Comparing variant calling algorithms for target-exon sequencing in a large sample
Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from soph...
Saved in:
Published in | BMC bioinformatics Vol. 16; no. 1; p. 75 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
07.03.2015
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from sophisticated calling algorithms used in low-coverage sequencing studies. We evaluate the potential benefits of different calling strategies by performing a comparative analysis of variant calling methods on exonic data from 202 genes sequenced at 24x in 7,842 individuals. We call variants using individual-based, population-based and linkage disequilibrium (LD)-aware methods with stringent quality control. We measure genotype accuracy by the concordance with on-target GWAS genotypes and between 80 pairs of sequencing replicates. We validate selected singleton variants using capillary sequencing.
Using these calling methods, we detected over 27,500 variants at the targeted exons; >57% were singletons. The singletons identified by individual-based analyses were of the highest quality. However, individual-based analyses generated more missing genotypes (4.72%) than population-based (0.47%) and LD-aware (0.17%) analyses. Moreover, individual-based genotypes were the least concordant with array-based genotypes and replicates. Population-based genotypes were less concordant than genotypes from LD-aware analyses with extended haplotypes. We reanalyzed the same dataset with a second set of callers and showed again that the individual-based caller identified more high-quality singletons than the population-based caller. We also replicated this result in a second dataset of 57 genes sequenced at 127.5x in 3,124 individuals.
We recommend population-based analyses for high quality variant calls with few missing genotypes. With extended haplotypes, LD-aware methods generate the most accurate and complete genotypes. In addition, individual-based analyses should complement the above methods to obtain the most singleton variants. |
---|---|
AbstractList | BACKGROUND: Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from sophisticated calling algorithms used in low-coverage sequencing studies. We evaluate the potential benefits of different calling strategies by performing a comparative analysis of variant calling methods on exonic data from 202 genes sequenced at 24x in 7,842 individuals. We call variants using individual-based, population-based and linkage disequilibrium (LD)-aware methods with stringent quality control. We measure genotype accuracy by the concordance with on-target GWAS genotypes and between 80 pairs of sequencing replicates. We validate selected singleton variants using capillary sequencing. RESULTS: Using these calling methods, we detected over 27,500 variants at the targeted exons; >57% were singletons. The singletons identified by individual-based analyses were of the highest quality. However, individual-based analyses generated more missing genotypes (4.72%) than population-based (0.47%) and LD-aware (0.17%) analyses. Moreover, individual-based genotypes were the least concordant with array-based genotypes and replicates. Population-based genotypes were less concordant than genotypes from LD-aware analyses with extended haplotypes. We reanalyzed the same dataset with a second set of callers and showed again that the individual-based caller identified more high-quality singletons than the population-based caller. We also replicated this result in a second dataset of 57 genes sequenced at 127.5x in 3,124 individuals. CONCLUSIONS: We recommend population-based analyses for high quality variant calls with few missing genotypes. With extended haplotypes, LD-aware methods generate the most accurate and complete genotypes. In addition, individual-based analyses should complement the above methods to obtain the most singleton variants. Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from sophisticated calling algorithms used in low-coverage sequencing studies. We evaluate the potential benefits of different calling strategies by performing a comparative analysis of variant calling methods on exonic data from 202 genes sequenced at 24x in 7,842 individuals. We call variants using individual-based, population-based and linkage disequilibrium (LD)-aware methods with stringent quality control. We measure genotype accuracy by the concordance with on-target GWAS genotypes and between 80 pairs of sequencing replicates. We validate selected singleton variants using capillary sequencing. Using these calling methods, we detected over 27,500 variants at the targeted exons; >57% were singletons. The singletons identified by individual-based analyses were of the highest quality. However, individual-based analyses generated more missing genotypes (4.72%) than population-based (0.47%) and LD-aware (0.17%) analyses. Moreover, individual-based genotypes were the least concordant with array-based genotypes and replicates. Population-based genotypes were less concordant than genotypes from LD-aware analyses with extended haplotypes. We reanalyzed the same dataset with a second set of callers and showed again that the individual-based caller identified more high-quality singletons than the population-based caller. We also replicated this result in a second dataset of 57 genes sequenced at 127.5x in 3,124 individuals. We recommend population-based analyses for high quality variant calls with few missing genotypes. With extended haplotypes, LD-aware methods generate the most accurate and complete genotypes. In addition, individual-based analyses should complement the above methods to obtain the most singleton variants. BACKGROUNDSequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from sophisticated calling algorithms used in low-coverage sequencing studies. We evaluate the potential benefits of different calling strategies by performing a comparative analysis of variant calling methods on exonic data from 202 genes sequenced at 24x in 7,842 individuals. We call variants using individual-based, population-based and linkage disequilibrium (LD)-aware methods with stringent quality control. We measure genotype accuracy by the concordance with on-target GWAS genotypes and between 80 pairs of sequencing replicates. We validate selected singleton variants using capillary sequencing.RESULTSUsing these calling methods, we detected over 27,500 variants at the targeted exons; >57% were singletons. The singletons identified by individual-based analyses were of the highest quality. However, individual-based analyses generated more missing genotypes (4.72%) than population-based (0.47%) and LD-aware (0.17%) analyses. Moreover, individual-based genotypes were the least concordant with array-based genotypes and replicates. Population-based genotypes were less concordant than genotypes from LD-aware analyses with extended haplotypes. We reanalyzed the same dataset with a second set of callers and showed again that the individual-based caller identified more high-quality singletons than the population-based caller. We also replicated this result in a second dataset of 57 genes sequenced at 127.5x in 3,124 individuals.CONCLUSIONSWe recommend population-based analyses for high quality variant calls with few missing genotypes. With extended haplotypes, LD-aware methods generate the most accurate and complete genotypes. In addition, individual-based analyses should complement the above methods to obtain the most singleton variants. Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from sophisticated calling algorithms used in low-coverage sequencing studies. We evaluate the potential benefits of different calling strategies by performing a comparative analysis of variant calling methods on exonic data from 202 genes sequenced at 24x in 7,842 individuals. We call variants using individual-based, population-based and linkage disequilibrium (LD)-aware methods with stringent quality control. We measure genotype accuracy by the concordance with on-target GWAS genotypes and between 80 pairs of sequencing replicates. We validate selected singleton variants using capillary sequencing. Using these calling methods, we detected over 27,500 variants at the targeted exons; >57% were singletons. The singletons identified by individual-based analyses were of the highest quality. However, individual-based analyses generated more missing genotypes (4.72%) than population-based (0.47%) and LD-aware (0.17%) analyses. Moreover, individual-based genotypes were the least concordant with array-based genotypes and replicates. Population-based genotypes were less concordant than genotypes from LD-aware analyses with extended haplotypes. We reanalyzed the same dataset with a second set of callers and showed again that the individual-based caller identified more high-quality singletons than the population-based caller. We also replicated this result in a second dataset of 57 genes sequenced at 127.5x in 3,124 individuals. We recommend population-based analyses for high quality variant calls with few missing genotypes. With extended haplotypes, LD-aware methods generate the most accurate and complete genotypes. In addition, individual-based analyses should complement the above methods to obtain the most singleton variants. Background Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from sophisticated calling algorithms used in low-coverage sequencing studies. We evaluate the potential benefits of different calling strategies by performing a comparative analysis of variant calling methods on exonic data from 202 genes sequenced at 24x in 7,842 individuals. We call variants using individual-based, population-based and linkage disequilibrium (LD)-aware methods with stringent quality control. We measure genotype accuracy by the concordance with on-target GWAS genotypes and between 80 pairs of sequencing replicates. We validate selected singleton variants using capillary sequencing. Results Using these calling methods, we detected over 27,500 variants at the targeted exons; >57% were singletons. The singletons identified by individual-based analyses were of the highest quality. However, individual-based analyses generated more missing genotypes (4.72%) than population-based (0.47%) and LD-aware (0.17%) analyses. Moreover, individual-based genotypes were the least concordant with array-based genotypes and replicates. Population-based genotypes were less concordant than genotypes from LD-aware analyses with extended haplotypes. We reanalyzed the same dataset with a second set of callers and showed again that the individual-based caller identified more high-quality singletons than the population-based caller. We also replicated this result in a second dataset of 57 genes sequenced at 127.5x in 3,124 individuals. Conclusions We recommend population-based analyses for high quality variant calls with few missing genotypes. With extended haplotypes, LD-aware methods generate the most accurate and complete genotypes. In addition, individual-based analyses should complement the above methods to obtain the most singleton variants. Keywords: Next-generation sequencing, Targeted sequencing, Variant calling |
ArticleNumber | 75 |
Audience | Academic |
Author | Nelson, Matthew R Lo, Yancy Ehm, Margaret G Zöllner, Sebastian Kang, Hyun M Othman, Mohammad I Chissoe, Stephanie L Abecasis, Gonçalo R |
Author_xml | – sequence: 1 givenname: Yancy surname: Lo fullname: Lo, Yancy email: yancylo@umich.edu organization: Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA. yancylo@umich.edu – sequence: 2 givenname: Hyun M surname: Kang fullname: Kang, Hyun M email: hmkang@umich.edu organization: Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA. hmkang@umich.edu – sequence: 3 givenname: Matthew R surname: Nelson fullname: Nelson, Matthew R email: matthew.r.nelson@gsk.com organization: GlaxoSmithKline, Quantitative Sciences, Research Triangle Park, NC, USA. matthew.r.nelson@gsk.com – sequence: 4 givenname: Mohammad I surname: Othman fullname: Othman, Mohammad I email: miothman@med.umich.edu organization: Department of Ophthalmology, University of Michigan, Ann Arbor, MI, USA. miothman@med.umich.edu – sequence: 5 givenname: Stephanie L surname: Chissoe fullname: Chissoe, Stephanie L email: stephanie.l.chissoe@gsk.com organization: GlaxoSmithKline, Quantitative Sciences, Research Triangle Park, NC, USA. stephanie.l.chissoe@gsk.com – sequence: 6 givenname: Margaret G surname: Ehm fullname: Ehm, Margaret G email: meg.g.ehm@gsk.com organization: GlaxoSmithKline, Quantitative Sciences, Research Triangle Park, NC, USA. meg.g.ehm@gsk.com – sequence: 7 givenname: Gonçalo R surname: Abecasis fullname: Abecasis, Gonçalo R email: goncalo@umich.edu organization: Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA. goncalo@umich.edu – sequence: 8 givenname: Sebastian surname: Zöllner fullname: Zöllner, Sebastian email: szoellne@umich.edu, szoellne@umich.edu organization: Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA. szoellne@umich.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25884587$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstq3TAQhkVJaS7tA3RTDN2kC6caXWx5UwinbRoIlN7WQrbHjoosnUo-IX37ypwkxJAikEaab340P3NMDnzwSMhroGcAqnqfgCnZlBRkSYXKwTNyBKKGkgGVB4_iQ3Kc0m9KoVZUviCHTColpKqPyLdNmLYmWj8WN_kwfi4649xyN24M0c7XUyqGEIvZxBHnEm-DLxL-2aHvFsr6whRuyRXJTFuHL8nzwbiEr-7OE_Lr86efmy_l1deLy835VdlWHOaykigZk7QeUCI3pmkQKiEYNNBSxk039LyVrej7lvY9UORM9RWnisnG1IrxE_Jhr7vdtRP2Hfo5Gqe30U4m_tXBWL3OeHutx3CjBZeNkJAFPu4FWhv-I7DOdGHSe8t1tlwvlmuaZU7v_hFDdiXNerKpQ-eMx7BLGqpaVCpvPKNv9-hoHGrrh5B1uwXX51IAl4qrhTp7gsqrx8l2eQIGm99XBe9WBZmZ8XYezS4lffnj-5qFPdvFkFLE4aFfoHoZqic7fPPY6YeK-yni_wBXaMjk |
CitedBy_id | crossref_primary_10_1038_s41598_017_01005_x crossref_primary_10_1038_s41587_021_00861_3 |
Cites_doi | 10.1126/science.330.6006.903 10.1038/nrg3054 10.1126/science.1217876 10.1093/nar/gkq603 10.1038/jhg.2011.106 10.1038/nature11632 10.1101/gr.154971.113 10.1093/bioinformatics/btn025 10.1016/0040-5809(75)90020-9 10.1101/gr.078212.108 10.1101/gr.146084.112 10.1086/519795 10.1038/ng.806 10.1101/gr.113084.110 10.1093/hmg/ddq333 10.1038/nature08250 10.1093/bioinformatics/btp336 10.1093/bioinformatics/btr076 10.1038/nature07517 10.1126/science.1219240 10.1136/jmedgenet-2011-100223 10.1371/journal.pone.0075619 10.1038/nrg2986 10.1038/ng.2758 10.1101/gr.117259.110 10.1101/gr.107524.110 10.1158/1055-9965.EPI-06-0759 10.1038/ng.499 10.1002/gepi.20533 10.1038/nrg2796 10.1093/bioinformatics/btp324 10.1038/nmeth.1419 10.1534/genetics.109.110510 10.1038/nrg3031 10.1073/pnas.0910672106 10.1016/j.ajhg.2009.11.004 10.1038/nature09534 10.1186/gb-2011-12-9-r84 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 BioMed Central Ltd. Lo et al.; licensee BioMed Central. 2015 |
Copyright_xml | – notice: COPYRIGHT 2015 BioMed Central Ltd. – notice: Lo et al.; licensee BioMed Central. 2015 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION ISR 7X8 5PM |
DOI | 10.1186/s12859-015-0489-0 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2105 |
EndPage | 75 |
ExternalDocumentID | oai_biomedcentral_com_s12859_015_0489_0 A541358383 10_1186_s12859_015_0489_0 25884587 |
Genre | Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY009859 – fundername: NEI NIH HHS grantid: R01 EY016862 – fundername: NEI NIH HHS grantid: EY09859 – fundername: NEI NIH HHS grantid: F31 EY007003 – fundername: NHGRI NIH HHS grantid: HG006513 – fundername: NHGRI NIH HHS grantid: R01 HG007022 – fundername: NEI NIH HHS grantid: EY007003 – fundername: NHGRI NIH HHS grantid: RC2 HG005552 – fundername: NHGRI NIH HHS grantid: U54HG003079 – fundername: NEI NIH HHS grantid: R01 EY022005 |
GroupedDBID | --- -A0 0R~ 23N 2WC 3V. 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACRMQ ADBBV ADINQ ADRAZ ADUKV AEAQA AENEX AFKRA AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C24 C6C CCPQU CGR CS3 CUY CVF DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS ECM EIF EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IHR INH INR ISR ITC K6V K7- KQ8 LK8 M0N M1P M48 M7P MK~ ML0 M~E NPM O5R O5S OK1 P2P P62 PGMZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFPKN CITATION AFGXO 7X8 ABVAZ AFNRJ 5PM |
ID | FETCH-LOGICAL-b631t-65e522507fe5e3aa99e16442191b023acfd3b5b4ddb0dd10e328d6308259a7823 |
IEDL.DBID | RPM |
ISSN | 1471-2105 |
IngestDate | Tue Sep 17 21:25:03 EDT 2024 Wed May 22 07:12:42 EDT 2024 Thu Oct 24 23:23:19 EDT 2024 Wed Aug 14 18:53:07 EDT 2024 Tue Aug 13 05:22:38 EDT 2024 Sat Sep 28 21:31:16 EDT 2024 Thu Sep 12 19:56:59 EDT 2024 Tue Oct 15 23:47:54 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b631t-65e522507fe5e3aa99e16442191b023acfd3b5b4ddb0dd10e328d6308259a7823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359451/ |
PMID | 25884587 |
PQID | 1674686743 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4359451 biomedcentral_primary_oai_biomedcentral_com_s12859_015_0489_0 proquest_miscellaneous_1674686743 gale_infotracmisc_A541358383 gale_infotracacademiconefile_A541358383 gale_incontextgauss_ISR_A541358383 crossref_primary_10_1186_s12859_015_0489_0 pubmed_primary_25884587 |
PublicationCentury | 2000 |
PublicationDate | 2015-03-07 |
PublicationDateYYYYMMDD | 2015-03-07 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC bioinformatics |
PublicationTitleAlternate | BMC Bioinformatics |
PublicationYear | 2015 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | 1145509 - Theor Popul Biol. 1975 Apr;7(2):256-76 19915526 - Nat Genet. 2010 Jan;42(1):30-5 21460063 - Genome Res. 2011 Jun;21(6):940-51 21937998 - J Hum Genet. 2011 Dec;56(12):823-7 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 19861545 - Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19096-101 19884308 - Genetics. 2010 Jan;184(1):233-41 21071642 - Science. 2010 Nov 12;330(6006):903 20644199 - Genome Res. 2010 Sep;20(9):1297-303 20517342 - Nat Rev Genet. 2010 Jul;11(7):499-511 23296920 - Genome Res. 2013 May;23(5):833-42 17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75 21946919 - Nat Rev Genet. 2011 Nov;12(11):745-55 21921926 - Nat Rev Genet. 2011 Oct;12(10):703-14 22604722 - Science. 2012 Jul 6;337(6090):100-4 20980557 - Genome Res. 2011 Jun;21(6):952-60 19684571 - Nature. 2009 Sep 10;461(7261):272-6 21320865 - Bioinformatics. 2011 Apr 15;27(8):1157-8 18987734 - Nature. 2008 Nov 6;456(7218):53-9 23990608 - Genome Res. 2013 Dec;23(12):1974-84 20981092 - Nature. 2010 Oct 28;467(7319):1061-73 23128226 - Nature. 2012 Nov 1;491(7422):56-65 22604720 - Science. 2012 Jul 6;337(6090):64-9 21478889 - Nat Genet. 2011 May;43(5):491-8 24086590 - PLoS One. 2013;8(9):e75619 20601685 - Nucleic Acids Res. 2010 Sep;38(16):e164 18227114 - Bioinformatics. 2008 Mar 1;24(5):713-4 20111037 - Nat Methods. 2010 Feb;7(2):111-8 24036949 - Nat Genet. 2013 Nov;45(11):1375-9 19931040 - Am J Hum Genet. 2009 Dec;85(6):847-61 19497933 - Bioinformatics. 2009 Aug 1;25(15):1966-7 18714091 - Genome Res. 2008 Nov;18(11):1851-8 21587300 - Nat Rev Genet. 2011 Jun;12(6):443-51 21058334 - Genet Epidemiol. 2010 Dec;34(8):816-34 21730106 - J Med Genet. 2011 Sep;48(9):580-9 20705737 - Hum Mol Genet. 2010 Oct 15;19(R2):R145-51 17548683 - Cancer Epidemiol Biomarkers Prev. 2007 Jun;16(6):1185-92 21917140 - Genome Biol. 2011;12(9):R84 BL Browning (489_CR24) 2009; 85 MJ Bamshad (489_CR3) 2011; 12 M Nelson (489_CR26) 2012; 337 GT Marth (489_CR9) 2011; 12 VM Schaibley (489_CR34) 2013; 23 SB Ng (489_CR7) 2009; 461 A Hodgkinson (489_CR35) 2010; 184 SQ Le (489_CR20) 2010; 21 J Marchini (489_CR23) 2010; 11 Y Li (489_CR12) 2011; 21 JA Tennessen (489_CR31) 2012; 337 J Majewski (489_CR2) 2011; 48 489_CR19 MA DePristo (489_CR11) 2011; 43 X Liu (489_CR37) 2013; 8 C Huebner (489_CR38) 2007; 16 H Li (489_CR29) 2011; 27 Y Li (489_CR32) 2010; 34 G Curocichin (489_CR39) 2011; 56 489_CR33 DR Bentley (489_CR6) 2008; 456 Y Wang (489_CR13) 2013; 23 The 1000 Genomes Project Consortium (489_CR22) 2010; 467 R Nielsen (489_CR14) 2011; 12 The 1000 Genomes Project Consortium (489_CR21) 2012; 491 X Zhan (489_CR10) 2013; 45 GA Watterson (489_CR30) 1975; 7 R Li (489_CR15) 2008; 24 L Mamanova (489_CR5) 2010; 7 H Li (489_CR17) 2008; 18 A McKenna (489_CR18) 2010; 20 M Choi (489_CR8) 2009; 106 H Li (489_CR27) 2009; 25 SB Ng (489_CR36) 2010; 42 S Purcell (489_CR28) 2007; 81 489_CR4 R Li (489_CR16) 2009; 25 SR Browning (489_CR25) 2011; 12 J Terr (489_CR1) 2010; 19 |
References_xml | – ident: 489_CR4 doi: 10.1126/science.330.6006.903 – volume: 12 start-page: 703 year: 2011 ident: 489_CR25 publication-title: Nat Rev Genet doi: 10.1038/nrg3054 contributor: fullname: SR Browning – volume: 337 start-page: 100 year: 2012 ident: 489_CR26 publication-title: Science doi: 10.1126/science.1217876 contributor: fullname: M Nelson – ident: 489_CR33 doi: 10.1093/nar/gkq603 – volume: 56 start-page: 823 issue: 12 year: 2011 ident: 489_CR39 publication-title: J Hum Genet doi: 10.1038/jhg.2011.106 contributor: fullname: G Curocichin – volume: 491 start-page: 56 year: 2012 ident: 489_CR21 publication-title: Nature doi: 10.1038/nature11632 contributor: fullname: The 1000 Genomes Project Consortium – volume: 23 start-page: 1974 issue: 12 year: 2013 ident: 489_CR34 publication-title: Genome Res doi: 10.1101/gr.154971.113 contributor: fullname: VM Schaibley – volume: 24 start-page: 713 issue: 5 year: 2008 ident: 489_CR15 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn025 contributor: fullname: R Li – volume: 7 start-page: 256 issue: 2 year: 1975 ident: 489_CR30 publication-title: Theor Popul Biol doi: 10.1016/0040-5809(75)90020-9 contributor: fullname: GA Watterson – volume: 18 start-page: 1851 year: 2008 ident: 489_CR17 publication-title: Genome Res doi: 10.1101/gr.078212.108 contributor: fullname: H Li – volume: 23 start-page: 833 issue: 5 year: 2013 ident: 489_CR13 publication-title: Genome Res doi: 10.1101/gr.146084.112 contributor: fullname: Y Wang – volume: 81 start-page: 559 issue: 3 year: 2007 ident: 489_CR28 publication-title: Am J Hum Genet doi: 10.1086/519795 contributor: fullname: S Purcell – volume: 43 start-page: 491 issue: 5 year: 2011 ident: 489_CR11 publication-title: Nat Genet doi: 10.1038/ng.806 contributor: fullname: MA DePristo – volume: 21 start-page: 952 year: 2010 ident: 489_CR20 publication-title: Genome Res doi: 10.1101/gr.113084.110 contributor: fullname: SQ Le – volume: 19 start-page: R145 issue: R2 year: 2010 ident: 489_CR1 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddq333 contributor: fullname: J Terr – volume: 461 start-page: 272 year: 2009 ident: 489_CR7 publication-title: Nature doi: 10.1038/nature08250 contributor: fullname: SB Ng – volume: 25 start-page: 1966 issue: 15 year: 2009 ident: 489_CR16 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp336 contributor: fullname: R Li – volume: 27 start-page: 1157 issue: 8 year: 2011 ident: 489_CR29 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr076 contributor: fullname: H Li – volume: 456 start-page: 53 issue: 7218 year: 2008 ident: 489_CR6 publication-title: Nature doi: 10.1038/nature07517 contributor: fullname: DR Bentley – volume: 337 start-page: 64 year: 2012 ident: 489_CR31 publication-title: Science doi: 10.1126/science.1219240 contributor: fullname: JA Tennessen – volume: 48 start-page: 580 year: 2011 ident: 489_CR2 publication-title: J Med Genet doi: 10.1136/jmedgenet-2011-100223 contributor: fullname: J Majewski – volume: 8 start-page: e75619 issue: 9 year: 2013 ident: 489_CR37 publication-title: PLoS One doi: 10.1371/journal.pone.0075619 contributor: fullname: X Liu – volume: 12 start-page: 443 year: 2011 ident: 489_CR14 publication-title: Nat Rev Genet doi: 10.1038/nrg2986 contributor: fullname: R Nielsen – volume: 45 start-page: 1375 year: 2013 ident: 489_CR10 publication-title: Nat Genet doi: 10.1038/ng.2758 contributor: fullname: X Zhan – volume: 21 start-page: 940 year: 2011 ident: 489_CR12 publication-title: Genome Res doi: 10.1101/gr.117259.110 contributor: fullname: Y Li – volume: 20 start-page: 1297 issue: 9 year: 2010 ident: 489_CR18 publication-title: Genome Res doi: 10.1101/gr.107524.110 contributor: fullname: A McKenna – volume: 16 start-page: 1185 issue: 6 year: 2007 ident: 489_CR38 publication-title: Cancer Epidemiol Biomarkers Prev doi: 10.1158/1055-9965.EPI-06-0759 contributor: fullname: C Huebner – volume: 42 start-page: 30 issue: 1 year: 2010 ident: 489_CR36 publication-title: Nat Genet doi: 10.1038/ng.499 contributor: fullname: SB Ng – volume: 34 start-page: 816 issue: 8 year: 2010 ident: 489_CR32 publication-title: Genet Epidemiol doi: 10.1002/gepi.20533 contributor: fullname: Y Li – volume: 11 start-page: 499 year: 2010 ident: 489_CR23 publication-title: Nat Rev Genet doi: 10.1038/nrg2796 contributor: fullname: J Marchini – volume: 25 start-page: 1754 year: 2009 ident: 489_CR27 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 contributor: fullname: H Li – volume: 7 start-page: 111 year: 2010 ident: 489_CR5 publication-title: Nat Methods doi: 10.1038/nmeth.1419 contributor: fullname: L Mamanova – volume: 184 start-page: 233 issue: 1 year: 2010 ident: 489_CR35 publication-title: Genetics doi: 10.1534/genetics.109.110510 contributor: fullname: A Hodgkinson – volume: 12 start-page: 745 year: 2011 ident: 489_CR3 publication-title: Nat Rev Genet doi: 10.1038/nrg3031 contributor: fullname: MJ Bamshad – volume: 106 start-page: 19096 issue: 45 year: 2009 ident: 489_CR8 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0910672106 contributor: fullname: M Choi – volume: 85 start-page: 847 issue: 6 year: 2009 ident: 489_CR24 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2009.11.004 contributor: fullname: BL Browning – ident: 489_CR19 – volume: 467 start-page: 1061 year: 2010 ident: 489_CR22 publication-title: Nature doi: 10.1038/nature09534 contributor: fullname: The 1000 Genomes Project Consortium – volume: 12 start-page: R84 issue: 9 year: 2011 ident: 489_CR9 publication-title: Genome Biol doi: 10.1186/gb-2011-12-9-r84 contributor: fullname: GT Marth |
SSID | ssj0017805 |
Score | 2.196409 |
Snippet | Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend... Background Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these... BACKGROUNDSequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these... BACKGROUND: Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these... |
SourceID | pubmedcentral biomedcentral proquest gale crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 75 |
SubjectTerms | Algorithms Biomarkers - analysis Comparative analysis Disease - genetics Exons - genetics Genes Genetics, Population Genome, Human Genotype Haplotypes - genetics High-Throughput Nucleotide Sequencing - methods Humans Linkage Disequilibrium Methods Physiological aspects Polymorphism, Single Nucleotide - genetics Software |
SummonAdditionalLinks | – databaseName: BiomedCentral dbid: RBZ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9qi-CLWOvH1lZiEQQhmN1s9uPBh1osVbBQtVB8Cckmdz04s9K9K_rfO7O7PZujbz7twsx-zUwyM5uZXwBeN0KWQjSeV05YnuP0xytlBXc-sy7NG4zR6T_kl9Pi5Dz_fKEu_uFsr63gp1XxrksJYw1TXsXR2vDkHmxlhKlCqfmHH6slAwLn71uJ8HGYx6hxCfPOW6x1t88jp7Q-Nd_yTXHd5C1HdPwIHo4RJDscVL4NGz48hvvDnpJ_duDsaNhZMEzZNR5QcAzVQE3nzMyn7dVscfmzYxiqsqEInPvfbWBjRTVxzQIzbE401hnCDn4C58cfvx-d8HHfBG4LmS54oTxGVRjoTbzy0pi69pgU5Tg3pRZdtGkmTlplc-escC4VXmaVKwi3RtUGIwb5FDZDG_xzYJh9oM6ySSqtzF3tTFPmBr0-BllV0UibwPtIkPrXgJGhCbU6puAA0oMiNCpCkyK0SODtjeBXl_ZpSVXcxXxAqtEEWxGoLmZqll2nP337qg8VOmNaAZYJvBmZJi0-tzFjmwF-DyFdRZx7ESeOqyYiv7qxAE0kKkYLvl12mho3ioq6NxJ4NljE6uUzavxVVZlAGdlKJJiYEmaXPaw3yrTOVbr7nyJ9AQ-y3tIlF-UebC6uln4fA6eFfdkPmL-COhOO priority: 500 providerName: BioMedCentral – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6jsFeyr7nthvaGAwG2mxLcuyHMkpZ6QYb7CPQNyFZShrI5DZOSvvf7852umrkaU8x6IST-9DdRXe_A3hTp2KUprXnpUstl3j88VLZlDufW5fJGmN0-h_y67fiZCy_nKrTLViPtxoY2G5M7Wie1Hgxf391cf0RDf6gM_iy-NBmhMKGSbHiqI_4cAfu5hITdarkk38vFQi-f7jY3LiNgIGpb1NRfV3U_j6PvNa_Z_ct5xUXVt7yVMcPYGcIMdlhrxMPYcuHR3CvHzp5_Ri-H_WjB8OUXeIHcpahnKgrnZn5tFnMlme_W4axLOurxLm_agIbSq6JahaYYXNaY60hcOEnMD7-9OvohA-DFbgtRLbkhfIYdmEkOPHKC2OqymPWJPHwyiz6cFNPnLDKSuds6lyWepGXriBgG1UZDCnEU9gOTfDPgWF6gkLNJ5mwQrrKmXokDYYFGIWVRS1sAgcRI_V5D6KhCdY6XkEL071MNMpEk0x0msC7NeNvtnZ5S1lsIn5NotGEaxGocGZqVm2rP__8oQ8Vemu6IhYJvB2IJg2-tzZDHwL-HoLCiij3I0o0vDpafrXWAE1LVK0WfLNqNXV2FCW1dyTwrNeImy-_1rAERpGuRIyJV8LsrMP9Rp5WUmW7_71zD-7nnboLno72YXu5WPkXGFMt7cvOUv4A3yQf-A priority: 102 providerName: Scholars Portal |
Title | Comparing variant calling algorithms for target-exon sequencing in a large sample |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25884587 https://search.proquest.com/docview/1674686743 http://dx.doi.org/10.1186/s12859-015-0489-0 https://pubmed.ncbi.nlm.nih.gov/PMC4359451 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdtx2AvY9_11gVtDAYDN3Zk-eNhD2lo1gVSunSFsBehr6SBRC51Mrb_fnf-KNXY015kw52xrDvp7qy7nwj5oCOWRZG2YW4iFSaw_IU5V1Fo7ECZONHgo-N_yOl5enaVTOZ8vkd4VwtTJ-1rtTp2682xW13XuZU3G93v8sT6F9MRmPgi4XF_n-yDgnYhert1gCD97fZlnKf9KkaINoiYeQjKCjcI_4vVmRyz6Lwi97Vnm_5eoe-ZKD998p49Gj8hj1tHkg6bDj8le9Y9Iw-boyV_PyffRs0Bg25Jf8IFxo-CNLD2nMr1srxdba83FQWPlTa54KH9VTraJlYj18pRSddIo5VECOEX5Gp8-n10FrbHJ4QqZfE2TLkF5wr8vYXllklZFBZiowSWqFiBpZZ6YZjiKjFGRcbEkWWD3KQIX8MLCY4De0kOXOnsIaEQhIDoBouYKZaYwkidJRKMPwgiTzVTAfnsDaS4aaAyBIJX-xSYR6KRiQCZCJSJiALyqRv4u0fr6CRP_8X8HkUjEL3CYXrMUu6qSny9nIkhB5uMG8EsIB9bpkUJ79WyrTaA70HAK4_zyOOE6aU98rtOAwSSMCfN2XJXCazfSHMs4gjIq0Yj7jrfaVhAMk9XvIHxKaDsNbp3q9yv__vJN-TRoFZ3FkbZETnY3u7sW_CctqoH82WeQZuPv_TIg-FwcjmB68np-cWsV_-NgHaa5NDOTn706nn1B9WZIGo |
link.rule.ids | 108,230,315,730,783,787,867,888,2228,24330,24949,27936,27937,31732,33386,33757,53804,53806,76146,76147 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKEYIL79KFAgYhISE58cbrzebAoYqoUmgqHi3qzfIradRkt-puEPDrmdlHVVdc4JRIM6vEmRnPTPzNZ0LeWC6GnFvPMscNS2D7Y5k0nDk_MC5OLNTo-D_k9DCdHCcfT-TJBpHdLEwN2rdm0cuXq16-OK2xlecr2-9wYv3P0zGk-FEi4_4NchPilSddk94eHiBNf3uAGWdpv4yRpA16ZsnAXeENEgDjfKZEHF0w5r4MstP1PfpKkgoBlFcy0t498r1bSwNEOeutK9Ozv6_RPP7zYu-Tu22NSncb8QOy4fOH5FZza-WvR-TLuLm7MJ_TH_ACpqFgaBxrp3o5Ly4W1emqpFAM0wZmzvzPIqctZhu1FjnVdIkyWmpkJ35Mjvc-HI0nrL2ZgZlUxBVLpYe6DUrJmZdeaD0aeWi7Etj9YgNFgLYzJ4w0iXOGOxdzLwaZS5EZR4401CRii2zmRe63CYX-BrxiMIuFEYkbOW2HiYa6ApadpVaYiLwPLKTOGxYOhbzYoQRCVDXGVmBshcZWPCLvOotePlo3Pln6N-XXaHOFxBg5Im_mel2Wav_bV7UrId3jGbOIyNtWaVbA51rdDjLAepBLK9DcCTQhcm0gftW5lkIRwt1yX6xLhaMhaYbzIRF50rja5ZfvXDciw8AJgx8mlIBr1cThrSs9_e8nX5Lbk6PpgTrYP_z0jNwZ1DElGB_ukM3qYu2fQ4FWmRd1OP4BJd46jg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BEYgLb6ihwIKQkJAc21mvYx84VIGoBVqVR6WKy2pfTqMmm6h2EPDrmfGjylacekqkGSvZzMzOTPabbwl5o2M2imNtw9zEKkxh-wtzruLQ2KEySaqhRsf_IQ8Os73j9NMJP9m46qsB7Ws1G7j5YuBmpw22crXQUY8Ti44OxpDii5Qn0cqU0XVyA2I2zvpGvTtAQKr-7hAzybOoSpCoDfpmHoLLwhskAcYZTY5YOm_Ufe5lqMv79Eai8kGUG1lpcpf87NfTglHOButaDfTfS1SPV1rwPXKnq1Xpbqtyn1yz7gG52d5e-ech-Tpu7zB0U_oLXsBEFAyO4-1UzqfL81l9uqgoFMW0hZuH9vfS0Q67jVozRyWdo4xWElmKH5Hjyccf472wu6EhVBlL6jDjFuo3KClLyy2TsigstF8p7IKJgmJA6tIwxVVqjIqNSWLLhrnJkCGHFxJqE_aYbLmls9uEQp8D3jEsE6ZYagoj9SiVUF_A0vNMMxWQ956VxKpl4xDIj-1LIFRFa3ABBhdocBEH5F1v1YtHmwYoz_6n_BrtLpAgwyECZyrXVSX2v38TuxzSPp41s4C87ZTKJXyult1AA6wHObU8zR1PEyJYe-JXvXsJFCHszdnluhI4IpLlOCcSkCetu118-d59AzLyHNH7YXwJuFdDIN6509MrP_mS3Dr6MBFf9g8_PyO3h01YsTAe7ZCt-nxtn0OdVqsXTUT-A-97PQ4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+variant+calling+algorithms+for+target-exon+sequencing+in+a+large+sample&rft.jtitle=BMC+bioinformatics&rft.au=Lo%2C+Yancy&rft.au=Kang%2C+Hyun+M&rft.au=Nelson%2C+Matthew+R&rft.au=Othman%2C+Mohammad+I&rft.date=2015-03-07&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=16&rft_id=info:doi/10.1186%2Fs12859-015-0489-0&rft_id=info%3Apmid%2F25884587&rft.externalDBID=PMC4359451 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |