Differential requirement of the epidermal growth factor receptor for G protein-mediated activation of transcription factors by lysophosphatidic acid
The role of the epidermal growth factor receptor (EGFR) and other receptor tyrosine kinases (RTKs) in provoking biological actions of G protein-coupled receptors (GPCRs) has been one of the most disputed subjects in the field of GPCR signal transduction. The purpose of the current study is to identi...
Saved in:
Published in | Molecular cancer Vol. 9; no. 1; p. 8 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
14.01.2010
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The role of the epidermal growth factor receptor (EGFR) and other receptor tyrosine kinases (RTKs) in provoking biological actions of G protein-coupled receptors (GPCRs) has been one of the most disputed subjects in the field of GPCR signal transduction. The purpose of the current study is to identify EGFR-mediated mechanisms involved in activation of G protein cascades and the downstream transcription factors by lysophosphatidic acid (LPA).
In ovarian cancer cells highly responsive to LPA, activation of AP-1 by LPA was suppressed by inhibition of EGFR, an effect that could be reversed by co-stimulation of another receptor tyrosine kinase c-Met with hepatocyte growth factor, indicating that LPA-mediated activation of AP-1 requires activity of a RTK, not necessarily EGFR. Induction of AP-1 components by LPA lied downstream of Gi, G12/13, and Gq. Activation of the effectors of Gi, but not Gq or G12/13 was sensitive to inhibition of EGFR. In contrast, LPA stimulated another prominent transcription factor NF-kappaB via the Gq-PKC pathway in an EGFR-independent manner. Consistent with the importance of Gi-elicited signals in a plethora of biological processes, LPA-induced cytokine production, cell proliferation, migration and invasion require intact EGFR.
An RTK activity is required for activation of the AP-1 transcription factor and other Gi-dependent cellular responses to LPA. In contrast, activation of G12/13, Gq and Gq-elicited NF-kappaB by LPA is independent of such an input. These results provide a novel insight into the role of RTK in GPCR signal transduction and biological functions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1476-4598 1476-4598 |
DOI: | 10.1186/1476-4598-9-8 |