X chromosome aneuploidy in the Alzheimer’s disease brain

Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in...

Full description

Saved in:
Bibliographic Details
Published inMolecular cytogenetics Vol. 7; no. 1; p. 20
Main Authors Yurov, Yuri B, Vorsanova, Svetlana G, Liehr, Thomas, Kolotii, Alexei D, Iourov, Ivan Y
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 06.03.2014
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain. Extended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001). Addressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD.
AbstractList Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain. Extended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001). Addressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD.
Doc number: 20 Abstract Background: Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain. Results: Extended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001). Conclusions: Addressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD.
Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain. Extended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001). Addressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD.
Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain.BACKGROUNDAlthough the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain.Extended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001).RESULTSExtended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001).Addressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD.CONCLUSIONSAddressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD.
Background: Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain. Results: Extended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001). Conclusions: Addressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD.
Background Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain. Results Extended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001). Conclusions Addressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD. Keywords: Alzheimer's disease, Aneuploidy, Brain, Chromosome instability, Chromosome X, Molecular cytogenetics, Aging
BACKGROUND: Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain. RESULTS: Extended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001). CONCLUSIONS: Addressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD.
ArticleNumber 20
Audience Academic
Author Kolotii, Alexei D
Iourov, Ivan Y
Vorsanova, Svetlana G
Liehr, Thomas
Yurov, Yuri B
AuthorAffiliation 1 Mental Health Research Center, Russian Academy of Medical Sciences, 117152 Moscow, Russia
3 Moscow City University of Psychology and Education, 127051 Moscow, Russia
5 Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, 123995 Moscow, Russia
2 Institute of Pediatrics and Children Surgery, Ministry of Health of the Russian Federation, 125412 Moscow, Russia
4 Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
AuthorAffiliation_xml – name: 3 Moscow City University of Psychology and Education, 127051 Moscow, Russia
– name: 2 Institute of Pediatrics and Children Surgery, Ministry of Health of the Russian Federation, 125412 Moscow, Russia
– name: 1 Mental Health Research Center, Russian Academy of Medical Sciences, 117152 Moscow, Russia
– name: 4 Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
– name: 5 Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, 123995 Moscow, Russia
Author_xml – sequence: 1
  givenname: Yuri B
  surname: Yurov
  fullname: Yurov, Yuri B
– sequence: 2
  givenname: Svetlana G
  surname: Vorsanova
  fullname: Vorsanova, Svetlana G
– sequence: 3
  givenname: Thomas
  surname: Liehr
  fullname: Liehr, Thomas
– sequence: 4
  givenname: Alexei D
  surname: Kolotii
  fullname: Kolotii, Alexei D
– sequence: 5
  givenname: Ivan Y
  surname: Iourov
  fullname: Iourov, Ivan Y
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24602248$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1rFTEUhoNU7IduXcqAGzdT8z0ZF8KlqBUKbhTchUzmpDdlJrkmM0Jd-Tf8e_4SM7S97a0WJIuE5D0PJw_nEO2FGACh5wQfE6Lka9IIUSsiZd3UFD9CB9uLvTvnfXSY8wXGkjDFn6B9yiWmlKsD9OZrZdcpjjHHESoTYN4M0feXlQ_VtIZqNfxYgx8h_f75K1e9z2AyVF0yPjxFj50ZMjy73o_Ql_fvPp-c1mefPnw8WZ3VneR0qgUYSWXPDONcKecoCCIE7Zmw3LVEOSyNpZxbKXFPm65rnGkMbkUroCQUO0Jvr7ibuRuhtxCmZAa9SX406VJH4_XuS_BrfR6_a9YWSMsKYHUF6Hx8ALD7YuOoF3d6cacbTXFhvLpuIsVvM-RJjz5bGIaiLM5ZE1G-gFUr6H9ECcYtloqU6Mt70Ys4p1BsLqlGsZZxdZs6NwNoH1wsXdoFqleCYykEk8svj_-RKquH0dsyNc6X-52CF3e9bn3cDMct0aaYcwK3jRCsl-n7WxK_V2D9ZCYfF61-eKjsD24421c
CitedBy_id crossref_primary_10_1002_bies_201400218
crossref_primary_10_1016_j_biopsych_2021_02_968
crossref_primary_10_1007_s12031_024_02227_1
crossref_primary_10_3389_fncel_2020_00016
crossref_primary_10_1016_j_mad_2019_111118
crossref_primary_10_1016_j_nbd_2023_106202
crossref_primary_10_1016_j_jmb_2021_167221
crossref_primary_10_1186_s13039_022_00613_1
crossref_primary_10_1186_s13039_020_00488_0
crossref_primary_10_1016_j_gene_2015_02_075
crossref_primary_10_1093_jnen_nly013
crossref_primary_10_1134_S0026893321010155
crossref_primary_10_3390_ijms21051666
crossref_primary_10_1016_j_semcdb_2022_04_022
crossref_primary_10_1186_s40478_022_01452_2
crossref_primary_10_3390_genes12071071
crossref_primary_10_3390_cancers14215386
crossref_primary_10_1002_dneu_22626
crossref_primary_10_1155_2015_757680
crossref_primary_10_18632_oncotarget_24303
crossref_primary_10_3389_fgene_2019_01368
crossref_primary_10_1242_dmm_049673
crossref_primary_10_1186_s13039_022_00588_z
crossref_primary_10_1016_j_mrfmmm_2014_11_010
crossref_primary_10_1038_s41380_019_0354_z
crossref_primary_10_1186_s13039_018_0383_3
crossref_primary_10_1016_j_pneurobio_2022_102353
crossref_primary_10_1016_j_mrrev_2023_108474
crossref_primary_10_3390_ijms21197354
crossref_primary_10_3389_fneur_2014_00288
crossref_primary_10_1111_gbb_12685
crossref_primary_10_1210_endocr_bqab185
crossref_primary_10_1590_0004_282x20190163
crossref_primary_10_3390_genes10050379
crossref_primary_10_1016_j_bbcan_2016_06_002
crossref_primary_10_1016_j_arr_2021_101342
crossref_primary_10_1016_j_gde_2020_05_002
crossref_primary_10_1186_s13039_021_00529_2
crossref_primary_10_1007_s40142_018_0152_y
crossref_primary_10_1134_S0026893320050027
crossref_primary_10_1186_s12916_020_01763_y
crossref_primary_10_1126_sciadv_adq5360
crossref_primary_10_1242_dmm_022558
crossref_primary_10_1186_s13039_022_00624_y
crossref_primary_10_1007_s12035_023_03820_y
crossref_primary_10_1016_j_neurobiolaging_2014_12_016
crossref_primary_10_1016_j_neuroscience_2018_01_050
crossref_primary_10_1016_j_mad_2016_03_007
crossref_primary_10_1146_annurev_genom_121520_081242
crossref_primary_10_1186_s41118_023_00181_1
crossref_primary_10_1007_s00401_015_1465_5
crossref_primary_10_1111_acel_14121
crossref_primary_10_3389_fgene_2019_00892
crossref_primary_10_1186_s13059_016_0976_2
crossref_primary_10_1091_mbc_E17_01_0031
crossref_primary_10_1016_j_brainres_2019_146345
crossref_primary_10_1016_j_brainresbull_2023_02_008
crossref_primary_10_1093_hmg_ddy096
crossref_primary_10_1016_j_dnarep_2023_103580
crossref_primary_10_1016_j_neubiorev_2015_05_010
crossref_primary_10_1016_j_mad_2016_04_005
crossref_primary_10_1186_s13039_014_0098_z
crossref_primary_10_30629_2618_6667_2016_72_49_54
crossref_primary_10_3390_cells10051256
crossref_primary_10_1111_jep_12598
crossref_primary_10_1111_jnc_14036
crossref_primary_10_3389_fnagi_2022_868448
crossref_primary_10_3389_fgene_2020_00390
Cites_doi 10.2174/138920210793175958
10.2174/138920210793176056
10.1016/j.bioeng.2007.05.003
10.1523/JNEUROSCI.0379-07.2007
10.1100/2011/625690
10.1186/alzrt167
10.1007/s12035-012-8262-0
10.1091/mbc.E09-10-0850
10.1111/j.1474-9726.2012.00826.x
10.1016/S0387-7604(01)00363-1
10.1186/1755-8166-2-23
10.1369/jhc.4A6430.2005
10.1002/(SICI)1096-8628(19980328)81:2<196::AID-AJMG14>3.0.CO;2-C
10.1111/j.1471-4159.2008.05555.x
10.1007/s10577-006-1037-6
10.1186/1755-8166-3-1
10.1007/s00401-011-0826-y
10.1016/j.semcdb.2013.02.003
10.1369/jhc.4A6419.2005
10.1016/j.mehy.2009.06.046
10.1159/000346114
10.2174/138920212802510439
10.2174/138920208786241216
10.1016/j.nbd.2009.01.003
10.2353/ajpath.2010.090955
10.1371/journal.pone.0068361
10.1159/000236901
10.1093/mutage/geq067
10.1136/jmg.2007.049312
10.1016/j.schres.2007.07.035
10.1016/S0140-6736(10)61349-9
10.1007/978-1-4614-6558-4_9
10.1159/000347053
10.1007/978-1-4614-6558-4
10.1016/S0074-7696(06)49003-3
10.1093/hmg/dds375
10.1523/JNEUROSCI.4521-10.2010
10.2174/138920210793176065
10.2174/138920206779116756
10.1159/000315398
10.1186/1755-8166-1-26
10.1371/journal.pone.0060718
10.1159/000098184
10.3390/ijms10041609
10.1093/hmg/ddp207
10.4161/cc.10.9.15478
10.1007/978-1-4614-6558-4_4
10.1371/journal.pone.0000558
10.1007/978-3-540-70581-9_27
ContentType Journal Article
Copyright COPYRIGHT 2014 BioMed Central Ltd.
2014 Yurov et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Copyright © 2014 Yurov et al.; licensee BioMed Central Ltd. 2014 Yurov et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2014 BioMed Central Ltd.
– notice: 2014 Yurov et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
– notice: Copyright © 2014 Yurov et al.; licensee BioMed Central Ltd. 2014 Yurov et al.; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1186/1755-8166-7-20
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database

MEDLINE - Academic
Genetics Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1755-8166
EndPage 20
ExternalDocumentID PMC3995993
oai_biomedcentral_com_1755_8166_7_20
3280090201
A540655363
24602248
10_1186_1755_8166_7_20
Genre Journal Article
GroupedDBID ---
0R~
123
29M
2WC
4.4
53G
5VS
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
ML~
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
ZBA
~8M
NPM
PQGLB
PMFND
3V.
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
-A0
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
5PM
ID FETCH-LOGICAL-b642t-5ea626d3a34488ff2e51552d35c4f918f06ac244c660d27bb7fa7a09595ec4f83
IEDL.DBID RBZ
ISSN 1755-8166
IngestDate Thu Aug 21 17:25:23 EDT 2025
Wed May 22 07:13:19 EDT 2024
Fri Jul 11 16:29:09 EDT 2025
Thu Jul 10 17:58:46 EDT 2025
Fri Jul 25 18:56:29 EDT 2025
Tue Jun 17 21:25:56 EDT 2025
Tue Jun 10 20:26:56 EDT 2025
Mon Jul 21 06:01:46 EDT 2025
Tue Jul 01 04:15:38 EDT 2025
Thu Apr 24 23:13:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b642t-5ea626d3a34488ff2e51552d35c4f918f06ac244c660d27bb7fa7a09595ec4f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://dx.doi.org/10.1186/1755-8166-7-20
PMID 24602248
PQID 1517839348
PQPubID 55147
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3995993
biomedcentral_primary_oai_biomedcentral_com_1755_8166_7_20
proquest_miscellaneous_1524408952
proquest_miscellaneous_1510090681
proquest_journals_1517839348
gale_infotracmisc_A540655363
gale_infotracacademiconefile_A540655363
pubmed_primary_24602248
crossref_primary_10_1186_1755_8166_7_20
crossref_citationtrail_10_1186_1755_8166_7_20
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-06
PublicationDateYYYYMMDD 2014-03-06
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-06
  day: 06
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Molecular cytogenetics
PublicationTitleAlternate Mol Cytogenet
PublicationYear 2014
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References F Faggioli (428_CR22) 2012; 21
RE Tanzi (428_CR2) 2012
A Granic (428_CR30) 2010; 21
T Arendt (428_CR13) 2009; 10
YB Yurov (428_CR25) 2013
T Arendt (428_CR18) 2012; 46
YB Yurov (428_CR39) 2005; 53
IY Iourov (428_CR41) 2006; 14
GS Zubenko (428_CR9) 1998; 81
IY Iourov (428_CR44) 2009; 18
B Spremo-Potparević (428_CR6) 2008; 106
SG Vorsanova (428_CR23) 2010; 3
YB Yurov (428_CR43) 2011; 11
A Granic (428_CR19) 2013; 8
H Potter (428_CR26) 1991; 48
YB Yurov (428_CR14) 2009; 2
YB Yurov (428_CR40) 2007; 2
IY Iourov (428_CR42) 2006; 7
DM Bushman (428_CR37) 2013; 24
YB Yurov (428_CR33) 2007; 44
JW Westra (428_CR38) 2009; 6
IY Iourov (428_CR35) 2008; 9
YB Yurov (428_CR36) 2008; 98
P Katsel (428_CR46) 2013; 8
MA Hultén (428_CR27) 2010; 11
IY Iourov (428_CR49) 2009
IY Iourov (428_CR51) 2007; 24
PT Nelson (428_CR5) 2011; 121
IY Iourov (428_CR10) 2006; 249
IY Iourov (428_CR20) 2013
YB Yurov (428_CR32) 2001; 23
SI Borysov (428_CR29) 2011; 10
C Ballard (428_CR1) 2011; 377
HG Fischer (428_CR16) 2012; 11
IY Iourov (428_CR24) 2012; 13
T Arendt (428_CR31) 2010; 177
YB Yurov (428_CR15) 2010; 11
IY Iourov (428_CR52) 2013
VP Bajić (428_CR7) 2009; 73
IY Iourov (428_CR3) 2013; 139
B Mosch (428_CR11) 2007; 27
IY Iourov (428_CR28) 2010; 11
IY Iourov (428_CR34) 2008; 1
IY Iourov (428_CR12) 2009; 34
IY Iourov (428_CR17) 2011; 8
K Herrup (428_CR4) 2010; 30
IY Iourov (428_CR48) 2006; 334
LM Russell (428_CR21) 2007; 116
J Kanungo (428_CR45) 2013; 5
IY Iourov (428_CR50) 2005; 53
L Zivković (428_CR8) 2013; 12
L Migliore (428_CR47) 2011; 26
16628493 - Chromosome Res. 2006;14(3):223-9
9613863 - Am J Med Genet. 1998 Mar 28;81(2):196-205
20180947 - Mol Cytogenet. 2010 Jan 11;3:1
23566654 - Alzheimers Res Ther. 2013 Apr 08;5(2):13
23466288 - Semin Cell Dev Biol. 2013 Apr;24(4):357-69
22262948 - ScientificWorldJournal. 2011;11:2602-12
15750029 - J Histochem Cytochem. 2005 Mar;53(3):401-8
21371747 - Lancet. 2011 Mar 19;377(9770):1019-31
19414482 - Hum Mol Genet. 2009 Jul 15;18(14):2656-69
19939257 - Mol Cytogenet. 2009 Nov 25;2:23
17627882 - Biomol Eng. 2007 Oct;24(4):415-7
17483303 - J Med Genet. 2007 Aug;44(8):521-5
19344645 - Neurobiol Dis. 2009 May;34(2):212-20
20032300 - Mol Biol Cell. 2010 Feb 15;21(4):511-20
21516511 - Acta Neuropathol. 2011 May;121(5):571-87
16861758 - Methods Mol Biol. 2006;334:123-32
23593294 - PLoS One. 2013 Apr 12;8(4):e60718
17317957 - Cytogenet Genome Res. 2007;116(3):181-5
17593959 - PLoS One. 2007 Jun 27;2(6):e558
22528601 - Mol Neurobiol. 2012 Aug;46(1):125-35
23428498 - Cytogenet Genome Res. 2013;139(3):181-8
19647374 - Med Hypotheses. 2009 Dec;73(6):917-20
19468329 - Int J Mol Sci. 2009 Apr 15;10(4):1609-27
21358982 - Curr Genomics. 2010 Sep;11(6):387-96
16697283 - Int Rev Cytol. 2006;249:143-91
22510449 - Aging Cell. 2012 Aug;11(4):628-33
21159946 - J Neurosci. 2010 Dec 15;30(50):16755-62
11738870 - Brain Dev. 2001 Dec;23 Suppl 1:S186-90
23861893 - PLoS One. 2013 Jul 05;8(7):e68361
1827946 - Am J Hum Genet. 1991 Jun;48(6):1192-200
22962300 - Hum Mol Genet. 2012 Dec 15;21(24):5246-53
21358986 - Curr Genomics. 2010 Sep;11(6):420-5
23028126 - Cold Spring Harb Perspect Med. 2012 Oct 01;2(10 ):null
23449087 - Curr Genomics. 2012 Sep;13(6):477-88
17596434 - J Neurosci. 2007 Jun 27;27(26):6859-67
17889509 - Schizophr Res. 2008 Jan;98(1-3):139-47
19738367 - Neurodegener Dis. 2009;6(5-6):221-9
15750026 - J Histochem Cytochem. 2005 Mar;53(3):385-90
18624923 - J Neurochem. 2008 Sep;106(5):2218-23
19506734 - Curr Genomics. 2008 Nov;9(7):452-65
19032785 - Mol Cytogenet. 2008 Nov 25;1:26
21358985 - Curr Genomics. 2010 Sep;11(6):409-19
21164187 - Mutagenesis. 2011 Jan;26(1):85-92
21135562 - Neurodegener Dis. 2011;8(1-2):35-7; discussion 38-40
23406622 - Neurodegener Dis. 2013;12(3):156-63
21566458 - Cell Cycle. 2011 May 1;10 (9):1397-410
20472889 - Am J Pathol. 2010 Jul;177(1):15-20
References_xml – volume: 11
  start-page: 420
  year: 2010
  ident: 428_CR15
  publication-title: Curr Genomics
  doi: 10.2174/138920210793175958
– volume: 11
  start-page: 409
  year: 2010
  ident: 428_CR27
  publication-title: Curr Genomics
  doi: 10.2174/138920210793176056
– volume: 24
  start-page: 415
  year: 2007
  ident: 428_CR51
  publication-title: Biomol Eng
  doi: 10.1016/j.bioeng.2007.05.003
– volume: 48
  start-page: 1192
  year: 1991
  ident: 428_CR26
  publication-title: Am J Hum Genet
– volume: 27
  start-page: 6859
  year: 2007
  ident: 428_CR11
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0379-07.2007
– volume: 11
  start-page: 2602
  year: 2011
  ident: 428_CR43
  publication-title: Sci World J
  doi: 10.1100/2011/625690
– volume: 5
  start-page: 13
  year: 2013
  ident: 428_CR45
  publication-title: Alzheimers Res Ther
  doi: 10.1186/alzrt167
– volume: 46
  start-page: 125
  year: 2012
  ident: 428_CR18
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-012-8262-0
– volume: 21
  start-page: 511
  year: 2010
  ident: 428_CR30
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E09-10-0850
– volume: 11
  start-page: 628
  year: 2012
  ident: 428_CR16
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2012.00826.x
– volume: 23
  start-page: S186
  issue: 1
  year: 2001
  ident: 428_CR32
  publication-title: Brain Dev
  doi: 10.1016/S0387-7604(01)00363-1
– volume: 2
  start-page: 23
  year: 2009
  ident: 428_CR14
  publication-title: Mol Cytogenet
  doi: 10.1186/1755-8166-2-23
– volume: 53
  start-page: 385
  year: 2005
  ident: 428_CR39
  publication-title: J Histochem Cytochem
  doi: 10.1369/jhc.4A6430.2005
– volume: 81
  start-page: 196
  year: 1998
  ident: 428_CR9
  publication-title: Am J Med Genet
  doi: 10.1002/(SICI)1096-8628(19980328)81:2<196::AID-AJMG14>3.0.CO;2-C
– volume: 106
  start-page: 2218
  year: 2008
  ident: 428_CR6
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2008.05555.x
– volume: 14
  start-page: 223
  year: 2006
  ident: 428_CR41
  publication-title: Chromosome Res
  doi: 10.1007/s10577-006-1037-6
– volume: 3
  start-page: 1
  year: 2010
  ident: 428_CR23
  publication-title: Mol Cytogenet
  doi: 10.1186/1755-8166-3-1
– volume: 121
  start-page: 571
  year: 2011
  ident: 428_CR5
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-011-0826-y
– volume: 24
  start-page: 357
  year: 2013
  ident: 428_CR37
  publication-title: Semin Cell Dev Biol
  doi: 10.1016/j.semcdb.2013.02.003
– volume: 53
  start-page: 401
  year: 2005
  ident: 428_CR50
  publication-title: J Histochem Cytochem
  doi: 10.1369/jhc.4A6419.2005
– volume: 73
  start-page: 917
  issue: 6
  year: 2009
  ident: 428_CR7
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2009.06.046
– volume: 12
  start-page: 156
  year: 2013
  ident: 428_CR8
  publication-title: Neurodegener Dis
  doi: 10.1159/000346114
– volume: 13
  start-page: 477
  year: 2012
  ident: 428_CR24
  publication-title: Curr Genomics
  doi: 10.2174/138920212802510439
– volume: 9
  start-page: 452
  year: 2008
  ident: 428_CR35
  publication-title: Curr Genomics
  doi: 10.2174/138920208786241216
– volume: 34
  start-page: 212
  year: 2009
  ident: 428_CR12
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2009.01.003
– volume: 177
  start-page: 15
  year: 2010
  ident: 428_CR31
  publication-title: Am J Pathol
  doi: 10.2353/ajpath.2010.090955
– volume: 8
  start-page: e68361
  year: 2013
  ident: 428_CR46
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0068361
– volume: 334
  start-page: 123
  year: 2006
  ident: 428_CR48
  publication-title: Methods Mol Biol
– volume: 6
  start-page: 221
  year: 2009
  ident: 428_CR38
  publication-title: Neurodegener Dis
  doi: 10.1159/000236901
– volume: 26
  start-page: 85
  year: 2011
  ident: 428_CR47
  publication-title: Mutagenesis
  doi: 10.1093/mutage/geq067
– volume: 44
  start-page: 521
  year: 2007
  ident: 428_CR33
  publication-title: J Med Genet
  doi: 10.1136/jmg.2007.049312
– volume: 98
  start-page: 139
  year: 2008
  ident: 428_CR36
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2007.07.035
– volume: 377
  start-page: 1019
  year: 2011
  ident: 428_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)61349-9
– start-page: 161
  volume-title: Human Interphase Chromosomes
  year: 2013
  ident: 428_CR52
  doi: 10.1007/978-1-4614-6558-4_9
– volume: 139
  start-page: 181
  year: 2013
  ident: 428_CR3
  publication-title: Cytogenet Genome Res
  doi: 10.1159/000347053
– volume-title: Human Interphase Chromosomes: Biomedical Aspects
  year: 2013
  ident: 428_CR25
  doi: 10.1007/978-1-4614-6558-4
– volume: 249
  start-page: 143
  year: 2006
  ident: 428_CR10
  publication-title: Int Rev Cytol
  doi: 10.1016/S0074-7696(06)49003-3
– volume: 21
  start-page: 5246
  year: 2012
  ident: 428_CR22
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/dds375
– volume: 30
  start-page: 16755
  year: 2010
  ident: 428_CR4
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4521-10.2010
– volume: 11
  start-page: 387
  year: 2010
  ident: 428_CR28
  publication-title: Curr Genomics
  doi: 10.2174/138920210793176065
– volume: 7
  start-page: 435
  year: 2006
  ident: 428_CR42
  publication-title: Curr Genomics
  doi: 10.2174/138920206779116756
– volume: 8
  start-page: 35
  issue: 1–2
  year: 2011
  ident: 428_CR17
  publication-title: Neurodegener Dis
  doi: 10.1159/000315398
– volume: 1
  start-page: 26
  year: 2008
  ident: 428_CR34
  publication-title: Mol Cytogenet
  doi: 10.1186/1755-8166-1-26
– volume: 8
  start-page: e60718
  year: 2013
  ident: 428_CR19
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0060718
– volume: 116
  start-page: 181
  year: 2007
  ident: 428_CR21
  publication-title: Cytogenet Genome Res
  doi: 10.1159/000098184
– volume: 10
  start-page: 1609
  year: 2009
  ident: 428_CR13
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms10041609
– volume: 18
  start-page: 2656
  year: 2009
  ident: 428_CR44
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddp207
– volume-title: Cold Spring Harb Perspect Med
  year: 2012
  ident: 428_CR2
– volume: 10
  start-page: 1397
  year: 2011
  ident: 428_CR29
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.9.15478
– start-page: 53
  volume-title: Human Interphase Chromosomes
  year: 2013
  ident: 428_CR20
  doi: 10.1007/978-1-4614-6558-4_4
– volume: 2
  start-page: e558
  year: 2007
  ident: 428_CR40
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000558
– start-page: 301
  volume-title: Fluorescence In Situ Hybridization (FISH)—Application Guide
  year: 2009
  ident: 428_CR49
  doi: 10.1007/978-3-540-70581-9_27
– reference: 21358986 - Curr Genomics. 2010 Sep;11(6):420-5
– reference: 23028126 - Cold Spring Harb Perspect Med. 2012 Oct 01;2(10 ):null
– reference: 21516511 - Acta Neuropathol. 2011 May;121(5):571-87
– reference: 17596434 - J Neurosci. 2007 Jun 27;27(26):6859-67
– reference: 23861893 - PLoS One. 2013 Jul 05;8(7):e68361
– reference: 23466288 - Semin Cell Dev Biol. 2013 Apr;24(4):357-69
– reference: 9613863 - Am J Med Genet. 1998 Mar 28;81(2):196-205
– reference: 16861758 - Methods Mol Biol. 2006;334:123-32
– reference: 22262948 - ScientificWorldJournal. 2011;11:2602-12
– reference: 1827946 - Am J Hum Genet. 1991 Jun;48(6):1192-200
– reference: 17889509 - Schizophr Res. 2008 Jan;98(1-3):139-47
– reference: 23428498 - Cytogenet Genome Res. 2013;139(3):181-8
– reference: 20180947 - Mol Cytogenet. 2010 Jan 11;3:1
– reference: 21159946 - J Neurosci. 2010 Dec 15;30(50):16755-62
– reference: 19344645 - Neurobiol Dis. 2009 May;34(2):212-20
– reference: 23449087 - Curr Genomics. 2012 Sep;13(6):477-88
– reference: 19032785 - Mol Cytogenet. 2008 Nov 25;1:26
– reference: 21358982 - Curr Genomics. 2010 Sep;11(6):387-96
– reference: 23566654 - Alzheimers Res Ther. 2013 Apr 08;5(2):13
– reference: 18624923 - J Neurochem. 2008 Sep;106(5):2218-23
– reference: 20032300 - Mol Biol Cell. 2010 Feb 15;21(4):511-20
– reference: 19738367 - Neurodegener Dis. 2009;6(5-6):221-9
– reference: 19647374 - Med Hypotheses. 2009 Dec;73(6):917-20
– reference: 15750029 - J Histochem Cytochem. 2005 Mar;53(3):401-8
– reference: 17483303 - J Med Genet. 2007 Aug;44(8):521-5
– reference: 19468329 - Int J Mol Sci. 2009 Apr 15;10(4):1609-27
– reference: 19414482 - Hum Mol Genet. 2009 Jul 15;18(14):2656-69
– reference: 16697283 - Int Rev Cytol. 2006;249:143-91
– reference: 17627882 - Biomol Eng. 2007 Oct;24(4):415-7
– reference: 20472889 - Am J Pathol. 2010 Jul;177(1):15-20
– reference: 21371747 - Lancet. 2011 Mar 19;377(9770):1019-31
– reference: 23406622 - Neurodegener Dis. 2013;12(3):156-63
– reference: 23593294 - PLoS One. 2013 Apr 12;8(4):e60718
– reference: 16628493 - Chromosome Res. 2006;14(3):223-9
– reference: 21135562 - Neurodegener Dis. 2011;8(1-2):35-7; discussion 38-40
– reference: 15750026 - J Histochem Cytochem. 2005 Mar;53(3):385-90
– reference: 21566458 - Cell Cycle. 2011 May 1;10 (9):1397-410
– reference: 21358985 - Curr Genomics. 2010 Sep;11(6):409-19
– reference: 22528601 - Mol Neurobiol. 2012 Aug;46(1):125-35
– reference: 19506734 - Curr Genomics. 2008 Nov;9(7):452-65
– reference: 11738870 - Brain Dev. 2001 Dec;23 Suppl 1:S186-90
– reference: 22510449 - Aging Cell. 2012 Aug;11(4):628-33
– reference: 21164187 - Mutagenesis. 2011 Jan;26(1):85-92
– reference: 22962300 - Hum Mol Genet. 2012 Dec 15;21(24):5246-53
– reference: 17593959 - PLoS One. 2007 Jun 27;2(6):e558
– reference: 19939257 - Mol Cytogenet. 2009 Nov 25;2:23
– reference: 17317957 - Cytogenet Genome Res. 2007;116(3):181-5
SSID ssj0061384
Score 2.2843676
Snippet Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been...
Background Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have...
Doc number: 20 Abstract Background: Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular...
Background: Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have...
BACKGROUND: Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have...
SourceID pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 20
SubjectTerms Advertising executives
Aging
Alzheimer's disease
Analysis
Brain research
Cell cycle
Cell division
Chromosomes
Complications and side effects
Confidence intervals
Cytogenetics
Deoxyribonucleic acid
Diagnosis
DNA
Genetics
Medical research
Neurodegeneration
Pathology
Risk factors
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagCIkL4s2WgoyE1JPVXb-XC4oQVYUEJyrlZnltrxIpbEKTHMqv78zGCTWInj273p2xPd_Y4_kI-dBrgMUGohNt6sBkw3vma90yrlKjkoiqFXjf-dt3fXEpv07VNG-4rXNa5X5NHBfquAy4R34GnsmAMxfSflr9YsgahaermULjPnmApcswpctMDwEXeCorc6HGxuoz8JSK4TkZMwz5vYsb7ovCMf29PN_yT2Xu5C1ndP6EPM4okk52Zn9K7qXhGXm445W8fk7slIYZ5tmtoWfqh7RdLZbzeE3nAwXARyeL37M0_5muTtc0n9DQDrkiXpDL8y8_Pl-wTJHAOggcNkwlDxFJFF5AmGX7niekbOFRqCD7trF9rX0ADx60riM3XWd6bzzu_akEEla8JEfDckivCW2jiF51RiblZWp16-vYWRkgoBKdVLEiHwt9udWuHIbDAtVlC9jNobIdKtsZx-uKsL1yXcjFx5EDY-HGIMTqf-RPD_L7fv4ribZyOB_hjcHnawXwU1jZyk0AkmqlhBYVOSkkYR6FsnlvbZfn8dr9GXUVeX9oxicxN21Iy-0oA0C11ra5S4YjtXereEVe7QbQ4b-41AikoAdTDK1CwWXLMJ-NlcDxXjIAzOO7P_0NeQQwT46Zc_qEHG2utuktQKlN926cLzdfgRy4
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYJwT9Fu81lBZBGPQzifXNi3kCYpu1C7536A61_vTLetlzvP50wSMpnp_KaZD0Le1gpgsQbvROncMzEpauZyVbJCxomMPMiSY77z-Td1NhNf53L-N_6pZ-Dmn64d9pOarZt3v37uP4HCf-wU3qj3YAElw_cvpuHSb5M7YJU0Kum5GF8UwGp13YdH2r6A4_X5WB5YKDRt5koSfJPYrqtf8EsmLA2vvGSvTh-Q-z3QpNODZDwkt2L7iNw9tJ7cPyZmTv0CQ_E2sDN1bdxdNKtl2NNlSwET0mnzexGXP-L6ZEP7RxxaYTuJJ2R2-uX75zPWd1FgFfgWWyajA6clcMfBEzN1XUTs6lIELr2oy4mpc-U8GHmvVB4KXVW6dtrh70EZgcLwp-SoXbXxOaFl4MHJSosonYilKl0eKiM8-Fy8EjJk5EPCL3txqJhhsYZ1OgLqZJHvFvlutS3yjLCBudb39cmxTUZjOz_FqGv0JyP9sM-NlHhXFoUIVvSuzzyAQ2HxKzsF1Kqk5Ipn5DihBFXz6fBw23aQVAuQSQPK5MJk5M04jDMxfK2Nq11HA1g2V2byP5oCu3-XssjIs4MAjecaBDIjOhGthMHpSLtcdMXCMXUZMOiLG9d8Se4BCBRdXJ06Jkfb9S6-AqC1rV53GvQHdMsgew
  priority: 102
  providerName: Scholars Portal
Title X chromosome aneuploidy in the Alzheimer’s disease brain
URI https://www.ncbi.nlm.nih.gov/pubmed/24602248
https://www.proquest.com/docview/1517839348
https://www.proquest.com/docview/1510090681
https://www.proquest.com/docview/1524408952
http://dx.doi.org/10.1186/1755-8166-7-20
https://pubmed.ncbi.nlm.nih.gov/PMC3995993
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB6ahEIvpelTeRgVCjmJSvtWbkpJCIaE0jZgellWqxU2uHKI7UP66zMjy27k0F56kQ47q2VndjTf7M7OAHyqFcJijd6J0qlPRMbqxKUqT5gMmQy8kjmn-85X1-ryRgxHcvRnv2PrBD8z6jPaN5nQ6VaiUaQ7sMcEWkHyy89-rv-5aJPa2sIb2i4949P-W_fapz1ztP1TfmSV-hGTj0zQxSt42WHHuFgJex-eheY1PF9Vk7x_A2YU-zFF181x5Ng1YXk7nU2q-3jSxAjz4mL6exwmv8LdyTzuzmXikipEvIWbi_MfXy6TrjBCUqK7sEhkcOiHVNxxdK5MXbNAhVpYxaUXdZ6ZOlXOo932SqUV02Wpa6cd7fjJgBSGv4PdZtaEDxDnFa-cLLUI0omQq9ylVWmERzeKl0JWEZz2-GVvV0kwLKWl7reghlhitiVmW21ZGkGyZq71Xcpxqnwxta3rYdQT-pMN_Xqcv1KSrCxpIX7Ru-4yAU6K8lnZAoGokpIrHsFRjxK1x_eb19K2nfbOLaIgjcCRCxPBx00z9aSItCbMli0NwtNUmexfNIwKeueSRfB-tYA282JCEXzCEXRvafUY3G9pJuM2_zfdRkZYefA_ojmEFwj9RBtNp45gd3G3DMcIrxblAHb0SA9gryiG34f4Pju__vpt0G5W4PNKmEGrew-LWSTK
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiDeGAkYC9bSqvS_bSAgFaJXSNkKolXLbru21Eik4oUmEwo_iNzLjR6hB9Nbzjr327OzMN7vzAHhdaITFEXonOgoyJkNeMBvohHHlQuVErhJB-c4nQz04k59HarQFv9pcGAqrbHVipajzWUZn5HtomSI05kLG7-ffGXWNotvVtoVGLRZHbv0DXbbFu8NPuL5vOD_YP_04YE1XAZYi1l4y5SyC-FxYgZ5JXBTcUZcTnguVySIJ4yLQNkOjl2kd5DxK06iwkaXjMuWQIhb43huwLQW6Mj3Y_rA__PK11f1oG2PZlIYMY72HtlkxupljEaOO4p2c-mnHFP5tEC5ZxG605iXzd3AX7jS41e_XgnYPtlx5H27WnSzXDyAe-dmYIvsWOLNvS7eaT2eTfO1PSh8hpt-f_hy7yTd3sbvwmzshP6XuFA_h7FrY9wh65ax0T8BPcpFblUbSKStdohMb5GksM3ThRCpV7sHbDr_MvC7AYagkdncEJcUQsw0x20SGBx6wlrkma8qdU9eNqancnlj_Q7-7oW_n-S8lrZUhDYBvzGyTyIA_RbW0TB9BsFZKaOHBTocSd27WHW5X2zSaY2H-yLkHrzbD9CRFw5VutqpoEBoHOg6vouHUTDxR3IPHtQBt_otLTdANZ4g6otVhcHeknIyr2uOUCY2Q9unVn_4Sbg1OT47N8eHw6BncRpApq7g9vQO95cXKPUcgt0xfNLvHh_Pr3rC_ASKlWnU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VIhAXVF7F0IKRkHoydbwvu7dAicqrqhCVIi6r9e5aiXCdqEkO4dcz40cUt4ILN1s7q5Vndna-8c4D4G0hERYr9E6kim3EB0kRmVhmUSL8QHjmRMYo3_nbuTy75J_HYrwDF10uzFXXFNaulzNkIWXyLd5tp6KX9fmND_bX8dwVjdqn8hjtoIjoFixSKPo7cBffFanq9_c_u7MZbVfdg3hD25ZxvD3_Rv572TNbNw_vLevVj6zcMlWjPXjYYsxw2GyKR7Djq8dwr-k6uX4C6Ti0E4rCW-DKoan8al7Opm4dTqsQ4WA4LH9P_PTKXx8twvb-Jsypk8RTuBx9_PHhLGobKEQ5uhXLSHiD_opjhqETlhZF4qmhS-KYsLzIBmkRS2PRvlspY5eoPFeFUYb-DAqPFCl7BrvVrPLPIcwcc0bkinthuM9kZmKXp9yiu8VyLlwAJz1-6XlTLENT-er-CIpPE7M1MVsrncQBRB1ztW1Lk1OHjFLXLkoqb9Efbei7df5KSbLSpK20ZUybdIAfRXWv9BABqxSCSRbAQY8Stcz2hztp61bLFxrRkkKAyXgawJvNMM2kyLXKz1Y1DcLYWKaDf9Ek1Pg7E0kA-80G2nxXwiXBLFxB9bZWj8H9kWo6qeuEU9Yyws8X_yOa13D_4nSkv346__ISHiBa5HUAnjyA3eX1yh8iIlvmr2ol-wOcGzHY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=X+chromosome+aneuploidy+in+the+Alzheimer%27s+disease+brain&rft.jtitle=Molecular+cytogenetics&rft.au=Yurov%2C+Yuri+B&rft.au=Vorsanova%2C+Svetlana+G&rft.au=Liehr%2C+Thomas&rft.au=Kolotii%2C+Alexei+D&rft.date=2014-03-06&rft.issn=1755-8166&rft.eissn=1755-8166&rft.volume=7&rft.issue=1&rft.spage=20&rft_id=info:doi/10.1186%2F1755-8166-7-20&rft_id=info%3Apmid%2F24602248&rft.externalDocID=24602248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-8166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-8166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-8166&client=summon