1128/jvi.44.2.725-730.1982 10.1016/j.virol.2005.03.040 10.1038/sj.emboj.7600270 10.1186/1742-4690-6-10 10.1128/jvi.71.7.4892-4903.1997 10.1002/hep.20024 10.1128/JVI.02526-09 10.1002/j.1460-2075.1983.tb01393.x |
ContentType | Journal Article |
Copyright | Boeras et al; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. COPYRIGHT 2012 BioMed Central Ltd. 2012 Boeras et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2012 Boeras et al; licensee BioMed Central Ltd. 2012 Boeras et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Boeras et al; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: COPYRIGHT 2012 BioMed Central Ltd. – notice: 2012 Boeras et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2012 Boeras et al; licensee BioMed Central Ltd. 2012 Boeras et al; licensee BioMed Central Ltd. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7U9 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/1742-4690-9-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1742-4690 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_42d7810be29647bab3ae06fafb373992 PMC3292498 oai_biomedcentral_com_1742_4690_9_8 2599199691 A282138597 22277305 10_1186_1742_4690_9_8 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: P20RR016478 |
GroupedDBID | --- 0R~ 123 29P 2VQ 2WC 4.4 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IHR INH INR IPNFZ ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM PMFND 3V. 7U9 7XB 8FK AZQEC DWQXO H94 K9. PKEHL PQEST PQUKI PRINS 7X8 -A0 ABVAZ ACRMQ ADINQ AFGXO AFNRJ C24 5PM |
ID | FETCH-LOGICAL-b642t-c3752c4fa08003b989e704cb3c6143446107a5f173ece01dedb2226f5cfabdd53 |
IEDL.DBID | M48 |
ISSN | 1742-4690 |
IngestDate | Wed Aug 27 01:30:19 EDT 2025 Thu Aug 21 14:12:41 EDT 2025 Wed May 22 07:16:00 EDT 2024 Fri Sep 05 03:27:22 EDT 2025 Fri Jul 25 09:41:48 EDT 2025 Tue Jun 17 21:22:48 EDT 2025 Tue Jun 10 20:25:13 EDT 2025 Mon Jul 21 05:59:33 EDT 2025 Tue Jul 01 03:39:36 EDT 2025 Thu Apr 24 22:54:05 EDT 2025 Sat Sep 06 07:25:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Betaretrovirus post-transcriptional regulation Rem |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b642t-c3752c4fa08003b989e704cb3c6143446107a5f173ece01dedb2226f5cfabdd53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1742-4690-9-8 |
PMID | 22277305 |
PQID | 925102686 |
PQPubID | 54665 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_42d7810be29647bab3ae06fafb373992 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3292498 biomedcentral_primary_oai_biomedcentral_com_1742_4690_9_8 proquest_miscellaneous_926156278 proquest_journals_925102686 gale_infotracmisc_A282138597 gale_infotracacademiconefile_A282138597 pubmed_primary_22277305 crossref_citationtrail_10_1186_1742_4690_9_8 crossref_primary_10_1186_1742_4690_9_8 springer_journals_10_1186_1742_4690_9_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-25 |
PublicationDateYYYYMMDD | 2012-01-25 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Retrovirology |
PublicationTitleAbbrev | Retrovirology |
PublicationTitleAlternate | Retrovirology |
PublicationYear | 2012 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | S Indik (2651_CR18) 2005; 337 CM Okeoma (2651_CR36) 2009; 83 RA Katz (2651_CR7) 1988; 62 A Zabransky (2651_CR31) 2005; 332 AB Vaidya (2651_CR37) 1983; 46 JA Mertz (2651_CR52) 2009; 6 S Bhadra (2651_CR34) 2006; 2 S Indik (2651_CR35) 2005; 65 2651_CR27 JA Mertz (2651_CR14) 2009; 284 M Suhasini (2651_CR56) 2009; 7 SB Simpson (2651_CR43) 1997; 71 S Arrigo (2651_CR6) 1988; 8 XY Zhong (2651_CR3) 2009; 35 S Brookes (2651_CR30) 1986; 14 N Fasel (2651_CR58) 1983; 11 C Perales (2651_CR22) 2005; 1743 AW Cochrane (2651_CR54) 2006; 3 RA Katz (2651_CR8) 1990; 10 N Fasel (2651_CR59) 1982; 1 CM Swanson (2651_CR55) 2006; 7 P Gruter (2651_CR9) 1998; 1 GM Shackleford (2651_CR28) 1988; 85 KC Klein (2651_CR38) 2007; 9 M Hadzopoulou-Cladaras (2651_CR10) 1989; 63 G Nasioulas (2651_CR48) 1995; 92 RA Ogert (2651_CR45) 1996; 70 CM Swanson (2651_CR33) 2004; 23 SM Redmond (2651_CR60) 1983; 2 SL Berberich (2651_CR46) 1990; 64 MJ Moore (2651_CR2) 2009; 136 HC Groom (2651_CR40) 2009; 90 M Mullner (2651_CR19) 2008; 36 A Hofacre (2651_CR15) 2009; 83 VM Vogt (2651_CR47) 1982; 44 BJ Deroo (2651_CR41) 2001; 20 C Bolinger (2651_CR42) 2009; 6 JA Mertz (2651_CR13) 2005; 79 RD Cardiff (2651_CR16) 2007; 98 S Schwartz (2651_CR21) 1992; 66 2651_CR49 B Salmons (2651_CR29) 1985; 144 R Schneider (2651_CR23) 1997; 71 M Butsch (2651_CR24) 1999; 73 S Hull (2651_CR25) 2002; 76 L Xu (2651_CR61) 2004; 39 CM Stoltzfus (2651_CR5) 1988; 35 SB Simpson (2651_CR44) 1998; 247 AS Zolotukhin (2651_CR51) 2003; 23 XB Lu (2651_CR53) 1990; 87 M Neville (2651_CR12) 1997; 7 HK Kinyamu (2651_CR17) 2004; 1677 S Schwartz (2651_CR39) 1992; 66 A Zabransky (2651_CR57) 2009; 384 MH Malim (2651_CR11) 1989; 338 TR Hartman (2651_CR26) 2006; 13 DM D'Agostino (2651_CR20) 1992; 12 TL Kress (2651_CR4) 2004; 165 A Kohler (2651_CR1) 2007; 8 A Grote (2651_CR32) 2005; 33 VW Pollard (2651_CR50) 1998; 52 M Sakalian (2651_CR62) 2006; 345 2783738 - J Virol. 1989 Mar;63(3):1265-74 15980527 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W526-31 1545819 - Mol Cell Biol. 1992 Mar;12(3):1375-86 9371572 - J Virol. 1997 Dec;71(12):9150-6 2784194 - Nature. 1989 Mar 16;338(6212):254-7 11894899 - EMBO J. 1983;2(1):125-31 15201866 - EMBO J. 2004 Jul 7;23(13):2632-40 6183452 - J Virol. 1982 Nov;44(2):725-30 2839694 - J Virol. 1988 Aug;62(8):2686-95 16297423 - Virology. 2006 Feb 20;345(2):317-27 6304344 - J Virol. 1983 Jun;46(3):818-28 8524879 - Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11940-4 2850470 - Mol Cell Biol. 1988 Nov;8(11):4858-67 19776124 - J Virol. 2009 Dec;83(23):12483-98 8648719 - J Virol. 1996 Jun;70(6):3834-43 9683574 - Virology. 1998 Jul 20;247(1):86-96 15914215 - Virology. 2005 Jun 20;337(1):1-6 19153238 - J Virol. 2009 Apr;83(8):3486-95 1727477 - J Virol. 1992 Jan;66(1):150-9 18835854 - Nucleic Acids Res. 2008 Nov;36(19):6284-94 15020043 - Biochim Biophys Acta. 2004 Mar 15;1677(1-3):30-45 19166625 - Retrovirology. 2009;6:8 2153921 - Mol Cell Biol. 1990 Feb;10(2):696-704 2166819 - J Virol. 1990 Sep;64(9):4313-20 20427542 - J Virol. 2010 Jul;84(13):6748-59 19321757 - J Gen Virol. 2009 Jun;90(Pt 6):1303-18 3024101 - Nucleic Acids Res. 1986 Nov 11;14(21):8231-45 17982940 - AIDS Rev. 2007 Jul-Sep;9(3):150-61 16061645 - Cancer Res. 2005 Aug 1;65(15):6651-9 17433908 - Adv Cancer Res. 2007;98:53-116 9891806 - Annu Rev Microbiol. 1998;52:491-532 16680162 - Nat Struct Mol Biol. 2006 Jun;13(6):509-16 15777852 - Biochim Biophys Acta. 2005 Mar 22;1743(1-2):169-75 20007598 - Nucleic Acids Res. 2010 Mar;38(5):1686-96 9368759 - Curr Biol. 1997 Oct 1;7(10):767-75 16545126 - Retrovirology. 2006;3:18 19149558 - Curr HIV Res. 2009 Jan;7(1):91-100 6325151 - EMBO J. 1982;1(1):3-7 12944487 - Mol Cell Biol. 2003 Sep;23(18):6618-30 1433510 - J Virol. 1992 Dec;66(12):7176-82 2849114 - Proc Natl Acad Sci U S A. 1988 Dec;85(24):9655-9 9188551 - J Virol. 1997 Jul;71(7):4892-903 11420719 - Oncogene. 2001 May 28;20(24):3039-46 17140288 - PLoS Pathog. 2006 Dec;2(12):e128 19046754 - Virology. 2009 Feb 5;384(1):33-7 16282474 - J Virol. 2005 Dec;79(23):14737-47 19632991 - J Biol Chem. 2009 Sep 18;284(38):25642-52 15680431 - Virology. 2005 Feb 20;332(2):659-66 17786152 - Nat Rev Mol Cell Biol. 2007 Oct;8(10):761-73 19239889 - Cell. 2009 Feb 20;136(4):688-700 2852891 - Adv Virus Res. 1988;35:1-38 15096527 - J Cell Biol. 2004 Apr 26;165(2):203-11 14752833 - Hepatology. 2004 Jan;39(1):151-6 19192308 - Retrovirology. 2009;6:10 19595711 - Mol Cell. 2009 Jul 10;35(1):1-10 9660949 - Mol Cell. 1998 Apr;1(5):649-59 16984406 - Traffic. 2006 Nov;7(11):1440-50 2217190 - Proc Natl Acad Sci U S A. 1990 Oct;87(19):7598-602 6314267 - Nucleic Acids Res. 1983 Oct 25;11(20):6943-55 2998037 - Virology. 1985 Jul 15;144(1):101-14 10233946 - J Virol. 1999 Jun;73(6):4847-55 12239296 - J Virol. 2002 Oct;76(20):10211-8 |
References_xml | – volume: 284 start-page: 25642 year: 2009 ident: 2651_CR14 publication-title: J Biol Chem doi: 10.1074/jbc.M109.012476 – volume: 36 start-page: 6284 year: 2008 ident: 2651_CR19 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn608 – volume: 12 start-page: 1375 year: 1992 ident: 2651_CR20 publication-title: Mol Cell Biol doi: 10.1128/MCB.12.3.1375 – ident: 2651_CR27 doi: 10.1093/nar/gkp1075 – volume: 52 start-page: 491 year: 1998 ident: 2651_CR50 publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.52.1.491 – volume: 90 start-page: 1303 year: 2009 ident: 2651_CR40 publication-title: J Gen Virol doi: 10.1099/vir.0.011460-0 – volume: 85 start-page: 9655 year: 1988 ident: 2651_CR28 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.85.24.9655 – volume: 247 start-page: 86 year: 1998 ident: 2651_CR44 publication-title: Virology doi: 10.1006/viro.1998.9233 – volume: 8 start-page: 761 year: 2007 ident: 2651_CR1 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2255 – volume: 14 start-page: 8231 year: 1986 ident: 2651_CR30 publication-title: Nucleic Acids Res doi: 10.1093/nar/14.21.8231 – volume: 7 start-page: 1440 year: 2006 ident: 2651_CR55 publication-title: Traffic doi: 10.1111/j.1600-0854.2006.00488.x – volume: 65 start-page: 6651 year: 2005 ident: 2651_CR35 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-2609 – volume: 71 start-page: 9150 year: 1997 ident: 2651_CR43 publication-title: J Virol doi: 10.1128/jvi.71.12.9150-9156.1997 – volume: 8 start-page: 4858 year: 1988 ident: 2651_CR6 publication-title: Mol Cell Biol doi: 10.1128/MCB.8.11.4858 – volume: 76 start-page: 10211 year: 2002 ident: 2651_CR25 publication-title: J Virol doi: 10.1128/JVI.76.20.10211-10218.2002 – volume: 2 start-page: e128 year: 2006 ident: 2651_CR34 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.0020128 – volume: 87 start-page: 7598 year: 1990 ident: 2651_CR53 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.87.19.7598 – volume: 332 start-page: 659 year: 2005 ident: 2651_CR31 publication-title: Virology doi: 10.1016/j.virol.2004.12.007 – volume: 1 start-page: 3 year: 1982 ident: 2651_CR59 publication-title: EMBO J doi: 10.1002/j.1460-2075.1982.tb01115.x – volume: 46 start-page: 818 year: 1983 ident: 2651_CR37 publication-title: J Virol doi: 10.1128/jvi.46.3.818-828.1983 – volume: 23 start-page: 6618 year: 2003 ident: 2651_CR51 publication-title: Mol Cell Biol doi: 10.1128/MCB.23.18.6618-6630.2003 – volume: 165 start-page: 203 year: 2004 ident: 2651_CR4 publication-title: J Cell Biol doi: 10.1083/jcb.200309145 – volume: 13 start-page: 509 year: 2006 ident: 2651_CR26 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb1092 – volume: 345 start-page: 317 year: 2006 ident: 2651_CR62 publication-title: Virology doi: 10.1016/j.virol.2005.09.066 – volume: 384 start-page: 33 year: 2009 ident: 2651_CR57 publication-title: Virology doi: 10.1016/j.virol.2008.10.038 – volume: 35 start-page: 1 year: 2009 ident: 2651_CR3 publication-title: Mol Cell doi: 10.1016/j.molcel.2009.06.016 – volume: 1 start-page: 649 year: 1998 ident: 2651_CR9 publication-title: Mol Cell doi: 10.1016/S1097-2765(00)80065-9 – volume: 33 start-page: W526 year: 2005 ident: 2651_CR32 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki376 – volume: 6 start-page: 8 year: 2009 ident: 2651_CR42 publication-title: Retrovirology doi: 10.1186/1742-4690-6-8 – volume: 64 start-page: 4313 year: 1990 ident: 2651_CR46 publication-title: J Virol doi: 10.1128/jvi.64.9.4313-4320.1990 – volume: 66 start-page: 150 year: 1992 ident: 2651_CR21 publication-title: J Virol doi: 10.1128/jvi.66.1.150-159.1992 – volume: 11 start-page: 6943 year: 1983 ident: 2651_CR58 publication-title: Nucleic Acids Res doi: 10.1093/nar/11.20.6943 – volume: 1743 start-page: 169 year: 2005 ident: 2651_CR22 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2004.09.030 – volume: 83 start-page: 3486 year: 2009 ident: 2651_CR36 publication-title: J Virol doi: 10.1128/JVI.02347-08 – volume: 7 start-page: 767 year: 1997 ident: 2651_CR12 publication-title: Curr Biol doi: 10.1016/S0960-9822(06)00335-6 – volume: 83 start-page: 12483 year: 2009 ident: 2651_CR15 publication-title: J Virol doi: 10.1128/JVI.01747-08 – volume: 9 start-page: 150 year: 2007 ident: 2651_CR38 publication-title: AIDS Rev – volume: 1677 start-page: 30 year: 2004 ident: 2651_CR17 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbaexp.2003.09.015 – volume: 92 start-page: 11940 year: 1995 ident: 2651_CR48 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.92.25.11940 – volume: 35 start-page: 1 year: 1988 ident: 2651_CR5 publication-title: Adv Virus Res doi: 10.1016/S0065-3527(08)60707-1 – volume: 62 start-page: 2686 year: 1988 ident: 2651_CR7 publication-title: J Virol doi: 10.1128/jvi.62.8.2686-2695.1988 – volume: 98 start-page: 53 year: 2007 ident: 2651_CR16 publication-title: Adv Cancer Res doi: 10.1016/S0065-230X(06)98003-8 – volume: 70 start-page: 3834 year: 1996 ident: 2651_CR45 publication-title: J Virol doi: 10.1128/jvi.70.6.3834-3843.1996 – volume: 7 start-page: 91 year: 2009 ident: 2651_CR56 publication-title: Curr HIV Res doi: 10.2174/157016209787048474 – volume: 79 start-page: 14737 year: 2005 ident: 2651_CR13 publication-title: J Virol doi: 10.1128/JVI.79.23.14737-14747.2005 – volume: 63 start-page: 1265 year: 1989 ident: 2651_CR10 publication-title: J Virol doi: 10.1128/jvi.63.3.1265-1274.1989 – volume: 66 start-page: 7176 year: 1992 ident: 2651_CR39 publication-title: J Virol doi: 10.1128/jvi.66.12.7176-7182.1992 – volume: 73 start-page: 4847 year: 1999 ident: 2651_CR24 publication-title: J Virol doi: 10.1128/JVI.73.6.4847-4855.1999 – volume: 136 start-page: 688 year: 2009 ident: 2651_CR2 publication-title: Cell doi: 10.1016/j.cell.2009.02.001 – volume: 144 start-page: 101 year: 1985 ident: 2651_CR29 publication-title: Virology doi: 10.1016/0042-6822(85)90309-5 – volume: 3 start-page: 18 year: 2006 ident: 2651_CR54 publication-title: Retrovirology doi: 10.1186/1742-4690-3-18 – volume: 10 start-page: 696 year: 1990 ident: 2651_CR8 publication-title: Mol Cell Biol doi: 10.1128/MCB.10.2.696 – volume: 338 start-page: 254 year: 1989 ident: 2651_CR11 publication-title: Nature doi: 10.1038/338254a0 – volume: 20 start-page: 3039 year: 2001 ident: 2651_CR41 publication-title: Oncogene doi: 10.1038/sj.onc.1204328 – volume: 44 start-page: 725 year: 1982 ident: 2651_CR47 publication-title: J Virol doi: 10.1128/jvi.44.2.725-730.1982 – volume: 337 start-page: 1 year: 2005 ident: 2651_CR18 publication-title: Virology doi: 10.1016/j.virol.2005.03.040 – volume: 23 start-page: 2632 year: 2004 ident: 2651_CR33 publication-title: EMBO J doi: 10.1038/sj.emboj.7600270 – volume: 6 start-page: 10 year: 2009 ident: 2651_CR52 publication-title: Retrovirology doi: 10.1186/1742-4690-6-10 – volume: 71 start-page: 4892 year: 1997 ident: 2651_CR23 publication-title: J Virol doi: 10.1128/jvi.71.7.4892-4903.1997 – volume: 39 start-page: 151 year: 2004 ident: 2651_CR61 publication-title: Hepatology doi: 10.1002/hep.20024 – ident: 2651_CR49 doi: 10.1128/JVI.02526-09 – volume: 2 start-page: 125 year: 1983 ident: 2651_CR60 publication-title: EMBO J doi: 10.1002/j.1460-2075.1983.tb01393.x – reference: 16061645 - Cancer Res. 2005 Aug 1;65(15):6651-9 – reference: 19153238 - J Virol. 2009 Apr;83(8):3486-95 – reference: 17982940 - AIDS Rev. 2007 Jul-Sep;9(3):150-61 – reference: 8524879 - Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11940-4 – reference: 19632991 - J Biol Chem. 2009 Sep 18;284(38):25642-52 – reference: 17433908 - Adv Cancer Res. 2007;98:53-116 – reference: 14752833 - Hepatology. 2004 Jan;39(1):151-6 – reference: 19192308 - Retrovirology. 2009;6:10 – reference: 8648719 - J Virol. 1996 Jun;70(6):3834-43 – reference: 11420719 - Oncogene. 2001 May 28;20(24):3039-46 – reference: 2839694 - J Virol. 1988 Aug;62(8):2686-95 – reference: 1727477 - J Virol. 1992 Jan;66(1):150-9 – reference: 18835854 - Nucleic Acids Res. 2008 Nov;36(19):6284-94 – reference: 1545819 - Mol Cell Biol. 1992 Mar;12(3):1375-86 – reference: 19321757 - J Gen Virol. 2009 Jun;90(Pt 6):1303-18 – reference: 16984406 - Traffic. 2006 Nov;7(11):1440-50 – reference: 15680431 - Virology. 2005 Feb 20;332(2):659-66 – reference: 2153921 - Mol Cell Biol. 1990 Feb;10(2):696-704 – reference: 2784194 - Nature. 1989 Mar 16;338(6212):254-7 – reference: 9371572 - J Virol. 1997 Dec;71(12):9150-6 – reference: 16545126 - Retrovirology. 2006;3:18 – reference: 3024101 - Nucleic Acids Res. 1986 Nov 11;14(21):8231-45 – reference: 9891806 - Annu Rev Microbiol. 1998;52:491-532 – reference: 16680162 - Nat Struct Mol Biol. 2006 Jun;13(6):509-16 – reference: 19595711 - Mol Cell. 2009 Jul 10;35(1):1-10 – reference: 11894899 - EMBO J. 1983;2(1):125-31 – reference: 2850470 - Mol Cell Biol. 1988 Nov;8(11):4858-67 – reference: 10233946 - J Virol. 1999 Jun;73(6):4847-55 – reference: 15914215 - Virology. 2005 Jun 20;337(1):1-6 – reference: 17786152 - Nat Rev Mol Cell Biol. 2007 Oct;8(10):761-73 – reference: 2783738 - J Virol. 1989 Mar;63(3):1265-74 – reference: 2852891 - Adv Virus Res. 1988;35:1-38 – reference: 15020043 - Biochim Biophys Acta. 2004 Mar 15;1677(1-3):30-45 – reference: 2166819 - J Virol. 1990 Sep;64(9):4313-20 – reference: 20427542 - J Virol. 2010 Jul;84(13):6748-59 – reference: 19166625 - Retrovirology. 2009;6:8 – reference: 9660949 - Mol Cell. 1998 Apr;1(5):649-59 – reference: 16297423 - Virology. 2006 Feb 20;345(2):317-27 – reference: 12944487 - Mol Cell Biol. 2003 Sep;23(18):6618-30 – reference: 9188551 - J Virol. 1997 Jul;71(7):4892-903 – reference: 15777852 - Biochim Biophys Acta. 2005 Mar 22;1743(1-2):169-75 – reference: 9683574 - Virology. 1998 Jul 20;247(1):86-96 – reference: 15980527 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W526-31 – reference: 6304344 - J Virol. 1983 Jun;46(3):818-28 – reference: 2217190 - Proc Natl Acad Sci U S A. 1990 Oct;87(19):7598-602 – reference: 9368759 - Curr Biol. 1997 Oct 1;7(10):767-75 – reference: 19776124 - J Virol. 2009 Dec;83(23):12483-98 – reference: 15201866 - EMBO J. 2004 Jul 7;23(13):2632-40 – reference: 15096527 - J Cell Biol. 2004 Apr 26;165(2):203-11 – reference: 12239296 - J Virol. 2002 Oct;76(20):10211-8 – reference: 16282474 - J Virol. 2005 Dec;79(23):14737-47 – reference: 20007598 - Nucleic Acids Res. 2010 Mar;38(5):1686-96 – reference: 2849114 - Proc Natl Acad Sci U S A. 1988 Dec;85(24):9655-9 – reference: 6314267 - Nucleic Acids Res. 1983 Oct 25;11(20):6943-55 – reference: 2998037 - Virology. 1985 Jul 15;144(1):101-14 – reference: 19046754 - Virology. 2009 Feb 5;384(1):33-7 – reference: 19239889 - Cell. 2009 Feb 20;136(4):688-700 – reference: 17140288 - PLoS Pathog. 2006 Dec;2(12):e128 – reference: 19149558 - Curr HIV Res. 2009 Jan;7(1):91-100 – reference: 1433510 - J Virol. 1992 Dec;66(12):7176-82 – reference: 6183452 - J Virol. 1982 Nov;44(2):725-30 – reference: 6325151 - EMBO J. 1982;1(1):3-7 |
SSID | ssj0031808 |
Score | 1.9946458 |
Snippet | Background
Retroviral Gag proteins are encoded in introns and, because of this localization, they are subject to the default pathways of pre-mRNA splicing.... Retroviral Gag proteins are encoded in introns and, because of this localization, they are subject to the default pathways of pre-mRNA splicing. Retroviruses... Background Retroviral Gag proteins are encoded in introns and, because of this localization, they are subject to the default pathways of pre-mRNA splicing.... Abstract Background: Retroviral Gag proteins are encoded in introns and, because of this localization, they are subject to the default pathways of pre-mRNA... BACKGROUND: Retroviral Gag proteins are encoded in introns and, because of this localization, they are subject to the default pathways of pre-mRNA splicing.... Abstract Background Retroviral Gag proteins are encoded in introns and, because of this localization, they are subject to the default pathways of pre-mRNA... |
SourceID | doaj pubmedcentral biomedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8 |
SubjectTerms | Animals Antibodies Betaretrovirus Biomedical and Life Sciences Biomedicine Breast cancer Cancer Research Cell Line Colleges & universities Cytoplasm Deoxyribonucleic acid DNA gag Gene Expression Gene Expression Regulation, Viral Gene Products, gag - biosynthesis Genes Genetic aspects Genetic regulation Genomes Health sciences Humans Infectious Diseases Mammary Tumor Virus, Mouse - genetics Mammary Tumor Virus, Mouse - physiology Messenger RNA Open reading frames Physiological aspects post-transcriptional regulation Protein Biosynthesis Protein Structure Proteins Rem RNA Splicing Vaccine Viral proteins Virology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDehBfmA6AWrSWzHzrGglgppOaxa1JvlJ1TaZtHuVoh_z4yTLM0C4sItiieJ7RnPIx5_Q8jrhldByKRYmdqSCW8Da3kKLMDiqoHnWudswtmn5uxCfLyUl7dKfWFOWA8P3E_ckaiD0lXpIu4PKmcdt7Fskk2OKwRVRe1btuUYTPU6GL6Ra9GBu10zDABHdE3dHG3vsZbpnWPui4l1yiD-v6vqW7ZqN49yZzM126jTB-T-4FzS435QD8md2D0id_tykz8ek-_ZMPXJb3SZ6Gx2_pl-sF_oKmI-cFzTDtGN7YpmWKc1vepAeeEfB7rGbW68wNy9hC0UM5HymzZLCl4kxWzhBZ3Ha5qxH5CiC3R-PT95Qi5OT87fn7Gh8AJzEI5smOdK1l4ki-4kd61uoyqFd9yDMecCIdqVlalSPPpYViEGB25Gk6RP1gVg81Oy1y27-JxQ8Bcs2D8RnUoC8dOi0KGugky8irIuC9JOGGC-9SAbBmGvpy2wAg0yzyDzTGt0Qd6OzDJ-QDTHwhoLkyMb3eySv9mSj1_5C-E75PykK_kGyKUZ5NL8Sy4LcohyY1BPQKe8HY47wLQg4pY5hli34hriuYIcTChhfftJ8_4oeWbQL2vTglsK0bNuCkK3rfggpsx1cXmDJOCsNrWC4TzrxXQ7IDz_DJpdFkRNBHgy4mlLd_U1Y4_zGgN2eOfhKOq_OvXHyXzxPyZzn9wDRxVziFgtD8jeZnUTX4IzuHGv8rr_CR7PWck priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k3agnxA9ILVJE5i54QKaqmQlsOqRXuz_CyVtknZ3ari3zPjPCDL47ZaTxI7M55H_PkzIW8qnrmiDIKloU5ZYbVjNQ-OOZhcOehcyogmnH2pTs-Lz4ty0WNz1j2scvCJ0VG71uI38sMaAjHUC7J6f_2d4aFRuLjan6Bxl9yLzGVgzmIx1lvwoFQOtJqyOoTcO2dYDbKaya397ctJWIrs_X_66N-C1DaAcmsVNQank0fkYZ9V0qPODB6TO755Qu5350z-eEpuY0TqUG-0DXQ2O_tKP-kLuvIIBPZr2iCtsV7RyOe0ppcNeC381EDXuL6NPxC0F7CFIgQp3mnTUkgfKcKEl3Tur2gkfUCJxtH51fz4GTk_OT77eMr6ExeYgTpkwywXZW6LoDGP5KaWtRdpYQ23EMV5gdzsQpchE9xbn2bOOwP5RRVKG7RxoN_nZKdpG_-SUEgUNAS-whsRCiRO84V0eebKwDNf5mlC6okC1HXHrqGQ73raAmagUHkKladqJRPyblCWsj2VOZ6osVSxpJHVtvjbUXx4yj8EP6DmJ12Jf7SrC9XPZFXkTsgsNR4XrIXRhmufVkEHwwWy_CbkAO1GoYOATlnd73OA14JUW-oIityMSyjkErI_kYSJbSfNe4Plqd6xrNU4DRJCx1a8ELFyjW9vUASy1CoXMJwXnZmOA8KNz-DSy4SIiQFPRjxtaS6_RdJxnmOlDvc8GEz9V6f--jJ3_9v9PfIAUk9EBbG83Cc7m9WNfwXp3ca8jpP4J0V6Tu4 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdgCIkL4nthA_mA2AWLJI5j5zimjQmpHKoN7Wb5EyZ1KWo7Tfvvec9JyhJA4lbVL66d9933_DMh72pe-EpEyfLY5KxyxrOGR888KFcJPFcqdRPOvtan59WXC3HRN9HgWZi79ftC1R8hYC4ZpnCsYeo-eSAKXqeabH00GFyYMFcDfOb0kck59sXI_SSU_j9t8R1nNG2UnFRLkxM6eUIe99EjPezY_ZTcC-0z8rC7T_L2OblJnqfrbqPLSGezs2_0s_lOVwEbfsOatghfbFY04Tat6WUL1gn_UqBrrGPjB2zOizhCsdUozbRZUggTKbYDL-g8XNEE7oAUrafzq_nxC3J-cnx2dMr6mxWYhXxjwxyXonRVNBgvctuoJsi8cpY78Na8Qgx2aUQsJA8u5IUP3kIcUUfhorEe-PiS7LTLNuwSCgGBAQdXBStjhQBpoVK-LLyIvAiizDPSjBigf3YoGhpxrccjoGIamaeRebrRKiMfBmZp10OW480ZC51SF1VPyd9vyYdf-QfhJ-T8aCnpC5A83WusrkovVZHbgIVpaY3lJuR1NNFyiWi-GTlAudFoCGBRzvTnGeC1IKSWPoRktuAKEraM7I8oQYHdaHhvkDzdG5C1biDuhPRY1Rmh21F8EHvi2rC8RhKIRutSwnZedWK63RAecAbTLTIiRwI82vF4pL38kcDFeYkZOcx5MIj670X99WW-_m_KPfIIwk3sBGKl2Cc7m9V1eAMh3ca-TQr9C3BuRco priority: 102 providerName: Springer Nature |
Title | Translation of MMTV Gag requires nuclear events involving splicing motifs in addition to the viral Rem protein and RmRE |
URI | https://link.springer.com/article/10.1186/1742-4690-9-8 https://www.ncbi.nlm.nih.gov/pubmed/22277305 https://www.proquest.com/docview/925102686 https://www.proquest.com/docview/926156278 http://dx.doi.org/10.1186/1742-4690-9-8 https://pubmed.ncbi.nlm.nih.gov/PMC3292498 https://doaj.org/article/42d7810be29647bab3ae06fafb373992 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJiReEN9kG5UfEHshkMRO7DwgtFUdE1InVK2ob5Yd29ukLoW209h_z52bdKQMibemd0ls353vLj7_TMjbgqWW517EiS-TmFfaxiXzNrZgXBnIXMpQTTg8LU7G_Oskn9xBCjUDuLg3tcPzpMbz6YdfP28_g8F_CgYvi48QVGcxpnlxGcstsgNOqcA8bMjXCwrw0nA43Zq1hdvcvH1j3_u0464Cqv_fc_cfzmuzsHJjdTU4reMn5HETbdLDlXo8JQ9c_Yw8XJ0_efuc3ARPtaqGozNPh8Oz7_SLPqdzhwXCbkFrhDvWcxpwnhb0sobZDD9B0AWue-MPLObzSKFYmhSetJxRCCsplg9P6chd0QAGgRy1paOr0eAFGR8PzvoncXMSQ2wgP1nGFRN5VnGvMb5kppSlEwmvDKvAuzOOmO1C5z4VzFUuSa2zBuKOwueV18aC3F-S7XpWu9eEQgChwSFyZ4TnCKjmuLRZanPPUpdnSUTKjgDUjxXqhkIc7C4FTFKh8BQKT5VKRuR9KyxVNRDneNLGVIVURxab7O_W7O1b_sF4hJLvNCX8MZufq8bCFc-skGliHC5kC6MN0y4pvPaGCUT_jcgB6o1CVYZGVbrZ_wDDghBc6hCS35RJSPAist_hBIOvOuS9VvNUay-qhDgV0mlZRISuqXgj1tDVbnaNLBC9FpmA7rxaqem6Q7ghGqb6PCKio8CdHncp9eVFACNnGWbw8MyDVtXvGnXvYO7-76jvkUcQnWLhUJzl-2R7Ob92byACXJoe2RIT0SM7R4PTbyO46hf9Xvia0gtW_xs2Alob |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTgheEN-EDfADsBesJXE-nAeENujo2FqhqkN785zYHpO6ZLSdpv1R_I_cOUkh5eNtb1V9Te3c-T7su98R8irhgY5imzLfZj6LCqVZxq1mGjZXCDwXwmUTDkfJ4Cj6fBwfr5EfbS0MplW2OtEpal0VeEa-nYEhhnhBJO8vvjNsGoWXq20HjVoqDsz1FURs83f7H4G9r8Nwrz_5MGBNUwGWg6u9YAVP47CIrEJXieeZyEzqR0XOCzBUPEL48VTFNki5KYwfaKNzMKGJjQurcq2xSQRo_PUIC1p7ZH23P_oyblU_LM0XLZCnSLbB2w8Zxp8sY2Klon7aMYSuX8CfVuE3s7iasrlyb-vM4d49crfxY-lOLXj3yZopH5BbdWfL64fkytnAOs-OVpYOh5Ov9JM6pTODqcdmTksEUlYz6hCk5vSsBD2Jhxt0jjfq-AHTBC2OUEx6ck9aVBQcVoqJyVM6NufUwUwgRanp-Hzcf0SOboQdj0mvrErzlFBwTRSY2sjkqY0Qqs1EQoeBji0PTBz6Hsk6DJAXNZ6HRITt7ggInkTmSWSezKTwyNuWWbJowNOxh8dUuiBKJKvkb5bk7b_8g3AXOd-Zivuimp3KRnfIKNSpCPzc4BV5mqucK-MnVtmcp4gr7JEtlBuJKgkmVaimsgJeC4J7yR0IqwMuIHT0yGaHElRJ0RneaCVPNqpsLpcbzyN0OYo_xOy80lSXSAJ-cRKmsJwntZguF4Sl1mBEYo-kHQHurLg7Up59czDnPMSzAXjmVivqvyb115f57L_Tf0luDybDQ3m4PzrYIHfA8cWcJBbGm6S3mF2a5-BcLvIXzZam5OSmtchPNgqNLw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGEIgXxOcIG-AHxF6wlsRO7IinMVbGRydUbWhvlh3bY1KXTm0nxH_PnZMUUkDiraoviZ0730fu7mdCXpY8c6IIkqWhSpmojWMVD4452Fw58FypWE04Pi6PTsXHs-Jsg7zpe2FitXufkmx7GhClqVnuXbnQbnFV7oEbnTMM7FjF1A1yU6DVw0xtedCrYXhMqnpQzfVL1rrbpwOjFLH7_9TQv5mo9fLJtRxqNE2je-Ru51PS_VYI7pMN3zwgt9pTJn88JN-jPWpr3ugs0PH45Ct9b87p3GMZsF_QBkGNzZxGNKcFvWhAZ-GHBrrA7Db-wJK9gCMUC5DinZYzCs4jxSLhKZ34SxohH5CicXRyOTl8RE5HhycHR6w7b4FZiEKWrOayyGsRDHqR3Faq8jIVteU12HAuEJldmiJkkvvap5nzzoJ3UYaiDsY64O5jstnMGv-EUHATDJg94a0MAmHTvFAuz1wReOaLPE1INWCAvmqxNTSiXQ9HQAY0Mk8j83SlVUJe98zSdQdkjudpTHUMaFS5Tv5qRd4_5R-Eb5Hzg6nEP2bzc93tYy1yJ1WWWo_pammN5canZTDBcokYvwnZRbnRqB5gUrXpuhzgtSDQlt6HEDfjCsK4hOwMKGFb14Ph7V7ydKdWFroCbxSCZlUmhK5G8UKslGv87BpJwEctcwnL2WrFdLUgbHsGhV4kRA4EeLDi4Uhz8S1CjvMc43S4524v6r8m9deX-fS_KV-Q21_ejfTnD8eftskd8EexVIjlxQ7ZXM6v_TPw-Zb2edzbPwEO-1D- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Translation+of+MMTV+Gag+requires+nuclear+events+involving+splicing+motifs+in+addition+to+the+viral+Rem+protein+and+RmRE&rft.jtitle=Retrovirology&rft.au=Boeras%2C+Ioana&rft.au=Sakalian%2C+Michael&rft.au=West%2C+John+T&rft.date=2012-01-25&rft.issn=1742-4690&rft.eissn=1742-4690&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1186%2F1742-4690-9-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_1742_4690_9_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-4690&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-4690&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-4690&client=summon |