X chromosome aneuploidy in the Alzheimer’s disease brain
Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in...
Saved in:
Published in | Molecular cytogenetics Vol. 7; no. 1; p. 20 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
06.03.2014
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain.
Extended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001).
Addressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD. |
---|---|
AbstractList | Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain.
Extended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001).
Addressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD. Doc number: 20 Abstract Background: Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain. Results: Extended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001). Conclusions: Addressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD. Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain. Extended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001). Addressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD. Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain.BACKGROUNDAlthough the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain.Extended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001).RESULTSExtended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001).Addressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD.CONCLUSIONSAddressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD. Background: Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain. Results: Extended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001). Conclusions: Addressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD. Background Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain. Results Extended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001). Conclusions Addressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD. Keywords: Alzheimer's disease, Aneuploidy, Brain, Chromosome instability, Chromosome X, Molecular cytogenetics, Aging BACKGROUND: Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain. RESULTS: Extended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001). CONCLUSIONS: Addressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD. |
ArticleNumber | 20 |
Audience | Academic |
Author | Kolotii, Alexei D Iourov, Ivan Y Vorsanova, Svetlana G Liehr, Thomas Yurov, Yuri B |
AuthorAffiliation | 1 Mental Health Research Center, Russian Academy of Medical Sciences, 117152 Moscow, Russia 3 Moscow City University of Psychology and Education, 127051 Moscow, Russia 5 Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, 123995 Moscow, Russia 2 Institute of Pediatrics and Children Surgery, Ministry of Health of the Russian Federation, 125412 Moscow, Russia 4 Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany |
AuthorAffiliation_xml | – name: 3 Moscow City University of Psychology and Education, 127051 Moscow, Russia – name: 2 Institute of Pediatrics and Children Surgery, Ministry of Health of the Russian Federation, 125412 Moscow, Russia – name: 1 Mental Health Research Center, Russian Academy of Medical Sciences, 117152 Moscow, Russia – name: 4 Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany – name: 5 Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, 123995 Moscow, Russia |
Author_xml | – sequence: 1 givenname: Yuri B surname: Yurov fullname: Yurov, Yuri B – sequence: 2 givenname: Svetlana G surname: Vorsanova fullname: Vorsanova, Svetlana G – sequence: 3 givenname: Thomas surname: Liehr fullname: Liehr, Thomas – sequence: 4 givenname: Alexei D surname: Kolotii fullname: Kolotii, Alexei D – sequence: 5 givenname: Ivan Y surname: Iourov fullname: Iourov, Ivan Y |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24602248$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1rFTEUhoNU7IduXcqAGzdT8z0ZF8KlqBUKbhTchUzmpDdlJrkmM0Jd-Tf8e_4SM7S97a0WJIuE5D0PJw_nEO2FGACh5wQfE6Lka9IIUSsiZd3UFD9CB9uLvTvnfXSY8wXGkjDFn6B9yiWmlKsD9OZrZdcpjjHHESoTYN4M0feXlQ_VtIZqNfxYgx8h_f75K1e9z2AyVF0yPjxFj50ZMjy73o_Ql_fvPp-c1mefPnw8WZ3VneR0qgUYSWXPDONcKecoCCIE7Zmw3LVEOSyNpZxbKXFPm65rnGkMbkUroCQUO0Jvr7ibuRuhtxCmZAa9SX406VJH4_XuS_BrfR6_a9YWSMsKYHUF6Hx8ALD7YuOoF3d6cacbTXFhvLpuIsVvM-RJjz5bGIaiLM5ZE1G-gFUr6H9ECcYtloqU6Mt70Ys4p1BsLqlGsZZxdZs6NwNoH1wsXdoFqleCYykEk8svj_-RKquH0dsyNc6X-52CF3e9bn3cDMct0aaYcwK3jRCsl-n7WxK_V2D9ZCYfF61-eKjsD24421c |
CitedBy_id | crossref_primary_10_1002_bies_201400218 crossref_primary_10_1016_j_biopsych_2021_02_968 crossref_primary_10_1007_s12031_024_02227_1 crossref_primary_10_3389_fncel_2020_00016 crossref_primary_10_1016_j_mad_2019_111118 crossref_primary_10_1016_j_nbd_2023_106202 crossref_primary_10_1016_j_jmb_2021_167221 crossref_primary_10_1186_s13039_022_00613_1 crossref_primary_10_1186_s13039_020_00488_0 crossref_primary_10_1016_j_gene_2015_02_075 crossref_primary_10_1093_jnen_nly013 crossref_primary_10_1134_S0026893321010155 crossref_primary_10_3390_ijms21051666 crossref_primary_10_1016_j_semcdb_2022_04_022 crossref_primary_10_1186_s40478_022_01452_2 crossref_primary_10_3390_genes12071071 crossref_primary_10_3390_cancers14215386 crossref_primary_10_1002_dneu_22626 crossref_primary_10_1155_2015_757680 crossref_primary_10_18632_oncotarget_24303 crossref_primary_10_3389_fgene_2019_01368 crossref_primary_10_1242_dmm_049673 crossref_primary_10_1186_s13039_022_00588_z crossref_primary_10_1016_j_mrfmmm_2014_11_010 crossref_primary_10_1038_s41380_019_0354_z crossref_primary_10_1186_s13039_018_0383_3 crossref_primary_10_1016_j_pneurobio_2022_102353 crossref_primary_10_1016_j_mrrev_2023_108474 crossref_primary_10_3390_ijms21197354 crossref_primary_10_3389_fneur_2014_00288 crossref_primary_10_1111_gbb_12685 crossref_primary_10_1210_endocr_bqab185 crossref_primary_10_1590_0004_282x20190163 crossref_primary_10_3390_genes10050379 crossref_primary_10_1016_j_bbcan_2016_06_002 crossref_primary_10_1016_j_arr_2021_101342 crossref_primary_10_1016_j_gde_2020_05_002 crossref_primary_10_1186_s13039_021_00529_2 crossref_primary_10_1007_s40142_018_0152_y crossref_primary_10_1134_S0026893320050027 crossref_primary_10_1186_s12916_020_01763_y crossref_primary_10_1126_sciadv_adq5360 crossref_primary_10_1242_dmm_022558 crossref_primary_10_1186_s13039_022_00624_y crossref_primary_10_1007_s12035_023_03820_y crossref_primary_10_1016_j_neurobiolaging_2014_12_016 crossref_primary_10_1016_j_neuroscience_2018_01_050 crossref_primary_10_1016_j_mad_2016_03_007 crossref_primary_10_1146_annurev_genom_121520_081242 crossref_primary_10_1186_s41118_023_00181_1 crossref_primary_10_1007_s00401_015_1465_5 crossref_primary_10_1111_acel_14121 crossref_primary_10_3389_fgene_2019_00892 crossref_primary_10_1186_s13059_016_0976_2 crossref_primary_10_1091_mbc_E17_01_0031 crossref_primary_10_1016_j_brainres_2019_146345 crossref_primary_10_1016_j_brainresbull_2023_02_008 crossref_primary_10_1093_hmg_ddy096 crossref_primary_10_1016_j_dnarep_2023_103580 crossref_primary_10_1016_j_neubiorev_2015_05_010 crossref_primary_10_1016_j_mad_2016_04_005 crossref_primary_10_1186_s13039_014_0098_z crossref_primary_10_30629_2618_6667_2016_72_49_54 crossref_primary_10_3390_cells10051256 crossref_primary_10_1111_jep_12598 crossref_primary_10_1111_jnc_14036 crossref_primary_10_3389_fnagi_2022_868448 crossref_primary_10_3389_fgene_2020_00390 |
Cites_doi | 10.2174/138920210793175958 10.2174/138920210793176056 10.1016/j.bioeng.2007.05.003 10.1523/JNEUROSCI.0379-07.2007 10.1100/2011/625690 10.1186/alzrt167 10.1007/s12035-012-8262-0 10.1091/mbc.E09-10-0850 10.1111/j.1474-9726.2012.00826.x 10.1016/S0387-7604(01)00363-1 10.1186/1755-8166-2-23 10.1369/jhc.4A6430.2005 10.1002/(SICI)1096-8628(19980328)81:2<196::AID-AJMG14>3.0.CO;2-C 10.1111/j.1471-4159.2008.05555.x 10.1007/s10577-006-1037-6 10.1186/1755-8166-3-1 10.1007/s00401-011-0826-y 10.1016/j.semcdb.2013.02.003 10.1369/jhc.4A6419.2005 10.1016/j.mehy.2009.06.046 10.1159/000346114 10.2174/138920212802510439 10.2174/138920208786241216 10.1016/j.nbd.2009.01.003 10.2353/ajpath.2010.090955 10.1371/journal.pone.0068361 10.1159/000236901 10.1093/mutage/geq067 10.1136/jmg.2007.049312 10.1016/j.schres.2007.07.035 10.1016/S0140-6736(10)61349-9 10.1007/978-1-4614-6558-4_9 10.1159/000347053 10.1007/978-1-4614-6558-4 10.1016/S0074-7696(06)49003-3 10.1093/hmg/dds375 10.1523/JNEUROSCI.4521-10.2010 10.2174/138920210793176065 10.2174/138920206779116756 10.1159/000315398 10.1186/1755-8166-1-26 10.1371/journal.pone.0060718 10.1159/000098184 10.3390/ijms10041609 10.1093/hmg/ddp207 10.4161/cc.10.9.15478 10.1007/978-1-4614-6558-4_4 10.1371/journal.pone.0000558 10.1007/978-3-540-70581-9_27 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 BioMed Central Ltd. 2014 Yurov et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Copyright © 2014 Yurov et al.; licensee BioMed Central Ltd. 2014 Yurov et al.; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2014 BioMed Central Ltd. – notice: 2014 Yurov et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. – notice: Copyright © 2014 Yurov et al.; licensee BioMed Central Ltd. 2014 Yurov et al.; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.1186/1755-8166-7-20 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1755-8166 |
EndPage | 20 |
ExternalDocumentID | PMC3995993 oai_biomedcentral_com_1755_8166_7_20 3280090201 A540655363 24602248 10_1186_1755_8166_7_20 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 123 29M 2WC 4.4 53G 5VS 7X7 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M48 M7P ML~ M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP ZBA ~8M NPM PQGLB PMFND 3V. 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 -A0 ABVAZ ACRMQ ADINQ AFGXO AFNRJ C24 5PM |
ID | FETCH-LOGICAL-b642t-5ea626d3a34488ff2e51552d35c4f918f06ac244c660d27bb7fa7a09595ec4f83 |
IEDL.DBID | RBZ |
ISSN | 1755-8166 |
IngestDate | Thu Aug 21 17:25:23 EDT 2025 Wed May 22 07:13:19 EDT 2024 Fri Jul 11 16:29:09 EDT 2025 Thu Jul 10 17:58:46 EDT 2025 Fri Jul 25 18:56:29 EDT 2025 Tue Jun 17 21:25:56 EDT 2025 Tue Jun 10 20:26:56 EDT 2025 Mon Jul 21 06:01:46 EDT 2025 Tue Jul 01 04:15:38 EDT 2025 Thu Apr 24 23:13:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b642t-5ea626d3a34488ff2e51552d35c4f918f06ac244c660d27bb7fa7a09595ec4f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://dx.doi.org/10.1186/1755-8166-7-20 |
PMID | 24602248 |
PQID | 1517839348 |
PQPubID | 55147 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3995993 biomedcentral_primary_oai_biomedcentral_com_1755_8166_7_20 proquest_miscellaneous_1524408952 proquest_miscellaneous_1510090681 proquest_journals_1517839348 gale_infotracmisc_A540655363 gale_infotracacademiconefile_A540655363 pubmed_primary_24602248 crossref_primary_10_1186_1755_8166_7_20 crossref_citationtrail_10_1186_1755_8166_7_20 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-06 |
PublicationDateYYYYMMDD | 2014-03-06 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Molecular cytogenetics |
PublicationTitleAlternate | Mol Cytogenet |
PublicationYear | 2014 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | F Faggioli (428_CR22) 2012; 21 RE Tanzi (428_CR2) 2012 A Granic (428_CR30) 2010; 21 T Arendt (428_CR13) 2009; 10 YB Yurov (428_CR25) 2013 T Arendt (428_CR18) 2012; 46 YB Yurov (428_CR39) 2005; 53 IY Iourov (428_CR41) 2006; 14 GS Zubenko (428_CR9) 1998; 81 IY Iourov (428_CR44) 2009; 18 B Spremo-Potparević (428_CR6) 2008; 106 SG Vorsanova (428_CR23) 2010; 3 YB Yurov (428_CR43) 2011; 11 A Granic (428_CR19) 2013; 8 H Potter (428_CR26) 1991; 48 YB Yurov (428_CR14) 2009; 2 YB Yurov (428_CR40) 2007; 2 IY Iourov (428_CR42) 2006; 7 DM Bushman (428_CR37) 2013; 24 YB Yurov (428_CR33) 2007; 44 JW Westra (428_CR38) 2009; 6 IY Iourov (428_CR35) 2008; 9 YB Yurov (428_CR36) 2008; 98 P Katsel (428_CR46) 2013; 8 MA Hultén (428_CR27) 2010; 11 IY Iourov (428_CR49) 2009 IY Iourov (428_CR51) 2007; 24 PT Nelson (428_CR5) 2011; 121 IY Iourov (428_CR10) 2006; 249 IY Iourov (428_CR20) 2013 YB Yurov (428_CR32) 2001; 23 SI Borysov (428_CR29) 2011; 10 C Ballard (428_CR1) 2011; 377 HG Fischer (428_CR16) 2012; 11 IY Iourov (428_CR24) 2012; 13 T Arendt (428_CR31) 2010; 177 YB Yurov (428_CR15) 2010; 11 IY Iourov (428_CR52) 2013 VP Bajić (428_CR7) 2009; 73 IY Iourov (428_CR3) 2013; 139 B Mosch (428_CR11) 2007; 27 IY Iourov (428_CR28) 2010; 11 IY Iourov (428_CR34) 2008; 1 IY Iourov (428_CR12) 2009; 34 IY Iourov (428_CR17) 2011; 8 K Herrup (428_CR4) 2010; 30 IY Iourov (428_CR48) 2006; 334 LM Russell (428_CR21) 2007; 116 J Kanungo (428_CR45) 2013; 5 IY Iourov (428_CR50) 2005; 53 L Zivković (428_CR8) 2013; 12 L Migliore (428_CR47) 2011; 26 16628493 - Chromosome Res. 2006;14(3):223-9 9613863 - Am J Med Genet. 1998 Mar 28;81(2):196-205 20180947 - Mol Cytogenet. 2010 Jan 11;3:1 23566654 - Alzheimers Res Ther. 2013 Apr 08;5(2):13 23466288 - Semin Cell Dev Biol. 2013 Apr;24(4):357-69 22262948 - ScientificWorldJournal. 2011;11:2602-12 15750029 - J Histochem Cytochem. 2005 Mar;53(3):401-8 21371747 - Lancet. 2011 Mar 19;377(9770):1019-31 19414482 - Hum Mol Genet. 2009 Jul 15;18(14):2656-69 19939257 - Mol Cytogenet. 2009 Nov 25;2:23 17627882 - Biomol Eng. 2007 Oct;24(4):415-7 17483303 - J Med Genet. 2007 Aug;44(8):521-5 19344645 - Neurobiol Dis. 2009 May;34(2):212-20 20032300 - Mol Biol Cell. 2010 Feb 15;21(4):511-20 21516511 - Acta Neuropathol. 2011 May;121(5):571-87 16861758 - Methods Mol Biol. 2006;334:123-32 23593294 - PLoS One. 2013 Apr 12;8(4):e60718 17317957 - Cytogenet Genome Res. 2007;116(3):181-5 17593959 - PLoS One. 2007 Jun 27;2(6):e558 22528601 - Mol Neurobiol. 2012 Aug;46(1):125-35 23428498 - Cytogenet Genome Res. 2013;139(3):181-8 19647374 - Med Hypotheses. 2009 Dec;73(6):917-20 19468329 - Int J Mol Sci. 2009 Apr 15;10(4):1609-27 21358982 - Curr Genomics. 2010 Sep;11(6):387-96 16697283 - Int Rev Cytol. 2006;249:143-91 22510449 - Aging Cell. 2012 Aug;11(4):628-33 21159946 - J Neurosci. 2010 Dec 15;30(50):16755-62 11738870 - Brain Dev. 2001 Dec;23 Suppl 1:S186-90 23861893 - PLoS One. 2013 Jul 05;8(7):e68361 1827946 - Am J Hum Genet. 1991 Jun;48(6):1192-200 22962300 - Hum Mol Genet. 2012 Dec 15;21(24):5246-53 21358986 - Curr Genomics. 2010 Sep;11(6):420-5 23028126 - Cold Spring Harb Perspect Med. 2012 Oct 01;2(10 ):null 23449087 - Curr Genomics. 2012 Sep;13(6):477-88 17596434 - J Neurosci. 2007 Jun 27;27(26):6859-67 17889509 - Schizophr Res. 2008 Jan;98(1-3):139-47 19738367 - Neurodegener Dis. 2009;6(5-6):221-9 15750026 - J Histochem Cytochem. 2005 Mar;53(3):385-90 18624923 - J Neurochem. 2008 Sep;106(5):2218-23 19506734 - Curr Genomics. 2008 Nov;9(7):452-65 19032785 - Mol Cytogenet. 2008 Nov 25;1:26 21358985 - Curr Genomics. 2010 Sep;11(6):409-19 21164187 - Mutagenesis. 2011 Jan;26(1):85-92 21135562 - Neurodegener Dis. 2011;8(1-2):35-7; discussion 38-40 23406622 - Neurodegener Dis. 2013;12(3):156-63 21566458 - Cell Cycle. 2011 May 1;10 (9):1397-410 20472889 - Am J Pathol. 2010 Jul;177(1):15-20 |
References_xml | – volume: 11 start-page: 420 year: 2010 ident: 428_CR15 publication-title: Curr Genomics doi: 10.2174/138920210793175958 – volume: 11 start-page: 409 year: 2010 ident: 428_CR27 publication-title: Curr Genomics doi: 10.2174/138920210793176056 – volume: 24 start-page: 415 year: 2007 ident: 428_CR51 publication-title: Biomol Eng doi: 10.1016/j.bioeng.2007.05.003 – volume: 48 start-page: 1192 year: 1991 ident: 428_CR26 publication-title: Am J Hum Genet – volume: 27 start-page: 6859 year: 2007 ident: 428_CR11 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0379-07.2007 – volume: 11 start-page: 2602 year: 2011 ident: 428_CR43 publication-title: Sci World J doi: 10.1100/2011/625690 – volume: 5 start-page: 13 year: 2013 ident: 428_CR45 publication-title: Alzheimers Res Ther doi: 10.1186/alzrt167 – volume: 46 start-page: 125 year: 2012 ident: 428_CR18 publication-title: Mol Neurobiol doi: 10.1007/s12035-012-8262-0 – volume: 21 start-page: 511 year: 2010 ident: 428_CR30 publication-title: Mol Biol Cell doi: 10.1091/mbc.E09-10-0850 – volume: 11 start-page: 628 year: 2012 ident: 428_CR16 publication-title: Aging Cell doi: 10.1111/j.1474-9726.2012.00826.x – volume: 23 start-page: S186 issue: 1 year: 2001 ident: 428_CR32 publication-title: Brain Dev doi: 10.1016/S0387-7604(01)00363-1 – volume: 2 start-page: 23 year: 2009 ident: 428_CR14 publication-title: Mol Cytogenet doi: 10.1186/1755-8166-2-23 – volume: 53 start-page: 385 year: 2005 ident: 428_CR39 publication-title: J Histochem Cytochem doi: 10.1369/jhc.4A6430.2005 – volume: 81 start-page: 196 year: 1998 ident: 428_CR9 publication-title: Am J Med Genet doi: 10.1002/(SICI)1096-8628(19980328)81:2<196::AID-AJMG14>3.0.CO;2-C – volume: 106 start-page: 2218 year: 2008 ident: 428_CR6 publication-title: J Neurochem doi: 10.1111/j.1471-4159.2008.05555.x – volume: 14 start-page: 223 year: 2006 ident: 428_CR41 publication-title: Chromosome Res doi: 10.1007/s10577-006-1037-6 – volume: 3 start-page: 1 year: 2010 ident: 428_CR23 publication-title: Mol Cytogenet doi: 10.1186/1755-8166-3-1 – volume: 121 start-page: 571 year: 2011 ident: 428_CR5 publication-title: Acta Neuropathol doi: 10.1007/s00401-011-0826-y – volume: 24 start-page: 357 year: 2013 ident: 428_CR37 publication-title: Semin Cell Dev Biol doi: 10.1016/j.semcdb.2013.02.003 – volume: 53 start-page: 401 year: 2005 ident: 428_CR50 publication-title: J Histochem Cytochem doi: 10.1369/jhc.4A6419.2005 – volume: 73 start-page: 917 issue: 6 year: 2009 ident: 428_CR7 publication-title: Med Hypotheses doi: 10.1016/j.mehy.2009.06.046 – volume: 12 start-page: 156 year: 2013 ident: 428_CR8 publication-title: Neurodegener Dis doi: 10.1159/000346114 – volume: 13 start-page: 477 year: 2012 ident: 428_CR24 publication-title: Curr Genomics doi: 10.2174/138920212802510439 – volume: 9 start-page: 452 year: 2008 ident: 428_CR35 publication-title: Curr Genomics doi: 10.2174/138920208786241216 – volume: 34 start-page: 212 year: 2009 ident: 428_CR12 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2009.01.003 – volume: 177 start-page: 15 year: 2010 ident: 428_CR31 publication-title: Am J Pathol doi: 10.2353/ajpath.2010.090955 – volume: 8 start-page: e68361 year: 2013 ident: 428_CR46 publication-title: PLoS One doi: 10.1371/journal.pone.0068361 – volume: 334 start-page: 123 year: 2006 ident: 428_CR48 publication-title: Methods Mol Biol – volume: 6 start-page: 221 year: 2009 ident: 428_CR38 publication-title: Neurodegener Dis doi: 10.1159/000236901 – volume: 26 start-page: 85 year: 2011 ident: 428_CR47 publication-title: Mutagenesis doi: 10.1093/mutage/geq067 – volume: 44 start-page: 521 year: 2007 ident: 428_CR33 publication-title: J Med Genet doi: 10.1136/jmg.2007.049312 – volume: 98 start-page: 139 year: 2008 ident: 428_CR36 publication-title: Schizophr Res doi: 10.1016/j.schres.2007.07.035 – volume: 377 start-page: 1019 year: 2011 ident: 428_CR1 publication-title: Lancet doi: 10.1016/S0140-6736(10)61349-9 – start-page: 161 volume-title: Human Interphase Chromosomes year: 2013 ident: 428_CR52 doi: 10.1007/978-1-4614-6558-4_9 – volume: 139 start-page: 181 year: 2013 ident: 428_CR3 publication-title: Cytogenet Genome Res doi: 10.1159/000347053 – volume-title: Human Interphase Chromosomes: Biomedical Aspects year: 2013 ident: 428_CR25 doi: 10.1007/978-1-4614-6558-4 – volume: 249 start-page: 143 year: 2006 ident: 428_CR10 publication-title: Int Rev Cytol doi: 10.1016/S0074-7696(06)49003-3 – volume: 21 start-page: 5246 year: 2012 ident: 428_CR22 publication-title: Hum Mol Genet doi: 10.1093/hmg/dds375 – volume: 30 start-page: 16755 year: 2010 ident: 428_CR4 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4521-10.2010 – volume: 11 start-page: 387 year: 2010 ident: 428_CR28 publication-title: Curr Genomics doi: 10.2174/138920210793176065 – volume: 7 start-page: 435 year: 2006 ident: 428_CR42 publication-title: Curr Genomics doi: 10.2174/138920206779116756 – volume: 8 start-page: 35 issue: 1–2 year: 2011 ident: 428_CR17 publication-title: Neurodegener Dis doi: 10.1159/000315398 – volume: 1 start-page: 26 year: 2008 ident: 428_CR34 publication-title: Mol Cytogenet doi: 10.1186/1755-8166-1-26 – volume: 8 start-page: e60718 year: 2013 ident: 428_CR19 publication-title: PLoS One doi: 10.1371/journal.pone.0060718 – volume: 116 start-page: 181 year: 2007 ident: 428_CR21 publication-title: Cytogenet Genome Res doi: 10.1159/000098184 – volume: 10 start-page: 1609 year: 2009 ident: 428_CR13 publication-title: Int J Mol Sci doi: 10.3390/ijms10041609 – volume: 18 start-page: 2656 year: 2009 ident: 428_CR44 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddp207 – volume-title: Cold Spring Harb Perspect Med year: 2012 ident: 428_CR2 – volume: 10 start-page: 1397 year: 2011 ident: 428_CR29 publication-title: Cell Cycle doi: 10.4161/cc.10.9.15478 – start-page: 53 volume-title: Human Interphase Chromosomes year: 2013 ident: 428_CR20 doi: 10.1007/978-1-4614-6558-4_4 – volume: 2 start-page: e558 year: 2007 ident: 428_CR40 publication-title: PLoS One doi: 10.1371/journal.pone.0000558 – start-page: 301 volume-title: Fluorescence In Situ Hybridization (FISH)—Application Guide year: 2009 ident: 428_CR49 doi: 10.1007/978-3-540-70581-9_27 – reference: 21358986 - Curr Genomics. 2010 Sep;11(6):420-5 – reference: 23028126 - Cold Spring Harb Perspect Med. 2012 Oct 01;2(10 ):null – reference: 21516511 - Acta Neuropathol. 2011 May;121(5):571-87 – reference: 17596434 - J Neurosci. 2007 Jun 27;27(26):6859-67 – reference: 23861893 - PLoS One. 2013 Jul 05;8(7):e68361 – reference: 23466288 - Semin Cell Dev Biol. 2013 Apr;24(4):357-69 – reference: 9613863 - Am J Med Genet. 1998 Mar 28;81(2):196-205 – reference: 16861758 - Methods Mol Biol. 2006;334:123-32 – reference: 22262948 - ScientificWorldJournal. 2011;11:2602-12 – reference: 1827946 - Am J Hum Genet. 1991 Jun;48(6):1192-200 – reference: 17889509 - Schizophr Res. 2008 Jan;98(1-3):139-47 – reference: 23428498 - Cytogenet Genome Res. 2013;139(3):181-8 – reference: 20180947 - Mol Cytogenet. 2010 Jan 11;3:1 – reference: 21159946 - J Neurosci. 2010 Dec 15;30(50):16755-62 – reference: 19344645 - Neurobiol Dis. 2009 May;34(2):212-20 – reference: 23449087 - Curr Genomics. 2012 Sep;13(6):477-88 – reference: 19032785 - Mol Cytogenet. 2008 Nov 25;1:26 – reference: 21358982 - Curr Genomics. 2010 Sep;11(6):387-96 – reference: 23566654 - Alzheimers Res Ther. 2013 Apr 08;5(2):13 – reference: 18624923 - J Neurochem. 2008 Sep;106(5):2218-23 – reference: 20032300 - Mol Biol Cell. 2010 Feb 15;21(4):511-20 – reference: 19738367 - Neurodegener Dis. 2009;6(5-6):221-9 – reference: 19647374 - Med Hypotheses. 2009 Dec;73(6):917-20 – reference: 15750029 - J Histochem Cytochem. 2005 Mar;53(3):401-8 – reference: 17483303 - J Med Genet. 2007 Aug;44(8):521-5 – reference: 19468329 - Int J Mol Sci. 2009 Apr 15;10(4):1609-27 – reference: 19414482 - Hum Mol Genet. 2009 Jul 15;18(14):2656-69 – reference: 16697283 - Int Rev Cytol. 2006;249:143-91 – reference: 17627882 - Biomol Eng. 2007 Oct;24(4):415-7 – reference: 20472889 - Am J Pathol. 2010 Jul;177(1):15-20 – reference: 21371747 - Lancet. 2011 Mar 19;377(9770):1019-31 – reference: 23406622 - Neurodegener Dis. 2013;12(3):156-63 – reference: 23593294 - PLoS One. 2013 Apr 12;8(4):e60718 – reference: 16628493 - Chromosome Res. 2006;14(3):223-9 – reference: 21135562 - Neurodegener Dis. 2011;8(1-2):35-7; discussion 38-40 – reference: 15750026 - J Histochem Cytochem. 2005 Mar;53(3):385-90 – reference: 21566458 - Cell Cycle. 2011 May 1;10 (9):1397-410 – reference: 21358985 - Curr Genomics. 2010 Sep;11(6):409-19 – reference: 22528601 - Mol Neurobiol. 2012 Aug;46(1):125-35 – reference: 19506734 - Curr Genomics. 2008 Nov;9(7):452-65 – reference: 11738870 - Brain Dev. 2001 Dec;23 Suppl 1:S186-90 – reference: 22510449 - Aging Cell. 2012 Aug;11(4):628-33 – reference: 21164187 - Mutagenesis. 2011 Jan;26(1):85-92 – reference: 22962300 - Hum Mol Genet. 2012 Dec 15;21(24):5246-53 – reference: 17593959 - PLoS One. 2007 Jun 27;2(6):e558 – reference: 19939257 - Mol Cytogenet. 2009 Nov 25;2:23 – reference: 17317957 - Cytogenet Genome Res. 2007;116(3):181-5 |
SSID | ssj0061384 |
Score | 2.2843676 |
Snippet | Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been... Background Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have... Doc number: 20 Abstract Background: Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular... Background: Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have... BACKGROUND: Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have... |
SourceID | pubmedcentral biomedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 20 |
SubjectTerms | Advertising executives Aging Alzheimer's disease Analysis Brain research Cell cycle Cell division Chromosomes Complications and side effects Confidence intervals Cytogenetics Deoxyribonucleic acid Diagnosis DNA Genetics Medical research Neurodegeneration Pathology Risk factors |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagCIkL4s2WgoyE1JPVXb-XC4oQVYUEJyrlZnltrxIpbEKTHMqv78zGCTWInj273p2xPd_Y4_kI-dBrgMUGohNt6sBkw3vma90yrlKjkoiqFXjf-dt3fXEpv07VNG-4rXNa5X5NHBfquAy4R34GnsmAMxfSflr9YsgahaermULjPnmApcswpctMDwEXeCorc6HGxuoz8JSK4TkZMwz5vYsb7ovCMf29PN_yT2Xu5C1ndP6EPM4okk52Zn9K7qXhGXm445W8fk7slIYZ5tmtoWfqh7RdLZbzeE3nAwXARyeL37M0_5muTtc0n9DQDrkiXpDL8y8_Pl-wTJHAOggcNkwlDxFJFF5AmGX7niekbOFRqCD7trF9rX0ADx60riM3XWd6bzzu_akEEla8JEfDckivCW2jiF51RiblZWp16-vYWRkgoBKdVLEiHwt9udWuHIbDAtVlC9jNobIdKtsZx-uKsL1yXcjFx5EDY-HGIMTqf-RPD_L7fv4ribZyOB_hjcHnawXwU1jZyk0AkmqlhBYVOSkkYR6FsnlvbZfn8dr9GXUVeX9oxicxN21Iy-0oA0C11ra5S4YjtXereEVe7QbQ4b-41AikoAdTDK1CwWXLMJ-NlcDxXjIAzOO7P_0NeQQwT46Zc_qEHG2utuktQKlN926cLzdfgRy4 priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYJwT9Fu81lBZBGPQzifXNi3kCYpu1C7536A61_vTLetlzvP50wSMpnp_KaZD0Le1gpgsQbvROncMzEpauZyVbJCxomMPMiSY77z-Td1NhNf53L-N_6pZ-Dmn64d9pOarZt3v37uP4HCf-wU3qj3YAElw_cvpuHSb5M7YJU0Kum5GF8UwGp13YdH2r6A4_X5WB5YKDRt5koSfJPYrqtf8EsmLA2vvGSvTh-Q-z3QpNODZDwkt2L7iNw9tJ7cPyZmTv0CQ_E2sDN1bdxdNKtl2NNlSwET0mnzexGXP-L6ZEP7RxxaYTuJJ2R2-uX75zPWd1FgFfgWWyajA6clcMfBEzN1XUTs6lIELr2oy4mpc-U8GHmvVB4KXVW6dtrh70EZgcLwp-SoXbXxOaFl4MHJSosonYilKl0eKiM8-Fy8EjJk5EPCL3txqJhhsYZ1OgLqZJHvFvlutS3yjLCBudb39cmxTUZjOz_FqGv0JyP9sM-NlHhXFoUIVvSuzzyAQ2HxKzsF1Kqk5Ipn5DihBFXz6fBw23aQVAuQSQPK5MJk5M04jDMxfK2Nq11HA1g2V2byP5oCu3-XssjIs4MAjecaBDIjOhGthMHpSLtcdMXCMXUZMOiLG9d8Se4BCBRdXJ06Jkfb9S6-AqC1rV53GvQHdMsgew priority: 102 providerName: Scholars Portal |
Title | X chromosome aneuploidy in the Alzheimer’s disease brain |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24602248 https://www.proquest.com/docview/1517839348 https://www.proquest.com/docview/1510090681 https://www.proquest.com/docview/1524408952 http://dx.doi.org/10.1186/1755-8166-7-20 https://pubmed.ncbi.nlm.nih.gov/PMC3995993 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB6ahEIvpelTeRgVCjmJSvtWbkpJCIaE0jZgellWqxU2uHKI7UP66zMjy27k0F56kQ47q2VndjTf7M7OAHyqFcJijd6J0qlPRMbqxKUqT5gMmQy8kjmn-85X1-ryRgxHcvRnv2PrBD8z6jPaN5nQ6VaiUaQ7sMcEWkHyy89-rv-5aJPa2sIb2i4949P-W_fapz1ztP1TfmSV-hGTj0zQxSt42WHHuFgJex-eheY1PF9Vk7x_A2YU-zFF181x5Ng1YXk7nU2q-3jSxAjz4mL6exwmv8LdyTzuzmXikipEvIWbi_MfXy6TrjBCUqK7sEhkcOiHVNxxdK5MXbNAhVpYxaUXdZ6ZOlXOo932SqUV02Wpa6cd7fjJgBSGv4PdZtaEDxDnFa-cLLUI0omQq9ylVWmERzeKl0JWEZz2-GVvV0kwLKWl7reghlhitiVmW21ZGkGyZq71Xcpxqnwxta3rYdQT-pMN_Xqcv1KSrCxpIX7Ru-4yAU6K8lnZAoGokpIrHsFRjxK1x_eb19K2nfbOLaIgjcCRCxPBx00z9aSItCbMli0NwtNUmexfNIwKeueSRfB-tYA282JCEXzCEXRvafUY3G9pJuM2_zfdRkZYefA_ojmEFwj9RBtNp45gd3G3DMcIrxblAHb0SA9gryiG34f4Pju__vpt0G5W4PNKmEGrew-LWSTK |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiDeGAkYC9bSqvS_bSAgFaJXSNkKolXLbru21Eik4oUmEwo_iNzLjR6hB9Nbzjr327OzMN7vzAHhdaITFEXonOgoyJkNeMBvohHHlQuVErhJB-c4nQz04k59HarQFv9pcGAqrbHVipajzWUZn5HtomSI05kLG7-ffGXWNotvVtoVGLRZHbv0DXbbFu8NPuL5vOD_YP_04YE1XAZYi1l4y5SyC-FxYgZ5JXBTcUZcTnguVySIJ4yLQNkOjl2kd5DxK06iwkaXjMuWQIhb43huwLQW6Mj3Y_rA__PK11f1oG2PZlIYMY72HtlkxupljEaOO4p2c-mnHFP5tEC5ZxG605iXzd3AX7jS41e_XgnYPtlx5H27WnSzXDyAe-dmYIvsWOLNvS7eaT2eTfO1PSh8hpt-f_hy7yTd3sbvwmzshP6XuFA_h7FrY9wh65ax0T8BPcpFblUbSKStdohMb5GksM3ThRCpV7sHbDr_MvC7AYagkdncEJcUQsw0x20SGBx6wlrkma8qdU9eNqancnlj_Q7-7oW_n-S8lrZUhDYBvzGyTyIA_RbW0TB9BsFZKaOHBTocSd27WHW5X2zSaY2H-yLkHrzbD9CRFw5VutqpoEBoHOg6vouHUTDxR3IPHtQBt_otLTdANZ4g6otVhcHeknIyr2uOUCY2Q9unVn_4Sbg1OT47N8eHw6BncRpApq7g9vQO95cXKPUcgt0xfNLvHh_Pr3rC_ASKlWnU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VIhAXVF7F0IKRkHoydbwvu7dAicqrqhCVIi6r9e5aiXCdqEkO4dcz40cUt4ILN1s7q5Vndna-8c4D4G0hERYr9E6kim3EB0kRmVhmUSL8QHjmRMYo3_nbuTy75J_HYrwDF10uzFXXFNaulzNkIWXyLd5tp6KX9fmND_bX8dwVjdqn8hjtoIjoFixSKPo7cBffFanq9_c_u7MZbVfdg3hD25ZxvD3_Rv572TNbNw_vLevVj6zcMlWjPXjYYsxw2GyKR7Djq8dwr-k6uX4C6Ti0E4rCW-DKoan8al7Opm4dTqsQ4WA4LH9P_PTKXx8twvb-Jsypk8RTuBx9_PHhLGobKEQ5uhXLSHiD_opjhqETlhZF4qmhS-KYsLzIBmkRS2PRvlspY5eoPFeFUYb-DAqPFCl7BrvVrPLPIcwcc0bkinthuM9kZmKXp9yiu8VyLlwAJz1-6XlTLENT-er-CIpPE7M1MVsrncQBRB1ztW1Lk1OHjFLXLkoqb9Efbei7df5KSbLSpK20ZUybdIAfRXWv9BABqxSCSRbAQY8Stcz2hztp61bLFxrRkkKAyXgawJvNMM2kyLXKz1Y1DcLYWKaDf9Ek1Pg7E0kA-80G2nxXwiXBLFxB9bZWj8H9kWo6qeuEU9Yyws8X_yOa13D_4nSkv346__ISHiBa5HUAnjyA3eX1yh8iIlvmr2ol-wOcGzHY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=X+chromosome+aneuploidy+in+the+Alzheimer%27s+disease+brain&rft.jtitle=Molecular+cytogenetics&rft.au=Yurov%2C+Yuri+B&rft.au=Vorsanova%2C+Svetlana+G&rft.au=Liehr%2C+Thomas&rft.au=Kolotii%2C+Alexei+D&rft.date=2014-03-06&rft.issn=1755-8166&rft.eissn=1755-8166&rft.volume=7&rft.issue=1&rft.spage=20&rft_id=info:doi/10.1186%2F1755-8166-7-20&rft_id=info%3Apmid%2F24602248&rft.externalDocID=24602248 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-8166&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-8166&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-8166&client=summon |