REAP: A two minute cell fractionation method
The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm emp...
Saved in:
Published in | BMC research notes Vol. 3; no. 1; p. 294 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
10.11.2010
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT.
We have developed a Rapid, Efficient And Practical (REAP) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNFα induced NF-κB NCPT observed in parallel by indirect immunofluorescence.
This method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions. |
---|---|
AbstractList | Background The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT. Findings We have developed a Rapid, Efficient And Practical (REAP) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNF[alpha] induced NF-[kappa]B NCPT observed in parallel by indirect immunofluorescence. Conclusions This method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions. BACKGROUND: The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT. FINDINGS: We have developed a Rapid, Efficient And Practical (REAP) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNFα induced NF-κB NCPT observed in parallel by indirect immunofluorescence. CONCLUSIONS: This method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions. Abstract Background: The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT. Findings: We have developed a R apid, E fficient A nd P ractical (REAP ) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNFα induced NF-κB NCPT observed in parallel by indirect immunofluorescence. Conclusions: This method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions. The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT. We have developed a Rapid, Efficient And Practical (REAP) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNF[alpha] induced NF-[kappa]B NCPT observed in parallel by indirect immunofluorescence. This method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions. Abstract Background The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT. Findings We have developed a Rapid, Efficient And Practical (REAP) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNFα induced NF-κB NCPT observed in parallel by indirect immunofluorescence. Conclusions This method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions. The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT. We have developed a Rapid, Efficient And Practical (REAP) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNFα induced NF-κB NCPT observed in parallel by indirect immunofluorescence. This method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions. The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT.BACKGROUNDThe translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT.We have developed a Rapid, Efficient And Practical (REAP) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNFα induced NF-κB NCPT observed in parallel by indirect immunofluorescence.FINDINGSWe have developed a Rapid, Efficient And Practical (REAP) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNFα induced NF-κB NCPT observed in parallel by indirect immunofluorescence.This method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions.CONCLUSIONSThis method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions. |
ArticleNumber | 294 |
Audience | Academic |
Author | Bose, Pinaki Suzuki, Keiko Riabowol, Karl Fujita, Donald J Leong-Quong, Rebecca YY |
AuthorAffiliation | 2 Department of Oncology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada 1 Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada |
AuthorAffiliation_xml | – name: 1 Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada – name: 2 Department of Oncology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada |
Author_xml | – sequence: 1 givenname: Keiko surname: Suzuki fullname: Suzuki, Keiko – sequence: 2 givenname: Pinaki surname: Bose fullname: Bose, Pinaki – sequence: 3 givenname: Rebecca YY surname: Leong-Quong fullname: Leong-Quong, Rebecca YY – sequence: 4 givenname: Donald J surname: Fujita fullname: Fujita, Donald J – sequence: 5 givenname: Karl surname: Riabowol fullname: Riabowol, Karl |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21067583$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kttr1TAcx4NM3EWffZOiDyLYLckvl9YH4TimHhhMRH0NaS5nObTN7MXLf2-6zsM6Ngpp-OXz-yR8-R2ivTa2DqHnBB8TUogTIrnIMcc4h5yW7BE62FX2bu330WHfbzEWpCjIE7RPCRaSF3CA3n49W315l62y4XfMmtCOg8uMq-vMd9oMIbZ6WrLGDZfRPkWPva579-zmf4S-fzz7dvo5P7_4tD5dneeVoILl4DQDaQwABSwprhhnVla0wMZosAVowGAYWGlLWznGOSmFr2jJKxCGCThC69lro96qqy40uvurog7quhC7jdLdEEztlGdceiqN9LZkvvAldhwT4bnxWDNhkuv97Loaq8ZZ49qh0_VCujxpw6XaxF-KliVIKpPgwyyoQnxAsDwxsVFT8mpKXkESsSR5ffOKLv4cXT-oJvRTzrp1cexVQXhKoZCQyJd3yG0cuzbFrUpMGUAJPEGvZmijUwah9THdbCalWiUGyySbqON7qPRZ1wSTBsmHVF80vFk0JGZwf4aNHvterS9-LNkXt3Pd5fF_tBJwMgOmi33fOb9DCFbT8N4TEr_TYcJwPX_p3aF-sO8fCYzs_Q |
CitedBy_id | crossref_primary_10_1016_j_omton_2024_200896 crossref_primary_10_1128_mBio_02161_16 crossref_primary_10_1080_15548627_2021_1922983 crossref_primary_10_1016_j_ceca_2021_102499 crossref_primary_10_1002_jbio_201500273 crossref_primary_10_1038_nchembio_2179 crossref_primary_10_1242_dmm_018648 crossref_primary_10_1007_s13277_015_3863_7 crossref_primary_10_1038_s41467_017_00578_5 crossref_primary_10_1101_pdb_top074583 crossref_primary_10_1038_s41598_023_33779_8 crossref_primary_10_1016_j_abb_2014_09_017 crossref_primary_10_1016_j_dnarep_2020_102954 crossref_primary_10_1016_j_xpro_2023_102309 crossref_primary_10_1016_j_molcel_2016_11_033 crossref_primary_10_1080_10428194_2016_1276287 crossref_primary_10_3389_fimmu_2018_00092 crossref_primary_10_1111_acel_13156 crossref_primary_10_15252_embj_2021110192 crossref_primary_10_1016_j_celrep_2019_07_063 crossref_primary_10_1016_j_jinorgbio_2016_02_027 crossref_primary_10_1016_j_virol_2017_08_025 crossref_primary_10_1158_0008_5472_CAN_18_0459 crossref_primary_10_1371_journal_ppat_1008374 crossref_primary_10_1038_s41598_018_24500_1 crossref_primary_10_1016_j_ajog_2013_11_027 crossref_primary_10_1093_nar_gkad369 crossref_primary_10_1016_j_jbc_2021_100959 crossref_primary_10_3389_fendo_2022_923925 crossref_primary_10_4161_15384101_2014_967094 crossref_primary_10_1002_chem_202100603 crossref_primary_10_1016_j_virol_2017_12_021 crossref_primary_10_1038_s41586_023_06142_0 crossref_primary_10_1186_s13072_019_0305_6 crossref_primary_10_1007_s00018_020_03596_7 crossref_primary_10_15252_embj_2019102209 crossref_primary_10_3390_v11080711 crossref_primary_10_1007_s00018_022_04372_5 crossref_primary_10_1038_s41417_024_00748_w crossref_primary_10_1038_s42003_022_03989_3 crossref_primary_10_1007_s00018_022_04274_6 crossref_primary_10_1016_j_chom_2015_02_021 crossref_primary_10_15252_embr_202255326 crossref_primary_10_1371_journal_pone_0200487 crossref_primary_10_1016_j_isci_2024_111403 crossref_primary_10_1016_j_bbadis_2018_01_005 crossref_primary_10_3390_cells10061335 crossref_primary_10_1016_j_jaci_2020_12_637 crossref_primary_10_1007_s11033_020_05267_z crossref_primary_10_1016_j_virol_2016_10_025 crossref_primary_10_1101_pdb_prot083733 crossref_primary_10_1242_dev_086157 crossref_primary_10_1016_j_bioorg_2020_104232 crossref_primary_10_1038_s41419_021_04082_z crossref_primary_10_1016_j_celrep_2022_110946 crossref_primary_10_3390_molecules25061336 crossref_primary_10_1111_cge_13086 crossref_primary_10_1038_s42003_021_02983_5 crossref_primary_10_1186_1743_422X_10_243 crossref_primary_10_3390_cells10040759 crossref_primary_10_1016_j_celrep_2019_11_067 crossref_primary_10_1371_journal_ppat_1011640 crossref_primary_10_1073_pnas_1619582114 crossref_primary_10_1124_jpet_112_193003 crossref_primary_10_1371_journal_ppat_1006171 crossref_primary_10_3389_fimmu_2023_1154108 crossref_primary_10_3390_cancers15051495 crossref_primary_10_1016_j_bpj_2017_01_022 crossref_primary_10_1038_s44321_024_00050_0 crossref_primary_10_1016_j_jbc_2024_107153 crossref_primary_10_1038_ni_3853 crossref_primary_10_1038_s41467_023_36232_6 crossref_primary_10_2139_ssrn_4052958 crossref_primary_10_1242_jcs_223453 crossref_primary_10_1128_JVI_01856_10 crossref_primary_10_1038_s41586_020_2446_y crossref_primary_10_1016_j_bbamcr_2021_119114 crossref_primary_10_1021_acsomega_3c05144 crossref_primary_10_1093_braincomms_fcaa138 crossref_primary_10_1016_j_cell_2023_09_011 crossref_primary_10_7554_eLife_89951 crossref_primary_10_1089_scd_2013_0318 crossref_primary_10_15252_embj_2022111719 crossref_primary_10_1128_mBio_01190_20 crossref_primary_10_1038_s42003_022_03049_w crossref_primary_10_1186_s13578_023_01164_7 crossref_primary_10_3390_v10070359 crossref_primary_10_1002_mds_27994 crossref_primary_10_1016_j_ymeth_2019_03_028 crossref_primary_10_1152_ajpcell_00302_2015 crossref_primary_10_1080_10715762_2017_1353689 crossref_primary_10_1016_j_ab_2023_115445 crossref_primary_10_3390_jcm10112384 crossref_primary_10_1093_nar_gkab896 crossref_primary_10_1371_journal_ppat_1011633 crossref_primary_10_1016_j_omtm_2023_101163 crossref_primary_10_1158_0008_5472_CAN_14_0978 crossref_primary_10_1371_journal_ppat_1006838 crossref_primary_10_3390_ijms21093195 crossref_primary_10_1002_pmic_202100137 crossref_primary_10_1080_15476286_2021_1881291 crossref_primary_10_1186_s12885_015_1645_7 crossref_primary_10_1016_j_stemcr_2019_04_011 crossref_primary_10_1128_JVI_01790_12 crossref_primary_10_1096_fj_201901606R crossref_primary_10_18632_oncotarget_9719 crossref_primary_10_3390_cells9081804 crossref_primary_10_1016_j_bbrc_2021_11_058 crossref_primary_10_1007_s00018_012_1255_3 crossref_primary_10_1038_onc_2017_260 crossref_primary_10_1128_JVI_01244_21 crossref_primary_10_1128_jvi_01325_23 crossref_primary_10_3390_ijms24098084 crossref_primary_10_1038_ncomms12707 crossref_primary_10_1186_s11658_024_00586_6 crossref_primary_10_1186_s12860_020_00258_1 crossref_primary_10_1186_s12964_018_0307_1 crossref_primary_10_7554_eLife_69705 crossref_primary_10_1111_jnc_14131 crossref_primary_10_1111_jcmm_17584 crossref_primary_10_1038_srep40127 crossref_primary_10_1038_s41467_024_47623_8 crossref_primary_10_1038_s41467_018_04849_7 crossref_primary_10_1016_j_celrep_2019_11_018 crossref_primary_10_1186_s12885_020_07526_5 crossref_primary_10_4049_jimmunol_1800063 crossref_primary_10_1016_j_jconrel_2024_07_025 crossref_primary_10_26508_lsa_202302133 crossref_primary_10_1016_j_mce_2014_01_004 crossref_primary_10_1186_s12974_019_1575_4 crossref_primary_10_3390_biomedicines10050977 crossref_primary_10_1021_acs_molpharmaceut_6b00008 crossref_primary_10_1016_j_virusres_2020_198153 crossref_primary_10_1186_s40659_023_00429_2 crossref_primary_10_2337_db16_1009 crossref_primary_10_1186_s13059_025_03490_0 crossref_primary_10_1038_s41388_022_02314_w crossref_primary_10_15252_embr_201642682 crossref_primary_10_1093_jn_nxab251 crossref_primary_10_1128_mBio_01316_21 crossref_primary_10_1161_ATVBAHA_123_319925 crossref_primary_10_3390_cancers12010238 crossref_primary_10_1038_cdd_2013_155 crossref_primary_10_18632_oncotarget_17648 crossref_primary_10_1038_s41419_019_2122_z crossref_primary_10_1093_nar_gkab088 crossref_primary_10_1002_dvg_22870 crossref_primary_10_1038_ejhg_2016_5 crossref_primary_10_1158_1541_7786_MCR_18_0409 crossref_primary_10_1371_journal_pone_0024713 crossref_primary_10_1016_j_dib_2021_107609 crossref_primary_10_1073_pnas_1418896111 crossref_primary_10_1371_journal_ppat_1006382 crossref_primary_10_1016_j_jviromet_2020_113909 crossref_primary_10_1096_fj_201801315R crossref_primary_10_1371_journal_pone_0076593 crossref_primary_10_1093_nar_gkad941 crossref_primary_10_3389_fonc_2022_954634 crossref_primary_10_3892_ijmm_2020_4591 crossref_primary_10_3390_membranes12040389 crossref_primary_10_3390_cells11142149 crossref_primary_10_1371_journal_ppat_1011041 crossref_primary_10_3389_fimmu_2021_664218 crossref_primary_10_1093_nar_gkv1058 crossref_primary_10_1111_jcmm_16593 crossref_primary_10_1016_j_bbrc_2019_08_081 crossref_primary_10_1016_j_xpro_2023_102697 crossref_primary_10_1093_nar_gkx180 crossref_primary_10_3389_fcell_2022_895433 crossref_primary_10_1080_15548627_2016_1210368 crossref_primary_10_1093_jncics_pky054 crossref_primary_10_1074_jbc_M116_725739 crossref_primary_10_1128_MCB_00397_14 crossref_primary_10_1038_srep29006 crossref_primary_10_1530_JOE_18_0282 crossref_primary_10_1021_acs_biochem_9b00225 crossref_primary_10_1007_s11033_019_04735_5 crossref_primary_10_1093_cvr_cvt275 crossref_primary_10_1038_s41598_019_45352_3 crossref_primary_10_7554_eLife_58342 crossref_primary_10_1073_pnas_2219755120 crossref_primary_10_2139_ssrn_4190671 crossref_primary_10_1016_j_bcp_2020_114190 crossref_primary_10_1038_s41588_023_01592_8 crossref_primary_10_1073_pnas_2110348119 crossref_primary_10_1016_j_yjmcc_2019_01_028 crossref_primary_10_1016_j_antiviral_2021_105232 crossref_primary_10_1038_s41598_017_17591_9 crossref_primary_10_1371_journal_pgen_1011495 crossref_primary_10_1371_journal_pone_0036137 crossref_primary_10_1186_s13578_016_0105_7 crossref_primary_10_7554_eLife_82450 crossref_primary_10_1038_s41598_017_06740_9 crossref_primary_10_1016_j_isci_2024_109152 crossref_primary_10_3892_ijo_2015_3020 crossref_primary_10_3390_biomedicines8090361 crossref_primary_10_3390_v14051021 crossref_primary_10_15252_embj_201798714 crossref_primary_10_1016_j_bbamcr_2020_118945 crossref_primary_10_3892_mmr_2016_4935 crossref_primary_10_1242_jcs_242297 crossref_primary_10_1016_j_ajpath_2015_05_019 crossref_primary_10_1074_jbc_M117_818526 crossref_primary_10_1186_s12977_018_0425_2 crossref_primary_10_1016_j_virol_2018_01_031 crossref_primary_10_1002_pro_5170 crossref_primary_10_1186_s13058_014_0476_9 crossref_primary_10_1186_s13058_021_01430_x crossref_primary_10_1186_s12935_020_1141_2 crossref_primary_10_1016_j_celrep_2022_110776 crossref_primary_10_1016_j_freeradbiomed_2016_04_024 crossref_primary_10_1038_cdd_2012_11 crossref_primary_10_1002_humu_23345 crossref_primary_10_1242_jcs_263659 crossref_primary_10_1515_hsz_2023_0213 crossref_primary_10_1093_hmg_ddt509 crossref_primary_10_1038_s41598_019_44372_3 crossref_primary_10_1261_rna_079426_122 crossref_primary_10_1371_journal_ppat_1005260 crossref_primary_10_3389_fnmol_2023_1133271 crossref_primary_10_1038_s41418_019_0393_7 crossref_primary_10_1016_j_neuron_2019_06_003 crossref_primary_10_1038_s41592_022_01572_6 crossref_primary_10_1074_jbc_M113_507798 crossref_primary_10_1016_j_gene_2017_12_019 crossref_primary_10_1002_1878_0261_13111 crossref_primary_10_1042_BJ20111268 crossref_primary_10_1161_CIRCRESAHA_119_315932 crossref_primary_10_1097_IGC_0000000000001105 crossref_primary_10_1038_cddis_2017_476 crossref_primary_10_15252_embj_2019103922 crossref_primary_10_1016_j_trsl_2021_02_004 crossref_primary_10_1016_j_isci_2021_103538 crossref_primary_10_1371_journal_pbio_3002368 crossref_primary_10_1007_s12079_017_0402_x crossref_primary_10_1016_j_bbagrm_2022_194801 crossref_primary_10_1016_j_bbrc_2016_12_077 crossref_primary_10_1016_j_intimp_2020_106346 crossref_primary_10_1038_s41421_018_0022_5 crossref_primary_10_1371_journal_pgen_1005599 crossref_primary_10_1016_j_celrep_2024_114421 crossref_primary_10_1128_mBio_01754_17 crossref_primary_10_1016_j_celrep_2018_11_066 crossref_primary_10_7554_eLife_86273 crossref_primary_10_1016_j_molcel_2024_09_030 crossref_primary_10_1371_journal_pone_0182584 crossref_primary_10_3390_cells7070080 crossref_primary_10_1016_j_scitotenv_2024_173453 crossref_primary_10_1016_j_canlet_2019_03_047 crossref_primary_10_1016_j_bbrep_2017_09_006 crossref_primary_10_3748_wjg_v21_i4_1125 crossref_primary_10_1016_j_celrep_2021_108976 crossref_primary_10_1371_journal_pone_0102433 crossref_primary_10_1101_gr_229922_117 crossref_primary_10_1371_journal_pone_0084673 crossref_primary_10_1128_mBio_00944_17 crossref_primary_10_1016_j_molonc_2014_09_008 crossref_primary_10_1002_pmic_201600248 crossref_primary_10_1074_jbc_M114_589267 crossref_primary_10_1021_acs_jproteome_5b00196 crossref_primary_10_1016_j_ccell_2020_02_003 crossref_primary_10_1016_j_devcel_2022_10_008 crossref_primary_10_1016_j_vetmic_2015_03_023 crossref_primary_10_18632_oncotarget_10121 crossref_primary_10_1007_s12038_018_9736_7 crossref_primary_10_1371_journal_ppat_1010824 crossref_primary_10_1016_j_ymgmr_2015_07_005 crossref_primary_10_1016_j_cell_2016_11_055 crossref_primary_10_1016_j_redox_2025_103549 crossref_primary_10_1080_10428194_2020_1861270 crossref_primary_10_1186_s12931_021_01865_y crossref_primary_10_1038_s41598_020_57781_6 crossref_primary_10_1186_s11658_024_00533_5 crossref_primary_10_1371_journal_pone_0296408 crossref_primary_10_1371_journal_pone_0230874 crossref_primary_10_1038_s41596_019_0229_4 crossref_primary_10_3390_ijms22052607 crossref_primary_10_1016_j_cell_2018_03_050 crossref_primary_10_1021_acs_jproteome_3c00598 crossref_primary_10_3892_ijo_2019_4844 crossref_primary_10_1177_1010428317694310 crossref_primary_10_3390_cells10040852 crossref_primary_10_1128_mbio_01556_23 crossref_primary_10_1002_jbio_201800091 crossref_primary_10_1101_gad_350597_123 crossref_primary_10_1016_j_freeradbiomed_2020_08_016 crossref_primary_10_1093_brain_awx039 crossref_primary_10_1016_j_matbio_2015_02_001 crossref_primary_10_1016_j_phyplu_2022_100301 crossref_primary_10_1038_s41467_024_47423_0 crossref_primary_10_1016_j_bbrc_2018_05_203 crossref_primary_10_1016_j_stemcr_2017_06_016 crossref_primary_10_1093_nar_gkac358 crossref_primary_10_1016_j_devcel_2015_08_014 crossref_primary_10_1371_journal_pone_0060943 crossref_primary_10_1021_acs_biochem_5b01141 crossref_primary_10_1242_bio_059352 crossref_primary_10_1016_j_molcel_2019_01_007 crossref_primary_10_3390_pr9122223 crossref_primary_10_1099_vir_0_046649_0 crossref_primary_10_3390_ijms22062893 crossref_primary_10_1007_s10930_022_10054_9 crossref_primary_10_1128_mbio_01209_24 crossref_primary_10_1186_s12858_016_0074_9 crossref_primary_10_1038_ncomms11464 crossref_primary_10_1016_j_bcp_2023_115703 crossref_primary_10_1016_j_celrep_2022_111268 crossref_primary_10_1128_MCB_00292_16 crossref_primary_10_1007_s10689_020_00163_8 crossref_primary_10_1186_s13046_019_1385_7 crossref_primary_10_1371_journal_pone_0101529 crossref_primary_10_1016_j_ymthe_2018_11_015 crossref_primary_10_3389_fonc_2022_775541 crossref_primary_10_1371_journal_pone_0172125 crossref_primary_10_1016_j_neuron_2016_11_032 crossref_primary_10_1038_s41467_023_36298_2 crossref_primary_10_1016_j_isci_2021_103212 crossref_primary_10_1016_j_chembiol_2023_10_008 crossref_primary_10_1080_15384101_2016_1211214 crossref_primary_10_1128_JVI_00159_13 crossref_primary_10_1074_jbc_RA117_000727 crossref_primary_10_1186_s40478_019_0658_x crossref_primary_10_1016_j_cell_2018_07_022 crossref_primary_10_7554_eLife_81755 crossref_primary_10_1016_j_chembiol_2022_02_006 crossref_primary_10_1038_srep35758 crossref_primary_10_1016_j_bbadis_2011_10_013 crossref_primary_10_1093_hmg_ddy298 crossref_primary_10_1038_s42003_023_04501_1 crossref_primary_10_1186_s12964_021_00785_0 crossref_primary_10_1016_j_crmeth_2023_100637 crossref_primary_10_3390_cells13060527 crossref_primary_10_1038_s41586_023_05904_0 crossref_primary_10_18632_oncotarget_12109 crossref_primary_10_1093_mtomcs_mfae006 crossref_primary_10_3389_fnmol_2017_00196 crossref_primary_10_1016_j_jid_2019_06_124 crossref_primary_10_1093_nar_gkz761 crossref_primary_10_1126_scisignal_abj4743 crossref_primary_10_3191_thermalmed_40_17 crossref_primary_10_1074_jbc_RA118_005801 crossref_primary_10_26508_lsa_202101239 |
Cites_doi | 10.1084/jem.84.1.51 10.1083/jcb.91.3.293s 10.1073/pnas.97.3.1014 10.1006/abio.1997.2453 10.1042/bj0500174 10.1128/MCB.26.8.2947-2954.2006 10.1038/nprot.2006.273 10.1038/sj.onc.1209906 10.1177/12.5.359 10.1042/bj0600604 10.1084/jem.84.1.61 10.1242/jcs.114.19.3455 10.1016/S0021-9258(17)34912-8 10.1038/227680a0 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2010 BioMed Central Ltd. 2010 Riabowol et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2010 Riabowol et al; licensee BioMed Central Ltd. 2010 Riabowol et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2010 BioMed Central Ltd. – notice: 2010 Riabowol et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2010 Riabowol et al; licensee BioMed Central Ltd. 2010 Riabowol et al; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION NPM IOV 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/1756-0500-3-294 |
DatabaseName | CrossRef PubMed Gale in Context: Opposing Viewpoints ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1756-0500 |
EndPage | 294 |
ExternalDocumentID | oai_doaj_org_article_f457f27c7fd94f8f90e5016f5cf0a46c PMC2993727 oai_biomedcentral_com_1756_0500_3_294 2504567711 A243075515 21067583 10_1186_1756_0500_3_294 |
Genre | Journal Article |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5GY 5VS 6J9 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CITATION CS3 DIK E3Z EBLON EBS EJD EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR IOV IPNFZ ITC KQ8 LK8 M1P M48 M7P MK0 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP ~8M NPM PJZUB PPXIY PQGLB PMFND 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 -A0 ABVAZ ACRMQ ADINQ AFGXO AFNRJ C24 5PM PUEGO |
ID | FETCH-LOGICAL-b6264-3ea437cc33230720b454d7b280cca3d83a303c43d7d9dbe455196fb295b36c463 |
IEDL.DBID | RBZ |
ISSN | 1756-0500 |
IngestDate | Wed Aug 27 01:29:48 EDT 2025 Thu Aug 21 18:19:26 EDT 2025 Wed May 22 07:10:33 EDT 2024 Mon Jul 21 10:57:47 EDT 2025 Fri Jul 25 19:05:09 EDT 2025 Tue Jun 17 21:27:50 EDT 2025 Tue Jun 10 20:36:07 EDT 2025 Fri Jun 27 04:03:48 EDT 2025 Mon Jul 21 05:52:03 EDT 2025 Thu Apr 24 22:59:49 EDT 2025 Tue Jul 01 03:33:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b6264-3ea437cc33230720b454d7b280cca3d83a303c43d7d9dbe455196fb295b36c463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1186/1756-0500-3-294 |
PMID | 21067583 |
PQID | 902433935 |
PQPubID | 55247 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f457f27c7fd94f8f90e5016f5cf0a46c pubmedcentral_primary_oai_pubmedcentral_nih_gov_2993727 biomedcentral_primary_oai_biomedcentral_com_1756_0500_3_294 proquest_miscellaneous_815551873 proquest_journals_902433935 gale_infotracmisc_A243075515 gale_infotracacademiconefile_A243075515 gale_incontextgauss_IOV_A243075515 pubmed_primary_21067583 crossref_primary_10_1186_1756_0500_3_294 crossref_citationtrail_10_1186_1756_0500_3_294 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20101110 |
PublicationDateYYYYMMDD | 2010-11-10 |
PublicationDate_xml | – month: 11 year: 2010 text: 20101110 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC research notes |
PublicationTitleAlternate | BMC Res Notes |
PublicationYear | 2010 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | GH Hogeboom (698_CR3) 1948 Y Takeda (698_CR14) 2007; 26 UK Laemmli (698_CR12) 1970; 227 TT Huang (698_CR13) 2000; 97 J Berthet (698_CR4) 1951; 50 B Cox (698_CR9) 2006; 1 B Fleischer (698_CR11) 1978; 253 A Claude (698_CR2) 1946; 84 WC Hymer (698_CR10) 1964; 12 A Claude (698_CR1) 1946; 84 M Scott (698_CR17) 2001; 114 C de Duve (698_CR5) 1955; 60 M Bronfman (698_CR8) 1998; 255 M Kihlmark (698_CR16) 1998 G Blobel (698_CR6) 1966 C de Duve (698_CR7) 1981; 91 W Gong (698_CR15) 2006; 26 |
References_xml | – volume: 84 start-page: 51 year: 1946 ident: 698_CR1 publication-title: J Exp Med doi: 10.1084/jem.84.1.51 – volume: 91 start-page: 293s year: 1981 ident: 698_CR7 publication-title: J Cell Biol doi: 10.1083/jcb.91.3.293s – start-page: 1662 volume-title: Nuclei from rat liver: isolation method that combines purity with high yield. Science year: 1966 ident: 698_CR6 – volume: 97 start-page: 1014 year: 2000 ident: 698_CR13 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.3.1014 – volume: 255 start-page: 252 year: 1998 ident: 698_CR8 publication-title: Anal Biochem doi: 10.1006/abio.1997.2453 – volume: 50 start-page: 174 year: 1951 ident: 698_CR4 publication-title: Biochem J doi: 10.1042/bj0500174 – volume: 26 start-page: 2947 year: 2006 ident: 698_CR15 publication-title: Mol Cell Biol doi: 10.1128/MCB.26.8.2947-2954.2006 – start-page: 152 volume-title: Cell Biology, a laboratory handbook year: 1998 ident: 698_CR16 – volume-title: J Biol Chem year: 1948 ident: 698_CR3 – volume: 1 start-page: 1872 year: 2006 ident: 698_CR9 publication-title: Nat Protoc doi: 10.1038/nprot.2006.273 – volume: 26 start-page: 1201 year: 2007 ident: 698_CR14 publication-title: Oncogene doi: 10.1038/sj.onc.1209906 – volume: 12 start-page: 359 year: 1964 ident: 698_CR10 publication-title: J Histochem Cytochem doi: 10.1177/12.5.359 – volume: 60 start-page: 604 year: 1955 ident: 698_CR5 publication-title: Biochem J doi: 10.1042/bj0600604 – volume: 84 start-page: 61 year: 1946 ident: 698_CR2 publication-title: J Exp Med doi: 10.1084/jem.84.1.61 – volume: 114 start-page: 3455 year: 2001 ident: 698_CR17 publication-title: J Cell Sci doi: 10.1242/jcs.114.19.3455 – volume: 253 start-page: 1632 year: 1978 ident: 698_CR11 publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)34912-8 – volume: 227 start-page: 680 year: 1970 ident: 698_CR12 publication-title: Nature doi: 10.1038/227680a0 |
SSID | ssj0061881 |
Score | 2.4214983 |
Snippet | The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation... Background The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following... Abstract Background: The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event... BACKGROUND: The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following... Abstract Background The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event... |
SourceID | doaj pubmedcentral biomedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 294 |
SubjectTerms | Breast cancer Cell fractionation Cold Fractionation Life sciences Medical research Membranes Methods Proteins Proteolysis Short Report Sucrose |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwRv11bZRFBH1ybzccmq0-ntFTBD8RK30I-a6HuSe8O8b93Jrt3XCzii6-ZZDf7yyQzs0x-Q8iT0CMLmO2aEJhtRIi-sW2gTQrOCmZBhTz-0H__oTs6Fu9O5MlWqS_MCRvpgUfg9pOQKjHlVQq9SDr1NEpwU5L0iVrReTx9weatg6nxDO5ancuTgm2EeFlSOpH6tLrb37Q1WMTsz4vu54V9yjT-lw_rLWtVZlJumabDG-T65FPWs_FbbpIrcbhFro5VJn_dJs8_H8w-vaxn9fLnvP5-NqyWscb_9XW6GG815MWpx1rSd8jx4cGXN0fNVCShcRCLiIZHK7jynnNM6WbUCSmCckxTWBseNLdgpLzgQYU-uCjAQ-q75FgvHe-86PhdsjPMh3if1Fq6wGhwsg1JuNA7fI4Dg-X7QKmXFXlVQGV-jIQYBimqSwnsFoNAGwTacANAV-TFGljjJ_5xLINxbnIcorvLA55tBqzf9Neur3GlignlBtAkM2mS-ZcmVeQxrrNBVowB025O7WqxMG8_fjUzJgBcgA4weDp1SnOYvbfTLQZAEIm0ip57RU_Ytr4Q767VyUzHxsL0yA-Jl6UrUm-kOBAz4YY4Xy2MBgdQtlrxitwbdW_z1azN4R9IVKGVBSylZDj7linFGbqpTD34Hzjukms5xSLnSu6RneXFKj4Ez23pHuVN-htxvjy- priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELagCIkXxE3agiKEBA-EJj5iBx7QgloVJA4hivbN8hGXSiVpN7tC_HtmEu-qpoLXjL1xZsZzeMffEPLUN4gCZurCe2oK7ltXmMqXRfDWcGpAhRwe6H_8VB8e8Q9zMY-1OUMsq1zbxNFQ-97hGfleg9B5eI_0zdl5gU2j8M_V2EHjKrmGyGWo1HK-ybfqSqkqovlUqt4DRwnJsyjB7hS0-fuG-2nimEb8_stW-oKbSksoL_ikg1vkZgwm89kk_dvkStvdIden9pK_75IXX_dnX17ls3z5q89_nnSrZZvjQX0eFtN1hlEq-dRE-h45Otj_9u6wiN0RCgtJCC9YaziTzjGGtdy0tFxwLy1VJQiFecUMeCfHmZe-8bblEBo1dbC0EZbVjtfsPtnq-q59SHIlrKelt6LygVvfWPwdC57KNb4sncjI64RV-mxCwtCITZ1SQGQaGa2R0ZppYHRGXq4Zq10EHsf-F6d6TEBUfXnC882E9Zv-OfQtSipZ0PigXxzruPd04EIGKp0MvuFBhaZsBUS6QbhQGl67jDxBOWuEw-iw3ubYrIZBv__8Xc9A6SCogqAvI8_ioNDD6p2J1xeAg4iglYzcTUbCfnUJeWetTjrai0FvtDsj-YaKE7EErmv71aAVRH6iUpJl5MGke5uvptWY9wFFJlqZsCWldCc_RixxivEpldv_XdQOuTEWTYzVj7tka7lYtY8gFlvax-OO-wNa2zFk priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9VAEF60Ivgi3k1bJYigD6Yme0myishRWqpQFfFI35a9ZGvhmNRzQfvvndnkxK6t4GtmN5dvZzIzyew3hDx2ElnAdJk5R3XGXWMzXbg8885oTjWokMUP-gcfyv0pf38oDv-0AxoAXFyY2mE_qel8tvPrx-lrMPhXweDr8jl4QMiKRQ4vlIxKfplcAbdUYTuDAz7-UiiLOnQsHQcPPD8XnOCvve-zyGUFZv_z7-8zDiwurjzjrfZukOtDmJlOer24SS417S1ytW88eXqbPPu8O_n0Ip2ky59d-v24XS2bFD_hp37eb3QI65X27aXvkOne7pe3-9nQNyEzkJ7wjDWas8paxrDKm-aGC-4qQ-sclou5mmnwW5YzVznpTMMhaJKlN1QKw0rLS3aXbLRd29wnaS2Mo7kzonCeGycNnseAD7PS5bkVCXkZQaVOeo4MhazVsQQMSCHQCoFWTAHQCdlZA6vsQEmOnTFmKqQmdXl-wtNxwvpK_xz6BlcquqFwoJsfqcEqleei8rSylXeS-9rLvBEQA3thfa55aRPyCNdZIVFGi5U4R3q1WKh3H7-qCeUALkAHGDwZBvkO7t7qYWMDIIjcWtHI7WgkWLKNxFtrdVJrQ1ASKSNx_3RC0lGKE7E4rm261ULVEBOKoq5YQu71ujc-NS1CRgiSKtLKCJZY0h5_CyzjFCNXWm3-99NtkWuhtCLUSG6TjeV81TyAiG1pHgZL_A2rdzoJ priority: 102 providerName: Scholars Portal |
Title | REAP: A two minute cell fractionation method |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21067583 https://www.proquest.com/docview/902433935 https://www.proquest.com/docview/815551873 http://dx.doi.org/10.1186/1756-0500-3-294 https://pubmed.ncbi.nlm.nih.gov/PMC2993727 https://doaj.org/article/f457f27c7fd94f8f90e5016f5cf0a46c |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYJiReEN_rNqoIIcEDgcQfsQ1PKeo0Km1Mg6GKF8sfMUwa6bS2Qvz3nJ20zBs88dJIvXOa3J19d-75dwg9dzKggOkqdw7rnLrG5rp0Re6d0RRrMCEbNvQPj6qDUzqZsukfsOhr_-CXonoD_g1yXlbAcpFjSTfQFqaQz4XEfPR1tehWpYj9SNfMPYrPX25w7WT7eeKQIm7_zdX5intKSyev-KL9e-huH0Rmdaf1--hW0z5At7u2kr8eolcn4_r4bVZni5-z7MdZu1w0Wdigz_xld4whaiPrmkc_Qqf748_vD_K-K0JuIPmgOWk0JdxaQkINNy4MZdRxg0UByiBOEA1eyVLiuJPONBRCIll5gyUzpLK0Io_RZjtrm22UCWYcLpxhpfPUOGnCfQx4KCtdUVg2QO8SUamLDgFDBUzqlALTQwVBqyBoRRQIeoBerwSrbA84HvpenKuYeIjq5oCX6wGrX_on6yhoKnmg-AVYjurnnPKUcY-55d5J6oWXRcMgwvXM-kLTyg7Qs6BnFWAw2lBn800v53P14eMXVWMKwgXRgQxe9Ex-Bk9vdX9sASQYkLMSzr2EE-apTci7K3NS_ToxVzIAQobT0QOUralhYCh9a5vZcq4ERHysFJwM0JPO9tZvjcuY7wGFJ1aZiCWltGffI4Y4DnEp5jv_peFddCcWU8SqyD20ubhcNk8hRluYIdrgUz5EW3U9-TSB62h8dHwyjDse8HlIxTDO398cLjo1 |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKEaIviJvQAhECwQOhiY8cIIQWaLVLDxBq0b6Z2I7bSiUpm11V_VH8R2ZyqaaCt75m7MQZj2e-SeYg5JnJsApYHgfG0DzgptBBHpkwsEblnOYgQho_6O_sxuN9_nkqpkvkd58Lg2GVvU5sFLWpNH4jX8-wdB7mkb4_-RVg0yj8udp30GilYqs4OwWPrX43-QTb-5zSzY29j-OgayoQKMDuPGBFzlmiNWMYAk1DxQU3iaJpCO_CTMpyUOqaM5OYzKiCA6LIYqtoJhSLNY8Z3PcKuQp2N0RfL5kO_l0cpWnUVQ-K0ngdDDM46yIEPRfQ7O-M-mPHEDb9Ai5ahXNm0Q3ZPGcDN2-SGx149UettN0iS0V5m1xr21me3SGvvm2Mvr7xR_78tPJ_HpWLeeHjjwHfztr0iUYK_LZp9V2yfymMu0eWy6osHhA_FcrQ0CgRGcuVyRTeR4Fl1JkJQy088tZhlTxpK29IrIXtUkBEJDJaIqMlk8Boj7zuGSt1V-gc-20cy8bhSeOLE14OE_on_XPoB9wpZ0HNhWp2ILuzLi0XiaWJTqzJuE1tFhYCkLUV2oY5j7VHnuI-Syy_UWJ8z0G-qGs5-fJdjkDIAcQByPTIi26QrWD1Ou_SJYCDWLHLGbnmjAT9oB3yai9OstNPtRxOk0f8gYoTMeSuLKpFLVNAmiJKE-aR-63sDW9No8bPBEriSKXDFpdSHh02tcsp4mGaPPzvop6Q6-O9nW25PdndWiUrTcBGE3m5Rpbns0XxCHDgXD1uTp9Pflz2cf8DjFxsnw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4s3SAhECwYG0WT_iBMRhS1t1KZSqalHFxcR23FZsk2ofqvrf-HHMONnVmsIJ9Rat7cT5PJ4ZZ2e-IeSlzZEFrEhja2kRc1uauOjaJHZWF5wWIEIGP-h_2Um3DvinQ3G4QH5Nc2H0qWlZbo6rGpytlfks9IFX3XBhfq6eWdfs-CxdBRMIx2KRgEaJac7bEMvt8uIcDnCjD_11WO1XlG5u7H_citsaA7EGV57HrCw4k8YwhhHRNNFccCs1zRJ4NWYzVoCON5xZaXOrSw4ORp46TXOhWWp4yuC-18h1KYTE-gl7a9-ndiDtZr5E6mxyLbHQXyb8R7L9ILCRvpTAZYMxZzHDaM4587h5h9xu_dqo1wjiXbJQVvfIjabS5cV98nZvo7f7LupF4_M6Oj2pJuMywv8MIjdsMiu8gERNPesH5OBKQHxIFqu6Kh-TKBPa0sRq0bWOa5trvI8Go2lymyRGdMj7ACp11pByKKTJDltAVhQCrRBoxRQA3SErU2CVaTnQsRTHQPmzUJZeHvBmNmD6pH92XcOVCibkf6iHR6pVA8pxIR2VRjqbc5e5PCkFON1OGJcUPDUd8gLXWSEzR4WhP0fFZDRS_a_fVI9yABegAwxet51cjZuhaDMpAEEk8wp6Lgc9QXWYoHlpKk6qVV0jlSNHJSZsd0g0a8WBGI1XlfVkpDJwQkU3k6xDHjWyN3tr2vVHUGiRgVQGsIQt1cmxpzWn6CpT-eS_Vvg5ubm7vqk-93e2l8gtH-rhYzaXyeJ4OCmfggc51s_8Ro3Ij6vWDL8BHs59hQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=REAP%3A+A+two+minute+cell+fractionation+method&rft.jtitle=BMC+research+notes&rft.au=Suzuki%2C+Keiko&rft.au=Bose%2C+Pinaki&rft.au=Leong-Quong%2C+Rebecca+YY&rft.au=Fujita%2C+Donald+J&rft.date=2010-11-10&rft.pub=BioMed+Central+Ltd&rft.issn=1756-0500&rft.eissn=1756-0500&rft.volume=3&rft.spage=294&rft_id=info:doi/10.1186%2F1756-0500-3-294&rft.externalDocID=A243075515 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-0500&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-0500&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-0500&client=summon |