REAP: A two minute cell fractionation method

The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm emp...

Full description

Saved in:
Bibliographic Details
Published inBMC research notes Vol. 3; no. 1; p. 294
Main Authors Suzuki, Keiko, Bose, Pinaki, Leong-Quong, Rebecca YY, Fujita, Donald J, Riabowol, Karl
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 10.11.2010
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT. We have developed a Rapid, Efficient And Practical (REAP) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNFα induced NF-κB NCPT observed in parallel by indirect immunofluorescence. This method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions.
AbstractList Background The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT. Findings We have developed a Rapid, Efficient And Practical (REAP) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNF[alpha] induced NF-[kappa]B NCPT observed in parallel by indirect immunofluorescence. Conclusions This method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions.
BACKGROUND: The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT. FINDINGS: We have developed a Rapid, Efficient And Practical (REAP) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNFα induced NF-κB NCPT observed in parallel by indirect immunofluorescence. CONCLUSIONS: This method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions.
Abstract Background: The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT. Findings: We have developed a R apid, E fficient A nd P ractical (REAP ) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNFα induced NF-κB NCPT observed in parallel by indirect immunofluorescence. Conclusions: This method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions.
The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT. We have developed a Rapid, Efficient And Practical (REAP) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNF[alpha] induced NF-[kappa]B NCPT observed in parallel by indirect immunofluorescence. This method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions.
Abstract Background The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT. Findings We have developed a Rapid, Efficient And Practical (REAP) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNFα induced NF-κB NCPT observed in parallel by indirect immunofluorescence. Conclusions This method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions.
The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT. We have developed a Rapid, Efficient And Practical (REAP) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNFα induced NF-κB NCPT observed in parallel by indirect immunofluorescence. This method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions.
The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT.BACKGROUNDThe translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT.We have developed a Rapid, Efficient And Practical (REAP) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNFα induced NF-κB NCPT observed in parallel by indirect immunofluorescence.FINDINGSWe have developed a Rapid, Efficient And Practical (REAP) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNFα induced NF-κB NCPT observed in parallel by indirect immunofluorescence.This method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions.CONCLUSIONSThis method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions.
ArticleNumber 294
Audience Academic
Author Bose, Pinaki
Suzuki, Keiko
Riabowol, Karl
Fujita, Donald J
Leong-Quong, Rebecca YY
AuthorAffiliation 2 Department of Oncology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada
1 Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada
AuthorAffiliation_xml – name: 1 Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada
– name: 2 Department of Oncology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada
Author_xml – sequence: 1
  givenname: Keiko
  surname: Suzuki
  fullname: Suzuki, Keiko
– sequence: 2
  givenname: Pinaki
  surname: Bose
  fullname: Bose, Pinaki
– sequence: 3
  givenname: Rebecca YY
  surname: Leong-Quong
  fullname: Leong-Quong, Rebecca YY
– sequence: 4
  givenname: Donald J
  surname: Fujita
  fullname: Fujita, Donald J
– sequence: 5
  givenname: Karl
  surname: Riabowol
  fullname: Riabowol, Karl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21067583$$D View this record in MEDLINE/PubMed
BookMark eNp1kttr1TAcx4NM3EWffZOiDyLYLckvl9YH4TimHhhMRH0NaS5nObTN7MXLf2-6zsM6Ngpp-OXz-yR8-R2ivTa2DqHnBB8TUogTIrnIMcc4h5yW7BE62FX2bu330WHfbzEWpCjIE7RPCRaSF3CA3n49W315l62y4XfMmtCOg8uMq-vMd9oMIbZ6WrLGDZfRPkWPva579-zmf4S-fzz7dvo5P7_4tD5dneeVoILl4DQDaQwABSwprhhnVla0wMZosAVowGAYWGlLWznGOSmFr2jJKxCGCThC69lro96qqy40uvurog7quhC7jdLdEEztlGdceiqN9LZkvvAldhwT4bnxWDNhkuv97Loaq8ZZ49qh0_VCujxpw6XaxF-KliVIKpPgwyyoQnxAsDwxsVFT8mpKXkESsSR5ffOKLv4cXT-oJvRTzrp1cexVQXhKoZCQyJd3yG0cuzbFrUpMGUAJPEGvZmijUwah9THdbCalWiUGyySbqON7qPRZ1wSTBsmHVF80vFk0JGZwf4aNHvterS9-LNkXt3Pd5fF_tBJwMgOmi33fOb9DCFbT8N4TEr_TYcJwPX_p3aF-sO8fCYzs_Q
CitedBy_id crossref_primary_10_1016_j_omton_2024_200896
crossref_primary_10_1128_mBio_02161_16
crossref_primary_10_1080_15548627_2021_1922983
crossref_primary_10_1016_j_ceca_2021_102499
crossref_primary_10_1002_jbio_201500273
crossref_primary_10_1038_nchembio_2179
crossref_primary_10_1242_dmm_018648
crossref_primary_10_1007_s13277_015_3863_7
crossref_primary_10_1038_s41467_017_00578_5
crossref_primary_10_1101_pdb_top074583
crossref_primary_10_1038_s41598_023_33779_8
crossref_primary_10_1016_j_abb_2014_09_017
crossref_primary_10_1016_j_dnarep_2020_102954
crossref_primary_10_1016_j_xpro_2023_102309
crossref_primary_10_1016_j_molcel_2016_11_033
crossref_primary_10_1080_10428194_2016_1276287
crossref_primary_10_3389_fimmu_2018_00092
crossref_primary_10_1111_acel_13156
crossref_primary_10_15252_embj_2021110192
crossref_primary_10_1016_j_celrep_2019_07_063
crossref_primary_10_1016_j_jinorgbio_2016_02_027
crossref_primary_10_1016_j_virol_2017_08_025
crossref_primary_10_1158_0008_5472_CAN_18_0459
crossref_primary_10_1371_journal_ppat_1008374
crossref_primary_10_1038_s41598_018_24500_1
crossref_primary_10_1016_j_ajog_2013_11_027
crossref_primary_10_1093_nar_gkad369
crossref_primary_10_1016_j_jbc_2021_100959
crossref_primary_10_3389_fendo_2022_923925
crossref_primary_10_4161_15384101_2014_967094
crossref_primary_10_1002_chem_202100603
crossref_primary_10_1016_j_virol_2017_12_021
crossref_primary_10_1038_s41586_023_06142_0
crossref_primary_10_1186_s13072_019_0305_6
crossref_primary_10_1007_s00018_020_03596_7
crossref_primary_10_15252_embj_2019102209
crossref_primary_10_3390_v11080711
crossref_primary_10_1007_s00018_022_04372_5
crossref_primary_10_1038_s41417_024_00748_w
crossref_primary_10_1038_s42003_022_03989_3
crossref_primary_10_1007_s00018_022_04274_6
crossref_primary_10_1016_j_chom_2015_02_021
crossref_primary_10_15252_embr_202255326
crossref_primary_10_1371_journal_pone_0200487
crossref_primary_10_1016_j_isci_2024_111403
crossref_primary_10_1016_j_bbadis_2018_01_005
crossref_primary_10_3390_cells10061335
crossref_primary_10_1016_j_jaci_2020_12_637
crossref_primary_10_1007_s11033_020_05267_z
crossref_primary_10_1016_j_virol_2016_10_025
crossref_primary_10_1101_pdb_prot083733
crossref_primary_10_1242_dev_086157
crossref_primary_10_1016_j_bioorg_2020_104232
crossref_primary_10_1038_s41419_021_04082_z
crossref_primary_10_1016_j_celrep_2022_110946
crossref_primary_10_3390_molecules25061336
crossref_primary_10_1111_cge_13086
crossref_primary_10_1038_s42003_021_02983_5
crossref_primary_10_1186_1743_422X_10_243
crossref_primary_10_3390_cells10040759
crossref_primary_10_1016_j_celrep_2019_11_067
crossref_primary_10_1371_journal_ppat_1011640
crossref_primary_10_1073_pnas_1619582114
crossref_primary_10_1124_jpet_112_193003
crossref_primary_10_1371_journal_ppat_1006171
crossref_primary_10_3389_fimmu_2023_1154108
crossref_primary_10_3390_cancers15051495
crossref_primary_10_1016_j_bpj_2017_01_022
crossref_primary_10_1038_s44321_024_00050_0
crossref_primary_10_1016_j_jbc_2024_107153
crossref_primary_10_1038_ni_3853
crossref_primary_10_1038_s41467_023_36232_6
crossref_primary_10_2139_ssrn_4052958
crossref_primary_10_1242_jcs_223453
crossref_primary_10_1128_JVI_01856_10
crossref_primary_10_1038_s41586_020_2446_y
crossref_primary_10_1016_j_bbamcr_2021_119114
crossref_primary_10_1021_acsomega_3c05144
crossref_primary_10_1093_braincomms_fcaa138
crossref_primary_10_1016_j_cell_2023_09_011
crossref_primary_10_7554_eLife_89951
crossref_primary_10_1089_scd_2013_0318
crossref_primary_10_15252_embj_2022111719
crossref_primary_10_1128_mBio_01190_20
crossref_primary_10_1038_s42003_022_03049_w
crossref_primary_10_1186_s13578_023_01164_7
crossref_primary_10_3390_v10070359
crossref_primary_10_1002_mds_27994
crossref_primary_10_1016_j_ymeth_2019_03_028
crossref_primary_10_1152_ajpcell_00302_2015
crossref_primary_10_1080_10715762_2017_1353689
crossref_primary_10_1016_j_ab_2023_115445
crossref_primary_10_3390_jcm10112384
crossref_primary_10_1093_nar_gkab896
crossref_primary_10_1371_journal_ppat_1011633
crossref_primary_10_1016_j_omtm_2023_101163
crossref_primary_10_1158_0008_5472_CAN_14_0978
crossref_primary_10_1371_journal_ppat_1006838
crossref_primary_10_3390_ijms21093195
crossref_primary_10_1002_pmic_202100137
crossref_primary_10_1080_15476286_2021_1881291
crossref_primary_10_1186_s12885_015_1645_7
crossref_primary_10_1016_j_stemcr_2019_04_011
crossref_primary_10_1128_JVI_01790_12
crossref_primary_10_1096_fj_201901606R
crossref_primary_10_18632_oncotarget_9719
crossref_primary_10_3390_cells9081804
crossref_primary_10_1016_j_bbrc_2021_11_058
crossref_primary_10_1007_s00018_012_1255_3
crossref_primary_10_1038_onc_2017_260
crossref_primary_10_1128_JVI_01244_21
crossref_primary_10_1128_jvi_01325_23
crossref_primary_10_3390_ijms24098084
crossref_primary_10_1038_ncomms12707
crossref_primary_10_1186_s11658_024_00586_6
crossref_primary_10_1186_s12860_020_00258_1
crossref_primary_10_1186_s12964_018_0307_1
crossref_primary_10_7554_eLife_69705
crossref_primary_10_1111_jnc_14131
crossref_primary_10_1111_jcmm_17584
crossref_primary_10_1038_srep40127
crossref_primary_10_1038_s41467_024_47623_8
crossref_primary_10_1038_s41467_018_04849_7
crossref_primary_10_1016_j_celrep_2019_11_018
crossref_primary_10_1186_s12885_020_07526_5
crossref_primary_10_4049_jimmunol_1800063
crossref_primary_10_1016_j_jconrel_2024_07_025
crossref_primary_10_26508_lsa_202302133
crossref_primary_10_1016_j_mce_2014_01_004
crossref_primary_10_1186_s12974_019_1575_4
crossref_primary_10_3390_biomedicines10050977
crossref_primary_10_1021_acs_molpharmaceut_6b00008
crossref_primary_10_1016_j_virusres_2020_198153
crossref_primary_10_1186_s40659_023_00429_2
crossref_primary_10_2337_db16_1009
crossref_primary_10_1186_s13059_025_03490_0
crossref_primary_10_1038_s41388_022_02314_w
crossref_primary_10_15252_embr_201642682
crossref_primary_10_1093_jn_nxab251
crossref_primary_10_1128_mBio_01316_21
crossref_primary_10_1161_ATVBAHA_123_319925
crossref_primary_10_3390_cancers12010238
crossref_primary_10_1038_cdd_2013_155
crossref_primary_10_18632_oncotarget_17648
crossref_primary_10_1038_s41419_019_2122_z
crossref_primary_10_1093_nar_gkab088
crossref_primary_10_1002_dvg_22870
crossref_primary_10_1038_ejhg_2016_5
crossref_primary_10_1158_1541_7786_MCR_18_0409
crossref_primary_10_1371_journal_pone_0024713
crossref_primary_10_1016_j_dib_2021_107609
crossref_primary_10_1073_pnas_1418896111
crossref_primary_10_1371_journal_ppat_1006382
crossref_primary_10_1016_j_jviromet_2020_113909
crossref_primary_10_1096_fj_201801315R
crossref_primary_10_1371_journal_pone_0076593
crossref_primary_10_1093_nar_gkad941
crossref_primary_10_3389_fonc_2022_954634
crossref_primary_10_3892_ijmm_2020_4591
crossref_primary_10_3390_membranes12040389
crossref_primary_10_3390_cells11142149
crossref_primary_10_1371_journal_ppat_1011041
crossref_primary_10_3389_fimmu_2021_664218
crossref_primary_10_1093_nar_gkv1058
crossref_primary_10_1111_jcmm_16593
crossref_primary_10_1016_j_bbrc_2019_08_081
crossref_primary_10_1016_j_xpro_2023_102697
crossref_primary_10_1093_nar_gkx180
crossref_primary_10_3389_fcell_2022_895433
crossref_primary_10_1080_15548627_2016_1210368
crossref_primary_10_1093_jncics_pky054
crossref_primary_10_1074_jbc_M116_725739
crossref_primary_10_1128_MCB_00397_14
crossref_primary_10_1038_srep29006
crossref_primary_10_1530_JOE_18_0282
crossref_primary_10_1021_acs_biochem_9b00225
crossref_primary_10_1007_s11033_019_04735_5
crossref_primary_10_1093_cvr_cvt275
crossref_primary_10_1038_s41598_019_45352_3
crossref_primary_10_7554_eLife_58342
crossref_primary_10_1073_pnas_2219755120
crossref_primary_10_2139_ssrn_4190671
crossref_primary_10_1016_j_bcp_2020_114190
crossref_primary_10_1038_s41588_023_01592_8
crossref_primary_10_1073_pnas_2110348119
crossref_primary_10_1016_j_yjmcc_2019_01_028
crossref_primary_10_1016_j_antiviral_2021_105232
crossref_primary_10_1038_s41598_017_17591_9
crossref_primary_10_1371_journal_pgen_1011495
crossref_primary_10_1371_journal_pone_0036137
crossref_primary_10_1186_s13578_016_0105_7
crossref_primary_10_7554_eLife_82450
crossref_primary_10_1038_s41598_017_06740_9
crossref_primary_10_1016_j_isci_2024_109152
crossref_primary_10_3892_ijo_2015_3020
crossref_primary_10_3390_biomedicines8090361
crossref_primary_10_3390_v14051021
crossref_primary_10_15252_embj_201798714
crossref_primary_10_1016_j_bbamcr_2020_118945
crossref_primary_10_3892_mmr_2016_4935
crossref_primary_10_1242_jcs_242297
crossref_primary_10_1016_j_ajpath_2015_05_019
crossref_primary_10_1074_jbc_M117_818526
crossref_primary_10_1186_s12977_018_0425_2
crossref_primary_10_1016_j_virol_2018_01_031
crossref_primary_10_1002_pro_5170
crossref_primary_10_1186_s13058_014_0476_9
crossref_primary_10_1186_s13058_021_01430_x
crossref_primary_10_1186_s12935_020_1141_2
crossref_primary_10_1016_j_celrep_2022_110776
crossref_primary_10_1016_j_freeradbiomed_2016_04_024
crossref_primary_10_1038_cdd_2012_11
crossref_primary_10_1002_humu_23345
crossref_primary_10_1242_jcs_263659
crossref_primary_10_1515_hsz_2023_0213
crossref_primary_10_1093_hmg_ddt509
crossref_primary_10_1038_s41598_019_44372_3
crossref_primary_10_1261_rna_079426_122
crossref_primary_10_1371_journal_ppat_1005260
crossref_primary_10_3389_fnmol_2023_1133271
crossref_primary_10_1038_s41418_019_0393_7
crossref_primary_10_1016_j_neuron_2019_06_003
crossref_primary_10_1038_s41592_022_01572_6
crossref_primary_10_1074_jbc_M113_507798
crossref_primary_10_1016_j_gene_2017_12_019
crossref_primary_10_1002_1878_0261_13111
crossref_primary_10_1042_BJ20111268
crossref_primary_10_1161_CIRCRESAHA_119_315932
crossref_primary_10_1097_IGC_0000000000001105
crossref_primary_10_1038_cddis_2017_476
crossref_primary_10_15252_embj_2019103922
crossref_primary_10_1016_j_trsl_2021_02_004
crossref_primary_10_1016_j_isci_2021_103538
crossref_primary_10_1371_journal_pbio_3002368
crossref_primary_10_1007_s12079_017_0402_x
crossref_primary_10_1016_j_bbagrm_2022_194801
crossref_primary_10_1016_j_bbrc_2016_12_077
crossref_primary_10_1016_j_intimp_2020_106346
crossref_primary_10_1038_s41421_018_0022_5
crossref_primary_10_1371_journal_pgen_1005599
crossref_primary_10_1016_j_celrep_2024_114421
crossref_primary_10_1128_mBio_01754_17
crossref_primary_10_1016_j_celrep_2018_11_066
crossref_primary_10_7554_eLife_86273
crossref_primary_10_1016_j_molcel_2024_09_030
crossref_primary_10_1371_journal_pone_0182584
crossref_primary_10_3390_cells7070080
crossref_primary_10_1016_j_scitotenv_2024_173453
crossref_primary_10_1016_j_canlet_2019_03_047
crossref_primary_10_1016_j_bbrep_2017_09_006
crossref_primary_10_3748_wjg_v21_i4_1125
crossref_primary_10_1016_j_celrep_2021_108976
crossref_primary_10_1371_journal_pone_0102433
crossref_primary_10_1101_gr_229922_117
crossref_primary_10_1371_journal_pone_0084673
crossref_primary_10_1128_mBio_00944_17
crossref_primary_10_1016_j_molonc_2014_09_008
crossref_primary_10_1002_pmic_201600248
crossref_primary_10_1074_jbc_M114_589267
crossref_primary_10_1021_acs_jproteome_5b00196
crossref_primary_10_1016_j_ccell_2020_02_003
crossref_primary_10_1016_j_devcel_2022_10_008
crossref_primary_10_1016_j_vetmic_2015_03_023
crossref_primary_10_18632_oncotarget_10121
crossref_primary_10_1007_s12038_018_9736_7
crossref_primary_10_1371_journal_ppat_1010824
crossref_primary_10_1016_j_ymgmr_2015_07_005
crossref_primary_10_1016_j_cell_2016_11_055
crossref_primary_10_1016_j_redox_2025_103549
crossref_primary_10_1080_10428194_2020_1861270
crossref_primary_10_1186_s12931_021_01865_y
crossref_primary_10_1038_s41598_020_57781_6
crossref_primary_10_1186_s11658_024_00533_5
crossref_primary_10_1371_journal_pone_0296408
crossref_primary_10_1371_journal_pone_0230874
crossref_primary_10_1038_s41596_019_0229_4
crossref_primary_10_3390_ijms22052607
crossref_primary_10_1016_j_cell_2018_03_050
crossref_primary_10_1021_acs_jproteome_3c00598
crossref_primary_10_3892_ijo_2019_4844
crossref_primary_10_1177_1010428317694310
crossref_primary_10_3390_cells10040852
crossref_primary_10_1128_mbio_01556_23
crossref_primary_10_1002_jbio_201800091
crossref_primary_10_1101_gad_350597_123
crossref_primary_10_1016_j_freeradbiomed_2020_08_016
crossref_primary_10_1093_brain_awx039
crossref_primary_10_1016_j_matbio_2015_02_001
crossref_primary_10_1016_j_phyplu_2022_100301
crossref_primary_10_1038_s41467_024_47423_0
crossref_primary_10_1016_j_bbrc_2018_05_203
crossref_primary_10_1016_j_stemcr_2017_06_016
crossref_primary_10_1093_nar_gkac358
crossref_primary_10_1016_j_devcel_2015_08_014
crossref_primary_10_1371_journal_pone_0060943
crossref_primary_10_1021_acs_biochem_5b01141
crossref_primary_10_1242_bio_059352
crossref_primary_10_1016_j_molcel_2019_01_007
crossref_primary_10_3390_pr9122223
crossref_primary_10_1099_vir_0_046649_0
crossref_primary_10_3390_ijms22062893
crossref_primary_10_1007_s10930_022_10054_9
crossref_primary_10_1128_mbio_01209_24
crossref_primary_10_1186_s12858_016_0074_9
crossref_primary_10_1038_ncomms11464
crossref_primary_10_1016_j_bcp_2023_115703
crossref_primary_10_1016_j_celrep_2022_111268
crossref_primary_10_1128_MCB_00292_16
crossref_primary_10_1007_s10689_020_00163_8
crossref_primary_10_1186_s13046_019_1385_7
crossref_primary_10_1371_journal_pone_0101529
crossref_primary_10_1016_j_ymthe_2018_11_015
crossref_primary_10_3389_fonc_2022_775541
crossref_primary_10_1371_journal_pone_0172125
crossref_primary_10_1016_j_neuron_2016_11_032
crossref_primary_10_1038_s41467_023_36298_2
crossref_primary_10_1016_j_isci_2021_103212
crossref_primary_10_1016_j_chembiol_2023_10_008
crossref_primary_10_1080_15384101_2016_1211214
crossref_primary_10_1128_JVI_00159_13
crossref_primary_10_1074_jbc_RA117_000727
crossref_primary_10_1186_s40478_019_0658_x
crossref_primary_10_1016_j_cell_2018_07_022
crossref_primary_10_7554_eLife_81755
crossref_primary_10_1016_j_chembiol_2022_02_006
crossref_primary_10_1038_srep35758
crossref_primary_10_1016_j_bbadis_2011_10_013
crossref_primary_10_1093_hmg_ddy298
crossref_primary_10_1038_s42003_023_04501_1
crossref_primary_10_1186_s12964_021_00785_0
crossref_primary_10_1016_j_crmeth_2023_100637
crossref_primary_10_3390_cells13060527
crossref_primary_10_1038_s41586_023_05904_0
crossref_primary_10_18632_oncotarget_12109
crossref_primary_10_1093_mtomcs_mfae006
crossref_primary_10_3389_fnmol_2017_00196
crossref_primary_10_1016_j_jid_2019_06_124
crossref_primary_10_1093_nar_gkz761
crossref_primary_10_1126_scisignal_abj4743
crossref_primary_10_3191_thermalmed_40_17
crossref_primary_10_1074_jbc_RA118_005801
crossref_primary_10_26508_lsa_202101239
Cites_doi 10.1084/jem.84.1.51
10.1083/jcb.91.3.293s
10.1073/pnas.97.3.1014
10.1006/abio.1997.2453
10.1042/bj0500174
10.1128/MCB.26.8.2947-2954.2006
10.1038/nprot.2006.273
10.1038/sj.onc.1209906
10.1177/12.5.359
10.1042/bj0600604
10.1084/jem.84.1.61
10.1242/jcs.114.19.3455
10.1016/S0021-9258(17)34912-8
10.1038/227680a0
ContentType Journal Article
Copyright COPYRIGHT 2010 BioMed Central Ltd.
2010 Riabowol et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2010 Riabowol et al; licensee BioMed Central Ltd. 2010 Riabowol et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2010 BioMed Central Ltd.
– notice: 2010 Riabowol et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2010 Riabowol et al; licensee BioMed Central Ltd. 2010 Riabowol et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
NPM
IOV
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/1756-0500-3-294
DatabaseName CrossRef
PubMed
Gale in Context: Opposing Viewpoints
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database


PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1756-0500
EndPage 294
ExternalDocumentID oai_doaj_org_article_f457f27c7fd94f8f90e5016f5cf0a46c
PMC2993727
oai_biomedcentral_com_1756_0500_3_294
2504567711
A243075515
21067583
10_1186_1756_0500_3_294
Genre Journal Article
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5GY
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CITATION
CS3
DIK
E3Z
EBLON
EBS
EJD
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
IOV
IPNFZ
ITC
KQ8
LK8
M1P
M48
M7P
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
~8M
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
-A0
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
5PM
PUEGO
ID FETCH-LOGICAL-b6264-3ea437cc33230720b454d7b280cca3d83a303c43d7d9dbe455196fb295b36c463
IEDL.DBID RBZ
ISSN 1756-0500
IngestDate Wed Aug 27 01:29:48 EDT 2025
Thu Aug 21 18:19:26 EDT 2025
Wed May 22 07:10:33 EDT 2024
Mon Jul 21 10:57:47 EDT 2025
Fri Jul 25 19:05:09 EDT 2025
Tue Jun 17 21:27:50 EDT 2025
Tue Jun 10 20:36:07 EDT 2025
Fri Jun 27 04:03:48 EDT 2025
Mon Jul 21 05:52:03 EDT 2025
Thu Apr 24 22:59:49 EDT 2025
Tue Jul 01 03:33:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b6264-3ea437cc33230720b454d7b280cca3d83a303c43d7d9dbe455196fb295b36c463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1756-0500-3-294
PMID 21067583
PQID 902433935
PQPubID 55247
ParticipantIDs doaj_primary_oai_doaj_org_article_f457f27c7fd94f8f90e5016f5cf0a46c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2993727
biomedcentral_primary_oai_biomedcentral_com_1756_0500_3_294
proquest_miscellaneous_815551873
proquest_journals_902433935
gale_infotracmisc_A243075515
gale_infotracacademiconefile_A243075515
gale_incontextgauss_IOV_A243075515
pubmed_primary_21067583
crossref_primary_10_1186_1756_0500_3_294
crossref_citationtrail_10_1186_1756_0500_3_294
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20101110
PublicationDateYYYYMMDD 2010-11-10
PublicationDate_xml – month: 11
  year: 2010
  text: 20101110
  day: 10
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC research notes
PublicationTitleAlternate BMC Res Notes
PublicationYear 2010
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References GH Hogeboom (698_CR3) 1948
Y Takeda (698_CR14) 2007; 26
UK Laemmli (698_CR12) 1970; 227
TT Huang (698_CR13) 2000; 97
J Berthet (698_CR4) 1951; 50
B Cox (698_CR9) 2006; 1
B Fleischer (698_CR11) 1978; 253
A Claude (698_CR2) 1946; 84
WC Hymer (698_CR10) 1964; 12
A Claude (698_CR1) 1946; 84
M Scott (698_CR17) 2001; 114
C de Duve (698_CR5) 1955; 60
M Bronfman (698_CR8) 1998; 255
M Kihlmark (698_CR16) 1998
G Blobel (698_CR6) 1966
C de Duve (698_CR7) 1981; 91
W Gong (698_CR15) 2006; 26
References_xml – volume: 84
  start-page: 51
  year: 1946
  ident: 698_CR1
  publication-title: J Exp Med
  doi: 10.1084/jem.84.1.51
– volume: 91
  start-page: 293s
  year: 1981
  ident: 698_CR7
  publication-title: J Cell Biol
  doi: 10.1083/jcb.91.3.293s
– start-page: 1662
  volume-title: Nuclei from rat liver: isolation method that combines purity with high yield. Science
  year: 1966
  ident: 698_CR6
– volume: 97
  start-page: 1014
  year: 2000
  ident: 698_CR13
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.3.1014
– volume: 255
  start-page: 252
  year: 1998
  ident: 698_CR8
  publication-title: Anal Biochem
  doi: 10.1006/abio.1997.2453
– volume: 50
  start-page: 174
  year: 1951
  ident: 698_CR4
  publication-title: Biochem J
  doi: 10.1042/bj0500174
– volume: 26
  start-page: 2947
  year: 2006
  ident: 698_CR15
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.26.8.2947-2954.2006
– start-page: 152
  volume-title: Cell Biology, a laboratory handbook
  year: 1998
  ident: 698_CR16
– volume-title: J Biol Chem
  year: 1948
  ident: 698_CR3
– volume: 1
  start-page: 1872
  year: 2006
  ident: 698_CR9
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2006.273
– volume: 26
  start-page: 1201
  year: 2007
  ident: 698_CR14
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209906
– volume: 12
  start-page: 359
  year: 1964
  ident: 698_CR10
  publication-title: J Histochem Cytochem
  doi: 10.1177/12.5.359
– volume: 60
  start-page: 604
  year: 1955
  ident: 698_CR5
  publication-title: Biochem J
  doi: 10.1042/bj0600604
– volume: 84
  start-page: 61
  year: 1946
  ident: 698_CR2
  publication-title: J Exp Med
  doi: 10.1084/jem.84.1.61
– volume: 114
  start-page: 3455
  year: 2001
  ident: 698_CR17
  publication-title: J Cell Sci
  doi: 10.1242/jcs.114.19.3455
– volume: 253
  start-page: 1632
  year: 1978
  ident: 698_CR11
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)34912-8
– volume: 227
  start-page: 680
  year: 1970
  ident: 698_CR12
  publication-title: Nature
  doi: 10.1038/227680a0
SSID ssj0061881
Score 2.4214983
Snippet The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation...
Background The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following...
Abstract Background: The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event...
BACKGROUND: The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following...
Abstract Background The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 294
SubjectTerms Breast cancer
Cell fractionation
Cold
Fractionation
Life sciences
Medical research
Membranes
Methods
Proteins
Proteolysis
Short Report
Sucrose
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwRv11bZRFBH1ybzccmq0-ntFTBD8RK30I-a6HuSe8O8b93Jrt3XCzii6-ZZDf7yyQzs0x-Q8iT0CMLmO2aEJhtRIi-sW2gTQrOCmZBhTz-0H__oTs6Fu9O5MlWqS_MCRvpgUfg9pOQKjHlVQq9SDr1NEpwU5L0iVrReTx9weatg6nxDO5ancuTgm2EeFlSOpH6tLrb37Q1WMTsz4vu54V9yjT-lw_rLWtVZlJumabDG-T65FPWs_FbbpIrcbhFro5VJn_dJs8_H8w-vaxn9fLnvP5-NqyWscb_9XW6GG815MWpx1rSd8jx4cGXN0fNVCShcRCLiIZHK7jynnNM6WbUCSmCckxTWBseNLdgpLzgQYU-uCjAQ-q75FgvHe-86PhdsjPMh3if1Fq6wGhwsg1JuNA7fI4Dg-X7QKmXFXlVQGV-jIQYBimqSwnsFoNAGwTacANAV-TFGljjJ_5xLINxbnIcorvLA55tBqzf9Neur3GlignlBtAkM2mS-ZcmVeQxrrNBVowB025O7WqxMG8_fjUzJgBcgA4weDp1SnOYvbfTLQZAEIm0ip57RU_Ytr4Q767VyUzHxsL0yA-Jl6UrUm-kOBAz4YY4Xy2MBgdQtlrxitwbdW_z1azN4R9IVKGVBSylZDj7linFGbqpTD34Hzjukms5xSLnSu6RneXFKj4Ez23pHuVN-htxvjy-
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELagCIkXxE3agiKEBA-EJj5iBx7QgloVJA4hivbN8hGXSiVpN7tC_HtmEu-qpoLXjL1xZsZzeMffEPLUN4gCZurCe2oK7ltXmMqXRfDWcGpAhRwe6H_8VB8e8Q9zMY-1OUMsq1zbxNFQ-97hGfleg9B5eI_0zdl5gU2j8M_V2EHjKrmGyGWo1HK-ybfqSqkqovlUqt4DRwnJsyjB7hS0-fuG-2nimEb8_stW-oKbSksoL_ikg1vkZgwm89kk_dvkStvdIden9pK_75IXX_dnX17ls3z5q89_nnSrZZvjQX0eFtN1hlEq-dRE-h45Otj_9u6wiN0RCgtJCC9YaziTzjGGtdy0tFxwLy1VJQiFecUMeCfHmZe-8bblEBo1dbC0EZbVjtfsPtnq-q59SHIlrKelt6LygVvfWPwdC57KNb4sncjI64RV-mxCwtCITZ1SQGQaGa2R0ZppYHRGXq4Zq10EHsf-F6d6TEBUfXnC882E9Zv-OfQtSipZ0PigXxzruPd04EIGKp0MvuFBhaZsBUS6QbhQGl67jDxBOWuEw-iw3ubYrIZBv__8Xc9A6SCogqAvI8_ioNDD6p2J1xeAg4iglYzcTUbCfnUJeWetTjrai0FvtDsj-YaKE7EErmv71aAVRH6iUpJl5MGke5uvptWY9wFFJlqZsCWldCc_RixxivEpldv_XdQOuTEWTYzVj7tka7lYtY8gFlvax-OO-wNa2zFk
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9VAEF60Ivgi3k1bJYigD6Yme0myishRWqpQFfFI35a9ZGvhmNRzQfvvndnkxK6t4GtmN5dvZzIzyew3hDx2ElnAdJk5R3XGXWMzXbg8885oTjWokMUP-gcfyv0pf38oDv-0AxoAXFyY2mE_qel8tvPrx-lrMPhXweDr8jl4QMiKRQ4vlIxKfplcAbdUYTuDAz7-UiiLOnQsHQcPPD8XnOCvve-zyGUFZv_z7-8zDiwurjzjrfZukOtDmJlOer24SS417S1ytW88eXqbPPu8O_n0Ip2ky59d-v24XS2bFD_hp37eb3QI65X27aXvkOne7pe3-9nQNyEzkJ7wjDWas8paxrDKm-aGC-4qQ-sclou5mmnwW5YzVznpTMMhaJKlN1QKw0rLS3aXbLRd29wnaS2Mo7kzonCeGycNnseAD7PS5bkVCXkZQaVOeo4MhazVsQQMSCHQCoFWTAHQCdlZA6vsQEmOnTFmKqQmdXl-wtNxwvpK_xz6BlcquqFwoJsfqcEqleei8rSylXeS-9rLvBEQA3thfa55aRPyCNdZIVFGi5U4R3q1WKh3H7-qCeUALkAHGDwZBvkO7t7qYWMDIIjcWtHI7WgkWLKNxFtrdVJrQ1ASKSNx_3RC0lGKE7E4rm261ULVEBOKoq5YQu71ujc-NS1CRgiSKtLKCJZY0h5_CyzjFCNXWm3-99NtkWuhtCLUSG6TjeV81TyAiG1pHgZL_A2rdzoJ
  priority: 102
  providerName: Scholars Portal
Title REAP: A two minute cell fractionation method
URI https://www.ncbi.nlm.nih.gov/pubmed/21067583
https://www.proquest.com/docview/902433935
https://www.proquest.com/docview/815551873
http://dx.doi.org/10.1186/1756-0500-3-294
https://pubmed.ncbi.nlm.nih.gov/PMC2993727
https://doaj.org/article/f457f27c7fd94f8f90e5016f5cf0a46c
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYJiReEN_rNqoIIcEDgcQfsQ1PKeo0Km1Mg6GKF8sfMUwa6bS2Qvz3nJ20zBs88dJIvXOa3J19d-75dwg9dzKggOkqdw7rnLrG5rp0Re6d0RRrMCEbNvQPj6qDUzqZsukfsOhr_-CXonoD_g1yXlbAcpFjSTfQFqaQz4XEfPR1tehWpYj9SNfMPYrPX25w7WT7eeKQIm7_zdX5intKSyev-KL9e-huH0Rmdaf1--hW0z5At7u2kr8eolcn4_r4bVZni5-z7MdZu1w0Wdigz_xld4whaiPrmkc_Qqf748_vD_K-K0JuIPmgOWk0JdxaQkINNy4MZdRxg0UByiBOEA1eyVLiuJPONBRCIll5gyUzpLK0Io_RZjtrm22UCWYcLpxhpfPUOGnCfQx4KCtdUVg2QO8SUamLDgFDBUzqlALTQwVBqyBoRRQIeoBerwSrbA84HvpenKuYeIjq5oCX6wGrX_on6yhoKnmg-AVYjurnnPKUcY-55d5J6oWXRcMgwvXM-kLTyg7Qs6BnFWAw2lBn800v53P14eMXVWMKwgXRgQxe9Ex-Bk9vdX9sASQYkLMSzr2EE-apTci7K3NS_ToxVzIAQobT0QOUralhYCh9a5vZcq4ERHysFJwM0JPO9tZvjcuY7wGFJ1aZiCWltGffI4Y4DnEp5jv_peFddCcWU8SqyD20ubhcNk8hRluYIdrgUz5EW3U9-TSB62h8dHwyjDse8HlIxTDO398cLjo1
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKEaIviJvQAhECwQOhiY8cIIQWaLVLDxBq0b6Z2I7bSiUpm11V_VH8R2ZyqaaCt75m7MQZj2e-SeYg5JnJsApYHgfG0DzgptBBHpkwsEblnOYgQho_6O_sxuN9_nkqpkvkd58Lg2GVvU5sFLWpNH4jX8-wdB7mkb4_-RVg0yj8udp30GilYqs4OwWPrX43-QTb-5zSzY29j-OgayoQKMDuPGBFzlmiNWMYAk1DxQU3iaJpCO_CTMpyUOqaM5OYzKiCA6LIYqtoJhSLNY8Z3PcKuQp2N0RfL5kO_l0cpWnUVQ-K0ngdDDM46yIEPRfQ7O-M-mPHEDb9Ai5ahXNm0Q3ZPGcDN2-SGx149UettN0iS0V5m1xr21me3SGvvm2Mvr7xR_78tPJ_HpWLeeHjjwHfztr0iUYK_LZp9V2yfymMu0eWy6osHhA_FcrQ0CgRGcuVyRTeR4Fl1JkJQy088tZhlTxpK29IrIXtUkBEJDJaIqMlk8Boj7zuGSt1V-gc-20cy8bhSeOLE14OE_on_XPoB9wpZ0HNhWp2ILuzLi0XiaWJTqzJuE1tFhYCkLUV2oY5j7VHnuI-Syy_UWJ8z0G-qGs5-fJdjkDIAcQByPTIi26QrWD1Ou_SJYCDWLHLGbnmjAT9oB3yai9OstNPtRxOk0f8gYoTMeSuLKpFLVNAmiJKE-aR-63sDW9No8bPBEriSKXDFpdSHh02tcsp4mGaPPzvop6Q6-O9nW25PdndWiUrTcBGE3m5Rpbns0XxCHDgXD1uTp9Pflz2cf8DjFxsnw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4s3SAhECwYG0WT_iBMRhS1t1KZSqalHFxcR23FZsk2ofqvrf-HHMONnVmsIJ9Rat7cT5PJ4ZZ2e-IeSlzZEFrEhja2kRc1uauOjaJHZWF5wWIEIGP-h_2Um3DvinQ3G4QH5Nc2H0qWlZbo6rGpytlfks9IFX3XBhfq6eWdfs-CxdBRMIx2KRgEaJac7bEMvt8uIcDnCjD_11WO1XlG5u7H_citsaA7EGV57HrCw4k8YwhhHRNNFccCs1zRJ4NWYzVoCON5xZaXOrSw4ORp46TXOhWWp4yuC-18h1KYTE-gl7a9-ndiDtZr5E6mxyLbHQXyb8R7L9ILCRvpTAZYMxZzHDaM4587h5h9xu_dqo1wjiXbJQVvfIjabS5cV98nZvo7f7LupF4_M6Oj2pJuMywv8MIjdsMiu8gERNPesH5OBKQHxIFqu6Kh-TKBPa0sRq0bWOa5trvI8Go2lymyRGdMj7ACp11pByKKTJDltAVhQCrRBoxRQA3SErU2CVaTnQsRTHQPmzUJZeHvBmNmD6pH92XcOVCibkf6iHR6pVA8pxIR2VRjqbc5e5PCkFON1OGJcUPDUd8gLXWSEzR4WhP0fFZDRS_a_fVI9yABegAwxet51cjZuhaDMpAEEk8wp6Lgc9QXWYoHlpKk6qVV0jlSNHJSZsd0g0a8WBGI1XlfVkpDJwQkU3k6xDHjWyN3tr2vVHUGiRgVQGsIQt1cmxpzWn6CpT-eS_Vvg5ubm7vqk-93e2l8gtH-rhYzaXyeJ4OCmfggc51s_8Ro3Ij6vWDL8BHs59hQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=REAP%3A+A+two+minute+cell+fractionation+method&rft.jtitle=BMC+research+notes&rft.au=Suzuki%2C+Keiko&rft.au=Bose%2C+Pinaki&rft.au=Leong-Quong%2C+Rebecca+YY&rft.au=Fujita%2C+Donald+J&rft.date=2010-11-10&rft.pub=BioMed+Central+Ltd&rft.issn=1756-0500&rft.eissn=1756-0500&rft.volume=3&rft.spage=294&rft_id=info:doi/10.1186%2F1756-0500-3-294&rft.externalDocID=A243075515
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-0500&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-0500&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-0500&client=summon