Integrated Analysis of Transcriptomic and Proteomic Data
Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions....
Saved in:
Published in | Current genomics Vol. 14; no. 2; pp. 91 - 110 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United Arab Emirates
Bentham Science Publishers Ltd
01.04.2013
Bentham Science Publishers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of
the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence
between mRNA transcripts and generated protein expressions. However, recent studies have shown that the
correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post
transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that
may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major
approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main
categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss
the existing research problems in this area. |
---|---|
AbstractList | Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions. However, recent studies have shown that the correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss the existing research problems in this area. Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions. However, recent studies have shown that the correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss the existing research problems in this area. Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions. However, recent studies have shown that the correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss the existing research problems in this area.Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions. However, recent studies have shown that the correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss the existing research problems in this area. |
Author | Ranadip Pal Saad Haider |
AuthorAffiliation | Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA |
AuthorAffiliation_xml | – name: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA |
Author_xml | – sequence: 1 givenname: Saad surname: Haider fullname: Haider, Saad – sequence: 2 givenname: Ranadip surname: Pal fullname: Pal, Ranadip |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24082820$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhiNURD_gFyChPXIJ-CuxfUGqCi2VKsGhnEeOM9k1JHawna565ZfjZcsKEFJPHtvP-854xqfVkQ8eq-olJW8YleIt5UozwjSlnArCCCH8SXVClWzqRih1VOJC1DvkuDpN6SspkJLkWXXMBFFMMXJSqWufcR1Nxn517s14n1xahWF1G41PNro5h8nZlfH96nMMGX_t3ptsnldPBzMmfPGwnlVfLj_cXnysbz5dXV-c39Rdy2SuqbC6scrohoih6WjXaZQN4VpS2aHoOmlaRtGQXlBKm8F0otdUkRb7QUik_Kx6t_edl27C3qLP0YwwRzeZeA_BOPj7xrsNrMMd8JbLVrFi8PrBIIbvC6YMk0sWx9F4DEsCKgTnWhOpH0e5UKKQrSroqz_LOtTzu7MF4HvAxpBSxOGAUAK7-cF_5ldU-h-VddlkF3Zvc-Mj2h97bVc6sTFTsg69xUPeTc4zbLdbwCXiN5NwRJvBhgnCjH6JY4nLZ_AZ5s0Ma_QRwcTs7IjgUvKHpHAXxmXC0rnd-YLAIM1mjaAp_wkpW8-9 |
CitedBy_id | crossref_primary_10_1002_btm2_10519 crossref_primary_10_1007_s11103_022_01332_2 crossref_primary_10_2174_138920292007200101104328 crossref_primary_10_1063_5_0065509 crossref_primary_10_1016_j_ijpara_2016_11_004 crossref_primary_10_1038_s41565_018_0236_6 crossref_primary_10_3389_fgene_2022_935433 crossref_primary_10_1007_s00430_018_0565_y crossref_primary_10_1152_ajplung_00475_2018 crossref_primary_10_1186_s12859_016_1122_6 crossref_primary_10_7554_eLife_96343 crossref_primary_10_3389_fmicb_2022_1089140 crossref_primary_10_1016_j_nbt_2017_05_005 crossref_primary_10_1186_s12864_017_4056_0 crossref_primary_10_3390_jdb12010002 crossref_primary_10_1021_acs_jproteome_3c00675 crossref_primary_10_1016_j_phrs_2016_06_018 crossref_primary_10_1016_j_jprot_2018_09_003 crossref_primary_10_1111_1462_2920_13437 crossref_primary_10_1038_s41598_018_29662_6 crossref_primary_10_3390_ijms22042050 crossref_primary_10_1111_brv_12691 crossref_primary_10_1016_j_ecoenv_2024_117334 crossref_primary_10_1002_ieam_4137 crossref_primary_10_1038_s41467_020_17678_4 crossref_primary_10_3389_fimmu_2023_1212770 crossref_primary_10_1016_j_csbj_2015_08_004 crossref_primary_10_2174_1389201024666230407122254 crossref_primary_10_1002_ctm2_692 crossref_primary_10_1016_j_plaphy_2016_09_008 crossref_primary_10_1039_d0mt00085j crossref_primary_10_1093_bfgp_elx010 crossref_primary_10_1039_C8RA07200K crossref_primary_10_1016_j_addr_2024_115344 crossref_primary_10_1152_ajprenal_00258_2024 crossref_primary_10_1111_1462_2920_14419 crossref_primary_10_1002_jobm_202100417 crossref_primary_10_1111_nph_13895 crossref_primary_10_1371_journal_pntd_0005789 crossref_primary_10_3390_toxins10110452 crossref_primary_10_1186_1752_0509_8_S2_S4 crossref_primary_10_1016_S2095_3119_18_62140_9 crossref_primary_10_3390_plants11202744 crossref_primary_10_1186_s12864_021_07758_0 crossref_primary_10_1371_journal_pone_0268815 crossref_primary_10_1093_jxb_eraa571 crossref_primary_10_1016_j_envpol_2018_12_069 crossref_primary_10_1016_j_jenvrad_2018_04_011 crossref_primary_10_1016_j_stemcr_2020_12_019 crossref_primary_10_1021_acs_jproteome_5b00474 crossref_primary_10_1021_acs_est_7b04121 crossref_primary_10_1186_s12014_016_9127_8 crossref_primary_10_1080_15569543_2021_1977326 crossref_primary_10_1016_j_trac_2023_117117 crossref_primary_10_1134_S0006297924040126 crossref_primary_10_1128_mmbr_00124_22 crossref_primary_10_3389_fmicb_2019_00597 crossref_primary_10_1016_j_biotechadv_2023_108267 crossref_primary_10_1016_j_molbiopara_2019_02_006 crossref_primary_10_3389_fnmol_2017_00045 crossref_primary_10_1016_j_celrep_2022_111360 crossref_primary_10_1016_j_celrep_2021_108695 crossref_primary_10_3389_fmicb_2016_00442 crossref_primary_10_1074_mcp_R115_053751 crossref_primary_10_1080_09553002_2021_1962570 crossref_primary_10_1093_bib_bbac347 crossref_primary_10_1111_prd_12354 crossref_primary_10_1016_j_scienta_2019_109143 crossref_primary_10_1111_mmi_12859 crossref_primary_10_1016_j_envpol_2021_117533 crossref_primary_10_3390_cancers13040715 crossref_primary_10_1016_j_jprot_2015_07_030 crossref_primary_10_3390_cells9102154 crossref_primary_10_1016_j_jenvrad_2023_107141 crossref_primary_10_1016_j_ecoenv_2024_117523 crossref_primary_10_1093_jxb_erv211 crossref_primary_10_3389_fpls_2024_1433575 crossref_primary_10_1038_s41598_023_39737_8 crossref_primary_10_1186_s12864_020_07003_0 crossref_primary_10_2527_jas_2015_9225 crossref_primary_10_1016_j_celrep_2020_108249 crossref_primary_10_1016_j_jbc_2021_100910 crossref_primary_10_1128_AEM_02182_20 crossref_primary_10_3920_BM2019_0068 crossref_primary_10_1016_j_isci_2019_05_022 crossref_primary_10_1128_msystems_00204_20 crossref_primary_10_3389_fmicb_2021_779538 crossref_primary_10_3389_fphar_2017_00091 crossref_primary_10_1074_mcp_M116_063727 crossref_primary_10_1016_j_aquaculture_2016_09_022 crossref_primary_10_1016_j_micpath_2020_104342 crossref_primary_10_1111_mpp_12493 crossref_primary_10_1016_j_ttbdis_2024_102382 crossref_primary_10_3389_fmicb_2020_590851 crossref_primary_10_3389_fphys_2019_01288 crossref_primary_10_1038_s41598_019_56590_w crossref_primary_10_1371_journal_pclm_0000403 crossref_primary_10_51847_nko14dBXgB crossref_primary_10_3389_fimmu_2018_01259 crossref_primary_10_1021_acs_jproteome_1c00114 crossref_primary_10_1080_14789450_2016_1233063 crossref_primary_10_1080_14789450_2020_1807335 crossref_primary_10_1186_s13229_017_0174_4 crossref_primary_10_7554_eLife_96343_3 crossref_primary_10_1093_bib_bbv013 crossref_primary_10_1186_s12864_021_08135_7 crossref_primary_10_3390_pathogens13030188 crossref_primary_10_3389_fmicb_2018_03222 crossref_primary_10_1016_j_tibs_2016_04_006 crossref_primary_10_1016_j_jprot_2020_103707 crossref_primary_10_1016_j_aquaculture_2017_12_011 crossref_primary_10_3390_ani10081377 crossref_primary_10_1038_ng_3495 crossref_primary_10_3389_fpls_2016_01658 crossref_primary_10_3390_ijms22136750 crossref_primary_10_3389_fimmu_2021_600056 crossref_primary_10_1016_j_biopha_2024_117395 crossref_primary_10_1093_database_bau018 crossref_primary_10_1016_j_mce_2021_111229 crossref_primary_10_1016_j_stemcr_2014_08_010 crossref_primary_10_1186_s12864_019_6314_9 crossref_primary_10_1021_acs_jproteome_7b00412 crossref_primary_10_1186_s12864_023_09801_8 crossref_primary_10_3389_fmicb_2020_610836 crossref_primary_10_3389_fnmol_2022_1023692 crossref_primary_10_1021_acs_analchem_5b04221 crossref_primary_10_1074_mcp_RA117_000486 crossref_primary_10_1186_s12934_021_01656_6 crossref_primary_10_1111_jnc_16204 crossref_primary_10_1007_s13668_013_0062_2 crossref_primary_10_1016_j_aquaculture_2022_738917 crossref_primary_10_1186_s12940_020_00617_7 crossref_primary_10_1093_nar_gkaa314 crossref_primary_10_1016_j_ecoenv_2018_09_043 crossref_primary_10_1074_mcp_MR118_001246 crossref_primary_10_3389_fmicb_2019_00831 crossref_primary_10_1186_s12885_016_2362_6 crossref_primary_10_1002_pmic_201700023 crossref_primary_10_1038_s41467_022_35031_9 crossref_primary_10_1016_j_bbagen_2017_01_007 crossref_primary_10_1016_j_isci_2023_106909 crossref_primary_10_1038_s41598_024_61815_8 crossref_primary_10_1016_j_indcrop_2023_116651 crossref_primary_10_1089_ast_2019_2135 crossref_primary_10_1093_jn_nxab005 crossref_primary_10_1016_j_expneurol_2020_113319 crossref_primary_10_1016_j_ymgme_2016_03_003 crossref_primary_10_1007_s00204_016_1723_x crossref_primary_10_1371_journal_pone_0239771 crossref_primary_10_3389_fmicb_2019_01975 crossref_primary_10_1111_raq_12308 crossref_primary_10_1038_s42003_022_03853_4 crossref_primary_10_3390_genes11101165 crossref_primary_10_1016_j_cels_2020_06_013 crossref_primary_10_3389_fimmu_2018_02793 crossref_primary_10_3390_insects12020152 crossref_primary_10_1002_hep_31826 crossref_primary_10_1016_j_compbiomed_2021_104850 crossref_primary_10_1021_acsinfecdis_9b00080 crossref_primary_10_3390_biom14050554 crossref_primary_10_1016_j_matbio_2018_01_016 crossref_primary_10_1186_1744_8069_9_57 crossref_primary_10_1021_acsinfecdis_3c00492 crossref_primary_10_1038_ismej_2014_112 crossref_primary_10_1016_j_cyto_2021_155537 crossref_primary_10_1016_j_ijbiomac_2023_127466 crossref_primary_10_1186_s12870_016_0926_x crossref_primary_10_1186_s12920_015_0108_y crossref_primary_10_1093_pnasnexus_pgac165 crossref_primary_10_3389_fpls_2021_735719 crossref_primary_10_1016_j_jhazmat_2020_122727 crossref_primary_10_1111_all_14814 crossref_primary_10_1093_bfgp_elt053 crossref_primary_10_1371_journal_ppat_1006236 crossref_primary_10_1016_j_indcrop_2021_113448 crossref_primary_10_1128_mBio_01416_21 crossref_primary_10_1074_mcp_M116_066357 crossref_primary_10_3390_cells9102175 crossref_primary_10_3389_fnagi_2016_00229 crossref_primary_10_1093_pcp_pcaa167 crossref_primary_10_2139_ssrn_3151997 crossref_primary_10_1371_journal_pone_0265281 crossref_primary_10_1093_bib_bby030 crossref_primary_10_1016_j_scitotenv_2023_161740 crossref_primary_10_1371_journal_pone_0242919 crossref_primary_10_1007_s11306_018_1459_0 crossref_primary_10_1002_arch_21191 crossref_primary_10_3389_fgene_2018_00205 crossref_primary_10_1186_s12859_020_3418_9 crossref_primary_10_1016_j_cbd_2020_100751 crossref_primary_10_1038_s41597_021_01008_4 crossref_primary_10_3389_fmicb_2017_00559 crossref_primary_10_1016_j_bonr_2022_101594 crossref_primary_10_1016_j_ccell_2017_09_004 crossref_primary_10_1186_s12859_019_3337_9 crossref_primary_10_1128_JB_00547_19 crossref_primary_10_1165_rcmb_2022_0302OC crossref_primary_10_1186_s12870_021_03042_1 crossref_primary_10_1038_s41598_020_57665_9 crossref_primary_10_1093_lifemeta_loac034 crossref_primary_10_1016_j_canlet_2019_02_005 crossref_primary_10_1038_s41598_021_04137_3 crossref_primary_10_1007_s10646_018_1903_y crossref_primary_10_1186_s13039_014_0098_z crossref_primary_10_1007_s10265_025_01624_w crossref_primary_10_1186_s12864_018_5279_4 crossref_primary_10_1016_j_ijpara_2016_01_005 crossref_primary_10_1159_000531823 crossref_primary_10_1016_j_fshw_2021_12_010 crossref_primary_10_1002_pmic_201500225 crossref_primary_10_3389_fendo_2017_00073 crossref_primary_10_1038_s41598_019_53608_1 crossref_primary_10_3389_fpls_2020_572540 crossref_primary_10_1039_D0CS01127D crossref_primary_10_1038_s41467_024_49231_y crossref_primary_10_1371_journal_pone_0250524 crossref_primary_10_3389_fpls_2023_1204016 crossref_primary_10_3389_fpls_2017_01134 crossref_primary_10_1089_omi_2014_0130 crossref_primary_10_1111_1758_2229_12639 crossref_primary_10_1186_s12859_019_3150_5 crossref_primary_10_1152_ajprenal_00183_2020 crossref_primary_10_3389_fgene_2018_00026 crossref_primary_10_3390_jpm14080831 crossref_primary_10_1007_s11427_023_2305_0 crossref_primary_10_3389_fpls_2023_1282718 crossref_primary_10_3390_proteomes6010002 crossref_primary_10_1186_s40168_018_0449_9 crossref_primary_10_3389_fimmu_2024_1472433 crossref_primary_10_1186_s12867_018_0115_6 crossref_primary_10_3389_fmicb_2016_01554 crossref_primary_10_3390_biom12010039 crossref_primary_10_17116_flebo2017114190_202 crossref_primary_10_1016_j_dental_2016_11_007 crossref_primary_10_1016_j_jprot_2013_11_001 crossref_primary_10_1016_j_mcpro_2023_100683 crossref_primary_10_3389_fmars_2021_759923 crossref_primary_10_1038_s42255_020_0252_3 crossref_primary_10_1111_cea_13129 crossref_primary_10_1186_s12864_017_3683_9 crossref_primary_10_1089_ast_2021_0012 crossref_primary_10_1016_j_copbio_2015_10_010 crossref_primary_10_1016_j_isci_2021_103586 crossref_primary_10_1016_j_arr_2020_101070 crossref_primary_10_1002_prca_201500065 crossref_primary_10_1016_j_cyto_2021_155588 crossref_primary_10_1021_acsnano_9b05156 crossref_primary_10_1007_s00441_015_2237_1 crossref_primary_10_1016_j_jprot_2021_104356 crossref_primary_10_1109_JBHI_2015_2489158 crossref_primary_10_1016_j_celrep_2019_02_038 crossref_primary_10_1186_s12864_015_2115_y crossref_primary_10_1007_s12035_019_1478_5 crossref_primary_10_3989_arq_arqt_2016_165 crossref_primary_10_2139_ssrn_3343420 crossref_primary_10_3389_fmicb_2018_02639 crossref_primary_10_3389_fbioe_2020_00914 crossref_primary_10_1002_tpg2_20372 crossref_primary_10_1111_cts_12490 crossref_primary_10_3389_fpls_2024_1467006 crossref_primary_10_1073_pnas_2014920118 crossref_primary_10_1038_srep36832 crossref_primary_10_1002_widm_1103 crossref_primary_10_1038_s41598_020_58059_7 crossref_primary_10_1016_j_clinre_2022_101927 crossref_primary_10_9758_cpn_2022_20_4_585 crossref_primary_10_1016_j_stemcr_2022_11_006 crossref_primary_10_1016_j_jbc_2021_101023 crossref_primary_10_1016_j_jprot_2020_104086 crossref_primary_10_1093_femsyr_foaf007 crossref_primary_10_1111_cea_14447 crossref_primary_10_1590_s2175_97902023e23146 crossref_primary_10_1038_s41598_024_74913_4 crossref_primary_10_3389_fmicb_2022_976550 crossref_primary_10_1186_s13046_022_02591_z crossref_primary_10_53365_efood_k_144885 crossref_primary_10_1016_j_exer_2022_109219 crossref_primary_10_1016_j_vaccine_2015_04_096 crossref_primary_10_1177_00220345211073072 crossref_primary_10_1021_acs_jproteome_5b00146 crossref_primary_10_1016_j_talanta_2014_10_012 crossref_primary_10_1007_s10126_018_9825_5 crossref_primary_10_1002_bit_26996 crossref_primary_10_3390_brainsci11091149 crossref_primary_10_1016_j_mce_2016_07_025 crossref_primary_10_1186_s12915_015_0116_6 crossref_primary_10_1007_s00425_021_03786_y crossref_primary_10_1186_s12864_018_4730_x crossref_primary_10_1093_mtomcs_mfac065 crossref_primary_10_1038_ncomms13302 crossref_primary_10_3389_fmicb_2019_01095 |
ContentType | Journal Article |
Copyright | 2013 Bentham Science Publishers 2013 |
Copyright_xml | – notice: 2013 Bentham Science Publishers 2013 |
DBID | AAYXX CITATION NPM 8FD FR3 P64 RC3 7X8 5PM |
DOI | 10.2174/1389202911314020003 |
DatabaseName | CrossRef PubMed Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1875-5488 |
EndPage | 110 |
ExternalDocumentID | PMC3637682 24082820 10_2174_1389202911314020003 http_www_eurekaselect_com_openurl_content_php_genre_article_issn_13892029_volume_14_issue_2_spage_91 |
Genre | Journal Article |
GroupedDBID | --- .5. 0R~ 29F 2WC 4.4 53G 5GY AAEGP ABEEF ABJNI ACGFS ACIWK ACPRK ADBBV AENEX AFRAH AFUQM AGJNZ ALMA_UNASSIGNED_HOLDINGS ANTIV AOIJS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P GH2 GX1 HYE HZ~ IPNFZ KCGFV O9- OK1 P2P RIG RPM TR2 AAYXX AFHZU CITATION NPM 8FD FR3 P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-b627t-14c95c8a9504f5b1bb9e75039717be4bb7a621ea0d41115fab4d91806edf47e13 |
ISSN | 1389-2029 |
IngestDate | Thu Aug 21 18:33:42 EDT 2025 Fri Jul 11 16:15:40 EDT 2025 Fri Jul 11 15:29:01 EDT 2025 Mon Jun 09 02:52:01 EDT 2025 Tue Jul 01 02:59:05 EDT 2025 Thu Apr 24 23:08:43 EDT 2025 Tue Aug 27 15:42:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Combined analysis review Data fusion approaches Proteome Joint modeling Integrated omics Transcriptome |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-b627t-14c95c8a9504f5b1bb9e75039717be4bb7a621ea0d41115fab4d91806edf47e13 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 The author contributed equally to this work. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3637682 |
PMID | 24082820 |
PQID | 1348490768 |
PQPubID | 23462 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3637682 proquest_miscellaneous_1443399079 proquest_miscellaneous_1348490768 pubmed_primary_24082820 crossref_primary_10_2174_1389202911314020003 crossref_citationtrail_10_2174_1389202911314020003 benthamscience_primary_http_www_eurekaselect_com_openurl_content_php_genre_article_issn_13892029_volume_14_issue_2_spage_91 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-04-01 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United Arab Emirates |
PublicationPlace_xml | – name: United Arab Emirates |
PublicationTitle | Current genomics |
PublicationTitleAlternate | CG |
PublicationYear | 2013 |
Publisher | Bentham Science Publishers Ltd Bentham Science Publishers |
Publisher_xml | – name: Bentham Science Publishers Ltd – name: Bentham Science Publishers |
SSID | ssj0020870 |
Score | 2.4716716 |
SecondaryResourceType | review_article |
Snippet | Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of
the transcriptome or the proteome. Based on the... Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the... |
SourceID | pubmedcentral proquest pubmed crossref benthamscience |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 91 |
Title | Integrated Analysis of Transcriptomic and Proteomic Data |
URI | http://www.eurekaselect.com/openurl/content.php?genre=article&issn=13892029&volume=14&issue=2&spage=91 https://www.ncbi.nlm.nih.gov/pubmed/24082820 https://www.proquest.com/docview/1348490768 https://www.proquest.com/docview/1443399079 https://pubmed.ncbi.nlm.nih.gov/PMC3637682 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCIlJIL4XvhQkHgnEiZPYjwhtKmgMCbVS30524qgTrK22VBXwz3PnOEk7qmnwEqWJa0f5nc938d3vGHtTZGURVzjTsjwtI1HqOlLGyEhmtqw010VZUqLwl5N8NBGfp9l0YLNw2SWNeVf-2plX8j-o4jXElbJk_wHZvlO8gOeILx4RYTxeC-NPHdcD8a0O5CINrT9OG1DKsacCWDTW_fLJaAM9gSdoIrLWs43Q9xFxR7ZFubSuhp0m98n4mwsVW25-MqDyDX2kSavlUgptiv2nhk4Nig24kw2d1lbTuqxqyZUhrx-7op44Tzm5onGcDitLt5t-8hWOJsfHMD6cjm-yWwla9C4ve9pH4ySxLNqEbv9kLUEUDfJ-xxD77K7BVzPTZ95O2LYq_nIVLke8bpgQ4_vsnrf9ww8tkA_YDTt_yG631UB_PmJygDPs4AwXdbgNJ96qwh7OkOB8zCZHh-OPo8gXtohMnhRNxEWpslJqlcWizgw3RlnaT1boWxsrjCl0nnCr40rgUpTV2ohKcRnntqpFYXn6hO3NF3N7wMLaUGepNpniwkqhbS4rhQtwpkxdySJgv7ffFCxbFhOXzwXr9Rrs6tx-1xeu7BLgZABftw0oWYJKPS9nS3CSDl7SgaQIOlygFSB0IsEJDyTgBAcUD1jSwQKl55yn0ic_AH1PAhd2gBuwt_2fuoe9svnrDm9A1Uj7XXpuF6sLbCykULTVfEUbIVK00eNCBexpKyP9oMT-l6CFHLBiS3r6BkTNvn1nfjpzFO1pjgu3TJ5dY9zn7M4wR1-wveZ8ZV-ioduYV26K_AE2j62B |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+analysis+of+transcriptomic+and+proteomic+data&rft.jtitle=Current+genomics&rft.au=Haider%2C+Saad&rft.au=Pal%2C+Ranadip&rft.date=2013-04-01&rft.issn=1389-2029&rft.volume=14&rft.issue=2&rft.spage=91&rft_id=info:doi/10.2174%2F1389202911314020003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-2029&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-2029&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-2029&client=summon |