Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review

Nanofluids, i.e. , well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, k nf , over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of we...

Full description

Saved in:
Bibliographic Details
Published inNanoscale research letters Vol. 6; no. 1; p. 229
Main Authors Kleinstreuer, Clement, Feng, Yu
Format Journal Article
LanguageEnglish
Published New York Springer New York 16.03.2011
BioMed Central Ltd
Springer
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanofluids, i.e. , well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, k nf , over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed. It is evident that key questions still linger concerning the best nanoparticle-and-liquid pairing and conditioning, reliable measurements of achievable k nf values, and easy-to-use, physically sound computer models which fully describe the particle dynamics and heat transfer of nanofluids. At present, experimental data and measurement methods are lacking consistency. In fact, debates on whether the anomalous enhancement is real or not endure, as well as discussions on what are repeatable correlations between k nf and temperature, nanoparticle size/shape, and aggregation state. Clearly, benchmark experiments are needed, using the same nanofluids subject to different measurement methods. Such outcomes would validate new, minimally intrusive techniques and verify the reproducibility of experimental results. Dynamic k nf models, assuming non-interacting metallic nano-spheres, postulate an enhancement above the classical Maxwell theory and thereby provide potentially additional physical insight. Clearly, it will be necessary to consider not only one possible mechanism but combine several mechanisms and compare predictive results to new benchmark experimental data sets.
AbstractList Abstract Nanofluids, i.e., well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, knf, over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed. It is evident that key questions still linger concerning the best nanoparticle-and-liquid pairing and conditioning, reliable measurements of achievable knf values, and easy-to-use, physically sound computer models which fully describe the particle dynamics and heat transfer of nanofluids. At present, experimental data and measurement methods are lacking consistency. In fact, debates on whether the anomalous enhancement is real or not endure, as well as discussions on what are repeatable correlations between knf and temperature, nanoparticle size/shape, and aggregation state. Clearly, benchmark experiments are needed, using the same nanofluids subject to different measurement methods. Such outcomes would validate new, minimally intrusive techniques and verify the reproducibility of experimental results. Dynamic knf models, assuming non-interacting metallic nano-spheres, postulate an enhancement above the classical Maxwell theory and thereby provide potentially additional physical insight. Clearly, it will be necessary to consider not only one possible mechanism but combine several mechanisms and compare predictive results to new benchmark experimental data sets.
Nanofluids, i.e., well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, knf, over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed.It is evident that key questions still linger concerning the best nanoparticle-and-liquid pairing and conditioning, reliable measurements of achievable knf values, and easy-to-use, physically sound computer models which fully describe the particle dynamics and heat transfer of nanofluids. At present, experimental data and measurement methods are lacking consistency. In fact, debates on whether the anomalous enhancement is real or not endure, as well as discussions on what are repeatable correlations between knf and temperature, nanoparticle size/shape, and aggregation state. Clearly, benchmark experiments are needed, using the same nanofluids subject to different measurement methods. Such outcomes would validate new, minimally intrusive techniques and verify the reproducibility of experimental results. Dynamic knf models, assuming non-interacting metallic nano-spheres, postulate an enhancement above the classical Maxwell theory and thereby provide potentially additional physical insight. Clearly, it will be necessary to consider not only one possible mechanism but combine several mechanisms and compare predictive results to new benchmark experimental data sets.
Nanofluids, i.e. , well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, k nf , over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed. It is evident that key questions still linger concerning the best nanoparticle-and-liquid pairing and conditioning, reliable measurements of achievable k nf values, and easy-to-use, physically sound computer models which fully describe the particle dynamics and heat transfer of nanofluids. At present, experimental data and measurement methods are lacking consistency. In fact, debates on whether the anomalous enhancement is real or not endure, as well as discussions on what are repeatable correlations between k nf and temperature, nanoparticle size/shape, and aggregation state. Clearly, benchmark experiments are needed, using the same nanofluids subject to different measurement methods. Such outcomes would validate new, minimally intrusive techniques and verify the reproducibility of experimental results. Dynamic k nf models, assuming non-interacting metallic nano-spheres, postulate an enhancement above the classical Maxwell theory and thereby provide potentially additional physical insight. Clearly, it will be necessary to consider not only one possible mechanism but combine several mechanisms and compare predictive results to new benchmark experimental data sets.
Nanofluids, i.e., well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, knf, over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed.It is evident that key questions still linger concerning the best nanoparticle-and-liquid pairing and conditioning, reliable measurements of achievable knf values, and easy-to-use, physically sound computer models which fully describe the particle dynamics and heat transfer of nanofluids. At present, experimental data and measurement methods are lacking consistency. In fact, debates on whether the anomalous enhancement is real or not endure, as well as discussions on what are repeatable correlations between knf and temperature, nanoparticle size/shape, and aggregation state. Clearly, benchmark experiments are needed, using the same nanofluids subject to different measurement methods. Such outcomes would validate new, minimally intrusive techniques and verify the reproducibility of experimental results. Dynamic knf models, assuming non-interacting metallic nano-spheres, postulate an enhancement above the classical Maxwell theory and thereby provide potentially additional physical insight. Clearly, it will be necessary to consider not only one possible mechanism but combine several mechanisms and compare predictive results to new benchmark experimental data sets.Nanofluids, i.e., well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, knf, over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed.It is evident that key questions still linger concerning the best nanoparticle-and-liquid pairing and conditioning, reliable measurements of achievable knf values, and easy-to-use, physically sound computer models which fully describe the particle dynamics and heat transfer of nanofluids. At present, experimental data and measurement methods are lacking consistency. In fact, debates on whether the anomalous enhancement is real or not endure, as well as discussions on what are repeatable correlations between knf and temperature, nanoparticle size/shape, and aggregation state. Clearly, benchmark experiments are needed, using the same nanofluids subject to different measurement methods. Such outcomes would validate new, minimally intrusive techniques and verify the reproducibility of experimental results. Dynamic knf models, assuming non-interacting metallic nano-spheres, postulate an enhancement above the classical Maxwell theory and thereby provide potentially additional physical insight. Clearly, it will be necessary to consider not only one possible mechanism but combine several mechanisms and compare predictive results to new benchmark experimental data sets.
ArticleNumber 229
Author Kleinstreuer, Clement
Feng, Yu
AuthorAffiliation 1 Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, NC 27695-7910, USA
AuthorAffiliation_xml – name: 1 Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, NC 27695-7910, USA
Author_xml – sequence: 1
  givenname: Clement
  surname: Kleinstreuer
  fullname: Kleinstreuer, Clement
  email: ck@eos.ncsu.edu
  organization: Department of Mechanical and Aerospace Engineering, NC State University
– sequence: 2
  givenname: Yu
  surname: Feng
  fullname: Feng, Yu
  organization: Department of Mechanical and Aerospace Engineering, NC State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21711739$$D View this record in MEDLINE/PubMed
BookMark eNp1ksFu1DAQhi1URNuFMzeUG6e0tuPEMQckWpVSqRIXkDggWRPb2fUqay-2s9C3x2naqotYX8aemf-bGY1P0ZHzziD0luAzQtrmnNR1U1Le_CizoeIFOnnyHD27H6PTGNcYM4558wodU8IJ4ZU4QT-v_mxNsBvjEgwFOF2klfHBJKvyO6ZRWxML3xcOnO-H0d4nhE0OKu_0qJLd2XRXGLcCp8zE-VBAEczOmt-v0csehmjePNgF-v756tvll_L26_XN5afbsmsoS2Xfal33hGFdE8y00NBxaMEIVnUNKE4q0IQBa6k2nVKirvsaNz3vqFKVAFEt0M3M1R7WcpvHgXAnPVh57_BhKSHkiQYjKw6kBioqVglGa9wpYFzl2qLtaAsqsz7OrO3YbYxWeaAAwx50P-LsSi79TlaUENryDLiYAZ31BwD7EeU3ctqUnDYls6HTRO8fugj-12hikhsblRkGcMaPUbacUSGqfBbo3fN-n-o8rjgn1HOCCj7GYHqpbIJk_VTdDpJgOX2l_7Rw_o_uEX1YgWdFzJluaYJc-zG4vPmDkr9BFd1X
CitedBy_id crossref_primary_10_1016_j_tca_2017_02_001
crossref_primary_10_1007_s00231_015_1662_8
crossref_primary_10_1039_c3ra40187a
crossref_primary_10_1021_acs_iecr_6b00784
crossref_primary_10_1016_j_aej_2015_10_006
crossref_primary_10_36306_konjes_1019424
crossref_primary_10_1080_03067319_2020_1722810
crossref_primary_10_1088_1742_6596_1204_1_012056
crossref_primary_10_1016_j_apsusc_2020_148090
crossref_primary_10_1016_j_renene_2019_04_153
crossref_primary_10_1016_j_tsep_2021_100985
crossref_primary_10_1063_1_4802998
crossref_primary_10_1021_ie402508x
crossref_primary_10_3390_en13154026
crossref_primary_10_1016_j_matlet_2012_11_097
crossref_primary_10_1007_s10973_019_08562_5
crossref_primary_10_1016_j_ijheatmasstransfer_2019_06_028
crossref_primary_10_1016_j_padiff_2021_100232
crossref_primary_10_1080_09500340_2018_1510556
crossref_primary_10_1007_s10765_016_2093_6
crossref_primary_10_1007_s40430_018_1177_6
crossref_primary_10_1063_1_4864200
crossref_primary_10_2478_v10176_011_0026_2
crossref_primary_10_3390_en13071653
crossref_primary_10_1016_j_physa_2019_04_184
crossref_primary_10_1016_j_applthermaleng_2016_06_099
crossref_primary_10_1088_1572_9494_ac10bf
crossref_primary_10_1016_j_rser_2016_04_072
crossref_primary_10_1016_j_jtice_2012_11_015
crossref_primary_10_1016_j_matpr_2017_02_304
crossref_primary_10_1007_s13204_015_0481_z
crossref_primary_10_1007_s10973_020_10134_x
crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_032
crossref_primary_10_1002_num_22676
crossref_primary_10_1007_s10973_020_10341_6
crossref_primary_10_1088_1757_899X_226_1_012146
crossref_primary_10_1016_j_rser_2012_11_051
crossref_primary_10_1186_1556_276X_6_439
crossref_primary_10_1115_1_4023544
crossref_primary_10_1007_s10973_021_10971_4
crossref_primary_10_1063_1_4864098
crossref_primary_10_1515_nleng_2017_0055
crossref_primary_10_1080_01932691_2013_764485
crossref_primary_10_1016_j_energy_2015_05_061
crossref_primary_10_1016_j_colsurfa_2022_128808
crossref_primary_10_1007_s11051_013_1775_2
crossref_primary_10_1016_j_aej_2016_01_027
crossref_primary_10_1002_mma_8234
crossref_primary_10_1016_j_csite_2023_102914
crossref_primary_10_1016_j_ijthermalsci_2018_10_007
crossref_primary_10_1007_s13369_024_08754_8
crossref_primary_10_1007_s12648_021_02206_x
crossref_primary_10_1016_j_molliq_2020_114975
crossref_primary_10_1134_S1070427220120022
crossref_primary_10_1007_s00161_015_0488_4
crossref_primary_10_1155_2022_9080009
crossref_primary_10_1007_s10973_020_09795_5
crossref_primary_10_1016_j_ijrefrig_2014_02_004
crossref_primary_10_1017_jfm_2022_837
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119034
crossref_primary_10_1016_j_apenergy_2014_03_019
crossref_primary_10_1140_epjp_i2017_11342_y
crossref_primary_10_1134_S1063784217100206
crossref_primary_10_1016_j_ijrefrig_2019_12_009
crossref_primary_10_1080_10402004_2022_2033371
crossref_primary_10_1016_j_energy_2020_117861
crossref_primary_10_3390_en15207742
crossref_primary_10_1080_17458080_2013_841999
crossref_primary_10_2514_1_T5826
crossref_primary_10_1016_j_molliq_2020_113875
crossref_primary_10_1016_j_molliq_2020_112787
crossref_primary_10_1016_j_csite_2022_102507
crossref_primary_10_1088_1674_1056_24_8_084401
crossref_primary_10_1002_cben_201800008
crossref_primary_10_1016_j_rser_2017_03_113
crossref_primary_10_1115_1_4039217
crossref_primary_10_1142_S0217979224500905
crossref_primary_10_1021_la301526f
crossref_primary_10_1016_j_ijheatmasstransfer_2013_06_010
crossref_primary_10_1007_s10973_020_09873_8
crossref_primary_10_1016_j_est_2022_105661
crossref_primary_10_1016_j_energy_2020_118520
crossref_primary_10_1016_j_matchemphys_2016_06_003
crossref_primary_10_1016_j_ijheatmasstransfer_2015_05_010
crossref_primary_10_1016_j_expthermflusci_2016_06_029
crossref_primary_10_26634_jfet_15_3_15139
crossref_primary_10_1007_s00231_014_1367_4
crossref_primary_10_1080_00986445_2016_1246437
crossref_primary_10_1080_10407790_2014_992089
crossref_primary_10_1016_j_csite_2021_101527
crossref_primary_10_1016_j_applthermaleng_2011_09_008
crossref_primary_10_1016_j_apenergy_2016_11_017
crossref_primary_10_1016_j_rineng_2023_101227
crossref_primary_10_1088_1402_4896_ac8bb2
crossref_primary_10_1016_j_apt_2017_10_023
crossref_primary_10_3390_app9102101
crossref_primary_10_1063_1_4754271
crossref_primary_10_1520_MPC20130107
crossref_primary_10_1016_j_powtec_2013_05_010
crossref_primary_10_1678_rheology_50_323
crossref_primary_10_1002_jemt_23641
crossref_primary_10_7498_aps_71_20211889
crossref_primary_10_1016_j_jclepro_2020_120408
crossref_primary_10_1007_s10973_022_11604_0
crossref_primary_10_1016_j_physa_2019_122126
crossref_primary_10_1016_j_physa_2019_122489
crossref_primary_10_1007_s40684_019_00053_0
crossref_primary_10_1166_jon_2023_1911
crossref_primary_10_1155_2014_612417
crossref_primary_10_1088_0022_3727_48_33_335301
crossref_primary_10_1016_j_nanoen_2013_02_007
crossref_primary_10_1155_2014_756765
crossref_primary_10_30521_jes_872530
crossref_primary_10_1071_CH18116
crossref_primary_10_18186_thermal_843077
crossref_primary_10_1007_s10010_016_0205_x
crossref_primary_10_1016_j_icheatmasstransfer_2020_105018
crossref_primary_10_1080_02726351_2021_1946729
crossref_primary_10_4028_www_scientific_net_AMM_695_539
crossref_primary_10_1007_s00231_017_2072_x
crossref_primary_10_1016_j_ijheatmasstransfer_2015_01_009
crossref_primary_10_3390_en13133462
crossref_primary_10_3390_nano12152526
crossref_primary_10_1002_est2_37
crossref_primary_10_2514_1_T4652
crossref_primary_10_1103_PhysRevE_87_022301
crossref_primary_10_3390_nano12010025
crossref_primary_10_4188_jte_67_65
crossref_primary_10_1007_s10973_019_08225_5
crossref_primary_10_1007_s10765_020_02714_8
crossref_primary_10_1016_j_anucene_2022_109283
crossref_primary_10_1016_j_tca_2013_01_023
crossref_primary_10_1063_5_0210446
crossref_primary_10_1007_s11164_012_0799_z
crossref_primary_10_1016_j_aej_2017_03_011
crossref_primary_10_1016_j_ijthermalsci_2015_01_035
crossref_primary_10_1016_j_icheatmasstransfer_2022_106255
crossref_primary_10_1016_j_ijheatmasstransfer_2012_06_034
crossref_primary_10_1007_s40430_016_0632_5
crossref_primary_10_1007_s12541_014_0390_1
crossref_primary_10_1177_23977914241263453
crossref_primary_10_1016_j_ijheatmasstransfer_2018_03_046
crossref_primary_10_1142_S2010132518500098
crossref_primary_10_3390_app8122596
crossref_primary_10_3390_nano14030282
crossref_primary_10_1007_s10404_013_1319_1
crossref_primary_10_1007_s10973_018_7234_7
crossref_primary_10_1038_srep19560
crossref_primary_10_1007_s11431_015_5836_x
crossref_primary_10_1016_j_expthermflusci_2014_03_003
crossref_primary_10_1007_s11630_019_1158_9
crossref_primary_10_1016_j_physrep_2019_12_001
crossref_primary_10_1016_j_tsep_2023_101791
crossref_primary_10_1016_j_rser_2022_112548
crossref_primary_10_1016_j_rser_2017_03_043
crossref_primary_10_1016_j_est_2022_104417
crossref_primary_10_1016_j_apt_2018_04_010
crossref_primary_10_1088_2631_8695_ada66d
crossref_primary_10_1016_j_icheatmasstransfer_2018_05_002
crossref_primary_10_1016_j_powtec_2016_06_024
crossref_primary_10_1007_s00231_016_1948_5
crossref_primary_10_3390_en11112942
crossref_primary_10_1021_acsami_5b05864
crossref_primary_10_1016_j_physe_2018_07_023
crossref_primary_10_1016_j_molliq_2019_03_127
crossref_primary_10_1016_j_ijheatmasstransfer_2014_07_051
crossref_primary_10_1007_s12206_016_0231_5
crossref_primary_10_1016_j_jics_2021_100037
crossref_primary_10_1016_j_molliq_2020_113492
crossref_primary_10_1016_j_aej_2020_04_028
crossref_primary_10_3390_app12073567
crossref_primary_10_1016_j_jmmm_2023_171037
crossref_primary_10_1007_s13538_015_0301_7
crossref_primary_10_1007_s40571_022_00509_2
crossref_primary_10_3762_bjnano_7_194
crossref_primary_10_1016_j_colsurfa_2016_06_007
crossref_primary_10_2514_1_T3935
crossref_primary_10_1016_j_applthermaleng_2020_115543
crossref_primary_10_1016_j_jcde_2019_02_003
crossref_primary_10_1515_nleng_2018_0016
crossref_primary_10_1039_D1NA00061F
crossref_primary_10_1007_s10973_014_4002_1
crossref_primary_10_1007_s40094_016_0224_x
crossref_primary_10_1016_j_jmmm_2018_11_034
crossref_primary_10_3390_en13205506
crossref_primary_10_1007_s11051_020_4776_y
crossref_primary_10_1016_j_ijthermalsci_2015_10_005
crossref_primary_10_1002_mma_6457
crossref_primary_10_1080_10584587_2019_1675005
crossref_primary_10_3390_en16010373
crossref_primary_10_1016_j_ijmecsci_2019_01_035
crossref_primary_10_1016_j_ijthermalsci_2013_09_002
crossref_primary_10_3390_mi14050964
crossref_primary_10_1007_s00231_021_03077_y
crossref_primary_10_2971_jeos_2014_14046
crossref_primary_10_1088_1402_4896_ad5f26
crossref_primary_10_1166_jon_2023_2094
crossref_primary_10_1140_epjs_s11734_021_00041_z
crossref_primary_10_1016_j_powtec_2018_07_086
crossref_primary_10_1186_1556_276X_9_15
crossref_primary_10_1016_j_icheatmasstransfer_2018_08_001
crossref_primary_10_1016_j_ijthermalsci_2012_01_016
crossref_primary_10_1007_s10973_019_09067_x
crossref_primary_10_3390_nano12091489
crossref_primary_10_1063_5_0024332
crossref_primary_10_1080_15567265_2016_1174321
crossref_primary_10_3390_nano12030507
crossref_primary_10_1088_1361_6463_ab45ce
crossref_primary_10_1080_01457632_2023_2268865
crossref_primary_10_1108_HFF_10_2015_0412
crossref_primary_10_1007_s11664_021_09028_x
crossref_primary_10_3390_magnetochemistry8030027
crossref_primary_10_1139_cjp_2017_0062
crossref_primary_10_1080_01457632_2014_935214
crossref_primary_10_3390_nano11051158
crossref_primary_10_1016_j_matpr_2019_04_199
crossref_primary_10_1016_j_icheatmasstransfer_2012_05_017
crossref_primary_10_1039_C3LC51331A
crossref_primary_10_1007_s10973_015_5135_6
crossref_primary_10_35940_ijrte_C6418_1110421
crossref_primary_10_1016_j_ijheatmasstransfer_2012_03_001
crossref_primary_10_1364_OE_27_031900
crossref_primary_10_2298_TSCI230227131A
crossref_primary_10_1080_15567265_2017_1363834
crossref_primary_10_1080_15376494_2016_1232454
crossref_primary_10_1115_1_4025663
crossref_primary_10_1016_j_applthermaleng_2014_09_087
crossref_primary_10_1016_j_snb_2017_08_112
crossref_primary_10_1016_j_ijheatmasstransfer_2017_08_071
crossref_primary_10_1142_S0217979221502854
crossref_primary_10_1016_j_jestch_2018_10_004
crossref_primary_10_20473_iapl_v1i1_21330
crossref_primary_10_2516_ogst_2020033
crossref_primary_10_1007_s13369_020_04979_5
crossref_primary_10_1016_j_jmmm_2023_170972
crossref_primary_10_1063_1_4942201
crossref_primary_10_1021_acs_jpcc_5b12476
crossref_primary_10_1002_cjce_21801
crossref_primary_10_1002_htj_21299
crossref_primary_10_1080_23080477_2021_1907700
crossref_primary_10_1016_j_ijthermalsci_2015_07_020
crossref_primary_10_1186_1556_276X_7_423
crossref_primary_10_1080_17455030_2021_1979274
crossref_primary_10_1108_HFF_06_2023_0326
crossref_primary_10_1080_10408436_2015_1068159
crossref_primary_10_1016_j_ceja_2022_100366
crossref_primary_10_1017_jmech_2016_18
crossref_primary_10_3390_en16114415
crossref_primary_10_1140_epje_i2018_11616_9
crossref_primary_10_1016_j_rser_2012_03_013
crossref_primary_10_1186_1556_276X_9_170
crossref_primary_10_1016_j_ijheatmasstransfer_2012_04_029
crossref_primary_10_1088_1757_899X_791_1_012003
crossref_primary_10_1140_epjp_i2016_16303_4
crossref_primary_10_1016_j_apt_2013_10_012
crossref_primary_10_1039_c4ra00843j
crossref_primary_10_1016_j_ijheatmasstransfer_2013_05_033
crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_026
crossref_primary_10_1016_j_rser_2015_04_018
crossref_primary_10_1016_j_solmat_2020_110526
crossref_primary_10_1016_j_molliq_2020_114775
crossref_primary_10_1007_s13204_014_0359_5
crossref_primary_10_1063_1_5026340
crossref_primary_10_1134_S1061933X16040153
crossref_primary_10_1016_j_aej_2017_11_005
crossref_primary_10_1016_j_icheatmasstransfer_2013_03_014
crossref_primary_10_1007_s11051_012_1369_4
crossref_primary_10_1080_01932691_2014_945595
crossref_primary_10_1063_1_3650456
crossref_primary_10_1016_j_icheatmasstransfer_2022_106408
crossref_primary_10_1166_jon_2022_1891
crossref_primary_10_1016_j_cplett_2024_141363
crossref_primary_10_1080_16583655_2020_1823100
crossref_primary_10_1016_j_apt_2015_03_012
crossref_primary_10_1007_s00231_019_02588_z
crossref_primary_10_1039_c4ra03143a
crossref_primary_10_1007_s11431_017_9079_6
crossref_primary_10_1080_10407782_2023_2176381
Cites_doi 10.1098/rspa.1973.0130
10.1023/A:1015121805842
10.2514/2.6486
10.1016/j.powtec.2009.09.016
10.1021/la9022757
10.1063/1.2710337
10.1016/j.ijheatmasstransfer.2008.07.016
10.1002/(SICI)1099-0488(19990601)37:11<1069::AID-POLB3>3.0.CO;2-U
10.1007/BF00502394
10.1016/0017-9310(95)00060-M
10.1007/s11051-004-3170-5
10.1063/1.1756684
10.1360/02ye9047
10.1016/j.cap.2007.12.008
10.1016/j.applthermaleng.2010.05.036
10.2174/157341309787314548
10.1007/978-90-481-9029-4_8
10.1016/j.applthermaleng.2006.02.036
10.1016/j.ijheatmasstransfer.2005.07.009
10.1007/BF01441907
10.1063/1.1602578
10.1021/jp065926t
10.1016/j.expthermflusci.2009.01.005
10.2963/jjtp.7.227
10.1021/i160003a005
10.2514/2.2044
10.1007/s11671-010-9638-6
10.1063/1.1765761
10.1016/j.rser.2010.03.017
10.1007/s11051-008-9500-2
10.1016/j.ijthermalsci.2008.03.009
10.1016/j.ijheatmasstransfer.2004.07.012
10.1080/00986447308960412
10.1002/andp.19354160705
10.1115/1.2712475
10.1016/j.ijheatmasstransfer.2008.10.025
10.1080/08916159808946559
10.1016/j.jmmm.2010.08.016
10.1063/1.2191571
10.1007/s11051-009-9716-9
10.1103/PhysRev.130.129
10.1007/s10765-009-0594-2
10.1007/s11051-009-9658-2
10.1364/JOSAB.21.000605
10.1007/s11661-007-9444-7
10.1016/j.ijheatmasstransfer.2010.06.031
10.1007/s10404-009-0524-4
10.1016/S0017-9310(01)00175-2
10.1115/1.2825978
10.1080/08916150902950145
10.1115/1.1571080
10.1016/j.ijthermalsci.2004.12.005
10.1080/01457630701850851
10.1115/1.2188509
10.1016/j.ijheatfluidflow.2006.05.001
10.1007/s10765-008-0469-y
10.1021/ie901060e
10.1021/i300010a035
10.1016/j.applthermaleng.2008.12.018
10.1016/j.ijheatmasstransfer.2010.01.006
ContentType Journal Article
Copyright Kleinstreuer and Feng; licensee Springer. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2011 Kleinstreuer and Feng; licensee Springer. 2011 Kleinstreuer and Feng; licensee Springer.
Copyright_xml – notice: Kleinstreuer and Feng; licensee Springer. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2011 Kleinstreuer and Feng; licensee Springer. 2011 Kleinstreuer and Feng; licensee Springer.
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1186/1556-276X-6-229
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed



CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-276X
EndPage 229
ExternalDocumentID oai_doaj_org_article_37a15a2934394250bca47c14098b28ac
PMC3211287
oai_biomedcentral_com_1556_276X_6_229
21711739
10_1186_1556_276X_6_229
Genre Journal Article
GroupedDBID -A0
.4S
.86
.DC
0R~
123
29M
2VQ
2WC
4.4
40G
5VS
6NX
8FE
8FG
8FH
AAFWJ
ABJCF
ABMNI
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADINQ
ADRAZ
AEGXH
AENEX
AEUYN
AFGCZ
AFKRA
AFPKN
AFRAH
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARCSS
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BGNMA
BHPHI
C1A
C24
C6C
CAG
CCPQU
COF
CS3
D1I
DU5
EBS
EDO
EJD
F5P
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
HYE
HZ~
I09
IPNFZ
IZQ
KB.
KDC
KQ8
LK8
M48
M4Y
M7P
MM.
M~E
NU0
O5R
O5S
O9-
OK1
P2P
PDBOC
PGMZT
PIMPY
PROAC
RIG
RNS
RPM
RPX
RSV
SCM
SDH
SOJ
TR2
TSK
TUS
U2A
~KM
AAYXX
CITATION
OVT
PHGZM
PHGZT
NPM
7X8
PQGLB
AAJSJ
AAKKN
AAYZJ
ACACY
AFGXO
AHBXF
5PM
PUEGO
ID FETCH-LOGICAL-b624t-f8dd5f140d5104d9dab7a8ae943b6ac713ad14a482debcc955f506f7b2cc39a93
IEDL.DBID M48
ISSN 1556-276X
1931-7573
IngestDate Wed Aug 27 01:24:00 EDT 2025
Thu Aug 21 18:22:11 EDT 2025
Wed May 22 07:17:13 EDT 2024
Fri Jul 11 04:19:19 EDT 2025
Thu Apr 03 07:02:58 EDT 2025
Thu Apr 24 22:53:14 EDT 2025
Tue Jul 01 03:54:04 EDT 2025
Fri Feb 21 02:34:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Effective Thermal Conductivity
Base Fluid
Nanoparticle Volume Fraction
Thermal Conductivity Enhancement
Thermal Conductivity
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b624t-f8dd5f140d5104d9dab7a8ae943b6ac713ad14a482debcc955f506f7b2cc39a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/37a15a2934394250bca47c14098b28ac
PMID 21711739
PQID 874299333
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_37a15a2934394250bca47c14098b28ac
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3211287
biomedcentral_primary_oai_biomedcentral_com_1556_276X_6_229
proquest_miscellaneous_874299333
pubmed_primary_21711739
crossref_citationtrail_10_1186_1556_276X_6_229
crossref_primary_10_1186_1556_276X_6_229
springer_journals_10_1186_1556_276X_6_229
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-16
PublicationDateYYYYMMDD 2011-03-16
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-16
  day: 16
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nanoscale research letters
PublicationTitleAbbrev Nanoscale Res Lett
PublicationTitleAlternate Nanoscale Res Lett
PublicationYear 2011
Publisher Springer New York
BioMed Central Ltd
Springer
SpringerOpen
Publisher_xml – name: Springer New York
– name: BioMed Central Ltd
– name: Springer
– name: SpringerOpen
References ZhangXGuHFujiiMExperimental study on the effective thermal conductivity and thermal diffusivity of nanofluidAIAA Journal20064183184010.2514/2.2044
KooJMComputational nanofluid flow and heat transfer analyses applied to micro-systems, Ph.D Thesis2005Raleigh, NC, USANC State University
MintsaHARoyGNguyenCTDoucetDNew temperature dependent thermal conductivity data for water-based nanofluidsInternational Journal of Thermal Sciences20094836337110.1016/j.ijthermalsci.2008.03.009
LiCHWilliamsWTransient and steady-state experimental comparison study of effective thermal conductivity of Al2O3-water nanofluidsJournal of Heat Transfer2008
VenerusDCKabadiMSLeeSPerez-LunaVStudy of thermal transport in nanoparticle suspensions using forced Rayleigh scatteringJournal of Applied Physics200610.1063/1.2360378
PakBCChoYIHydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particlesExp Heat Transfer19981115117010.1080/08916159808946559
PutnamSACahillDGBraunPVThermal conductivity of nanoparticle suspensionsJournal of Applied Physics200610.1063/1.2189933
PatelHESundararajanTDasSKAn experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluidsJournal of Nanoparticle Research2010121015103110.1007/s11051-009-9658-2
BeckMPYuanYWarrierPTejaASThe effect of particle size on the thermal conductivity of alumina nanofluidsJournal of Nanoparticle Research2009111129113610.1007/s11051-008-9500-2
LiCHPetersonGPExperimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)Journal of Applied Physics200699808431410.1063/1.2191571
IygengarASAbramsonARComparative radial heat flow method for thermal conductivity measurement of liquidsJournal of Heat Transfer2009
EapenJRusconiRPiazzaRYipSThe classical nature of thermal conduction in nanofluidsJournal of Heat Transfer201010.1115/1.4001304
OezerincSKakacSYaziciogluAGEnhanced thermal conductivity of nanofluids: A state-of-the-art reviewMicrofluid Nanofluid2010814517010.1007/s10404-009-0524-4
KumarDHPatelHEKumarVRRSundararajanTPradeepTDasSKModel for heat conduction in nanofluidsPhysical Review Letters200410.1103/PhysRevLett.93.144301
MurshedSMSLeongKCYangCA combined model for the effective thermal conductivity of nanofluidsApplied Thermal Engineering2009292477248310.1016/j.applthermaleng.2008.12.018
WilliamsWBuongiornoJHuLWExperimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubesJournal of Heat Transfer200810.1115/1.2818775
DuangthongsukWWongwisesSMeasurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluidsExperimental Thermal and Fluid Science20093370671410.1016/j.expthermflusci.2009.01.005
PrasherRBrownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluidsJournal of Heat Transfer200612858859510.1115/1.2188509
ZhuDLiXWangNWangXGaoJLiHDispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluidsCurrent Applied Physics2009913113910.1016/j.cap.2007.12.008
PatelHEDasSKSundararajanTSreekumanranNAGeorgeBPradeepTThermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effectsApplied Physics Letters2003832931293310.1063/1.1602578
ChonCHKihmKDLeeSPChoiSUSEmpirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancementApplied Physics Letters200510.1063/1.2093936
VadaszPRendering the transient hot wire experimental method for thermal conductivity estimation to two-phase systems-theoretical leading order resultsJournal of Heat Transfer2010
DasSKChoiSUSYuWPradeepTNanofluids: Science and Technology2008New JerseyWiley
MoghadassiARHosseiniSMHennekeDEEffect of CuO nanoparticles in enhancing the thermal conductivities of monoethylene glycol and paraffin fluidsIndustrial Engineering and Chemistry Research2010491900190410.1021/ie901060e
DasSKPutraNTheisenPRoetzelWTemperature dependence of thermal conductivity enhancement for nanofluidsJournal of Heat Transfer200312556757410.1115/1.1571080
ChiesaMSimonsenAJThe importance of suspension stability for hot-wire measurements of thermal conductivity of colloidal suspensions16th Australasian Fluid Mechanics Conference, Gold Coast, Australia2010
FengYKleinstreuerCNanofluid convective heat transfer in a parallel-disk systemInternational Journal of Heat and Mass Transfer2010534619462810.1016/j.ijheatmasstransfer.2010.06.031
KooJKangYKleinstreuerCA nonlinear effective thermal conductivity model for carbon nanotube and nanofiber suspensionsNanotechnology2008
YooDHHongKSYangHSStudy of thermal conductivity of nanofluids for the application of heat transfer fluidsThermochim Acta2007455
DingYAliasHWenDWilliamsRAHeat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)International Journal of Heat and Mass Transfer20064924025010.1016/j.ijheatmasstransfer.2005.07.009
WangLQFanJNanofluids research: key issuesNanoscale Research Letter201051241125210.1007/s11671-010-9638-6
EastmanJAChoiUSLiSThompsonLJLeeSKomarneniSParkerJCWollenbergerHJEnhanced thermal conductivity through the development of nanofluidsNanophase and Nanocomposite Materials II1997PittsburgMaterials Research Society311
JeffreyDJConduction through a random suspension of spheresProceedings of Royal Society, A197333535536710.1098/rspa.1973.0130
HashinZShtrikmanSConductivity of polycrystalsPhysical Review196313012913310.1103/PhysRev.130.129
LealLGOn the effective conductivity of a dilute suspension of spherical drops in the limit of low particle Peclet numberChem Eng Commun19731213110.1080/00986447308960412
GupteSKAdvaniSGRole of micro-convection due to non-affine motion of particles in a mono-disperse suspensionInt J Heat Mass Transfer199538162945295810.1016/0017-9310(95)00060-M
SinghDTimofeevaEYuWRoutbortJFranceDSmithDLopez-CeperoJMAn investigation of silicon carbide-water nanofluid for heat transfer applicationsJournal of Applied Physics2009
JangSPChoiSUSEffects of various parameters on nanofluid thermal conductivityASME J Heat Transfer200712961762310.1115/1.2712475
ShalkevichNEscherWBuergiTMichelBAhmedLPoulikakosDOn the thermal conductivity of gold nanoparticle colloidLangmuir201026266367010.1021/la9022757
PaulGChopkarMMannaIDasPKTechniques for measuring the thermal conductivity of nanofluids: a reviewRenewable and Sustainable Energy Reviews2010141913192410.1016/j.rser.2010.03.017
ChopkarMSudarshanSDasPKMannaIEffect of particle size on thermal conductivity of nanofluidMetallurgical and Materials Transactions A200839A1535154210.1007/s11661-007-9444-7
TimofeevaEVGavrilovANMcCloskeyJMTolmachevYVThermal conductivity and particle agglomeration in alumina nanofluids: experiment and theoryPhysical Review E200710.1103/PhysRevE.76.061203
DavisRHThe effective thermal conductivity of a composite material with spherical inclusionsInternational Journal of Thermophysics1986760962010.1007/BF00502394
KeblinskiPPhillpotSRChoiSUSEastmanJAMechanisms of heat flow in suspensions of nanos-sezed particles (nanofluids)International Journal of Heat and Mass Transfer20024585586310.1016/S0017-9310(01)00175-2
LeeSChoiSUSMeasuring thermal conductivity of fluids containing oxide nanoparticlesJournal of Heat Transfer199912128028910.1115/1.2825978
KusiakAPradereCBattagliaJLMeasuring the thermal conductivity of liquids using photo-thermal radiometryMeasurement Science and Technology201010.1088/0957-0233/21/1/015403
WeiXKongTZhuHWangLCuS/Cu2S nanofluids: synthesis and thermal conductivityInternational of Heat and Mass Transfer2010531841184310.1016/j.ijheatmasstransfer.2010.01.006
RousanAARoyDMA thermal comparator method for measuring thermal conductivity of cementitious materialsIndustrial and Engineering Chemistry Product Research and Development19832234935110.1021/i300010a035
VenerusDCSchieberJDIddirHGuzmanJDBroermanAWMeasurement of thermal diffusivity in polymer melts using forced rayleigh light scatteringJournal of Polymer Science: Part B: Polymer Physics1999371069107810.1002/(SICI)1099-0488(19990601)37:11<1069::AID-POLB3>3.0.CO;2-U
MurshedSMSLeongKCYangCEnhanced thermal conductivity of TiO2-water based nanofluidsInternational Journal of Thermal Sciences20054436710.1016/j.ijthermalsci.2004.12.005
WenDDingYExperimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditionsInternational Journal of Heat and Mass Transfer2004475181518810.1016/j.ijheatmasstransfer.2004.07.012
ChoiTYManeshianMHMeasurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3-w methodNanotechnology2009
HerisSZEsfahanyMNEtemadSGExperimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tubeInternational Journal of Heat and Fluid Flow20072820321010.1016/j.ijheatfluidflow.2006.05.001
LiJComputational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS, PhD Thesis2008Raleigh, NC, the United StatesNC State University
WeiYXieHChenLLiYInvestigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticlesPowder Technology201019721822110.1016/j.powtec.2009.09.016
AliFMYunusWMMMoksinMMTalibZAThe effect of volume fraction concentration on the thermal conductivity and thermal diffusivity of nanofluids: numerical and experimentalReview of Scientific Instruments201010.1063/1.3458011
TengTPHungYHTengTCMoHEHsuHGThe effect of alumina/water nanofluid particle size on thermal conductivityApplied Thermal Engineering2010302213221810.1016/j.applthermaleng.2010.05.036
AbareshiMGoharshiadiEKZebarjadSMFadafanHKYoussefiAFabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluidsJournal of Magnetism and Magnetic Materials2010322243895390110.1016/j.jmmm.2010.08.016
FengY
DA Nield (159_CR74) 2010
R Rusconi (159_CR6) 2006
SK Das (159_CR22) 2008
X Wei (159_CR59) 2010; 53
D Wu (159_CR88) 2009; 5
EV Timofeeva (159_CR52) 2007
SZ Heris (159_CR95) 2007; 28
CH Li (159_CR44) 2006; 99
SA Putnam (159_CR7) 2006
Y Ding (159_CR94) 2006; 49
XW Wang (159_CR43) 1999; 13
DH Yoo (159_CR12) 2007
S Lee (159_CR42) 1999; 121
SMS Murshed (159_CR54) 2005; 44
JH Lee (159_CR36) 2009
J Eapen (159_CR5) 2010
A Kusiak (159_CR34) 2010
G Paul (159_CR19) 2010; 14
SP Jang (159_CR78) 2007; 129
J Koo (159_CR70) 2004; 6
SP Jang (159_CR51) 2004; 84
N Shalkevich (159_CR62) 2010; 26
SK Gupte (159_CR76) 1995; 38
R Prasher (159_CR81) 2006; 128
LQ Wang (159_CR72) 2010; 5
AR Moghadassi (159_CR47) 2010; 49
B Kolade (159_CR37) 2009
HT Zhu (159_CR55) 2007; 111
M Chopkar (159_CR87) 2008; 39A
T Prevenslik (159_CR73) 2010
W Williams (159_CR49) 2008
W Duangthongsuk (159_CR14) 2009; 33
SMS Murshed (159_CR46) 2009; 29
Y Feng (159_CR86) 2010; 53
H Xie (159_CR45) 2002; 23
J Koo (159_CR69) 2008
M Chiesa (159_CR23) 2010
159_CR10
H Masuda (159_CR2) 1993; 4
SA Putnam (159_CR40) 2004; 75
DC Venerus (159_CR8) 2006
W Czarnetzki (159_CR17) 1995; 16
Y Feng (159_CR20) 2010
AS Iygengar (159_CR33) 2009
159_CR85
D Singh (159_CR89) 2009
U Rea (159_CR96) 2009; 52
SZ Heris (159_CR97) 2009; 22
YS Ju (159_CR29) 2008
WH Yu (159_CR4) 2009; 29
S Oezerinc (159_CR71) 2010; 8
DH Kumar (159_CR83) 2004
HA Mintsa (159_CR26) 2009; 48
Q Li (159_CR92) 2002; 45
MP Beck (159_CR58) 2009; 11
PL Woodfield (159_CR25) 2008; 29
Y Wei (159_CR61) 2010; 197
RL Hamilton (159_CR41) 1962; 1
C Kleinstreuer (159_CR80) 2008
RH Davis (159_CR65) 1986; 7
TP Teng (159_CR15) 2010; 30
J Li (159_CR82) 2008
LG Leal (159_CR75) 1973; 1
M Abareshi (159_CR48) 2010; 322
LQ Wang (159_CR67) 2008
EV Timofeeva (159_CR53) 2010
A Turgut (159_CR31) 2009; 30
CH Li (159_CR60) 2010
AA Rousan (159_CR35) 1983; 22
CH Li (159_CR30) 2008
P Vadasz (159_CR21) 2010
HE Patel (159_CR56) 2003; 83
CH Chon (159_CR57) 2005
FM Ali (159_CR27) 2010
MP Beck (159_CR63) 2010; 12
R Rusconi (159_CR38) 2004; 21
TY Choi (159_CR18) 2009
YJ Jung (159_CR90) 2009; 52
J Buongiorno (159_CR9) 2009
BC Pak (159_CR91) 1998; 11
SK Das (159_CR16) 2003; 125
DJ Jeffrey (159_CR64) 1973; 335
JC Maxwell (159_CR1) 1891
HE Patel (159_CR28) 2010; 12
Z Hashin (159_CR68) 1963; 130
P Keblinski (159_CR77) 2002; 45
X Zhang (159_CR24) 2006; 41
JA Eastman (159_CR3) 1997
D Wen (159_CR93) 2004; 47
JM Koo (159_CR84) 2005
D Zhu (159_CR50) 2009; 9
I Tavman (159_CR32) 2010; 0
DAG Bruggeman (159_CR66) 1935; 24
JAN Bazan (159_CR11) 2010
AJ Schmidt (159_CR13) 2008
SP Jang (159_CR79) 2006; 26
DC Venerus (159_CR39) 1999; 37
21722375 - Nanoscale Res Lett. 2011 Jul 01;6(1):439
References_xml – reference: JangSPChoiSUSRole of Brownian motion in the enhanced thermal conductivity of nanofluidsApplied Physics Letters2004844316431810.1063/1.1756684
– reference: LeeSChoiSUSMeasuring thermal conductivity of fluids containing oxide nanoparticlesJournal of Heat Transfer199912128028910.1115/1.2825978
– reference: HashinZShtrikmanSConductivity of polycrystalsPhysical Review196313012913310.1103/PhysRev.130.129
– reference: TurgutATavmanIChirtocMSchuchmannHPSauterCTavmanSThermal conductivity and viscosity measurements of water-based TiO2 nanofluidsInternational Journal of Thermophysics2009301213122610.1007/s10765-009-0594-2
– reference: PutnamSACahillDGMicron-scale apparatus for measurements of thermodiffusion in liquidsReview of Scientific Instruments20047572368237210.1063/1.1765761
– reference: WangXWXuXFChoiSUSThermal conductivity of nanoparticle-fluid mixtureJournal of Thermalphysics and Heat Transfer19991347448010.2514/2.6486
– reference: WuDZhuHWangLLiuLCritical issues in nanofluids preparation, characterization and thermal conductivityCurrent Nanoscience2009510311210.2174/157341309787314548
– reference: VadaszPRendering the transient hot wire experimental method for thermal conductivity estimation to two-phase systems-theoretical leading order resultsJournal of Heat Transfer2010
– reference: AbareshiMGoharshiadiEKZebarjadSMFadafanHKYoussefiAFabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluidsJournal of Magnetism and Magnetic Materials2010322243895390110.1016/j.jmmm.2010.08.016
– reference: Shaikh S, Lafdi K: Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An Experimental Study. Journal of Applied Physics 101: 064302–1-064302–7. 064302-1-064302-7.
– reference: TimofeevaEVGavrilovANMcCloskeyJMTolmachevYVThermal conductivity and particle agglomeration in alumina nanofluids: experiment and theoryPhysical Review E200710.1103/PhysRevE.76.061203
– reference: IygengarASAbramsonARComparative radial heat flow method for thermal conductivity measurement of liquidsJournal of Heat Transfer2009
– reference: MurshedSMSLeongKCYangCEnhanced thermal conductivity of TiO2-water based nanofluidsInternational Journal of Thermal Sciences20054436710.1016/j.ijthermalsci.2004.12.005
– reference: JangSPChoiSUSCooling performance of a microchannel heat sink with nanofluidsAppl Therm Eng2006262457246310.1016/j.applthermaleng.2006.02.036
– reference: WeiXKongTZhuHWangLCuS/Cu2S nanofluids: synthesis and thermal conductivityInternational of Heat and Mass Transfer2010531841184310.1016/j.ijheatmasstransfer.2010.01.006
– reference: NieldDAKuznetsovAVThe effect of local thermal nonequilibrium on the onset of convection in a nanofluidJournal of Heat Transfer2010
– reference: KeblinskiPPhillpotSRChoiSUSEastmanJAMechanisms of heat flow in suspensions of nanos-sezed particles (nanofluids)International Journal of Heat and Mass Transfer20024585586310.1016/S0017-9310(01)00175-2
– reference: PrasherRBrownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluidsJournal of Heat Transfer200612858859510.1115/1.2188509
– reference: PrevenslikTNanoscale Heat Transfer by Quantum MechanicsFifth International Conference on Thermal Engineering: Theory and Applications, Marrakesh, Morocco2010
– reference: ChiesaMSimonsenAJThe importance of suspension stability for hot-wire measurements of thermal conductivity of colloidal suspensions16th Australasian Fluid Mechanics Conference, Gold Coast, Australia2010
– reference: ZhangXGuHFujiiMExperimental study on the effective thermal conductivity and thermal diffusivity of nanofluidAIAA Journal20064183184010.2514/2.2044
– reference: ReaUMcKrellTHuLBuongiornoJLaminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluidsInternational Journal of Heat and Mass Transfer2009522042204810.1016/j.ijheatmasstransfer.2008.10.025
– reference: MaxwellJCA Treatise on Electricity and Magnetism1891OxfordClarendon
– reference: HerisSZEtemadSGhEsfahanyMNConvective heat transfer of a Cu/water nanofluid flowing through a circular tubeExperimental Heat Transfer20092221722710.1080/08916150902950145
– reference: VenerusDCSchieberJDIddirHGuzmanJDBroermanAWMeasurement of thermal diffusivity in polymer melts using forced rayleigh light scatteringJournal of Polymer Science: Part B: Polymer Physics1999371069107810.1002/(SICI)1099-0488(19990601)37:11<1069::AID-POLB3>3.0.CO;2-U
– reference: EastmanJAChoiUSLiSThompsonLJLeeSKomarneniSParkerJCWollenbergerHJEnhanced thermal conductivity through the development of nanofluidsNanophase and Nanocomposite Materials II1997PittsburgMaterials Research Society311
– reference: BeckMPYuanYWarrierPTejaASThe effect of particle size on the thermal conductivity of alumina nanofluidsJournal of Nanoparticle Research2009111129113610.1007/s11051-008-9500-2
– reference: FengYKleinstreuerCNanofluid convective heat transfer in a parallel-disk systemInternational Journal of Heat and Mass Transfer2010534619462810.1016/j.ijheatmasstransfer.2010.06.031
– reference: KooJKleinstreuerCA new thermal conductivity model for nanofluidsJournal of Nanoparticle Research2004657758810.1007/s11051-004-3170-5
– reference: LiCHPetersonGPExperimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)Journal of Applied Physics200699808431410.1063/1.2191571
– reference: WeiYXieHChenLLiYInvestigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticlesPowder Technology201019721822110.1016/j.powtec.2009.09.016
– reference: KleinstreuerCLiJDiscussion: effects of various parameters on nanofluid thermal conductivityASME Journal of Heat Transfer200810.1115/1.2812307
– reference: HamiltonRLCrosserOKThermal conductivity of heterogeneous two-component systemsIndustrial Engineering and Chemistry Fundamentals19621318719110.1021/i160003a005
– reference: YuWHFranceDMRoutbortJLChoiSUSReview and comparison of nanofluid thermal conductivity and heat transfer enhancementsHeat Transfer Engineering20092943246010.1080/01457630701850851
– reference: Bao Y: Thermal conductivity equations based on Brownian motion in suspensions of nanoparticles (nanofluids). Journal of Heat Transfer 130: 042408–1-042408–5. 042408-1-042408-5.
– reference: XieHWangJXiTLiuYThermal conductivity of suspensions containing nanosized SiC particlesInternational Journal of Thermophysics200223257158010.1023/A:1015121805842
– reference: HerisSZEsfahanyMNEtemadSGExperimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tubeInternational Journal of Heat and Fluid Flow20072820321010.1016/j.ijheatfluidflow.2006.05.001
– reference: JuYSKimJHungMTExperimental study of heat conduction in aqueous suspensions of aluminum oxide nanoparticlesJournal of Heat Transfer2008
– reference: RusconiRRodariEPiazzaROptical measurements of the thermal properties of nanofluidsApplied Physics Letters200610.1063/1.2425015
– reference: AliFMYunusWMMMoksinMMTalibZAThe effect of volume fraction concentration on the thermal conductivity and thermal diffusivity of nanofluids: numerical and experimentalReview of Scientific Instruments201010.1063/1.3458011
– reference: SinghDTimofeevaEYuWRoutbortJFranceDSmithDLopez-CeperoJMAn investigation of silicon carbide-water nanofluid for heat transfer applicationsJournal of Applied Physics2009
– reference: TimofeevaEVSmithDSYuWFranceDMSinghDRoutbortJLParticle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluidsNanotechnology201010.1088/0957-4484/21/21/215703
– reference: LiQXuanYConvective heat transfer and flow characteristics of Cu-water nanofluidScience in China (Series E)200245408416
– reference: KumarDHPatelHEKumarVRRSundararajanTPradeepTDasSKModel for heat conduction in nanofluidsPhysical Review Letters200410.1103/PhysRevLett.93.144301
– reference: LealLGOn the effective conductivity of a dilute suspension of spherical drops in the limit of low particle Peclet numberChem Eng Commun19731213110.1080/00986447308960412
– reference: FengYA new thermal conductivity model for nanofluids with convection heat transfer application. MS thesis, North Carolina State University, Raleigh, NC, USA2010
– reference: RousanAARoyDMA thermal comparator method for measuring thermal conductivity of cementitious materialsIndustrial and Engineering Chemistry Product Research and Development19832234935110.1021/i300010a035
– reference: BeckMPYuanYWarrierPTejaASThe thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtureJournal of Nanoparticles Research2010121469147710.1007/s11051-009-9716-9
– reference: MasudaHEbataATerameaKHishinumaNAlteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particlesNetsu Bussei1993422723310.2963/jjtp.7.227
– reference: BruggemanDAGBerechnung verschiedener physikalischer konstanten von heterogenen substanzen, I-Dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzenAnnalen der Physik, Leipzig19352463667910.1002/andp.19354160705
– reference: KooJMComputational nanofluid flow and heat transfer analyses applied to micro-systems, Ph.D Thesis2005Raleigh, NC, USANC State University
– reference: LeeJHConvection Performance of Nanofluids for Electronics Cooling, Ph. D. Dissertation2009CA, USAStanford University
– reference: ZhuDLiXWangNWangXGaoJLiHDispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluidsCurrent Applied Physics2009913113910.1016/j.cap.2007.12.008
– reference: KooJKangYKleinstreuerCA nonlinear effective thermal conductivity model for carbon nanotube and nanofiber suspensionsNanotechnology2008
– reference: DasSKPutraNTheisenPRoetzelWTemperature dependence of thermal conductivity enhancement for nanofluidsJournal of Heat Transfer200312556757410.1115/1.1571080
– reference: MintsaHARoyGNguyenCTDoucetDNew temperature dependent thermal conductivity data for water-based nanofluidsInternational Journal of Thermal Sciences20094836337110.1016/j.ijthermalsci.2008.03.009
– reference: ShalkevichNEscherWBuergiTMichelBAhmedLPoulikakosDOn the thermal conductivity of gold nanoparticle colloidLangmuir201026266367010.1021/la9022757
– reference: LiCHWilliamsWTransient and steady-state experimental comparison study of effective thermal conductivity of Al2O3-water nanofluidsJournal of Heat Transfer2008
– reference: PatelHEDasSKSundararajanTSreekumanranNAGeorgeBPradeepTThermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effectsApplied Physics Letters2003832931293310.1063/1.1602578
– reference: ChoiTYManeshianMHMeasurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3-w methodNanotechnology2009
– reference: TengTPHungYHTengTCMoHEHsuHGThe effect of alumina/water nanofluid particle size on thermal conductivityApplied Thermal Engineering2010302213221810.1016/j.applthermaleng.2010.05.036
– reference: EapenJRusconiRPiazzaRYipSThe classical nature of thermal conduction in nanofluidsJournal of Heat Transfer201010.1115/1.4001304
– reference: BuongiornoJVenerusDCPrabhatNA benchmark study on the thermal conductivity of nanofluidsJournal of Applied Physics200910.1063/1.3245330
– reference: CzarnetzkiWRoetzelWTemperature oscillation techniques for simultaneous measurement of thermal diffusivitiy and conductivityInternational Journal of Thermophysics19951641342210.1007/BF01441907
– reference: KoladeBGoodsonKEEatonJKConvective performance of nanofluids in a laminar thermally developing tube flowJournal of Heat Transfer200910.1115/1.3013831
– reference: OezerincSKakacSYaziciogluAGEnhanced thermal conductivity of nanofluids: A state-of-the-art reviewMicrofluid Nanofluid2010814517010.1007/s10404-009-0524-4
– reference: DuangthongsukWWongwisesSMeasurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluidsExperimental Thermal and Fluid Science20093370671410.1016/j.expthermflusci.2009.01.005
– reference: VenerusDCKabadiMSLeeSPerez-LunaVStudy of thermal transport in nanoparticle suspensions using forced Rayleigh scatteringJournal of Applied Physics200610.1063/1.2360378
– reference: JungYJJungYYThermal conductivity enhancement of nanofluids in conjunction with electrical double layer (EDL)International Journal of Heat and Mass Transfer20095252552810.1016/j.ijheatmasstransfer.2008.07.016
– reference: WangLQFanJNanofluids research: key issuesNanoscale Research Letter201051241125210.1007/s11671-010-9638-6
– reference: YooDHHongKSYangHSStudy of thermal conductivity of nanofluids for the application of heat transfer fluidsThermochim Acta2007455
– reference: LiCHPetersonGPExperimental studies of natural convection heat transfer of Al2O3/DI water nanoparticle suspensions (nanofluids)Advances in Mechanical Engineering2010
– reference: MoghadassiARHosseiniSMHennekeDEEffect of CuO nanoparticles in enhancing the thermal conductivities of monoethylene glycol and paraffin fluidsIndustrial Engineering and Chemistry Research2010491900190410.1021/ie901060e
– reference: PakBCChoYIHydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particlesExp Heat Transfer19981115117010.1080/08916159808946559
– reference: PutnamSACahillDGBraunPVThermal conductivity of nanoparticle suspensionsJournal of Applied Physics200610.1063/1.2189933
– reference: ChonCHKihmKDLeeSPChoiSUSEmpirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancementApplied Physics Letters200510.1063/1.2093936
– reference: DasSKChoiSUSYuWPradeepTNanofluids: Science and Technology2008New JerseyWiley
– reference: WoodfieldPLA two-dimensional analytical solution for the transient short-hot-wire methodInternational Journal of Thermophysics2008291278129810.1007/s10765-008-0469-y
– reference: KusiakAPradereCBattagliaJLMeasuring the thermal conductivity of liquids using photo-thermal radiometryMeasurement Science and Technology201010.1088/0957-0233/21/1/015403
– reference: ChopkarMSudarshanSDasPKMannaIEffect of particle size on thermal conductivity of nanofluidMetallurgical and Materials Transactions A200839A1535154210.1007/s11661-007-9444-7
– reference: GupteSKAdvaniSGRole of micro-convection due to non-affine motion of particles in a mono-disperse suspensionInt J Heat Mass Transfer199538162945295810.1016/0017-9310(95)00060-M
– reference: SchmidtAJChiesaMTorchinskyDHJohnsonJANelsonKAChenGThermal conductivity of nanoparticle suspension in insulating media measured with a transient optical grating and a hotwireJournal of Applied Physics2008
– reference: BazanJANThermal conductivity of poly-aelpha-olefin (PAO)-based nanofluids. Ph.D. Thesis, University of Dayton, Dayton, OH, USA2010
– reference: WangLQZhouXSWeiXHHeat conduction mathematical models and analytical solutions2008BerlinSpringer-Verlag
– reference: PatelHESundararajanTDasSKAn experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluidsJournal of Nanoparticle Research2010121015103110.1007/s11051-009-9658-2
– reference: ZhuHTZhangCYTangYMWangJXNovel synthesis and thermal conductivity of CuO nanofluidJournal of Physical Chemistry C2007111164610.1021/jp065926t
– reference: DavisRHThe effective thermal conductivity of a composite material with spherical inclusionsInternational Journal of Thermophysics1986760962010.1007/BF00502394
– reference: JeffreyDJConduction through a random suspension of spheresProceedings of Royal Society, A197333535536710.1098/rspa.1973.0130
– reference: PaulGChopkarMMannaIDasPKTechniques for measuring the thermal conductivity of nanofluids: a reviewRenewable and Sustainable Energy Reviews2010141913192410.1016/j.rser.2010.03.017
– reference: MurshedSMSLeongKCYangCA combined model for the effective thermal conductivity of nanofluidsApplied Thermal Engineering2009292477248310.1016/j.applthermaleng.2008.12.018
– reference: RusconiRIsaLPiazzaRThermal-lensing measurement of particle thermophoresis in aqueous dispersionsJournal of Optical Society of America200421360561610.1364/JOSAB.21.000605
– reference: LiJComputational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS, PhD Thesis2008Raleigh, NC, the United StatesNC State University
– reference: WenDDingYExperimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditionsInternational Journal of Heat and Mass Transfer2004475181518810.1016/j.ijheatmasstransfer.2004.07.012
– reference: DingYAliasHWenDWilliamsRAHeat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)International Journal of Heat and Mass Transfer20064924025010.1016/j.ijheatmasstransfer.2005.07.009
– reference: TavmanITurgutAAn investigation on thermal conductivity and viscosity of water based nanofluidsMicrofluidics Based Microsystems2010013916210.1007/978-90-481-9029-4_8
– reference: WilliamsWBuongiornoJHuLWExperimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubesJournal of Heat Transfer200810.1115/1.2818775
– reference: JangSPChoiSUSEffects of various parameters on nanofluid thermal conductivityASME J Heat Transfer200712961762310.1115/1.2712475
– volume: 335
  start-page: 355
  year: 1973
  ident: 159_CR64
  publication-title: Proceedings of Royal Society, A
  doi: 10.1098/rspa.1973.0130
– volume: 23
  start-page: 571
  issue: 2
  year: 2002
  ident: 159_CR45
  publication-title: International Journal of Thermophysics
  doi: 10.1023/A:1015121805842
– volume: 13
  start-page: 474
  year: 1999
  ident: 159_CR43
  publication-title: Journal of Thermalphysics and Heat Transfer
  doi: 10.2514/2.6486
– volume: 197
  start-page: 218
  year: 2010
  ident: 159_CR61
  publication-title: Powder Technology
  doi: 10.1016/j.powtec.2009.09.016
– volume: 26
  start-page: 663
  issue: 2
  year: 2010
  ident: 159_CR62
  publication-title: Langmuir
  doi: 10.1021/la9022757
– ident: 159_CR10
  doi: 10.1063/1.2710337
– volume-title: Journal of Heat Transfer
  year: 2010
  ident: 159_CR5
– volume-title: Journal of Heat Transfer
  year: 2010
  ident: 159_CR21
– volume-title: A Treatise on Electricity and Magnetism
  year: 1891
  ident: 159_CR1
– volume-title: Heat conduction mathematical models and analytical solutions
  year: 2008
  ident: 159_CR67
– volume-title: Applied Physics Letters
  year: 2006
  ident: 159_CR6
– volume: 52
  start-page: 525
  year: 2009
  ident: 159_CR90
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2008.07.016
– volume: 37
  start-page: 1069
  year: 1999
  ident: 159_CR39
  publication-title: Journal of Polymer Science: Part B: Polymer Physics
  doi: 10.1002/(SICI)1099-0488(19990601)37:11<1069::AID-POLB3>3.0.CO;2-U
– volume: 7
  start-page: 609
  year: 1986
  ident: 159_CR65
  publication-title: International Journal of Thermophysics
  doi: 10.1007/BF00502394
– volume: 38
  start-page: 2945
  issue: 16
  year: 1995
  ident: 159_CR76
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/0017-9310(95)00060-M
– volume: 6
  start-page: 577
  year: 2004
  ident: 159_CR70
  publication-title: Journal of Nanoparticle Research
  doi: 10.1007/s11051-004-3170-5
– volume-title: Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS, PhD Thesis
  year: 2008
  ident: 159_CR82
– volume-title: Physical Review E
  year: 2007
  ident: 159_CR52
– volume: 84
  start-page: 4316
  year: 2004
  ident: 159_CR51
  publication-title: Applied Physics Letters
  doi: 10.1063/1.1756684
– start-page: 3
  volume-title: Nanophase and Nanocomposite Materials II
  year: 1997
  ident: 159_CR3
– volume-title: Journal of Heat Transfer
  year: 2010
  ident: 159_CR74
– volume: 45
  start-page: 408
  year: 2002
  ident: 159_CR92
  publication-title: Science in China (Series E)
  doi: 10.1360/02ye9047
– volume: 9
  start-page: 131
  year: 2009
  ident: 159_CR50
  publication-title: Current Applied Physics
  doi: 10.1016/j.cap.2007.12.008
– volume: 30
  start-page: 2213
  year: 2010
  ident: 159_CR15
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2010.05.036
– volume-title: Journal of Heat Transfer
  year: 2009
  ident: 159_CR33
– volume: 5
  start-page: 103
  year: 2009
  ident: 159_CR88
  publication-title: Current Nanoscience
  doi: 10.2174/157341309787314548
– volume: 0
  start-page: 139
  year: 2010
  ident: 159_CR32
  publication-title: Microfluidics Based Microsystems
  doi: 10.1007/978-90-481-9029-4_8
– volume-title: Nanotechnology
  year: 2008
  ident: 159_CR69
– volume: 26
  start-page: 2457
  year: 2006
  ident: 159_CR79
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2006.02.036
– volume: 49
  start-page: 240
  year: 2006
  ident: 159_CR94
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.07.009
– volume-title: Journal of Applied Physics
  year: 2006
  ident: 159_CR8
– volume: 16
  start-page: 413
  year: 1995
  ident: 159_CR17
  publication-title: International Journal of Thermophysics
  doi: 10.1007/BF01441907
– volume-title: Measurement Science and Technology
  year: 2010
  ident: 159_CR34
– volume-title: Convection Performance of Nanofluids for Electronics Cooling, Ph. D. Dissertation
  year: 2009
  ident: 159_CR36
– volume: 83
  start-page: 2931
  year: 2003
  ident: 159_CR56
  publication-title: Applied Physics Letters
  doi: 10.1063/1.1602578
– volume-title: Journal of Applied Physics
  year: 2006
  ident: 159_CR7
– volume: 111
  start-page: 1646
  year: 2007
  ident: 159_CR55
  publication-title: Journal of Physical Chemistry C
  doi: 10.1021/jp065926t
– volume: 33
  start-page: 706
  year: 2009
  ident: 159_CR14
  publication-title: Experimental Thermal and Fluid Science
  doi: 10.1016/j.expthermflusci.2009.01.005
– volume-title: Journal of Heat Transfer
  year: 2008
  ident: 159_CR29
– volume-title: Nanotechnology
  year: 2010
  ident: 159_CR53
– volume: 4
  start-page: 227
  year: 1993
  ident: 159_CR2
  publication-title: Netsu Bussei
  doi: 10.2963/jjtp.7.227
– volume: 1
  start-page: 187
  issue: 3
  year: 1962
  ident: 159_CR41
  publication-title: Industrial Engineering and Chemistry Fundamentals
  doi: 10.1021/i160003a005
– volume-title: Journal of Applied Physics
  year: 2009
  ident: 159_CR9
– volume: 41
  start-page: 831
  year: 2006
  ident: 159_CR24
  publication-title: AIAA Journal
  doi: 10.2514/2.2044
– volume-title: Journal of Heat Transfer
  year: 2008
  ident: 159_CR49
– volume: 5
  start-page: 1241
  year: 2010
  ident: 159_CR72
  publication-title: Nanoscale Research Letter
  doi: 10.1007/s11671-010-9638-6
– volume-title: A new thermal conductivity model for nanofluids with convection heat transfer application. MS thesis, North Carolina State University, Raleigh, NC, USA
  year: 2010
  ident: 159_CR20
– volume-title: Nanofluids: Science and Technology
  year: 2008
  ident: 159_CR22
– volume: 75
  start-page: 2368
  issue: 7
  year: 2004
  ident: 159_CR40
  publication-title: Review of Scientific Instruments
  doi: 10.1063/1.1765761
– volume-title: Physical Review Letters
  year: 2004
  ident: 159_CR83
– volume-title: Journal of Applied Physics
  year: 2008
  ident: 159_CR13
– start-page: 455
  volume-title: Thermochim Acta
  year: 2007
  ident: 159_CR12
– volume: 14
  start-page: 1913
  year: 2010
  ident: 159_CR19
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2010.03.017
– volume: 11
  start-page: 1129
  year: 2009
  ident: 159_CR58
  publication-title: Journal of Nanoparticle Research
  doi: 10.1007/s11051-008-9500-2
– volume-title: Computational nanofluid flow and heat transfer analyses applied to micro-systems, Ph.D Thesis
  year: 2005
  ident: 159_CR84
– volume: 48
  start-page: 363
  year: 2009
  ident: 159_CR26
  publication-title: International Journal of Thermal Sciences
  doi: 10.1016/j.ijthermalsci.2008.03.009
– volume: 47
  start-page: 5181
  year: 2004
  ident: 159_CR93
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2004.07.012
– volume: 1
  start-page: 21
  year: 1973
  ident: 159_CR75
  publication-title: Chem Eng Commun
  doi: 10.1080/00986447308960412
– volume: 24
  start-page: 636
  year: 1935
  ident: 159_CR66
  publication-title: Annalen der Physik, Leipzig
  doi: 10.1002/andp.19354160705
– volume: 129
  start-page: 617
  year: 2007
  ident: 159_CR78
  publication-title: ASME J Heat Transfer
  doi: 10.1115/1.2712475
– volume: 52
  start-page: 2042
  year: 2009
  ident: 159_CR96
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2008.10.025
– ident: 159_CR85
– volume: 11
  start-page: 151
  year: 1998
  ident: 159_CR91
  publication-title: Exp Heat Transfer
  doi: 10.1080/08916159808946559
– volume-title: Thermal conductivity of poly-aelpha-olefin (PAO)-based nanofluids. Ph.D. Thesis, University of Dayton, Dayton, OH, USA
  year: 2010
  ident: 159_CR11
– volume: 322
  start-page: 3895
  issue: 24
  year: 2010
  ident: 159_CR48
  publication-title: Journal of Magnetism and Magnetic Materials
  doi: 10.1016/j.jmmm.2010.08.016
– volume: 99
  start-page: 084314
  issue: 8
  year: 2006
  ident: 159_CR44
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.2191571
– volume: 12
  start-page: 1469
  year: 2010
  ident: 159_CR63
  publication-title: Journal of Nanoparticles Research
  doi: 10.1007/s11051-009-9716-9
– volume-title: Applied Physics Letters
  year: 2005
  ident: 159_CR57
– volume-title: Nanotechnology
  year: 2009
  ident: 159_CR18
– volume: 130
  start-page: 129
  year: 1963
  ident: 159_CR68
  publication-title: Physical Review
  doi: 10.1103/PhysRev.130.129
– volume-title: Review of Scientific Instruments
  year: 2010
  ident: 159_CR27
– volume-title: 16th Australasian Fluid Mechanics Conference, Gold Coast, Australia
  year: 2010
  ident: 159_CR23
– volume-title: Fifth International Conference on Thermal Engineering: Theory and Applications, Marrakesh, Morocco
  year: 2010
  ident: 159_CR73
– volume: 30
  start-page: 1213
  year: 2009
  ident: 159_CR31
  publication-title: International Journal of Thermophysics
  doi: 10.1007/s10765-009-0594-2
– volume: 12
  start-page: 1015
  year: 2010
  ident: 159_CR28
  publication-title: Journal of Nanoparticle Research
  doi: 10.1007/s11051-009-9658-2
– volume: 21
  start-page: 605
  issue: 3
  year: 2004
  ident: 159_CR38
  publication-title: Journal of Optical Society of America
  doi: 10.1364/JOSAB.21.000605
– volume-title: Journal of Applied Physics
  year: 2009
  ident: 159_CR89
– volume: 39A
  start-page: 1535
  year: 2008
  ident: 159_CR87
  publication-title: Metallurgical and Materials Transactions A
  doi: 10.1007/s11661-007-9444-7
– volume: 53
  start-page: 4619
  year: 2010
  ident: 159_CR86
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2010.06.031
– volume: 8
  start-page: 145
  year: 2010
  ident: 159_CR71
  publication-title: Microfluid Nanofluid
  doi: 10.1007/s10404-009-0524-4
– volume: 45
  start-page: 855
  year: 2002
  ident: 159_CR77
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/S0017-9310(01)00175-2
– volume: 121
  start-page: 280
  year: 1999
  ident: 159_CR42
  publication-title: Journal of Heat Transfer
  doi: 10.1115/1.2825978
– volume-title: ASME Journal of Heat Transfer
  year: 2008
  ident: 159_CR80
– volume-title: Journal of Heat Transfer
  year: 2008
  ident: 159_CR30
– volume: 22
  start-page: 217
  year: 2009
  ident: 159_CR97
  publication-title: Experimental Heat Transfer
  doi: 10.1080/08916150902950145
– volume: 125
  start-page: 567
  year: 2003
  ident: 159_CR16
  publication-title: Journal of Heat Transfer
  doi: 10.1115/1.1571080
– volume: 44
  start-page: 367
  year: 2005
  ident: 159_CR54
  publication-title: International Journal of Thermal Sciences
  doi: 10.1016/j.ijthermalsci.2004.12.005
– volume: 29
  start-page: 432
  year: 2009
  ident: 159_CR4
  publication-title: Heat Transfer Engineering
  doi: 10.1080/01457630701850851
– volume: 128
  start-page: 588
  year: 2006
  ident: 159_CR81
  publication-title: Journal of Heat Transfer
  doi: 10.1115/1.2188509
– volume: 28
  start-page: 203
  year: 2007
  ident: 159_CR95
  publication-title: International Journal of Heat and Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2006.05.001
– volume: 29
  start-page: 1278
  year: 2008
  ident: 159_CR25
  publication-title: International Journal of Thermophysics
  doi: 10.1007/s10765-008-0469-y
– volume: 49
  start-page: 1900
  year: 2010
  ident: 159_CR47
  publication-title: Industrial Engineering and Chemistry Research
  doi: 10.1021/ie901060e
– volume-title: Journal of Heat Transfer
  year: 2009
  ident: 159_CR37
– volume: 22
  start-page: 349
  year: 1983
  ident: 159_CR35
  publication-title: Industrial and Engineering Chemistry Product Research and Development
  doi: 10.1021/i300010a035
– volume-title: Advances in Mechanical Engineering
  year: 2010
  ident: 159_CR60
– volume: 29
  start-page: 2477
  year: 2009
  ident: 159_CR46
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2008.12.018
– volume: 53
  start-page: 1841
  year: 2010
  ident: 159_CR59
  publication-title: International of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2010.01.006
– reference: 21722375 - Nanoscale Res Lett. 2011 Jul 01;6(1):439
SSID ssj0047076
Score 2.4845297
SecondaryResourceType review_article
Snippet Nanofluids, i.e. , well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, k nf , over the...
Nanofluids, i.e., well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, knf, over the...
Abstract Nanofluids, i.e., well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, knf,...
SourceID doaj
pubmedcentral
biomedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 229
SubjectTerms Chemistry and Materials Science
Materials Science
Molecular Medicine
Nano Review
Nanochemistry
Nanofluids
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA_Skx7E-rlWJQcPeoh9m2STrJ5UWoqgJwvvIITJFy089hXfe-Cf7yTZLW-txYunwG6-Z5KZSSa_IeS1TobLLiyYFM4zqX1iwGVgKvokRIAgXT7v-PpNnZ3LL8tuuRfqK_uEVXjgOnHHQkPbAQql_IQT5bXzgDVmmCbjuAGfd1-UeZMxVfdgqRclrBxqJy3TnRYjqE9r1DEKUMW4Vr8YJlmznD10X83kU4Hx_5vuedOF8o971CKeTh-Q-6NeST_W8RySO3F4SO7toQ0-Ij9O9tD8KQyB7r1ipJvqUEjXiQ4wrNNqd1ky4Ma9omg0Z1zYEmiCxuEis0qu5z0FWh-_PCbnpyffP5-xMbgCc4rLLUsmhC7hPAZclTL0AZwGA7FHoinwaLtCaCVIw0N03vddl7qFStpx70UPvXhCDob1EJ8RaqLgOrUpRuFQJmZnqsCl4wsdBCAtGvJhNsX2qgJp2AxtPf-Dq8xmAlkk0NJiwvuGvJsIYv2IW57DZ6xssV-MulngzXWBqaVbs37KFJ51qHxADrQjB9p_cWBD6MQfFtdmvnCBIa53G2t0lvZCiIY8rexy3RJagm2rBfZAzxhp1pX5n-HyosB_C7TZ0c5tyNuJ5ey472xuG-fz_zHOI3K3HqgL1qoX5GD7cxdfoka2da_K4vsNhVQy1A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  dbid: 40G
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcoED4k1aQD5wgINhYzu2AydALRUSnKi0ByTLT1pplaDu7v9n7CTVpo8Dp0ixHTueGc-MPfMZ4I1KmokmLKjgzlOhfKKWiUBl9InzYINweb_jx095ciq-L5vlHtRTLkyJdp-OJMtKXcRayw-o-CRlSi4pPlh7B-5mLLEcxSUW36bFVyj0y0cEnxsaXclqX82UUcHsv8nQvB4veeXQtOii44fwYDQiyeeB6o9gL3aP4f4OtOAT-H20A91PbBfITsoiWQ_Rg6RPpLNdn1bb81IBV-kVQQ85g8CWWyVI7M4yX-TvfCSWDJkuT-H0-OjX1xM63qRAnWRiQ5MOoUnoSwUUQRHaYJ2y2sYWKSStR0fVhlpYoVmIzvu2aVKzkEk55j1vbcufwX7Xd_EFEB05U6lOMXKHCjBHTgUmHFuowC3OfwWfZlNs_g6oGSbjWM9LkLomE8hkAhl8sLaC9xNBjB9ByvNdGStTnBUtrzd4e9lg6unWql8yhWcDKi_6iz9mlFPDla0bizZQzhhG89B5iwycUcG0Y9r6CsjEHwYFMZ-u2C7227XRKqt2znkFzwd2uewJ3b66VhxHoGaMNBvKvKQ7PytY3xwddHRqK3g3sZwZF5n1bf958B91D-HesEnOaS1fwv7mYhtfoZW1ca-LXP0DgqIk9A
  priority: 102
  providerName: Springer Nature
Title Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review
URI https://link.springer.com/article/10.1186/1556-276X-6-229
https://www.ncbi.nlm.nih.gov/pubmed/21711739
https://www.proquest.com/docview/874299333
http://dx.doi.org/10.1186/1556-276X-6-229
https://pubmed.ncbi.nlm.nih.gov/PMC3211287
https://doaj.org/article/37a15a2934394250bca47c14098b28ac
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9QwELZoe4ED4k14rHzgAIeUje3YDgihdrXbCqkVQqy0ByTLj7itFGVhHxL8e8ZOsmzo7sVRHo6TzHyZGT--QeiN8JKw3A1TRo1NmbA-1YS5lJfWU-q0Yyb0d1xc8vMp-zLLZ__SAbUfcLkztAv5pKaL6vj3rz-fAfCfIuAlfw8mkadE8FkKG1IcoCMwSyKg9IJthhSYgIi95fbZUSmSAossEyFreG_pe9WzWJHYf5c3entS5X8jq9FgTR6g-62niU8a1XiI7pT1I3Rvi3_wMfox3uL3x7p2eGtdI142Uwzx3ONa13NfrW_iBfArrzCE0YEpNqaewGV9HZQn3OcD1rhZDvMETSfj76PztE23kBpO2Cr10rncQ8DlAKfMFU4boaUuCxAj1xaiWe0yppkkrjTWFnnu8yH3whBraaEL-hQd1vO6fI6wLCkRPvNlSQ1YyTC9yhFmyFA4qkEUCfrY-8TqZ0OtoQLZdf8M4E4FWakgKwUbUiTouBOIsi2TeUioUakY0Uh-u8LbTYWupb2XngYJ9x4oHpgvrlQLZkWFznINjlJYVgw-pLEatDxQh0lDpLYJwp1-KEBrGILRdTlfL5UUwf5TShP0rFGXTUud-iVI9BSp9yj9M_XNdSQEpxDFQ-SboHedyqkOSPve88Xe9l-iu02_OU0z_godrhbr8jU4XiszQAdseAalnEB5dDq-_PoN9kZ8NIhdGVCezbJBhB2UU3LyFy8SMsE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOUAPFW9SXj5wgINhYzu2AydYtVqg7amV9oBk-alWWmUrdvf_M86j2vRx4BQptmMnM-OZL_Z8BvigkmaiChMquPNUKJ-oZSJQGX3iPNggXP7fcXwiZ2fi17ya9yRJORdme_2-1PILujtJmZJzihdW34cHAmFy3rs3ldNhyhUK0XjP23NLo2u57IuRC2qZ-m8LL2_ukry2VNp6oMPHsNeHjuR7J-sncC82T2F3i1DwGfw52CLsJ7YJZCtRkay6PYNkmUhjm2VabC7aCjg3Lwji4kz92p4lQWJznrUhP-crsaTLb3kOZ4cHp9MZ7c9PoE4ysaZJh1AlRFABDU-EOlinrLaxRrlI6xGe2lAKKzQL0XlfV1WqJjIpx7znta35C9hplk18BURHzlQqU4zcodvL-6UCE45NVOAWv38B30af2Fx2XBkms1ePS9CQTBaQyQIyeGF1AZ8HgRjfU5PnEzIWpoUoWt5s8PGqwdDTnVV_ZAmPBtTeQC0zvXUarmxZWYx8cp4wBoXOW1TbzAWmHdPWF0AG_TBofnlNxTZxuVkZrbJD55wX8LJTl6ueEOyVpeI4AjVSpNFQxiXNxXnL8M0RliOULeDToHKmn1pWd73n_n_UfQ8PZ6fHR-bo58nv1_Co-03OaSnfwM767ya-xThr7d61NvYPbqUj8g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAgOqLxKgIIPHOBgurEd24FTu3RVXhUHKu0ByfKTVlo5VXf3_zPOo9r0ceAUKbZjxzPjmbFnPiP0TkZFeeUnhDPrCJcuEkO5JyK4yJg3ntu83_HzWByd8G_zat7H5iyHaPfhSLLLacgoTWm1d-5jJ-JK7IESFIRKMSfwoPVddA_clPaUdiqmw0LMJfjoPZrPDY2uZLgvRoqpxe-_yei8Hjt55QC11UuzbfSoNyjxfscBj9GdkJ6ghxswg0_Rn8MNGH9skscb6Yt42UUS4ibiZFITF-uztgKs2AsM05IBYdsbJnBIp5lH8nc-YYO7rJdn6GR2-Ht6RPpbFYgVlK9IVN5XEfwqD-LIfe2NlUaZUAO1hHHgtBpfcsMV9cE6V1dVrCYiSkudY7Wp2XO0lZoUXiCsAqMyljEEZkEZ5igqT7mlE-mZgfkv0OfRFOvzDkFDZ0zrcQlQWmcC6UwgDQ9aF-jjQBDtesDyfG_GQreOixLXG7y_bDD0dGvVg0zh0YDaF83FX93LrGbSlJUBeyhnD4OpaJ0BZs4IYcpSZVyB8MAfGoQyn7SYFJr1UiuZ1TxjrEA7Hbtc9gQuYFlKBiOQI0YaDWVcks5OW9xvBs46OLgF-jCwnO4XnOVt__nyP-q-Rfd_fZnpH1-Pv79CD7q9c0ZK8RptrS7WYReMr5V904rYP9IfLDk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+theoretical+studies+of+nanofluid+thermal+conductivity+enhancement%3A+a+review&rft.jtitle=Nanoscale+research+letters&rft.au=Kleinstreuer%2C+Clement&rft.au=Feng%2C+Yu&rft.date=2011-03-16&rft.eissn=1556-276X&rft.volume=6&rft.issue=1&rft.spage=229&rft_id=info:doi/10.1186%2F1556-276X-6-229&rft_id=info%3Apmid%2F21711739&rft.externalDocID=21711739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-276X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-276X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-276X&client=summon