Comparing variant calling algorithms for target-exon sequencing in a large sample

Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from soph...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 16; no. 1; p. 75
Main Authors Lo, Yancy, Kang, Hyun M, Nelson, Matthew R, Othman, Mohammad I, Chissoe, Stephanie L, Ehm, Margaret G, Abecasis, Gonçalo R, Zöllner, Sebastian
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 07.03.2015
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from sophisticated calling algorithms used in low-coverage sequencing studies. We evaluate the potential benefits of different calling strategies by performing a comparative analysis of variant calling methods on exonic data from 202 genes sequenced at 24x in 7,842 individuals. We call variants using individual-based, population-based and linkage disequilibrium (LD)-aware methods with stringent quality control. We measure genotype accuracy by the concordance with on-target GWAS genotypes and between 80 pairs of sequencing replicates. We validate selected singleton variants using capillary sequencing. Using these calling methods, we detected over 27,500 variants at the targeted exons; >57% were singletons. The singletons identified by individual-based analyses were of the highest quality. However, individual-based analyses generated more missing genotypes (4.72%) than population-based (0.47%) and LD-aware (0.17%) analyses. Moreover, individual-based genotypes were the least concordant with array-based genotypes and replicates. Population-based genotypes were less concordant than genotypes from LD-aware analyses with extended haplotypes. We reanalyzed the same dataset with a second set of callers and showed again that the individual-based caller identified more high-quality singletons than the population-based caller. We also replicated this result in a second dataset of 57 genes sequenced at 127.5x in 3,124 individuals. We recommend population-based analyses for high quality variant calls with few missing genotypes. With extended haplotypes, LD-aware methods generate the most accurate and complete genotypes. In addition, individual-based analyses should complement the above methods to obtain the most singleton variants.
AbstractList BACKGROUND: Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from sophisticated calling algorithms used in low-coverage sequencing studies. We evaluate the potential benefits of different calling strategies by performing a comparative analysis of variant calling methods on exonic data from 202 genes sequenced at 24x in 7,842 individuals. We call variants using individual-based, population-based and linkage disequilibrium (LD)-aware methods with stringent quality control. We measure genotype accuracy by the concordance with on-target GWAS genotypes and between 80 pairs of sequencing replicates. We validate selected singleton variants using capillary sequencing. RESULTS: Using these calling methods, we detected over 27,500 variants at the targeted exons; >57% were singletons. The singletons identified by individual-based analyses were of the highest quality. However, individual-based analyses generated more missing genotypes (4.72%) than population-based (0.47%) and LD-aware (0.17%) analyses. Moreover, individual-based genotypes were the least concordant with array-based genotypes and replicates. Population-based genotypes were less concordant than genotypes from LD-aware analyses with extended haplotypes. We reanalyzed the same dataset with a second set of callers and showed again that the individual-based caller identified more high-quality singletons than the population-based caller. We also replicated this result in a second dataset of 57 genes sequenced at 127.5x in 3,124 individuals. CONCLUSIONS: We recommend population-based analyses for high quality variant calls with few missing genotypes. With extended haplotypes, LD-aware methods generate the most accurate and complete genotypes. In addition, individual-based analyses should complement the above methods to obtain the most singleton variants.
Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from sophisticated calling algorithms used in low-coverage sequencing studies. We evaluate the potential benefits of different calling strategies by performing a comparative analysis of variant calling methods on exonic data from 202 genes sequenced at 24x in 7,842 individuals. We call variants using individual-based, population-based and linkage disequilibrium (LD)-aware methods with stringent quality control. We measure genotype accuracy by the concordance with on-target GWAS genotypes and between 80 pairs of sequencing replicates. We validate selected singleton variants using capillary sequencing. Using these calling methods, we detected over 27,500 variants at the targeted exons; >57% were singletons. The singletons identified by individual-based analyses were of the highest quality. However, individual-based analyses generated more missing genotypes (4.72%) than population-based (0.47%) and LD-aware (0.17%) analyses. Moreover, individual-based genotypes were the least concordant with array-based genotypes and replicates. Population-based genotypes were less concordant than genotypes from LD-aware analyses with extended haplotypes. We reanalyzed the same dataset with a second set of callers and showed again that the individual-based caller identified more high-quality singletons than the population-based caller. We also replicated this result in a second dataset of 57 genes sequenced at 127.5x in 3,124 individuals. We recommend population-based analyses for high quality variant calls with few missing genotypes. With extended haplotypes, LD-aware methods generate the most accurate and complete genotypes. In addition, individual-based analyses should complement the above methods to obtain the most singleton variants.
BACKGROUNDSequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from sophisticated calling algorithms used in low-coverage sequencing studies. We evaluate the potential benefits of different calling strategies by performing a comparative analysis of variant calling methods on exonic data from 202 genes sequenced at 24x in 7,842 individuals. We call variants using individual-based, population-based and linkage disequilibrium (LD)-aware methods with stringent quality control. We measure genotype accuracy by the concordance with on-target GWAS genotypes and between 80 pairs of sequencing replicates. We validate selected singleton variants using capillary sequencing.RESULTSUsing these calling methods, we detected over 27,500 variants at the targeted exons; >57% were singletons. The singletons identified by individual-based analyses were of the highest quality. However, individual-based analyses generated more missing genotypes (4.72%) than population-based (0.47%) and LD-aware (0.17%) analyses. Moreover, individual-based genotypes were the least concordant with array-based genotypes and replicates. Population-based genotypes were less concordant than genotypes from LD-aware analyses with extended haplotypes. We reanalyzed the same dataset with a second set of callers and showed again that the individual-based caller identified more high-quality singletons than the population-based caller. We also replicated this result in a second dataset of 57 genes sequenced at 127.5x in 3,124 individuals.CONCLUSIONSWe recommend population-based analyses for high quality variant calls with few missing genotypes. With extended haplotypes, LD-aware methods generate the most accurate and complete genotypes. In addition, individual-based analyses should complement the above methods to obtain the most singleton variants.
Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from sophisticated calling algorithms used in low-coverage sequencing studies. We evaluate the potential benefits of different calling strategies by performing a comparative analysis of variant calling methods on exonic data from 202 genes sequenced at 24x in 7,842 individuals. We call variants using individual-based, population-based and linkage disequilibrium (LD)-aware methods with stringent quality control. We measure genotype accuracy by the concordance with on-target GWAS genotypes and between 80 pairs of sequencing replicates. We validate selected singleton variants using capillary sequencing. Using these calling methods, we detected over 27,500 variants at the targeted exons; >57% were singletons. The singletons identified by individual-based analyses were of the highest quality. However, individual-based analyses generated more missing genotypes (4.72%) than population-based (0.47%) and LD-aware (0.17%) analyses. Moreover, individual-based genotypes were the least concordant with array-based genotypes and replicates. Population-based genotypes were less concordant than genotypes from LD-aware analyses with extended haplotypes. We reanalyzed the same dataset with a second set of callers and showed again that the individual-based caller identified more high-quality singletons than the population-based caller. We also replicated this result in a second dataset of 57 genes sequenced at 127.5x in 3,124 individuals. We recommend population-based analyses for high quality variant calls with few missing genotypes. With extended haplotypes, LD-aware methods generate the most accurate and complete genotypes. In addition, individual-based analyses should complement the above methods to obtain the most singleton variants.
Background Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However, coverage is often heterogeneous; sites with insufficient coverage may benefit from sophisticated calling algorithms used in low-coverage sequencing studies. We evaluate the potential benefits of different calling strategies by performing a comparative analysis of variant calling methods on exonic data from 202 genes sequenced at 24x in 7,842 individuals. We call variants using individual-based, population-based and linkage disequilibrium (LD)-aware methods with stringent quality control. We measure genotype accuracy by the concordance with on-target GWAS genotypes and between 80 pairs of sequencing replicates. We validate selected singleton variants using capillary sequencing. Results Using these calling methods, we detected over 27,500 variants at the targeted exons; >57% were singletons. The singletons identified by individual-based analyses were of the highest quality. However, individual-based analyses generated more missing genotypes (4.72%) than population-based (0.47%) and LD-aware (0.17%) analyses. Moreover, individual-based genotypes were the least concordant with array-based genotypes and replicates. Population-based genotypes were less concordant than genotypes from LD-aware analyses with extended haplotypes. We reanalyzed the same dataset with a second set of callers and showed again that the individual-based caller identified more high-quality singletons than the population-based caller. We also replicated this result in a second dataset of 57 genes sequenced at 127.5x in 3,124 individuals. Conclusions We recommend population-based analyses for high quality variant calls with few missing genotypes. With extended haplotypes, LD-aware methods generate the most accurate and complete genotypes. In addition, individual-based analyses should complement the above methods to obtain the most singleton variants. Keywords: Next-generation sequencing, Targeted sequencing, Variant calling
ArticleNumber 75
Audience Academic
Author Nelson, Matthew R
Lo, Yancy
Ehm, Margaret G
Zöllner, Sebastian
Kang, Hyun M
Othman, Mohammad I
Chissoe, Stephanie L
Abecasis, Gonçalo R
Author_xml – sequence: 1
  givenname: Yancy
  surname: Lo
  fullname: Lo, Yancy
  email: yancylo@umich.edu
  organization: Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA. yancylo@umich.edu
– sequence: 2
  givenname: Hyun M
  surname: Kang
  fullname: Kang, Hyun M
  email: hmkang@umich.edu
  organization: Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA. hmkang@umich.edu
– sequence: 3
  givenname: Matthew R
  surname: Nelson
  fullname: Nelson, Matthew R
  email: matthew.r.nelson@gsk.com
  organization: GlaxoSmithKline, Quantitative Sciences, Research Triangle Park, NC, USA. matthew.r.nelson@gsk.com
– sequence: 4
  givenname: Mohammad I
  surname: Othman
  fullname: Othman, Mohammad I
  email: miothman@med.umich.edu
  organization: Department of Ophthalmology, University of Michigan, Ann Arbor, MI, USA. miothman@med.umich.edu
– sequence: 5
  givenname: Stephanie L
  surname: Chissoe
  fullname: Chissoe, Stephanie L
  email: stephanie.l.chissoe@gsk.com
  organization: GlaxoSmithKline, Quantitative Sciences, Research Triangle Park, NC, USA. stephanie.l.chissoe@gsk.com
– sequence: 6
  givenname: Margaret G
  surname: Ehm
  fullname: Ehm, Margaret G
  email: meg.g.ehm@gsk.com
  organization: GlaxoSmithKline, Quantitative Sciences, Research Triangle Park, NC, USA. meg.g.ehm@gsk.com
– sequence: 7
  givenname: Gonçalo R
  surname: Abecasis
  fullname: Abecasis, Gonçalo R
  email: goncalo@umich.edu
  organization: Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA. goncalo@umich.edu
– sequence: 8
  givenname: Sebastian
  surname: Zöllner
  fullname: Zöllner, Sebastian
  email: szoellne@umich.edu, szoellne@umich.edu
  organization: Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA. szoellne@umich.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25884587$$D View this record in MEDLINE/PubMed
BookMark eNp1kstq3TAQhkVJaS7tA3RTDN2kC6caXWx5UwinbRoIlN7WQrbHjoosnUo-IX37ypwkxJAikEaab340P3NMDnzwSMhroGcAqnqfgCnZlBRkSYXKwTNyBKKGkgGVB4_iQ3Kc0m9KoVZUviCHTColpKqPyLdNmLYmWj8WN_kwfi4649xyN24M0c7XUyqGEIvZxBHnEm-DLxL-2aHvFsr6whRuyRXJTFuHL8nzwbiEr-7OE_Lr86efmy_l1deLy835VdlWHOaykigZk7QeUCI3pmkQKiEYNNBSxk039LyVrej7lvY9UORM9RWnisnG1IrxE_Jhr7vdtRP2Hfo5Gqe30U4m_tXBWL3OeHutx3CjBZeNkJAFPu4FWhv-I7DOdGHSe8t1tlwvlmuaZU7v_hFDdiXNerKpQ-eMx7BLGqpaVCpvPKNv9-hoHGrrh5B1uwXX51IAl4qrhTp7gsqrx8l2eQIGm99XBe9WBZmZ8XYezS4lffnj-5qFPdvFkFLE4aFfoHoZqic7fPPY6YeK-yni_wBXaMjk
CitedBy_id crossref_primary_10_1038_s41598_017_01005_x
crossref_primary_10_1038_s41587_021_00861_3
Cites_doi 10.1126/science.330.6006.903
10.1038/nrg3054
10.1126/science.1217876
10.1093/nar/gkq603
10.1038/jhg.2011.106
10.1038/nature11632
10.1101/gr.154971.113
10.1093/bioinformatics/btn025
10.1016/0040-5809(75)90020-9
10.1101/gr.078212.108
10.1101/gr.146084.112
10.1086/519795
10.1038/ng.806
10.1101/gr.113084.110
10.1093/hmg/ddq333
10.1038/nature08250
10.1093/bioinformatics/btp336
10.1093/bioinformatics/btr076
10.1038/nature07517
10.1126/science.1219240
10.1136/jmedgenet-2011-100223
10.1371/journal.pone.0075619
10.1038/nrg2986
10.1038/ng.2758
10.1101/gr.117259.110
10.1101/gr.107524.110
10.1158/1055-9965.EPI-06-0759
10.1038/ng.499
10.1002/gepi.20533
10.1038/nrg2796
10.1093/bioinformatics/btp324
10.1038/nmeth.1419
10.1534/genetics.109.110510
10.1038/nrg3031
10.1073/pnas.0910672106
10.1016/j.ajhg.2009.11.004
10.1038/nature09534
10.1186/gb-2011-12-9-r84
ContentType Journal Article
Copyright COPYRIGHT 2015 BioMed Central Ltd.
Lo et al.; licensee BioMed Central. 2015
Copyright_xml – notice: COPYRIGHT 2015 BioMed Central Ltd.
– notice: Lo et al.; licensee BioMed Central. 2015
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISR
7X8
5PM
DOI 10.1186/s12859-015-0489-0
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 75
ExternalDocumentID oai_biomedcentral_com_s12859_015_0489_0
A541358383
10_1186_s12859_015_0489_0
25884587
Genre Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY009859
– fundername: NEI NIH HHS
  grantid: R01 EY016862
– fundername: NEI NIH HHS
  grantid: EY09859
– fundername: NEI NIH HHS
  grantid: F31 EY007003
– fundername: NHGRI NIH HHS
  grantid: HG006513
– fundername: NHGRI NIH HHS
  grantid: R01 HG007022
– fundername: NEI NIH HHS
  grantid: EY007003
– fundername: NHGRI NIH HHS
  grantid: RC2 HG005552
– fundername: NHGRI NIH HHS
  grantid: U54HG003079
– fundername: NEI NIH HHS
  grantid: R01 EY022005
GroupedDBID ---
-A0
0R~
23N
2WC
3V.
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M0N
M1P
M48
M7P
MK~
ML0
M~E
NPM
O5R
O5S
OK1
P2P
P62
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFPKN
CITATION
AFGXO
7X8
ABVAZ
AFNRJ
5PM
ID FETCH-LOGICAL-b631t-65e522507fe5e3aa99e16442191b023acfd3b5b4ddb0dd10e328d6308259a7823
IEDL.DBID RPM
ISSN 1471-2105
IngestDate Tue Sep 17 21:25:03 EDT 2024
Wed May 22 07:12:42 EDT 2024
Thu Oct 24 23:23:19 EDT 2024
Wed Aug 14 18:53:07 EDT 2024
Tue Aug 13 05:22:38 EDT 2024
Sat Sep 28 21:31:16 EDT 2024
Thu Sep 12 19:56:59 EDT 2024
Tue Oct 15 23:47:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b631t-65e522507fe5e3aa99e16442191b023acfd3b5b4ddb0dd10e328d6308259a7823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359451/
PMID 25884587
PQID 1674686743
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4359451
biomedcentral_primary_oai_biomedcentral_com_s12859_015_0489_0
proquest_miscellaneous_1674686743
gale_infotracmisc_A541358383
gale_infotracacademiconefile_A541358383
gale_incontextgauss_ISR_A541358383
crossref_primary_10_1186_s12859_015_0489_0
pubmed_primary_25884587
PublicationCentury 2000
PublicationDate 2015-03-07
PublicationDateYYYYMMDD 2015-03-07
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2015
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References 1145509 - Theor Popul Biol. 1975 Apr;7(2):256-76
19915526 - Nat Genet. 2010 Jan;42(1):30-5
21460063 - Genome Res. 2011 Jun;21(6):940-51
21937998 - J Hum Genet. 2011 Dec;56(12):823-7
19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60
19861545 - Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19096-101
19884308 - Genetics. 2010 Jan;184(1):233-41
21071642 - Science. 2010 Nov 12;330(6006):903
20644199 - Genome Res. 2010 Sep;20(9):1297-303
20517342 - Nat Rev Genet. 2010 Jul;11(7):499-511
23296920 - Genome Res. 2013 May;23(5):833-42
17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75
21946919 - Nat Rev Genet. 2011 Nov;12(11):745-55
21921926 - Nat Rev Genet. 2011 Oct;12(10):703-14
22604722 - Science. 2012 Jul 6;337(6090):100-4
20980557 - Genome Res. 2011 Jun;21(6):952-60
19684571 - Nature. 2009 Sep 10;461(7261):272-6
21320865 - Bioinformatics. 2011 Apr 15;27(8):1157-8
18987734 - Nature. 2008 Nov 6;456(7218):53-9
23990608 - Genome Res. 2013 Dec;23(12):1974-84
20981092 - Nature. 2010 Oct 28;467(7319):1061-73
23128226 - Nature. 2012 Nov 1;491(7422):56-65
22604720 - Science. 2012 Jul 6;337(6090):64-9
21478889 - Nat Genet. 2011 May;43(5):491-8
24086590 - PLoS One. 2013;8(9):e75619
20601685 - Nucleic Acids Res. 2010 Sep;38(16):e164
18227114 - Bioinformatics. 2008 Mar 1;24(5):713-4
20111037 - Nat Methods. 2010 Feb;7(2):111-8
24036949 - Nat Genet. 2013 Nov;45(11):1375-9
19931040 - Am J Hum Genet. 2009 Dec;85(6):847-61
19497933 - Bioinformatics. 2009 Aug 1;25(15):1966-7
18714091 - Genome Res. 2008 Nov;18(11):1851-8
21587300 - Nat Rev Genet. 2011 Jun;12(6):443-51
21058334 - Genet Epidemiol. 2010 Dec;34(8):816-34
21730106 - J Med Genet. 2011 Sep;48(9):580-9
20705737 - Hum Mol Genet. 2010 Oct 15;19(R2):R145-51
17548683 - Cancer Epidemiol Biomarkers Prev. 2007 Jun;16(6):1185-92
21917140 - Genome Biol. 2011;12(9):R84
BL Browning (489_CR24) 2009; 85
MJ Bamshad (489_CR3) 2011; 12
M Nelson (489_CR26) 2012; 337
GT Marth (489_CR9) 2011; 12
VM Schaibley (489_CR34) 2013; 23
SB Ng (489_CR7) 2009; 461
A Hodgkinson (489_CR35) 2010; 184
SQ Le (489_CR20) 2010; 21
J Marchini (489_CR23) 2010; 11
Y Li (489_CR12) 2011; 21
JA Tennessen (489_CR31) 2012; 337
J Majewski (489_CR2) 2011; 48
489_CR19
MA DePristo (489_CR11) 2011; 43
X Liu (489_CR37) 2013; 8
C Huebner (489_CR38) 2007; 16
H Li (489_CR29) 2011; 27
Y Li (489_CR32) 2010; 34
G Curocichin (489_CR39) 2011; 56
489_CR33
DR Bentley (489_CR6) 2008; 456
Y Wang (489_CR13) 2013; 23
The 1000 Genomes Project Consortium (489_CR22) 2010; 467
R Nielsen (489_CR14) 2011; 12
The 1000 Genomes Project Consortium (489_CR21) 2012; 491
X Zhan (489_CR10) 2013; 45
GA Watterson (489_CR30) 1975; 7
R Li (489_CR15) 2008; 24
L Mamanova (489_CR5) 2010; 7
H Li (489_CR17) 2008; 18
A McKenna (489_CR18) 2010; 20
M Choi (489_CR8) 2009; 106
H Li (489_CR27) 2009; 25
SB Ng (489_CR36) 2010; 42
S Purcell (489_CR28) 2007; 81
489_CR4
R Li (489_CR16) 2009; 25
SR Browning (489_CR25) 2011; 12
J Terr (489_CR1) 2010; 19
References_xml – ident: 489_CR4
  doi: 10.1126/science.330.6006.903
– volume: 12
  start-page: 703
  year: 2011
  ident: 489_CR25
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3054
  contributor:
    fullname: SR Browning
– volume: 337
  start-page: 100
  year: 2012
  ident: 489_CR26
  publication-title: Science
  doi: 10.1126/science.1217876
  contributor:
    fullname: M Nelson
– ident: 489_CR33
  doi: 10.1093/nar/gkq603
– volume: 56
  start-page: 823
  issue: 12
  year: 2011
  ident: 489_CR39
  publication-title: J Hum Genet
  doi: 10.1038/jhg.2011.106
  contributor:
    fullname: G Curocichin
– volume: 491
  start-page: 56
  year: 2012
  ident: 489_CR21
  publication-title: Nature
  doi: 10.1038/nature11632
  contributor:
    fullname: The 1000 Genomes Project Consortium
– volume: 23
  start-page: 1974
  issue: 12
  year: 2013
  ident: 489_CR34
  publication-title: Genome Res
  doi: 10.1101/gr.154971.113
  contributor:
    fullname: VM Schaibley
– volume: 24
  start-page: 713
  issue: 5
  year: 2008
  ident: 489_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn025
  contributor:
    fullname: R Li
– volume: 7
  start-page: 256
  issue: 2
  year: 1975
  ident: 489_CR30
  publication-title: Theor Popul Biol
  doi: 10.1016/0040-5809(75)90020-9
  contributor:
    fullname: GA Watterson
– volume: 18
  start-page: 1851
  year: 2008
  ident: 489_CR17
  publication-title: Genome Res
  doi: 10.1101/gr.078212.108
  contributor:
    fullname: H Li
– volume: 23
  start-page: 833
  issue: 5
  year: 2013
  ident: 489_CR13
  publication-title: Genome Res
  doi: 10.1101/gr.146084.112
  contributor:
    fullname: Y Wang
– volume: 81
  start-page: 559
  issue: 3
  year: 2007
  ident: 489_CR28
  publication-title: Am J Hum Genet
  doi: 10.1086/519795
  contributor:
    fullname: S Purcell
– volume: 43
  start-page: 491
  issue: 5
  year: 2011
  ident: 489_CR11
  publication-title: Nat Genet
  doi: 10.1038/ng.806
  contributor:
    fullname: MA DePristo
– volume: 21
  start-page: 952
  year: 2010
  ident: 489_CR20
  publication-title: Genome Res
  doi: 10.1101/gr.113084.110
  contributor:
    fullname: SQ Le
– volume: 19
  start-page: R145
  issue: R2
  year: 2010
  ident: 489_CR1
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddq333
  contributor:
    fullname: J Terr
– volume: 461
  start-page: 272
  year: 2009
  ident: 489_CR7
  publication-title: Nature
  doi: 10.1038/nature08250
  contributor:
    fullname: SB Ng
– volume: 25
  start-page: 1966
  issue: 15
  year: 2009
  ident: 489_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp336
  contributor:
    fullname: R Li
– volume: 27
  start-page: 1157
  issue: 8
  year: 2011
  ident: 489_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr076
  contributor:
    fullname: H Li
– volume: 456
  start-page: 53
  issue: 7218
  year: 2008
  ident: 489_CR6
  publication-title: Nature
  doi: 10.1038/nature07517
  contributor:
    fullname: DR Bentley
– volume: 337
  start-page: 64
  year: 2012
  ident: 489_CR31
  publication-title: Science
  doi: 10.1126/science.1219240
  contributor:
    fullname: JA Tennessen
– volume: 48
  start-page: 580
  year: 2011
  ident: 489_CR2
  publication-title: J Med Genet
  doi: 10.1136/jmedgenet-2011-100223
  contributor:
    fullname: J Majewski
– volume: 8
  start-page: e75619
  issue: 9
  year: 2013
  ident: 489_CR37
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0075619
  contributor:
    fullname: X Liu
– volume: 12
  start-page: 443
  year: 2011
  ident: 489_CR14
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2986
  contributor:
    fullname: R Nielsen
– volume: 45
  start-page: 1375
  year: 2013
  ident: 489_CR10
  publication-title: Nat Genet
  doi: 10.1038/ng.2758
  contributor:
    fullname: X Zhan
– volume: 21
  start-page: 940
  year: 2011
  ident: 489_CR12
  publication-title: Genome Res
  doi: 10.1101/gr.117259.110
  contributor:
    fullname: Y Li
– volume: 20
  start-page: 1297
  issue: 9
  year: 2010
  ident: 489_CR18
  publication-title: Genome Res
  doi: 10.1101/gr.107524.110
  contributor:
    fullname: A McKenna
– volume: 16
  start-page: 1185
  issue: 6
  year: 2007
  ident: 489_CR38
  publication-title: Cancer Epidemiol Biomarkers Prev
  doi: 10.1158/1055-9965.EPI-06-0759
  contributor:
    fullname: C Huebner
– volume: 42
  start-page: 30
  issue: 1
  year: 2010
  ident: 489_CR36
  publication-title: Nat Genet
  doi: 10.1038/ng.499
  contributor:
    fullname: SB Ng
– volume: 34
  start-page: 816
  issue: 8
  year: 2010
  ident: 489_CR32
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.20533
  contributor:
    fullname: Y Li
– volume: 11
  start-page: 499
  year: 2010
  ident: 489_CR23
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2796
  contributor:
    fullname: J Marchini
– volume: 25
  start-page: 1754
  year: 2009
  ident: 489_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
  contributor:
    fullname: H Li
– volume: 7
  start-page: 111
  year: 2010
  ident: 489_CR5
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1419
  contributor:
    fullname: L Mamanova
– volume: 184
  start-page: 233
  issue: 1
  year: 2010
  ident: 489_CR35
  publication-title: Genetics
  doi: 10.1534/genetics.109.110510
  contributor:
    fullname: A Hodgkinson
– volume: 12
  start-page: 745
  year: 2011
  ident: 489_CR3
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3031
  contributor:
    fullname: MJ Bamshad
– volume: 106
  start-page: 19096
  issue: 45
  year: 2009
  ident: 489_CR8
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0910672106
  contributor:
    fullname: M Choi
– volume: 85
  start-page: 847
  issue: 6
  year: 2009
  ident: 489_CR24
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2009.11.004
  contributor:
    fullname: BL Browning
– ident: 489_CR19
– volume: 467
  start-page: 1061
  year: 2010
  ident: 489_CR22
  publication-title: Nature
  doi: 10.1038/nature09534
  contributor:
    fullname: The 1000 Genomes Project Consortium
– volume: 12
  start-page: R84
  issue: 9
  year: 2011
  ident: 489_CR9
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-9-r84
  contributor:
    fullname: GT Marth
SSID ssj0017805
Score 2.196409
Snippet Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these studies tend...
Background Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these...
BACKGROUNDSequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these...
BACKGROUND: Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With high coverage and large sample size, these...
SourceID pubmedcentral
biomedcentral
proquest
gale
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 75
SubjectTerms Algorithms
Biomarkers - analysis
Comparative analysis
Disease - genetics
Exons - genetics
Genes
Genetics, Population
Genome, Human
Genotype
Haplotypes - genetics
High-Throughput Nucleotide Sequencing - methods
Humans
Linkage Disequilibrium
Methods
Physiological aspects
Polymorphism, Single Nucleotide - genetics
Software
SummonAdditionalLinks – databaseName: BiomedCentral
  dbid: RBZ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9qi-CLWOvH1lZiEQQhmN1s9uPBh1osVbBQtVB8Cckmdz04s9K9K_rfO7O7PZujbz7twsx-zUwyM5uZXwBeN0KWQjSeV05YnuP0xytlBXc-sy7NG4zR6T_kl9Pi5Dz_fKEu_uFsr63gp1XxrksJYw1TXsXR2vDkHmxlhKlCqfmHH6slAwLn71uJ8HGYx6hxCfPOW6x1t88jp7Q-Nd_yTXHd5C1HdPwIHo4RJDscVL4NGz48hvvDnpJ_duDsaNhZMEzZNR5QcAzVQE3nzMyn7dVscfmzYxiqsqEInPvfbWBjRTVxzQIzbE401hnCDn4C58cfvx-d8HHfBG4LmS54oTxGVRjoTbzy0pi69pgU5Tg3pRZdtGkmTlplc-escC4VXmaVKwi3RtUGIwb5FDZDG_xzYJh9oM6ySSqtzF3tTFPmBr0-BllV0UibwPtIkPrXgJGhCbU6puAA0oMiNCpCkyK0SODtjeBXl_ZpSVXcxXxAqtEEWxGoLmZqll2nP337qg8VOmNaAZYJvBmZJi0-tzFjmwF-DyFdRZx7ESeOqyYiv7qxAE0kKkYLvl12mho3ioq6NxJ4NljE6uUzavxVVZlAGdlKJJiYEmaXPaw3yrTOVbr7nyJ9AQ-y3tIlF-UebC6uln4fA6eFfdkPmL-COhOO
  priority: 500
  providerName: BioMedCentral
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6jsFeyr7nthvaGAwG2mxLcuyHMkpZ6QYb7CPQNyFZShrI5DZOSvvf7852umrkaU8x6IST-9DdRXe_A3hTp2KUprXnpUstl3j88VLZlDufW5fJGmN0-h_y67fiZCy_nKrTLViPtxoY2G5M7Wie1Hgxf391cf0RDf6gM_iy-NBmhMKGSbHiqI_4cAfu5hITdarkk38vFQi-f7jY3LiNgIGpb1NRfV3U_j6PvNa_Z_ct5xUXVt7yVMcPYGcIMdlhrxMPYcuHR3CvHzp5_Ri-H_WjB8OUXeIHcpahnKgrnZn5tFnMlme_W4axLOurxLm_agIbSq6JahaYYXNaY60hcOEnMD7-9OvohA-DFbgtRLbkhfIYdmEkOPHKC2OqymPWJPHwyiz6cFNPnLDKSuds6lyWepGXriBgG1UZDCnEU9gOTfDPgWF6gkLNJ5mwQrrKmXokDYYFGIWVRS1sAgcRI_V5D6KhCdY6XkEL071MNMpEk0x0msC7NeNvtnZ5S1lsIn5NotGEaxGocGZqVm2rP__8oQ8Vemu6IhYJvB2IJg2-tzZDHwL-HoLCiij3I0o0vDpafrXWAE1LVK0WfLNqNXV2FCW1dyTwrNeImy-_1rAERpGuRIyJV8LsrMP9Rp5WUmW7_71zD-7nnboLno72YXu5WPkXGFMt7cvOUv4A3yQf-A
  priority: 102
  providerName: Scholars Portal
Title Comparing variant calling algorithms for target-exon sequencing in a large sample
URI https://www.ncbi.nlm.nih.gov/pubmed/25884587
https://search.proquest.com/docview/1674686743
http://dx.doi.org/10.1186/s12859-015-0489-0
https://pubmed.ncbi.nlm.nih.gov/PMC4359451
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdtx2AvY9_11gVtDAYDN3Zk-eNhD2lo1gVSunSFsBehr6SBRC51Mrb_fnf-KNXY015kw52xrDvp7qy7nwj5oCOWRZG2YW4iFSaw_IU5V1Fo7ECZONHgo-N_yOl5enaVTOZ8vkd4VwtTJ-1rtTp2682xW13XuZU3G93v8sT6F9MRmPgi4XF_n-yDgnYhert1gCD97fZlnKf9KkaINoiYeQjKCjcI_4vVmRyz6Lwi97Vnm_5eoe-ZKD998p49Gj8hj1tHkg6bDj8le9Y9Iw-boyV_PyffRs0Bg25Jf8IFxo-CNLD2nMr1srxdba83FQWPlTa54KH9VTraJlYj18pRSddIo5VECOEX5Gp8-n10FrbHJ4QqZfE2TLkF5wr8vYXllklZFBZiowSWqFiBpZZ6YZjiKjFGRcbEkWWD3KQIX8MLCY4De0kOXOnsIaEQhIDoBouYKZaYwkidJRKMPwgiTzVTAfnsDaS4aaAyBIJX-xSYR6KRiQCZCJSJiALyqRv4u0fr6CRP_8X8HkUjEL3CYXrMUu6qSny9nIkhB5uMG8EsIB9bpkUJ79WyrTaA70HAK4_zyOOE6aU98rtOAwSSMCfN2XJXCazfSHMs4gjIq0Yj7jrfaVhAMk9XvIHxKaDsNbp3q9yv__vJN-TRoFZ3FkbZETnY3u7sW_CctqoH82WeQZuPv_TIg-FwcjmB68np-cWsV_-NgHaa5NDOTn706nn1B9WZIGo
link.rule.ids 108,230,315,730,783,787,867,888,2228,24330,24949,27936,27937,31732,33386,33757,53804,53806,76146,76147
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKEYIL79KFAgYhISE58cbrzebAoYqoUmgqHi3qzfIradRkt-puEPDrmdlHVVdc4JRIM6vEmRnPTPzNZ0LeWC6GnFvPMscNS2D7Y5k0nDk_MC5OLNTo-D_k9DCdHCcfT-TJBpHdLEwN2rdm0cuXq16-OK2xlecr2-9wYv3P0zGk-FEi4_4NchPilSddk94eHiBNf3uAGWdpv4yRpA16ZsnAXeENEgDjfKZEHF0w5r4MstP1PfpKkgoBlFcy0t498r1bSwNEOeutK9Ozv6_RPP7zYu-Tu22NSncb8QOy4fOH5FZza-WvR-TLuLm7MJ_TH_ACpqFgaBxrp3o5Ly4W1emqpFAM0wZmzvzPIqctZhu1FjnVdIkyWmpkJ35Mjvc-HI0nrL2ZgZlUxBVLpYe6DUrJmZdeaD0aeWi7Etj9YgNFgLYzJ4w0iXOGOxdzLwaZS5EZR4401CRii2zmRe63CYX-BrxiMIuFEYkbOW2HiYa6ApadpVaYiLwPLKTOGxYOhbzYoQRCVDXGVmBshcZWPCLvOotePlo3Pln6N-XXaHOFxBg5Im_mel2Wav_bV7UrId3jGbOIyNtWaVbA51rdDjLAepBLK9DcCTQhcm0gftW5lkIRwt1yX6xLhaMhaYbzIRF50rja5ZfvXDciw8AJgx8mlIBr1cThrSs9_e8nX5Lbk6PpgTrYP_z0jNwZ1DElGB_ukM3qYu2fQ4FWmRd1OP4BJd46jg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BEYgLb6ihwIKQkJAc21mvYx84VIGoBVqVR6WKy2pfTqMmm6h2EPDrmfGjylacekqkGSvZzMzOTPabbwl5o2M2imNtw9zEKkxh-wtzruLQ2KEySaqhRsf_IQ8Os73j9NMJP9m46qsB7Ws1G7j5YuBmpw22crXQUY8Ti44OxpDii5Qn0cqU0XVyA2I2zvpGvTtAQKr-7hAzybOoSpCoDfpmHoLLwhskAcYZTY5YOm_Ufe5lqMv79Eai8kGUG1lpcpf87NfTglHOButaDfTfS1SPV1rwPXKnq1Xpbqtyn1yz7gG52d5e-ech-Tpu7zB0U_oLXsBEFAyO4-1UzqfL81l9uqgoFMW0hZuH9vfS0Q67jVozRyWdo4xWElmKH5Hjyccf472wu6EhVBlL6jDjFuo3KClLyy2TsigstF8p7IKJgmJA6tIwxVVqjIqNSWLLhrnJkCGHFxJqE_aYbLmls9uEQp8D3jEsE6ZYagoj9SiVUF_A0vNMMxWQ956VxKpl4xDIj-1LIFRFa3ABBhdocBEH5F1v1YtHmwYoz_6n_BrtLpAgwyECZyrXVSX2v38TuxzSPp41s4C87ZTKJXyult1AA6wHObU8zR1PEyJYe-JXvXsJFCHszdnluhI4IpLlOCcSkCetu118-d59AzLyHNH7YXwJuFdDIN6509MrP_mS3Dr6MBFf9g8_PyO3h01YsTAe7ZCt-nxtn0OdVqsXTUT-A-97PQ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+variant+calling+algorithms+for+target-exon+sequencing+in+a+large+sample&rft.jtitle=BMC+bioinformatics&rft.au=Lo%2C+Yancy&rft.au=Kang%2C+Hyun+M&rft.au=Nelson%2C+Matthew+R&rft.au=Othman%2C+Mohammad+I&rft.date=2015-03-07&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=16&rft_id=info:doi/10.1186%2Fs12859-015-0489-0&rft_id=info%3Apmid%2F25884587&rft.externalDBID=PMC4359451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon