AllerTOP--a server for in silico prediction of allergens

Allergy is a form of hypersensitivity to normally innocuous substances, such as dust, pollen, foods or drugs. Allergens are small antigens that commonly provoke an IgE antibody response. There are two types of bioinformatics-based allergen prediction. The first approach follows FAO/WHO Codex aliment...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 14 Suppl 6; no. Suppl 6; p. S4
Main Authors Dimitrov, Ivan, Flower, Darren R, Doytchinova, Irini
Format Journal Article
LanguageEnglish
Published England BioMed Central 17.04.2013
BioMed Central Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Allergy is a form of hypersensitivity to normally innocuous substances, such as dust, pollen, foods or drugs. Allergens are small antigens that commonly provoke an IgE antibody response. There are two types of bioinformatics-based allergen prediction. The first approach follows FAO/WHO Codex alimentarius guidelines and searches for sequence similarity. The second approach is based on identifying conserved allergenicity-related linear motifs. Both approaches assume that allergenicity is a linearly coded property. In the present study, we applied ACC pre-processing to sets of known allergens, developing alignment-independent models for allergen recognition based on the main chemical properties of amino acid sequences. A set of 684 food, 1,156 inhalant and 555 toxin allergens was collected from several databases. A set of non-allergens from the same species were selected to mirror the allergen set. The amino acids in the protein sequences were described by three z-descriptors (z1, z2 and z3) and by auto- and cross-covariance (ACC) transformation were converted into uniform vectors. Each protein was presented as a vector of 45 variables. Five machine learning methods for classification were applied in the study to derive models for allergen prediction. The methods were: discriminant analysis by partial least squares (DA-PLS), logistic regression (LR), decision tree (DT), naïve Bayes (NB) and k nearest neighbours (kNN). The best performing model was derived by kNN at k = 3. It was optimized, cross-validated and implemented in a server named AllerTOP, freely accessible at http://www.pharmfac.net/allertop. AllerTOP also predicts the most probable route of exposure. In comparison to other servers for allergen prediction, AllerTOP outperforms them with 94% sensitivity. AllerTOP is the first alignment-free server for in silico prediction of allergens based on the main physicochemical properties of proteins. Significantly, as well allergenicity AllerTOP is able to predict the route of allergen exposure: food, inhalant or toxin.
AbstractList BACKGROUNDAllergy is a form of hypersensitivity to normally innocuous substances, such as dust, pollen, foods or drugs. Allergens are small antigens that commonly provoke an IgE antibody response. There are two types of bioinformatics-based allergen prediction. The first approach follows FAO/WHO Codex alimentarius guidelines and searches for sequence similarity. The second approach is based on identifying conserved allergenicity-related linear motifs. Both approaches assume that allergenicity is a linearly coded property. In the present study, we applied ACC pre-processing to sets of known allergens, developing alignment-independent models for allergen recognition based on the main chemical properties of amino acid sequences. RESULTSA set of 684 food, 1,156 inhalant and 555 toxin allergens was collected from several databases. A set of non-allergens from the same species were selected to mirror the allergen set. The amino acids in the protein sequences were described by three z-descriptors (z1, z2 and z3) and by auto- and cross-covariance (ACC) transformation were converted into uniform vectors. Each protein was presented as a vector of 45 variables. Five machine learning methods for classification were applied in the study to derive models for allergen prediction. The methods were: discriminant analysis by partial least squares (DA-PLS), logistic regression (LR), decision tree (DT), naïve Bayes (NB) and k nearest neighbours (kNN). The best performing model was derived by kNN at k = 3. It was optimized, cross-validated and implemented in a server named AllerTOP, freely accessible at http://www.pharmfac.net/allertop. AllerTOP also predicts the most probable route of exposure. In comparison to other servers for allergen prediction, AllerTOP outperforms them with 94% sensitivity. CONCLUSIONSAllerTOP is the first alignment-free server for in silico prediction of allergens based on the main physicochemical properties of proteins. Significantly, as well allergenicity AllerTOP is able to predict the route of allergen exposure: food, inhalant or toxin.
Allergy is a form of hypersensitivity to normally innocuous substances, such as dust, pollen, foods or drugs. Allergens are small antigens that commonly provoke an IgE antibody response. There are two types of bioinformatics-based allergen prediction. The first approach follows FAO/WHO Codex alimentarius guidelines and searches for sequence similarity. The second approach is based on identifying conserved allergenicity-related linear motifs. Both approaches assume that allergenicity is a linearly coded property. In the present study, we applied ACC pre-processing to sets of known allergens, developing alignment-independent models for allergen recognition based on the main chemical properties of amino acid sequences. A set of 684 food, 1,156 inhalant and 555 toxin allergens was collected from several databases. A set of non-allergens from the same species were selected to mirror the allergen set. The amino acids in the protein sequences were described by three z-descriptors (z1, z2 and z3) and by auto- and cross-covariance (ACC) transformation were converted into uniform vectors. Each protein was presented as a vector of 45 variables. Five machine learning methods for classification were applied in the study to derive models for allergen prediction. The methods were: discriminant analysis by partial least squares (DA-PLS), logistic regression (LR), decision tree (DT), naïve Bayes (NB) and k nearest neighbours (kNN). The best performing model was derived by kNN at k = 3. It was optimized, cross-validated and implemented in a server named AllerTOP, freely accessible at http://www.pharmfac.net/allertop. AllerTOP also predicts the most probable route of exposure. In comparison to other servers for allergen prediction, AllerTOP outperforms them with 94% sensitivity. AllerTOP is the first alignment-free server for in silico prediction of allergens based on the main physicochemical properties of proteins. Significantly, as well allergenicity AllerTOP is able to predict the route of allergen exposure: food, inhalant or toxin.
BACKGROUND: Allergy is a form of hypersensitivity to normally innocuous substances, such as dust, pollen, foods or drugs. Allergens are small antigens that commonly provoke an IgE antibody response. There are two types of bioinformatics-based allergen prediction. The first approach follows FAO/WHO Codex alimentarius guidelines and searches for sequence similarity. The second approach is based on identifying conserved allergenicity-related linear motifs. Both approaches assume that allergenicity is a linearly coded property. In the present study, we applied ACC pre-processing to sets of known allergens, developing alignment-independent models for allergen recognition based on the main chemical properties of amino acid sequences. RESULTS: A set of 684 food, 1,156 inhalant and 555 toxin allergens was collected from several databases. A set of non-allergens from the same species were selected to mirror the allergen set. The amino acids in the protein sequences were described by three z-descriptors (z1, z2 and z3) and by auto- and cross-covariance (ACC) transformation were converted into uniform vectors. Each protein was presented as a vector of 45 variables. Five machine learning methods for classification were applied in the study to derive models for allergen prediction. The methods were: discriminant analysis by partial least squares (DA-PLS), logistic regression (LR), decision tree (DT), naïve Bayes (NB) and k nearest neighbours (kNN). The best performing model was derived by kNN at k = 3. It was optimized, cross-validated and implemented in a server named AllerTOP, freely accessible at http://www.pharmfac.net/allertop. AllerTOP also predicts the most probable route of exposure. In comparison to other servers for allergen prediction, AllerTOP outperforms them with 94% sensitivity. CONCLUSIONS: AllerTOP is the first alignment-free server for in silico prediction of allergens based on the main physicochemical properties of proteins. Significantly, as well allergenicity AllerTOP is able to predict the route of allergen exposure: food, inhalant or toxin.
Background: Allergy is a form of hypersensitivity to normally innocuous substances, such as dust, pollen, foods or drugs. Allergens are small antigens that commonly provoke an IgE antibody response. There are two types of bioinformatics-based allergen prediction. The first approach follows FAO/WHO Codex alimentarius guidelines and searches for sequence similarity. The second approach is based on identifying conserved allergenicity-related linear motifs. Both approaches assume that allergenicity is a linearly coded property. In the present study, we applied ACC pre-processing to sets of known allergens, developing alignment-independent models for allergen recognition based on the main chemical properties of amino acid sequences. Results: A set of 684 food, 1,156 inhalant and 555 toxin allergens was collected from several databases. A set of non-allergens from the same species were selected to mirror the allergen set. The amino acids in the protein sequences were described by three z-descriptors (z sub(1), z sub(2 )and z sub(3)) and by auto- and cross-covariance (ACC) transformation were converted into uniform vectors. Each protein was presented as a vector of 45 variables. Five machine learning methods for classification were applied in the study to derive models for allergen prediction. The methods were: discriminant analysis by partial least squares (DA-PLS), logistic regression (LR), decision tree (DT), naive Bayes (NB) and k nearest neighbours (kNN). The best performing model was derived by kNN at k = 3. It was optimized, cross-validated and implemented in a server named AllerTOP, freely accessible at http://www.pharmfac.net/allertop . AllerTOP also predicts the most probable route of exposure. In comparison to other servers for allergen prediction, AllerTOP outperforms them with 94% sensitivity. Conclusions: AllerTOP is the first alignment-free server for in silico prediction of allergens based on the main physicochemical properties of proteins. Significantly, as well allergenicity AllerTOP is able to predict the route of allergen exposure: food, inhalant or toxin.
Doc number: S4 Abstract Background: Allergy is a form of hypersensitivity to normally innocuous substances, such as dust, pollen, foods or drugs. Allergens are small antigens that commonly provoke an IgE antibody response. There are two types of bioinformatics-based allergen prediction. The first approach follows FAO/WHO Codex alimentarius guidelines and searches for sequence similarity. The second approach is based on identifying conserved allergenicity-related linear motifs. Both approaches assume that allergenicity is a linearly coded property. In the present study, we applied ACC pre-processing to sets of known allergens, developing alignment-independent models for allergen recognition based on the main chemical properties of amino acid sequences. Results: A set of 684 food, 1,156 inhalant and 555 toxin allergens was collected from several databases. A set of non-allergens from the same species were selected to mirror the allergen set. The amino acids in the protein sequences were described by three z -descriptors (z1 , z2 and z3 ) and by auto- and cross-covariance (ACC) transformation were converted into uniform vectors. Each protein was presented as a vector of 45 variables. Five machine learning methods for classification were applied in the study to derive models for allergen prediction. The methods were: discriminant analysis by partial least squares (DA-PLS), logistic regression (LR), decision tree (DT), naïve Bayes (NB) and k nearest neighbours (k NN). The best performing model was derived by k NN at k = 3. It was optimized, cross-validated and implemented in a server named AllerTOP, freely accessible at http://www.pharmfac.net/allertop . AllerTOP also predicts the most probable route of exposure. In comparison to other servers for allergen prediction, AllerTOP outperforms them with 94% sensitivity. Conclusions: AllerTOP is the first alignment-free server for in silico prediction of allergens based on the main physicochemical properties of proteins. Significantly, as well allergenicity AllerTOP is able to predict the route of allergen exposure: food, inhalant or toxin.
ArticleNumber S4
Author Flower, Darren R
Dimitrov, Ivan
Doytchinova, Irini
AuthorAffiliation 1 Faculty of Pharmacy, Medical University of Sofia, 2 Dunav st., 1000 Sofia, Bulgaria
2 Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
AuthorAffiliation_xml – name: 2 Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
– name: 1 Faculty of Pharmacy, Medical University of Sofia, 2 Dunav st., 1000 Sofia, Bulgaria
Author_xml – sequence: 1
  givenname: Ivan
  surname: Dimitrov
  fullname: Dimitrov, Ivan
  organization: Faculty of Pharmacy, Medical University of Sofia, 2 Dunav st,, Sofia, Bulgaria
– sequence: 2
  givenname: Darren R
  surname: Flower
  fullname: Flower, Darren R
– sequence: 3
  givenname: Irini
  surname: Doytchinova
  fullname: Doytchinova, Irini
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23735058$$D View this record in MEDLINE/PubMed
BookMark eNqNks1LHTEUxUNR6kf7D3RRBrpxE01yZ5LMpiBiP0BQ0K5DkrmxkXnJa_Ke4H_vDE8fWix0lUvOL4fDuTkgOyknJOQTZ8eca3nCW8Wp4KyjvKVV0tq-I_vby50X8x45qPWOMa40696TPQEKOtbpfaJPxxHLzeUVpbapWO6xNCGXJqamxjH63CwLDtGvYk5NDo2d8VtM9QPZDXas-PHpPCS_vp3fnP2gF5fff56dXlAnW7aiPWiJyAIMgSlgqFC5EBh4xsH5SdLcWbSh7R3rBs81hAH6DnXPggNn4ZB83fgu126Bg8e0KnY0yxIXtjyYbKN5raT429zmewMSgAkxGZxvDFzM_zB4rfi8MHNzZm5umsy1NNft5HP0FKTkP2usK7OI1eM42oR5XQ0HqbSSveT_gXZC6FaJbkK__IXe5XVJU6MTJfRMgp4osaF8ybUWDNv4nJn5L7wd-PPL5rZPnpcPj6CRsY8
CitedBy_id crossref_primary_10_1016_j_molimm_2019_05_016
crossref_primary_10_1007_s10989_021_10327_4
crossref_primary_10_5808_gi_23001
crossref_primary_10_3390_biomedicines11020398
crossref_primary_10_4155_fdd_2023_0013
crossref_primary_10_1016_j_imbio_2019_09_001
crossref_primary_10_1016_j_imu_2021_100694
crossref_primary_10_1016_j_jff_2017_05_032
crossref_primary_10_3390_jof10010043
crossref_primary_10_3390_antibiotics11111634
crossref_primary_10_1093_g3journal_jkab014
crossref_primary_10_1080_07391102_2023_2203253
crossref_primary_10_1021_acsomega_1c01032
crossref_primary_10_1007_s10441_014_9226_8
crossref_primary_10_1016_j_jvacx_2023_100347
crossref_primary_10_1645_19_75
crossref_primary_10_1038_s41434_022_00362_1
crossref_primary_10_1016_j_vaccine_2018_05_082
crossref_primary_10_1016_j_imu_2021_100678
crossref_primary_10_3389_fimmu_2020_576748
crossref_primary_10_1080_07391102_2021_2024253
crossref_primary_10_3390_vaccines10091564
crossref_primary_10_3390_vaccines10050691
crossref_primary_10_1016_j_ddmod_2016_06_001
crossref_primary_10_1007_s13721_023_00416_3
crossref_primary_10_1038_s41598_021_93266_w
crossref_primary_10_7774_cevr_2021_10_1_59
crossref_primary_10_1186_s43141_023_00623_5
crossref_primary_10_3390_vaccines9070797
crossref_primary_10_1007_s11030_022_10539_w
crossref_primary_10_1016_j_imbio_2021_152053
crossref_primary_10_1007_s10989_022_10430_0
crossref_primary_10_3389_fimmu_2023_1259612
crossref_primary_10_1186_s12879_024_09046_0
crossref_primary_10_1016_j_micpath_2023_106439
crossref_primary_10_2174_1871526519666190521100521
crossref_primary_10_3390_vaccines10081192
crossref_primary_10_1016_j_tifs_2013_08_009
crossref_primary_10_54751_revistafoco_v16n4_039
crossref_primary_10_1080_07391102_2023_2170470
crossref_primary_10_1016_j_imbio_2020_151949
crossref_primary_10_1038_s41598_022_11851_z
crossref_primary_10_3389_fimmu_2022_1035924
crossref_primary_10_3389_fmolb_2021_791642
crossref_primary_10_1080_07391102_2020_1792347
crossref_primary_10_1038_s41598_023_35309_y
crossref_primary_10_2903_j_efsa_2022_7044
crossref_primary_10_1002_jsfa_12199
crossref_primary_10_1016_j_addr_2021_01_007
crossref_primary_10_1093_bioinformatics_btt619
crossref_primary_10_1128_spectrum_01151_22
crossref_primary_10_3389_av_2023_12481
crossref_primary_10_1016_j_heliyon_2023_e17376
crossref_primary_10_1016_j_vacun_2021_10_002
crossref_primary_10_1038_s41598_021_97880_6
crossref_primary_10_3389_fmicb_2023_1295678
crossref_primary_10_1093_bib_bbaa294
crossref_primary_10_1016_j_meegid_2021_104875
crossref_primary_10_1371_journal_pone_0195023
crossref_primary_10_1080_07391102_2021_1977702
crossref_primary_10_1016_j_antiviral_2022_105383
crossref_primary_10_1002_cem_2597
crossref_primary_10_1007_s11756_023_01559_4
crossref_primary_10_1111_1348_0421_12866
crossref_primary_10_1016_j_ejps_2020_105387
crossref_primary_10_1016_j_biologicals_2017_08_004
crossref_primary_10_3390_vaccines10101660
crossref_primary_10_1016_j_ijbiomac_2024_131475
crossref_primary_10_3390_vaccines9060658
crossref_primary_10_22207_JPAM_16_3_63
crossref_primary_10_1016_j_mcp_2018_11_007
crossref_primary_10_3390_foods10040809
crossref_primary_10_1007_s13337_023_00852_9
crossref_primary_10_1080_07391102_2020_1846626
crossref_primary_10_24287_1726_1708_2020_19_1_35_46
crossref_primary_10_1002_jcb_27979
crossref_primary_10_3390_ijerph19063729
crossref_primary_10_1016_j_ejps_2020_105258
crossref_primary_10_3390_vaccines10101669
crossref_primary_10_1016_j_ejps_2020_105375
crossref_primary_10_3389_fmicb_2023_1251716
crossref_primary_10_3389_fimmu_2023_1284366
crossref_primary_10_1007_s12033_023_00867_z
crossref_primary_10_1016_j_arabjc_2021_103315
crossref_primary_10_1016_j_heliyon_2020_e05528
crossref_primary_10_1007_s13205_022_03258_4
crossref_primary_10_3390_ijerph191811579
crossref_primary_10_1016_j_heliyon_2020_e05760
crossref_primary_10_3390_ijms241612772
crossref_primary_10_1016_j_imu_2023_101209
crossref_primary_10_1038_s41598_021_99227_7
crossref_primary_10_3389_fvets_2021_721061
crossref_primary_10_1016_j_molliq_2020_113612
crossref_primary_10_3390_v14071456
crossref_primary_10_1186_s12859_022_04816_6
crossref_primary_10_7717_peerj_cs_1622
crossref_primary_10_1016_j_imu_2021_100764
crossref_primary_10_1186_s13104_021_05467_1
crossref_primary_10_1080_07391102_2023_2171138
crossref_primary_10_1155_2024_4066641
crossref_primary_10_1007_s12010_013_0641_0
crossref_primary_10_1016_j_imu_2022_100948
crossref_primary_10_1007_s12026_022_09351_3
crossref_primary_10_1016_j_ijbiomac_2024_133085
crossref_primary_10_3389_fmicb_2022_929400
crossref_primary_10_5808_gi_23021
crossref_primary_10_52711_0974_360X_2023_00752
crossref_primary_10_1016_j_imu_2021_100673
crossref_primary_10_1080_14760584_2020_1813576
crossref_primary_10_1186_s43141_022_00391_8
crossref_primary_10_1186_s40249_020_00713_3
crossref_primary_10_1007_s13346_023_01410_y
crossref_primary_10_1186_1745_6150_8_27
crossref_primary_10_1371_journal_pone_0244176
crossref_primary_10_1007_s10989_022_10443_9
crossref_primary_10_3389_fvets_2022_1116400
crossref_primary_10_1007_s12010_021_03760_0
crossref_primary_10_3390_vaccines11071182
crossref_primary_10_1155_2021_6627141
crossref_primary_10_1021_acs_jcim_3c00419
crossref_primary_10_3390_vaccines10060869
crossref_primary_10_1080_07391102_2022_2125441
crossref_primary_10_1038_s41598_021_92176_1
crossref_primary_10_1007_s10989_023_10547_w
crossref_primary_10_1016_j_intimp_2023_110725
crossref_primary_10_1080_07391102_2020_1756411
crossref_primary_10_1186_s40249_020_00752_w
crossref_primary_10_1371_journal_pone_0293731
crossref_primary_10_1016_j_heliyon_2023_e12890
crossref_primary_10_1016_j_compbiolchem_2022_107754
crossref_primary_10_1016_j_jmgm_2019_107477
crossref_primary_10_1021_acsomega_1c04817
crossref_primary_10_1186_s12967_019_2116_8
crossref_primary_10_3390_vaccines9101087
crossref_primary_10_1002_jmv_25993
crossref_primary_10_1038_s41598_024_61025_2
crossref_primary_10_1007_s12032_024_02334_4
crossref_primary_10_3390_molecules25215088
crossref_primary_10_1186_s12859_023_05197_0
crossref_primary_10_3389_fimmu_2022_956776
crossref_primary_10_1080_07391102_2021_1874529
crossref_primary_10_1002_pep2_24325
crossref_primary_10_1007_s00894_022_05042_w
crossref_primary_10_1186_s43141_023_00604_8
crossref_primary_10_2147_DDDT_S441302
crossref_primary_10_1016_j_jchemneu_2020_101874
crossref_primary_10_3389_fimmu_2022_863234
crossref_primary_10_1002_vms3_1438
crossref_primary_10_1016_j_compbiomed_2021_104746
crossref_primary_10_1039_D1RA02885E
crossref_primary_10_3390_vaccines10010063
crossref_primary_10_1016_j_vaccine_2024_01_087
crossref_primary_10_1016_j_micpath_2020_104705
crossref_primary_10_1016_j_molliq_2020_114105
crossref_primary_10_1016_j_vacune_2022_08_001
crossref_primary_10_3390_aquacj2020010
crossref_primary_10_1007_s40203_023_00156_2
crossref_primary_10_1016_j_meegid_2020_104199
crossref_primary_10_1080_07391102_2023_2233627
crossref_primary_10_3390_vaccines10101732
crossref_primary_10_3390_life12050746
crossref_primary_10_7774_cevr_2023_12_2_156
crossref_primary_10_1016_j_biologicals_2023_101715
crossref_primary_10_3390_applmicrobiol2020031
crossref_primary_10_15406_jabb_2022_09_00309
crossref_primary_10_1016_j_heliyon_2023_e18176
crossref_primary_10_1016_j_enzmictec_2018_12_006
crossref_primary_10_3389_fimmu_2021_669812
crossref_primary_10_1007_s10989_020_10137_0
crossref_primary_10_1016_j_csbj_2022_10_002
crossref_primary_10_1016_j_molliq_2024_124193
crossref_primary_10_3389_fimmu_2023_1115345
crossref_primary_10_1016_j_imu_2020_100430
crossref_primary_10_1021_acs_jproteome_1c00081
crossref_primary_10_35516_jjps_v16i3_1602
crossref_primary_10_1016_j_jksus_2022_101924
crossref_primary_10_1080_07391102_2023_2293266
crossref_primary_10_1080_07391102_2023_2292295
crossref_primary_10_2903_j_efsa_2021_6662
crossref_primary_10_1007_s12539_016_0184_5
crossref_primary_10_1080_07391102_2021_2014969
crossref_primary_10_1080_07391102_2021_1997819
crossref_primary_10_1016_j_compbiolchem_2015_11_006
crossref_primary_10_1371_journal_pone_0258645
crossref_primary_10_1007_s00894_022_05389_0
crossref_primary_10_1080_07391102_2021_1889669
crossref_primary_10_1007_s00894_014_2278_5
crossref_primary_10_1038_s41598_018_19456_1
crossref_primary_10_1186_s12859_022_04784_x
crossref_primary_10_3389_fimmu_2024_1413893
crossref_primary_10_1038_s41598_024_64383_z
crossref_primary_10_3390_ijerph19095568
crossref_primary_10_3389_fmed_2022_945938
crossref_primary_10_3390_vaccines9121459
crossref_primary_10_3390_vaccines10071127
crossref_primary_10_3390_vaccines11020263
crossref_primary_10_3390_vaccines10050664
crossref_primary_10_1016_j_compbiomed_2020_103967
crossref_primary_10_3389_fimmu_2018_01783
crossref_primary_10_1016_j_intimp_2024_112160
crossref_primary_10_1016_j_ijbiomac_2024_129562
crossref_primary_10_3389_fimmu_2022_985450
crossref_primary_10_3390_vaccines11061090
crossref_primary_10_1186_s12967_016_0928_3
crossref_primary_10_1080_07391102_2020_1797539
crossref_primary_10_1155_2022_4975721
crossref_primary_10_3390_vaccines9030293
crossref_primary_10_1007_s10142_023_01031_1
crossref_primary_10_1016_j_yrtph_2019_104422
crossref_primary_10_1039_D1RA06532G
crossref_primary_10_1080_07391102_2023_2166996
crossref_primary_10_1016_j_bbrep_2024_101651
crossref_primary_10_1007_s12026_023_09374_4
crossref_primary_10_1007_s00425_017_2750_4
crossref_primary_10_1007_s11240_018_1524_4
crossref_primary_10_1021_acsptsci_0c00139
crossref_primary_10_1016_j_ijbiomac_2018_09_071
crossref_primary_10_3390_vaccines10030378
crossref_primary_10_3389_fcimb_2024_1351303
crossref_primary_10_3390_bioengineering10040430
crossref_primary_10_30699_ijmm_15_5_592
crossref_primary_10_1016_j_micpath_2022_105782
crossref_primary_10_1080_07391102_2023_2212793
crossref_primary_10_2139_ssrn_3720371
crossref_primary_10_1016_j_vaccine_2018_03_042
crossref_primary_10_1016_j_ijbiomac_2020_04_097
crossref_primary_10_1080_07391102_2020_1803969
crossref_primary_10_1080_07391102_2023_2232045
crossref_primary_10_3390_ijms23063261
crossref_primary_10_1155_2020_7079356
crossref_primary_10_1038_s41598_024_52457_x
crossref_primary_10_3389_fimmu_2024_1426496
crossref_primary_10_1038_s41598_022_16445_3
crossref_primary_10_3390_vaccines8020288
crossref_primary_10_1371_journal_pone_0272582
crossref_primary_10_1007_s00203_023_03717_3
crossref_primary_10_3389_fgene_2023_1294159
crossref_primary_10_1016_j_imu_2022_101087
crossref_primary_10_3389_fimmu_2017_01430
crossref_primary_10_1016_j_lfs_2022_121121
crossref_primary_10_3390_biomedinformatics4030088
crossref_primary_10_1016_j_micpath_2021_105358
crossref_primary_10_1038_s41598_021_81749_9
crossref_primary_10_1016_j_meegid_2021_104712
crossref_primary_10_1093_bib_bbad246
crossref_primary_10_1007_s10989_018_9735_4
crossref_primary_10_1080_07391102_2021_1896387
crossref_primary_10_1080_10242422_2021_1981880
crossref_primary_10_1080_10495398_2021_1899937
crossref_primary_10_1016_j_meegid_2021_105120
crossref_primary_10_1007_s10989_021_10356_z
crossref_primary_10_14252_foodsafetyfscj_D_21_00016
crossref_primary_10_1093_bioadv_vbad151
crossref_primary_10_3389_fmolb_2023_1295817
Cites_doi 10.1002/1521-3838(200006)19:3<264::AID-QSAR264>3.0.CO;2-A
10.1016/j.molimm.2007.01.019
10.1093/bioinformatics/bth477
10.1186/1471-2105-8-4
10.1016/S0031-3203(96)00142-2
10.1371/journal.pone.0005861
10.1136/bmj.316.7132.686
10.1016/S0169-7439(98)00062-8
10.1186/1471-2105-5-133
10.1093/nar/gkl343
10.1021/jm00390a003
10.1093/nar/gkg010
10.1145/1656274.1656278
10.1096/fj.02-1052fje
10.1110/ps.2500102
10.1111/j.0141-9838.2004.00728.x
10.1093/bioinformatics/btp163
10.1093/bioinformatics/bth286
10.1093/bioinformatics/bti700
10.1093/toxsci/55.2.235
10.1038/nri1372
10.1093/bioinformatics/btl621
10.1034/j.1398-9995.2003.00224.x
10.1016/0003-2670(93)80437-P
ContentType Journal Article
Copyright 2012 Dimitrov et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2012 Dimitrov et al.; licensee BioMed Central Ltd. 2012 Dimitrov et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: 2012 Dimitrov et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2012 Dimitrov et al.; licensee BioMed Central Ltd. 2012 Dimitrov et al.; licensee BioMed Central Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7T5
H94
7X8
5PM
DOI 10.1186/1471-2105-14-s6-s4
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content (ProQuest)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Immunology Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Advanced Technologies Database with Aerospace
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
AIDS and Cancer Research Abstracts
Immunology Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AIDS and Cancer Research Abstracts
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage S4
ExternalDocumentID oai_biomedcentral_com_1471_2105_14_S6_S4
2946944301
10_1186_1471_2105_14_S6_S4
23735058
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-A0
0R~
123
23N
2VQ
2WC
3V.
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C24
C6C
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M0N
M1P
M48
M7P
MK~
ML0
M~E
NPM
O5R
O5S
OK1
P2P
P62
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PQEST
PQUKI
PRINS
Q9U
7T5
H94
7X8
ABVAZ
AFGXO
AFNRJ
AFPKN
5PM
ID FETCH-LOGICAL-b640t-9386ee0f3df0730e7e7bff03c013bc6ee81baeaf49b05dc183fd395e890fb3ba3
IEDL.DBID RBZ
ISSN 1471-2105
IngestDate Tue Sep 17 21:17:37 EDT 2024
Wed May 22 07:14:29 EDT 2024
Sat Oct 26 00:49:23 EDT 2024
Fri Oct 25 03:16:44 EDT 2024
Thu Oct 10 19:44:23 EDT 2024
Fri Nov 22 00:55:41 EST 2024
Tue Oct 15 23:47:28 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 6
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b640t-9386ee0f3df0730e7e7bff03c013bc6ee81baeaf49b05dc183fd395e890fb3ba3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://dx.doi.org/10.1186/1471-2105-14-S6-S4
PMID 23735058
PQID 1328135238
PQPubID 44065
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3633022
biomedcentral_primary_oai_biomedcentral_com_1471_2105_14_S6_S4
proquest_miscellaneous_1367876961
proquest_miscellaneous_1352284725
proquest_journals_1328135238
crossref_primary_10_1186_1471_2105_14_S6_S4
pubmed_primary_23735058
PublicationCentury 2000
PublicationDate 2013-04-17
PublicationDateYYYYMMDD 2013-04-17
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-17
  day: 17
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2013
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References 15373946 - BMC Bioinformatics. 2004 Sep 16;5:133
19516900 - PLoS One. 2009;4(6):e5861
19304878 - Bioinformatics. 2009 Jun 1;25(11):1422-3
17150996 - Bioinformatics. 2007 Feb 15;23(4):504-6
17382394 - Mol Immunol. 2007 May;44(12):3256-60
15319257 - Bioinformatics. 2005 Jan 1;21(1):39-50
16844994 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W202-9
16204345 - Bioinformatics. 2005 Dec 1;21(23):4201-4
15173835 - Nat Rev Immunol. 2004 Jun;4(6):469-78
12520022 - Nucleic Acids Res. 2003 Jan 1;31(1):359-62
17207271 - BMC Bioinformatics. 2007;8:4
15771681 - Parasite Immunol. 2004 Nov-Dec;26(11-12):455-67
12611632 - In Silico Biol. 2002;2(4):525-34
9522798 - BMJ. 1998 Feb 28;316(7132):686-9
11910023 - Protein Sci. 2002 Apr;11(4):795-805
12709401 - FASEB J. 2003 Jun;17(9):1141-3
10828254 - Toxicol Sci. 2000 Jun;55(2):235-46
3599020 - J Med Chem. 1987 Jul;30(7):1126-35
15117757 - Bioinformatics. 2004 Nov 1;20(16):2572-8
14616117 - Allergy. 2003 Nov;58(11):1083-92
S Hellberg (5802_CR23) 1987; 30
Å Nyström (5802_CR20) 2000; 19
5802_CR26
AP Bradley (5802_CR29) 1997; 30
ZH Zhang (5802_CR11) 2007; 23
KB Li (5802_CR13) 2004; 20
FAO/WHO Codex Alimentarius Commission (5802_CR7) 2003
V Brusic (5802_CR8) 2003; 58
HC Muh (5802_CR24) 2009; 4
CA Janeway (5802_CR2) 1999
O Ivanciuc (5802_CR9) 2003; 31
SY Seong (5802_CR17) 2004; 4
S Saha (5802_CR15) 2006; 34
C Emanuelsson (5802_CR5) 2007; 44
FAO/WHO Agriculture and Consumer Protection (5802_CR6) 2001
A Zorzet (5802_CR25) 2002; 2
MWEJ Fiers (5802_CR10) 2004; 5
C Rusznak (5802_CR3) 1998; 316
MB Stadler (5802_CR12) 2003; 17
PJ Cooper (5802_CR1) 2004; 26
PM Andersson (5802_CR19) 1998; 42
R Furmonaviciene (5802_CR16) 2005; 21
IA Doytchinova (5802_CR22) 2007; 8
PJ Cock (5802_CR27) 2009; 25
M Lapinsh (5802_CR21) 2002; 11
AK Björklund (5802_CR14) 2005; 21
RDJ Huby (5802_CR4) 2000; 55
M Hall (5802_CR28) 2009; 11
S Wold (5802_CR18) 1993; 277
References_xml – volume: 19
  start-page: 264
  year: 2000
  ident: 5802_CR20
  publication-title: Quant Struct-Act Relat
  doi: 10.1002/1521-3838(200006)19:3<264::AID-QSAR264>3.0.CO;2-A
  contributor:
    fullname: Å Nyström
– volume: 44
  start-page: 3256
  year: 2007
  ident: 5802_CR5
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2007.01.019
  contributor:
    fullname: C Emanuelsson
– volume: 21
  start-page: 39
  year: 2005
  ident: 5802_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth477
  contributor:
    fullname: AK Björklund
– ident: 5802_CR26
– volume: 8
  start-page: 4
  year: 2007
  ident: 5802_CR22
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-4
  contributor:
    fullname: IA Doytchinova
– volume: 30
  start-page: 1145
  year: 1997
  ident: 5802_CR29
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(96)00142-2
  contributor:
    fullname: AP Bradley
– volume: 4
  start-page: e5861
  year: 2009
  ident: 5802_CR24
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0005861
  contributor:
    fullname: HC Muh
– volume: 316
  start-page: 686
  year: 1998
  ident: 5802_CR3
  publication-title: BMJ
  doi: 10.1136/bmj.316.7132.686
  contributor:
    fullname: C Rusznak
– volume: 42
  start-page: 41
  year: 1998
  ident: 5802_CR19
  publication-title: Chemometr Intell Lab
  doi: 10.1016/S0169-7439(98)00062-8
  contributor:
    fullname: PM Andersson
– volume: 5
  start-page: 133
  year: 2004
  ident: 5802_CR10
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-5-133
  contributor:
    fullname: MWEJ Fiers
– volume: 34
  start-page: W202
  year: 2006
  ident: 5802_CR15
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl343
  contributor:
    fullname: S Saha
– volume-title: Joint FAO/WHO Food Standards Programme. Rome, Italy
  year: 2003
  ident: 5802_CR7
  contributor:
    fullname: FAO/WHO Codex Alimentarius Commission
– volume: 30
  start-page: 1126
  year: 1987
  ident: 5802_CR23
  publication-title: J Med Chem
  doi: 10.1021/jm00390a003
  contributor:
    fullname: S Hellberg
– volume: 31
  start-page: 359
  year: 2003
  ident: 5802_CR9
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg010
  contributor:
    fullname: O Ivanciuc
– volume: 11
  start-page: 10
  year: 2009
  ident: 5802_CR28
  publication-title: SIGKDD Explorations
  doi: 10.1145/1656274.1656278
  contributor:
    fullname: M Hall
– volume-title: Immunobiology: the immune system in health and disease
  year: 1999
  ident: 5802_CR2
  contributor:
    fullname: CA Janeway
– volume: 17
  start-page: 1141
  year: 2003
  ident: 5802_CR12
  publication-title: FASEB J
  doi: 10.1096/fj.02-1052fje
  contributor:
    fullname: MB Stadler
– volume: 11
  start-page: 795
  year: 2002
  ident: 5802_CR21
  publication-title: Protein Sci
  doi: 10.1110/ps.2500102
  contributor:
    fullname: M Lapinsh
– volume: 26
  start-page: 455
  year: 2004
  ident: 5802_CR1
  publication-title: Parasite Immunol
  doi: 10.1111/j.0141-9838.2004.00728.x
  contributor:
    fullname: PJ Cooper
– volume: 25
  start-page: 1422
  year: 2009
  ident: 5802_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp163
  contributor:
    fullname: PJ Cock
– volume: 20
  start-page: 2572
  year: 2004
  ident: 5802_CR13
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth286
  contributor:
    fullname: KB Li
– volume: 21
  start-page: 4201
  year: 2005
  ident: 5802_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti700
  contributor:
    fullname: R Furmonaviciene
– volume: 55
  start-page: 235
  year: 2000
  ident: 5802_CR4
  publication-title: Toxicological Sci
  doi: 10.1093/toxsci/55.2.235
  contributor:
    fullname: RDJ Huby
– volume-title: Report of a Joint FAO/WHO Expert Consultation on Allergenicity of Foods Derived from Biotechnology. Rome, Italy
  year: 2001
  ident: 5802_CR6
  contributor:
    fullname: FAO/WHO Agriculture and Consumer Protection
– volume: 2
  start-page: 525
  year: 2002
  ident: 5802_CR25
  publication-title: In Silico Biol
  contributor:
    fullname: A Zorzet
– volume: 4
  start-page: 469
  year: 2004
  ident: 5802_CR17
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri1372
  contributor:
    fullname: SY Seong
– volume: 23
  start-page: 504
  year: 2007
  ident: 5802_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl621
  contributor:
    fullname: ZH Zhang
– volume: 58
  start-page: 1083
  year: 2003
  ident: 5802_CR8
  publication-title: Allergy
  doi: 10.1034/j.1398-9995.2003.00224.x
  contributor:
    fullname: V Brusic
– volume: 277
  start-page: 239
  year: 1993
  ident: 5802_CR18
  publication-title: Anal Chim Acta
  doi: 10.1016/0003-2670(93)80437-P
  contributor:
    fullname: S Wold
SSID ssj0017805
Score 2.600304
Snippet Allergy is a form of hypersensitivity to normally innocuous substances, such as dust, pollen, foods or drugs. Allergens are small antigens that commonly...
Doc number: S4 Abstract Background: Allergy is a form of hypersensitivity to normally innocuous substances, such as dust, pollen, foods or drugs. Allergens are...
Background: Allergy is a form of hypersensitivity to normally innocuous substances, such as dust, pollen, foods or drugs. Allergens are small antigens that...
BACKGROUNDAllergy is a form of hypersensitivity to normally innocuous substances, such as dust, pollen, foods or drugs. Allergens are small antigens that...
BACKGROUND: Allergy is a form of hypersensitivity to normally innocuous substances, such as dust, pollen, foods or drugs. Allergens are small antigens that...
SourceID pubmedcentral
biomedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage S4
SubjectTerms Algorithms
Allergens - chemistry
Allergens - immunology
Allergies
Amino Acid Sequence
Amino acids
Artificial Intelligence
Bayes Theorem
Bioinformatics
Computational Biology - methods
Computer Simulation
Databases, Protein
Food Hypersensitivity
Humans
Hypersensitivity - immunology
Proceedings
Proteins
Proteins - chemistry
Proteins - immunology
Studies
Toxins, Biological - chemistry
Toxins, Biological - immunology
SummonAdditionalLinks – databaseName: Open Access: PubMed Central
  dbid: RPM
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_awmAvo-vH5rYrKuxtqLEtWbJeBiW0hEG3Qlrom5HsEw2kTkjSh_73PTl2mLvRh74ZTgL5Pny_s-4D4DtazLNKp7xCI7g0aLhD63mmrBdEq2Ibfuhf_1ajO_nrPrvfgqyrhWmS9ks3Oa-nj-f15KHJrZw_loMuT2xwcz0UiqLwNB1swza53y5Eb68OQpP-rjomV4OEvr6c4pqMJ5KPFR-HSTyp0IJcf_6qyn3ad07_IM7XiZN_eaKrXfjUQkh2sT7qZ9jCeg8-rIdKPu-DuQjVfbd_bhhnloWfrrhgBE3ZpGbLyZQkz-aLcD0TRMJmnoVpKqEEc3kAd1eXt8MRbwckcKdkvOJG5Aox9qLywVJRo3bex6IkXOdKIhEmtcR5aVycVSVZr6-EyTA3sXfCWXEIO_Wsxq_ApEtRGIcUD1opXWxJbGmlvdaVNUqbCH72OFXM180witCeuk8hSykC14vAdXoqxqoYywh-dKzd7G0CkFz9d_VJx_2iNaplQYFznhBgFHkEZxsymUO447A1zp7CGgKU5HHT7K015KG1MiqJ4MtaoJsjdZoRge6Juve-fQppadOWu9XKo3fvPIaPaTNsQ_JEn8DOavGE3wjyrNxpo-IvrBYCow
  priority: 500
  providerName: National Library of Medicine
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-QwEA9-cOCLqHfqnh_kwLcj2DZp0ryciLiK4Cmsgm8l2UxwQbrr7vpw__3NdLurVfGtMClNZzKZ32QyM4wdgYMiDyYTAawUyoIVHlwUuXZRIi0kjg70r__qy3t19ZA_NAduk-Za5XxPrDfqMOzTGfkxek1FimhBFiejZ0Fdoyi62rTQWGaraWY0XekruheLKALV658nyhT6OMWNWKCLk4tUiZ4WvfdZ7k9t4_QBcb6_OPnGEnU32HoDIfnpTOabbAmqLfZt1lTy33dmTym77-7mlgvuOB26wpgjNOWDik8GTyh5PhpTeIZEwoeRUzcVSsGc_GD33fO7s0vRNEgQXqtkKqwsNEASZYikqWDA-BgT2Udc5_tIQkzqkPPK-iQPfdTeGKTNobBJ9NI7uc1WqmEFu4wrn4G0HtAfdEr5xKHYsmCiMcFZbWyH_WlxqhzNimGUVJ66TUGplcTqkliNT2VPlz3VYb_nrF28Wzsghf509P6c-2WjVJPydQl02K8FGdWBYhyuguELjUFAiRY3y78agxbaaKvTDtuZCXQxpUwaiaAQv2Baom79b5tSDR7rstxSS4mI6OfXU99ja1ndUUOJ1Oyzlen4BQ4Q10z9Yb14_wP2Xvmo
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_OE8EX8dvqKRF8k2jbpPl4UDnE4xBOhbuFeyvJdoILS_fc7oH33zvT3a72XH0rTBLa-ej8JsnMALzCgK5qbCkb9Epqj15GDElWJiRFtCYPvKF_8sUcT_Tn8-p8D4Z2RxsGdjtDO-4nNVnO3_z8cfWBDP5db_DOvC3oByspdKlkoWVnZKdvwM2SPCNf8TrRv08VuH7_kDizcx6XBlZWESpw1xLg52O_9RcYvX6n8g8ndXQX7mzQpThcq8M92MP2Ptxa95u8egDukBP_zr5-kzII3o7FpSDQKmat6GZz0glxseSDGxaWWCTBfVY4ObN7CJOjT2cfj-WmdYKMRucr6ZUziHlSTWIbRos2ppSrKSG-OCUSodVAMtE-5lUzJbtOjfIVOp-nqGJQj2C_XbT4BISOJSofkSLFoHXMAwm0bGyytgneWJ_B-xGj6ot1mYyaC1ePKWRDNTO9ZqbTU31q6lOdweuBs9u5fWjizM7RBwPz60FbagqpXUFQUrkMXm7JZCh8-hFaXFzyGIKa5IvL6n9jyHdb402RweO1PLevNChGBnYk6dH3jint7HtfsFsZpQgrPf3nms_gdtm32dCysAewv1pe4nMCO6v4otfgX8IB_Rs
  priority: 102
  providerName: Scholars Portal
Title AllerTOP--a server for in silico prediction of allergens
URI https://www.ncbi.nlm.nih.gov/pubmed/23735058
https://www.proquest.com/docview/1328135238
https://search.proquest.com/docview/1352284725
https://search.proquest.com/docview/1367876961
http://dx.doi.org/10.1186/1471-2105-14-S6-S4
https://pubmed.ncbi.nlm.nih.gov/PMC3633022
Volume 14 Suppl 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSxxBEC58EMglqHlt1KGF3JImM9M9_bgEVFxF0IirsOQydO9UkwWZld314L-3evZBRhcvXpqBqnlVUdNfVU1VAXxHh6aodM4rtIJLi5Z7dIEXygVBtCp1MaB_canObuV5v-ivwc_VGfzMqF8ZfT45OSYFzyTvKd6T67BJToOIrtb10d9lziB2529qieb8ixKZldd4Vt9-196WXmDN579M_rcHdbfgwxw8ssOZtrdhDesdeDcbJ_n4EexhrOu7-XPFOHMshltxzAiUsmHNJsM70jm7H8fETFQGGwUW56jE4svJJ7jtntwcn_H5aATulUyn3AqjENMgqhBtFDVqH0IqBoTo_IBIhEYdyVxanxbVgOw2VMIWaGwavPBOfIaNelTjV2DS5yisR_IEnZQ-daSwvNJB68pZpW0HfrckVd7P2mCUsTF1m0I2UkZRl1HUdFT2VNmTHfixEO3y3Mb1MGol995C-uXcnCYlucwmI6goTAcOlmQyhJjdcDWOHiIPQUnaa_PiNR7am7WyKuvAl5lCl4-UCy0IDtIddEvVrfdtU-rhv6Yht1BCEBb69lZJ7cL7vJm2IXmm92BjOn7AfcI8U5_Auu5rWk33NIHNo5PLq-ukiR_QeiFN0phC0gSrngBlgQRv
link.rule.ids 108,230,314,727,780,784,864,885,2221,12056,12765,21388,24318,24937,27924,27925,31719,31720,33373,33374,33744,33745,43310,43600,43805,53791,53793,75811,75812
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dbxMxDLegE4KXaXyNjgFB4g1Fu7vkkssL0zZtKrCViXbS3qKkSUSl6Vra7oH_Hru9Fm6gvZ3knC5nx_HPcWwDfIguVmXQBQ_RCC5NNNxHl3ipXBJIC5mjA_2LvupdyS_X5XVz4DZvrlWu98TlRh0mIzojP0CvqcoRLYjqcPqTU9coiq42LTQewhZVTi87sHV82r_8vokjUMX-dapMpQ5y3Io5OjklzyUfKD64m-d-0zZP_2DOu1cn_7JFZzuw3YBIdrSS-lN4EOtn8GjVVvLXczBHlN83_HbJOHOMjl3jjCE4ZeOazcc3KHs2nVGAhoTCJolRPxVKwpy_gKuz0-FJjzctErhXMltwIyoVY5ZESKSrUUftU8rECJGdHyEJUalD3kvjszKMUH9TEKaMlcmSF96Jl9CpJ3V8BUz6IgrjI3qETkqfORRcEXTSOjijtOnCpxan7HRVDsNSgeo2BeVmidWWWI1PdqDsQHbh45q1m3eXLkil_jt6f81926jV3P5ZBF14vyGjQlCUw9VxcktjEFKizS3K-8agjdbKqLwLuyuBbqZUCC0QFuIXdEvUrf9tU-rxj2VhbqGEQEy0d__U38Hj3vDi3J5_7n99DU-KZX8NyXO9D53F7Da-QZSz8G-bpfwbCBr9-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8x0Ka9TLDPbsA8aW-TRxI7dvyCBIyKfbFqBQntxbJjW6vWpVVbHvbfc07SijDEC2-W7vJ15_P9zs7dAbz3xhe5kxl1XjHKlVfUehNoLkxgSHOJiRv630_FyTn_cpFfrMFgmQtj_5Z2NGmLhsZCxR-vp6GP67UbB-WfvakLjckXYi_FJZZi8JLTlNOhoEP-ADYQCdem-vPw1-pcIVbwr_ONWv5lGs2t97iRAz_uuq7_8OjN3yqv-an-JjxpASY5aGbEFqz56ik8bFpO_nsG6iDm_p39GBBKDIlbsn5GUAxkVJH5aIzzgkxn8fAmKoxMAom9VmKC5vw5nPePz45OaNs-gVrBkwVVrBDeJ4G5EO3YSy9tCAkrEfXZEkmIWA3qhSub5K5E2w6OqdwXKgmWWcNewHo1qfwrINxmninrMVo0nNvEoFIzJ4OUzighVQ_2O5LS06ZUho7Fq7sUVKCOotZR1DjSQ6GHvAcflqJdXVuHJ4W4lXt7KX3dmtxcY1hdpAgnWdGDdysyGks8ATGVn1xGHoSb6I-z_C4e9N9SKJH24GWj0NUrZUwyhIz4BNlRded7u5Rq9Lsu2s0EY4iXXt9XUm_h0eBTX3_7fPr1DTzO6uYcnKZyG9YXs0u_gxBpYXfrWX8FdawPOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AllerTOP--a+server+for+in+silico+prediction+of+allergens&rft.jtitle=BMC+bioinformatics&rft.au=Dimitrov%2C+Ivan&rft.au=Flower%2C+Darren+R&rft.au=Doytchinova%2C+Irini&rft.date=2013-04-17&rft.eissn=1471-2105&rft.volume=14+Suppl+6&rft.spage=S4&rft_id=info:doi/10.1186%2F1471-2105-14-s6-s4&rft_id=info%3Apmid%2F23735058&rft.externalDocID=23735058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon