Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review
Nanofluids, i.e. , well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, k nf , over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of we...
Saved in:
Published in | Nanoscale research letters Vol. 6; no. 1; p. 229 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer New York
16.03.2011
BioMed Central Ltd Springer SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanofluids,
i.e.
, well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity,
k
nf
, over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed.
It is evident that key questions still linger concerning the best nanoparticle-and-liquid pairing and conditioning, reliable measurements of achievable
k
nf
values, and easy-to-use, physically sound computer models which fully describe the particle dynamics and heat transfer of nanofluids. At present, experimental data and measurement methods are lacking consistency. In fact, debates on whether the anomalous enhancement is real or not endure, as well as discussions on what are repeatable correlations between
k
nf
and temperature, nanoparticle size/shape, and aggregation state. Clearly, benchmark experiments are needed, using the same nanofluids subject to different measurement methods. Such outcomes would validate new, minimally intrusive techniques and verify the reproducibility of experimental results. Dynamic
k
nf
models, assuming non-interacting metallic nano-spheres, postulate an enhancement above the classical Maxwell theory and thereby provide potentially additional physical insight. Clearly, it will be necessary to consider not only one possible mechanism but combine several mechanisms and compare predictive results to new benchmark experimental data sets. |
---|---|
AbstractList | Abstract Nanofluids, i.e., well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, knf, over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed. It is evident that key questions still linger concerning the best nanoparticle-and-liquid pairing and conditioning, reliable measurements of achievable knf values, and easy-to-use, physically sound computer models which fully describe the particle dynamics and heat transfer of nanofluids. At present, experimental data and measurement methods are lacking consistency. In fact, debates on whether the anomalous enhancement is real or not endure, as well as discussions on what are repeatable correlations between knf and temperature, nanoparticle size/shape, and aggregation state. Clearly, benchmark experiments are needed, using the same nanofluids subject to different measurement methods. Such outcomes would validate new, minimally intrusive techniques and verify the reproducibility of experimental results. Dynamic knf models, assuming non-interacting metallic nano-spheres, postulate an enhancement above the classical Maxwell theory and thereby provide potentially additional physical insight. Clearly, it will be necessary to consider not only one possible mechanism but combine several mechanisms and compare predictive results to new benchmark experimental data sets. Nanofluids, i.e., well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, knf, over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed.It is evident that key questions still linger concerning the best nanoparticle-and-liquid pairing and conditioning, reliable measurements of achievable knf values, and easy-to-use, physically sound computer models which fully describe the particle dynamics and heat transfer of nanofluids. At present, experimental data and measurement methods are lacking consistency. In fact, debates on whether the anomalous enhancement is real or not endure, as well as discussions on what are repeatable correlations between knf and temperature, nanoparticle size/shape, and aggregation state. Clearly, benchmark experiments are needed, using the same nanofluids subject to different measurement methods. Such outcomes would validate new, minimally intrusive techniques and verify the reproducibility of experimental results. Dynamic knf models, assuming non-interacting metallic nano-spheres, postulate an enhancement above the classical Maxwell theory and thereby provide potentially additional physical insight. Clearly, it will be necessary to consider not only one possible mechanism but combine several mechanisms and compare predictive results to new benchmark experimental data sets. Nanofluids, i.e. , well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, k nf , over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed. It is evident that key questions still linger concerning the best nanoparticle-and-liquid pairing and conditioning, reliable measurements of achievable k nf values, and easy-to-use, physically sound computer models which fully describe the particle dynamics and heat transfer of nanofluids. At present, experimental data and measurement methods are lacking consistency. In fact, debates on whether the anomalous enhancement is real or not endure, as well as discussions on what are repeatable correlations between k nf and temperature, nanoparticle size/shape, and aggregation state. Clearly, benchmark experiments are needed, using the same nanofluids subject to different measurement methods. Such outcomes would validate new, minimally intrusive techniques and verify the reproducibility of experimental results. Dynamic k nf models, assuming non-interacting metallic nano-spheres, postulate an enhancement above the classical Maxwell theory and thereby provide potentially additional physical insight. Clearly, it will be necessary to consider not only one possible mechanism but combine several mechanisms and compare predictive results to new benchmark experimental data sets. Nanofluids, i.e., well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, knf, over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed.It is evident that key questions still linger concerning the best nanoparticle-and-liquid pairing and conditioning, reliable measurements of achievable knf values, and easy-to-use, physically sound computer models which fully describe the particle dynamics and heat transfer of nanofluids. At present, experimental data and measurement methods are lacking consistency. In fact, debates on whether the anomalous enhancement is real or not endure, as well as discussions on what are repeatable correlations between knf and temperature, nanoparticle size/shape, and aggregation state. Clearly, benchmark experiments are needed, using the same nanofluids subject to different measurement methods. Such outcomes would validate new, minimally intrusive techniques and verify the reproducibility of experimental results. Dynamic knf models, assuming non-interacting metallic nano-spheres, postulate an enhancement above the classical Maxwell theory and thereby provide potentially additional physical insight. Clearly, it will be necessary to consider not only one possible mechanism but combine several mechanisms and compare predictive results to new benchmark experimental data sets.Nanofluids, i.e., well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, knf, over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed.It is evident that key questions still linger concerning the best nanoparticle-and-liquid pairing and conditioning, reliable measurements of achievable knf values, and easy-to-use, physically sound computer models which fully describe the particle dynamics and heat transfer of nanofluids. At present, experimental data and measurement methods are lacking consistency. In fact, debates on whether the anomalous enhancement is real or not endure, as well as discussions on what are repeatable correlations between knf and temperature, nanoparticle size/shape, and aggregation state. Clearly, benchmark experiments are needed, using the same nanofluids subject to different measurement methods. Such outcomes would validate new, minimally intrusive techniques and verify the reproducibility of experimental results. Dynamic knf models, assuming non-interacting metallic nano-spheres, postulate an enhancement above the classical Maxwell theory and thereby provide potentially additional physical insight. Clearly, it will be necessary to consider not only one possible mechanism but combine several mechanisms and compare predictive results to new benchmark experimental data sets. |
ArticleNumber | 229 |
Author | Kleinstreuer, Clement Feng, Yu |
AuthorAffiliation | 1 Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, NC 27695-7910, USA |
AuthorAffiliation_xml | – name: 1 Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, NC 27695-7910, USA |
Author_xml | – sequence: 1 givenname: Clement surname: Kleinstreuer fullname: Kleinstreuer, Clement email: ck@eos.ncsu.edu organization: Department of Mechanical and Aerospace Engineering, NC State University – sequence: 2 givenname: Yu surname: Feng fullname: Feng, Yu organization: Department of Mechanical and Aerospace Engineering, NC State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21711739$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ksFu1DAQhi1URNuFMzeUG6e0tuPEMQckWpVSqRIXkDggWRPb2fUqay-2s9C3x2naqotYX8aemf-bGY1P0ZHzziD0luAzQtrmnNR1U1Le_CizoeIFOnnyHD27H6PTGNcYM4558wodU8IJ4ZU4QT-v_mxNsBvjEgwFOF2klfHBJKvyO6ZRWxML3xcOnO-H0d4nhE0OKu_0qJLd2XRXGLcCp8zE-VBAEczOmt-v0csehmjePNgF-v756tvll_L26_XN5afbsmsoS2Xfal33hGFdE8y00NBxaMEIVnUNKE4q0IQBa6k2nVKirvsaNz3vqFKVAFEt0M3M1R7WcpvHgXAnPVh57_BhKSHkiQYjKw6kBioqVglGa9wpYFzl2qLtaAsqsz7OrO3YbYxWeaAAwx50P-LsSi79TlaUENryDLiYAZ31BwD7EeU3ctqUnDYls6HTRO8fugj-12hikhsblRkGcMaPUbacUSGqfBbo3fN-n-o8rjgn1HOCCj7GYHqpbIJk_VTdDpJgOX2l_7Rw_o_uEX1YgWdFzJluaYJc-zG4vPmDkr9BFd1X |
CitedBy_id | crossref_primary_10_1016_j_tca_2017_02_001 crossref_primary_10_1007_s00231_015_1662_8 crossref_primary_10_1039_c3ra40187a crossref_primary_10_1021_acs_iecr_6b00784 crossref_primary_10_1016_j_aej_2015_10_006 crossref_primary_10_36306_konjes_1019424 crossref_primary_10_1080_03067319_2020_1722810 crossref_primary_10_1088_1742_6596_1204_1_012056 crossref_primary_10_1016_j_apsusc_2020_148090 crossref_primary_10_1016_j_renene_2019_04_153 crossref_primary_10_1016_j_tsep_2021_100985 crossref_primary_10_1063_1_4802998 crossref_primary_10_1021_ie402508x crossref_primary_10_3390_en13154026 crossref_primary_10_1016_j_matlet_2012_11_097 crossref_primary_10_1007_s10973_019_08562_5 crossref_primary_10_1016_j_ijheatmasstransfer_2019_06_028 crossref_primary_10_1016_j_padiff_2021_100232 crossref_primary_10_1080_09500340_2018_1510556 crossref_primary_10_1007_s10765_016_2093_6 crossref_primary_10_1007_s40430_018_1177_6 crossref_primary_10_1063_1_4864200 crossref_primary_10_2478_v10176_011_0026_2 crossref_primary_10_3390_en13071653 crossref_primary_10_1016_j_physa_2019_04_184 crossref_primary_10_1016_j_applthermaleng_2016_06_099 crossref_primary_10_1088_1572_9494_ac10bf crossref_primary_10_1016_j_rser_2016_04_072 crossref_primary_10_1016_j_jtice_2012_11_015 crossref_primary_10_1016_j_matpr_2017_02_304 crossref_primary_10_1007_s13204_015_0481_z crossref_primary_10_1007_s10973_020_10134_x crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_032 crossref_primary_10_1002_num_22676 crossref_primary_10_1007_s10973_020_10341_6 crossref_primary_10_1088_1757_899X_226_1_012146 crossref_primary_10_1016_j_rser_2012_11_051 crossref_primary_10_1186_1556_276X_6_439 crossref_primary_10_1115_1_4023544 crossref_primary_10_1007_s10973_021_10971_4 crossref_primary_10_1063_1_4864098 crossref_primary_10_1515_nleng_2017_0055 crossref_primary_10_1080_01932691_2013_764485 crossref_primary_10_1016_j_energy_2015_05_061 crossref_primary_10_1016_j_colsurfa_2022_128808 crossref_primary_10_1007_s11051_013_1775_2 crossref_primary_10_1016_j_aej_2016_01_027 crossref_primary_10_1002_mma_8234 crossref_primary_10_1016_j_csite_2023_102914 crossref_primary_10_1016_j_ijthermalsci_2018_10_007 crossref_primary_10_1007_s13369_024_08754_8 crossref_primary_10_1007_s12648_021_02206_x crossref_primary_10_1016_j_molliq_2020_114975 crossref_primary_10_1134_S1070427220120022 crossref_primary_10_1007_s00161_015_0488_4 crossref_primary_10_1155_2022_9080009 crossref_primary_10_1007_s10973_020_09795_5 crossref_primary_10_1016_j_ijrefrig_2014_02_004 crossref_primary_10_1017_jfm_2022_837 crossref_primary_10_1016_j_ijheatmasstransfer_2019_119034 crossref_primary_10_1016_j_apenergy_2014_03_019 crossref_primary_10_1140_epjp_i2017_11342_y crossref_primary_10_1134_S1063784217100206 crossref_primary_10_1016_j_ijrefrig_2019_12_009 crossref_primary_10_1080_10402004_2022_2033371 crossref_primary_10_1016_j_energy_2020_117861 crossref_primary_10_3390_en15207742 crossref_primary_10_1080_17458080_2013_841999 crossref_primary_10_2514_1_T5826 crossref_primary_10_1016_j_molliq_2020_113875 crossref_primary_10_1016_j_molliq_2020_112787 crossref_primary_10_1016_j_csite_2022_102507 crossref_primary_10_1088_1674_1056_24_8_084401 crossref_primary_10_1002_cben_201800008 crossref_primary_10_1016_j_rser_2017_03_113 crossref_primary_10_1115_1_4039217 crossref_primary_10_1142_S0217979224500905 crossref_primary_10_1021_la301526f crossref_primary_10_1016_j_ijheatmasstransfer_2013_06_010 crossref_primary_10_1007_s10973_020_09873_8 crossref_primary_10_1016_j_est_2022_105661 crossref_primary_10_1016_j_energy_2020_118520 crossref_primary_10_1016_j_matchemphys_2016_06_003 crossref_primary_10_1016_j_ijheatmasstransfer_2015_05_010 crossref_primary_10_1016_j_expthermflusci_2016_06_029 crossref_primary_10_26634_jfet_15_3_15139 crossref_primary_10_1007_s00231_014_1367_4 crossref_primary_10_1080_00986445_2016_1246437 crossref_primary_10_1080_10407790_2014_992089 crossref_primary_10_1016_j_csite_2021_101527 crossref_primary_10_1016_j_applthermaleng_2011_09_008 crossref_primary_10_1016_j_apenergy_2016_11_017 crossref_primary_10_1016_j_rineng_2023_101227 crossref_primary_10_1088_1402_4896_ac8bb2 crossref_primary_10_1016_j_apt_2017_10_023 crossref_primary_10_3390_app9102101 crossref_primary_10_1063_1_4754271 crossref_primary_10_1520_MPC20130107 crossref_primary_10_1016_j_powtec_2013_05_010 crossref_primary_10_1678_rheology_50_323 crossref_primary_10_1002_jemt_23641 crossref_primary_10_7498_aps_71_20211889 crossref_primary_10_1016_j_jclepro_2020_120408 crossref_primary_10_1007_s10973_022_11604_0 crossref_primary_10_1016_j_physa_2019_122126 crossref_primary_10_1016_j_physa_2019_122489 crossref_primary_10_1007_s40684_019_00053_0 crossref_primary_10_1166_jon_2023_1911 crossref_primary_10_1155_2014_612417 crossref_primary_10_1088_0022_3727_48_33_335301 crossref_primary_10_1016_j_nanoen_2013_02_007 crossref_primary_10_1155_2014_756765 crossref_primary_10_30521_jes_872530 crossref_primary_10_1071_CH18116 crossref_primary_10_18186_thermal_843077 crossref_primary_10_1007_s10010_016_0205_x crossref_primary_10_1016_j_icheatmasstransfer_2020_105018 crossref_primary_10_1080_02726351_2021_1946729 crossref_primary_10_4028_www_scientific_net_AMM_695_539 crossref_primary_10_1007_s00231_017_2072_x crossref_primary_10_1016_j_ijheatmasstransfer_2015_01_009 crossref_primary_10_3390_en13133462 crossref_primary_10_3390_nano12152526 crossref_primary_10_1002_est2_37 crossref_primary_10_2514_1_T4652 crossref_primary_10_1103_PhysRevE_87_022301 crossref_primary_10_3390_nano12010025 crossref_primary_10_4188_jte_67_65 crossref_primary_10_1007_s10973_019_08225_5 crossref_primary_10_1007_s10765_020_02714_8 crossref_primary_10_1016_j_anucene_2022_109283 crossref_primary_10_1016_j_tca_2013_01_023 crossref_primary_10_1063_5_0210446 crossref_primary_10_1007_s11164_012_0799_z crossref_primary_10_1016_j_aej_2017_03_011 crossref_primary_10_1016_j_ijthermalsci_2015_01_035 crossref_primary_10_1016_j_icheatmasstransfer_2022_106255 crossref_primary_10_1016_j_ijheatmasstransfer_2012_06_034 crossref_primary_10_1007_s40430_016_0632_5 crossref_primary_10_1007_s12541_014_0390_1 crossref_primary_10_1177_23977914241263453 crossref_primary_10_1016_j_ijheatmasstransfer_2018_03_046 crossref_primary_10_1142_S2010132518500098 crossref_primary_10_3390_app8122596 crossref_primary_10_3390_nano14030282 crossref_primary_10_1007_s10404_013_1319_1 crossref_primary_10_1007_s10973_018_7234_7 crossref_primary_10_1038_srep19560 crossref_primary_10_1007_s11431_015_5836_x crossref_primary_10_1016_j_expthermflusci_2014_03_003 crossref_primary_10_1007_s11630_019_1158_9 crossref_primary_10_1016_j_physrep_2019_12_001 crossref_primary_10_1016_j_tsep_2023_101791 crossref_primary_10_1016_j_rser_2022_112548 crossref_primary_10_1016_j_rser_2017_03_043 crossref_primary_10_1016_j_est_2022_104417 crossref_primary_10_1016_j_apt_2018_04_010 crossref_primary_10_1088_2631_8695_ada66d crossref_primary_10_1016_j_icheatmasstransfer_2018_05_002 crossref_primary_10_1016_j_powtec_2016_06_024 crossref_primary_10_1007_s00231_016_1948_5 crossref_primary_10_3390_en11112942 crossref_primary_10_1021_acsami_5b05864 crossref_primary_10_1016_j_physe_2018_07_023 crossref_primary_10_1016_j_molliq_2019_03_127 crossref_primary_10_1016_j_ijheatmasstransfer_2014_07_051 crossref_primary_10_1007_s12206_016_0231_5 crossref_primary_10_1016_j_jics_2021_100037 crossref_primary_10_1016_j_molliq_2020_113492 crossref_primary_10_1016_j_aej_2020_04_028 crossref_primary_10_3390_app12073567 crossref_primary_10_1016_j_jmmm_2023_171037 crossref_primary_10_1007_s13538_015_0301_7 crossref_primary_10_1007_s40571_022_00509_2 crossref_primary_10_3762_bjnano_7_194 crossref_primary_10_1016_j_colsurfa_2016_06_007 crossref_primary_10_2514_1_T3935 crossref_primary_10_1016_j_applthermaleng_2020_115543 crossref_primary_10_1016_j_jcde_2019_02_003 crossref_primary_10_1515_nleng_2018_0016 crossref_primary_10_1039_D1NA00061F crossref_primary_10_1007_s10973_014_4002_1 crossref_primary_10_1007_s40094_016_0224_x crossref_primary_10_1016_j_jmmm_2018_11_034 crossref_primary_10_3390_en13205506 crossref_primary_10_1007_s11051_020_4776_y crossref_primary_10_1016_j_ijthermalsci_2015_10_005 crossref_primary_10_1002_mma_6457 crossref_primary_10_1080_10584587_2019_1675005 crossref_primary_10_3390_en16010373 crossref_primary_10_1016_j_ijmecsci_2019_01_035 crossref_primary_10_1016_j_ijthermalsci_2013_09_002 crossref_primary_10_3390_mi14050964 crossref_primary_10_1007_s00231_021_03077_y crossref_primary_10_2971_jeos_2014_14046 crossref_primary_10_1088_1402_4896_ad5f26 crossref_primary_10_1166_jon_2023_2094 crossref_primary_10_1140_epjs_s11734_021_00041_z crossref_primary_10_1016_j_powtec_2018_07_086 crossref_primary_10_1186_1556_276X_9_15 crossref_primary_10_1016_j_icheatmasstransfer_2018_08_001 crossref_primary_10_1016_j_ijthermalsci_2012_01_016 crossref_primary_10_1007_s10973_019_09067_x crossref_primary_10_3390_nano12091489 crossref_primary_10_1063_5_0024332 crossref_primary_10_1080_15567265_2016_1174321 crossref_primary_10_3390_nano12030507 crossref_primary_10_1088_1361_6463_ab45ce crossref_primary_10_1080_01457632_2023_2268865 crossref_primary_10_1108_HFF_10_2015_0412 crossref_primary_10_1007_s11664_021_09028_x crossref_primary_10_3390_magnetochemistry8030027 crossref_primary_10_1139_cjp_2017_0062 crossref_primary_10_1080_01457632_2014_935214 crossref_primary_10_3390_nano11051158 crossref_primary_10_1016_j_matpr_2019_04_199 crossref_primary_10_1016_j_icheatmasstransfer_2012_05_017 crossref_primary_10_1039_C3LC51331A crossref_primary_10_1007_s10973_015_5135_6 crossref_primary_10_35940_ijrte_C6418_1110421 crossref_primary_10_1016_j_ijheatmasstransfer_2012_03_001 crossref_primary_10_1364_OE_27_031900 crossref_primary_10_2298_TSCI230227131A crossref_primary_10_1080_15567265_2017_1363834 crossref_primary_10_1080_15376494_2016_1232454 crossref_primary_10_1115_1_4025663 crossref_primary_10_1016_j_applthermaleng_2014_09_087 crossref_primary_10_1016_j_snb_2017_08_112 crossref_primary_10_1016_j_ijheatmasstransfer_2017_08_071 crossref_primary_10_1142_S0217979221502854 crossref_primary_10_1016_j_jestch_2018_10_004 crossref_primary_10_20473_iapl_v1i1_21330 crossref_primary_10_2516_ogst_2020033 crossref_primary_10_1007_s13369_020_04979_5 crossref_primary_10_1016_j_jmmm_2023_170972 crossref_primary_10_1063_1_4942201 crossref_primary_10_1021_acs_jpcc_5b12476 crossref_primary_10_1002_cjce_21801 crossref_primary_10_1002_htj_21299 crossref_primary_10_1080_23080477_2021_1907700 crossref_primary_10_1016_j_ijthermalsci_2015_07_020 crossref_primary_10_1186_1556_276X_7_423 crossref_primary_10_1080_17455030_2021_1979274 crossref_primary_10_1108_HFF_06_2023_0326 crossref_primary_10_1080_10408436_2015_1068159 crossref_primary_10_1016_j_ceja_2022_100366 crossref_primary_10_1017_jmech_2016_18 crossref_primary_10_3390_en16114415 crossref_primary_10_1140_epje_i2018_11616_9 crossref_primary_10_1016_j_rser_2012_03_013 crossref_primary_10_1186_1556_276X_9_170 crossref_primary_10_1016_j_ijheatmasstransfer_2012_04_029 crossref_primary_10_1088_1757_899X_791_1_012003 crossref_primary_10_1140_epjp_i2016_16303_4 crossref_primary_10_1016_j_apt_2013_10_012 crossref_primary_10_1039_c4ra00843j crossref_primary_10_1016_j_ijheatmasstransfer_2013_05_033 crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_026 crossref_primary_10_1016_j_rser_2015_04_018 crossref_primary_10_1016_j_solmat_2020_110526 crossref_primary_10_1016_j_molliq_2020_114775 crossref_primary_10_1007_s13204_014_0359_5 crossref_primary_10_1063_1_5026340 crossref_primary_10_1134_S1061933X16040153 crossref_primary_10_1016_j_aej_2017_11_005 crossref_primary_10_1016_j_icheatmasstransfer_2013_03_014 crossref_primary_10_1007_s11051_012_1369_4 crossref_primary_10_1080_01932691_2014_945595 crossref_primary_10_1063_1_3650456 crossref_primary_10_1016_j_icheatmasstransfer_2022_106408 crossref_primary_10_1166_jon_2022_1891 crossref_primary_10_1016_j_cplett_2024_141363 crossref_primary_10_1080_16583655_2020_1823100 crossref_primary_10_1016_j_apt_2015_03_012 crossref_primary_10_1007_s00231_019_02588_z crossref_primary_10_1039_c4ra03143a crossref_primary_10_1007_s11431_017_9079_6 crossref_primary_10_1080_10407782_2023_2176381 |
Cites_doi | 10.1098/rspa.1973.0130 10.1023/A:1015121805842 10.2514/2.6486 10.1016/j.powtec.2009.09.016 10.1021/la9022757 10.1063/1.2710337 10.1016/j.ijheatmasstransfer.2008.07.016 10.1002/(SICI)1099-0488(19990601)37:11<1069::AID-POLB3>3.0.CO;2-U 10.1007/BF00502394 10.1016/0017-9310(95)00060-M 10.1007/s11051-004-3170-5 10.1063/1.1756684 10.1360/02ye9047 10.1016/j.cap.2007.12.008 10.1016/j.applthermaleng.2010.05.036 10.2174/157341309787314548 10.1007/978-90-481-9029-4_8 10.1016/j.applthermaleng.2006.02.036 10.1016/j.ijheatmasstransfer.2005.07.009 10.1007/BF01441907 10.1063/1.1602578 10.1021/jp065926t 10.1016/j.expthermflusci.2009.01.005 10.2963/jjtp.7.227 10.1021/i160003a005 10.2514/2.2044 10.1007/s11671-010-9638-6 10.1063/1.1765761 10.1016/j.rser.2010.03.017 10.1007/s11051-008-9500-2 10.1016/j.ijthermalsci.2008.03.009 10.1016/j.ijheatmasstransfer.2004.07.012 10.1080/00986447308960412 10.1002/andp.19354160705 10.1115/1.2712475 10.1016/j.ijheatmasstransfer.2008.10.025 10.1080/08916159808946559 10.1016/j.jmmm.2010.08.016 10.1063/1.2191571 10.1007/s11051-009-9716-9 10.1103/PhysRev.130.129 10.1007/s10765-009-0594-2 10.1007/s11051-009-9658-2 10.1364/JOSAB.21.000605 10.1007/s11661-007-9444-7 10.1016/j.ijheatmasstransfer.2010.06.031 10.1007/s10404-009-0524-4 10.1016/S0017-9310(01)00175-2 10.1115/1.2825978 10.1080/08916150902950145 10.1115/1.1571080 10.1016/j.ijthermalsci.2004.12.005 10.1080/01457630701850851 10.1115/1.2188509 10.1016/j.ijheatfluidflow.2006.05.001 10.1007/s10765-008-0469-y 10.1021/ie901060e 10.1021/i300010a035 10.1016/j.applthermaleng.2008.12.018 10.1016/j.ijheatmasstransfer.2010.01.006 |
ContentType | Journal Article |
Copyright | Kleinstreuer and Feng; licensee Springer. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2011 Kleinstreuer and Feng; licensee Springer. 2011 Kleinstreuer and Feng; licensee Springer. |
Copyright_xml | – notice: Kleinstreuer and Feng; licensee Springer. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2011 Kleinstreuer and Feng; licensee Springer. 2011 Kleinstreuer and Feng; licensee Springer. |
DBID | C6C AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1186/1556-276X-6-229 |
DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1556-276X |
EndPage | 229 |
ExternalDocumentID | oai_doaj_org_article_37a15a2934394250bca47c14098b28ac PMC3211287 oai_biomedcentral_com_1556_276X_6_229 21711739 10_1186_1556_276X_6_229 |
Genre | Journal Article |
GroupedDBID | -A0 .4S .86 .DC 0R~ 123 29M 2VQ 2WC 4.4 40G 5VS 6NX 8FE 8FG 8FH AAFWJ ABJCF ABMNI ACGFO ACGFS ACIWK ACPRK ADBBV ADINQ ADRAZ AEGXH AENEX AEUYN AFGCZ AFKRA AFPKN AFRAH AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARCSS BAPOH BBNVY BCNDV BENPR BGLVJ BGNMA BHPHI C1A C24 C6C CAG CCPQU COF CS3 D1I DU5 EBS EDO EJD F5P GROUPED_DOAJ GX1 H13 HCIFZ HH5 HYE HZ~ I09 IPNFZ IZQ KB. KDC KQ8 LK8 M48 M4Y M7P MM. M~E NU0 O5R O5S O9- OK1 P2P PDBOC PGMZT PIMPY PROAC RIG RNS RPM RPX RSV SCM SDH SOJ TR2 TSK TUS U2A ~KM AAYXX CITATION OVT PHGZM PHGZT NPM 7X8 PQGLB AAJSJ AAKKN AAYZJ ACACY AFGXO AHBXF 5PM PUEGO |
ID | FETCH-LOGICAL-b624t-f8dd5f140d5104d9dab7a8ae943b6ac713ad14a482debcc955f506f7b2cc39a93 |
IEDL.DBID | M48 |
ISSN | 1556-276X 1931-7573 |
IngestDate | Wed Aug 27 01:24:00 EDT 2025 Thu Aug 21 18:22:11 EDT 2025 Wed May 22 07:17:13 EDT 2024 Fri Jul 11 04:19:19 EDT 2025 Thu Apr 03 07:02:58 EDT 2025 Thu Apr 24 22:53:14 EDT 2025 Tue Jul 01 03:54:04 EDT 2025 Fri Feb 21 02:34:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Effective Thermal Conductivity Base Fluid Nanoparticle Volume Fraction Thermal Conductivity Enhancement Thermal Conductivity |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b624t-f8dd5f140d5104d9dab7a8ae943b6ac713ad14a482debcc955f506f7b2cc39a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/37a15a2934394250bca47c14098b28ac |
PMID | 21711739 |
PQID | 874299333 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_37a15a2934394250bca47c14098b28ac pubmedcentral_primary_oai_pubmedcentral_nih_gov_3211287 biomedcentral_primary_oai_biomedcentral_com_1556_276X_6_229 proquest_miscellaneous_874299333 pubmed_primary_21711739 crossref_citationtrail_10_1186_1556_276X_6_229 crossref_primary_10_1186_1556_276X_6_229 springer_journals_10_1186_1556_276X_6_229 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-16 |
PublicationDateYYYYMMDD | 2011-03-16 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nanoscale research letters |
PublicationTitleAbbrev | Nanoscale Res Lett |
PublicationTitleAlternate | Nanoscale Res Lett |
PublicationYear | 2011 |
Publisher | Springer New York BioMed Central Ltd Springer SpringerOpen |
Publisher_xml | – name: Springer New York – name: BioMed Central Ltd – name: Springer – name: SpringerOpen |
References | ZhangXGuHFujiiMExperimental study on the effective thermal conductivity and thermal diffusivity of nanofluidAIAA Journal20064183184010.2514/2.2044 KooJMComputational nanofluid flow and heat transfer analyses applied to micro-systems, Ph.D Thesis2005Raleigh, NC, USANC State University MintsaHARoyGNguyenCTDoucetDNew temperature dependent thermal conductivity data for water-based nanofluidsInternational Journal of Thermal Sciences20094836337110.1016/j.ijthermalsci.2008.03.009 LiCHWilliamsWTransient and steady-state experimental comparison study of effective thermal conductivity of Al2O3-water nanofluidsJournal of Heat Transfer2008 VenerusDCKabadiMSLeeSPerez-LunaVStudy of thermal transport in nanoparticle suspensions using forced Rayleigh scatteringJournal of Applied Physics200610.1063/1.2360378 PakBCChoYIHydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particlesExp Heat Transfer19981115117010.1080/08916159808946559 PutnamSACahillDGBraunPVThermal conductivity of nanoparticle suspensionsJournal of Applied Physics200610.1063/1.2189933 PatelHESundararajanTDasSKAn experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluidsJournal of Nanoparticle Research2010121015103110.1007/s11051-009-9658-2 BeckMPYuanYWarrierPTejaASThe effect of particle size on the thermal conductivity of alumina nanofluidsJournal of Nanoparticle Research2009111129113610.1007/s11051-008-9500-2 LiCHPetersonGPExperimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)Journal of Applied Physics200699808431410.1063/1.2191571 IygengarASAbramsonARComparative radial heat flow method for thermal conductivity measurement of liquidsJournal of Heat Transfer2009 EapenJRusconiRPiazzaRYipSThe classical nature of thermal conduction in nanofluidsJournal of Heat Transfer201010.1115/1.4001304 OezerincSKakacSYaziciogluAGEnhanced thermal conductivity of nanofluids: A state-of-the-art reviewMicrofluid Nanofluid2010814517010.1007/s10404-009-0524-4 KumarDHPatelHEKumarVRRSundararajanTPradeepTDasSKModel for heat conduction in nanofluidsPhysical Review Letters200410.1103/PhysRevLett.93.144301 MurshedSMSLeongKCYangCA combined model for the effective thermal conductivity of nanofluidsApplied Thermal Engineering2009292477248310.1016/j.applthermaleng.2008.12.018 WilliamsWBuongiornoJHuLWExperimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubesJournal of Heat Transfer200810.1115/1.2818775 DuangthongsukWWongwisesSMeasurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluidsExperimental Thermal and Fluid Science20093370671410.1016/j.expthermflusci.2009.01.005 PrasherRBrownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluidsJournal of Heat Transfer200612858859510.1115/1.2188509 ZhuDLiXWangNWangXGaoJLiHDispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluidsCurrent Applied Physics2009913113910.1016/j.cap.2007.12.008 PatelHEDasSKSundararajanTSreekumanranNAGeorgeBPradeepTThermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effectsApplied Physics Letters2003832931293310.1063/1.1602578 ChonCHKihmKDLeeSPChoiSUSEmpirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancementApplied Physics Letters200510.1063/1.2093936 VadaszPRendering the transient hot wire experimental method for thermal conductivity estimation to two-phase systems-theoretical leading order resultsJournal of Heat Transfer2010 DasSKChoiSUSYuWPradeepTNanofluids: Science and Technology2008New JerseyWiley MoghadassiARHosseiniSMHennekeDEEffect of CuO nanoparticles in enhancing the thermal conductivities of monoethylene glycol and paraffin fluidsIndustrial Engineering and Chemistry Research2010491900190410.1021/ie901060e DasSKPutraNTheisenPRoetzelWTemperature dependence of thermal conductivity enhancement for nanofluidsJournal of Heat Transfer200312556757410.1115/1.1571080 ChiesaMSimonsenAJThe importance of suspension stability for hot-wire measurements of thermal conductivity of colloidal suspensions16th Australasian Fluid Mechanics Conference, Gold Coast, Australia2010 FengYKleinstreuerCNanofluid convective heat transfer in a parallel-disk systemInternational Journal of Heat and Mass Transfer2010534619462810.1016/j.ijheatmasstransfer.2010.06.031 KooJKangYKleinstreuerCA nonlinear effective thermal conductivity model for carbon nanotube and nanofiber suspensionsNanotechnology2008 YooDHHongKSYangHSStudy of thermal conductivity of nanofluids for the application of heat transfer fluidsThermochim Acta2007455 DingYAliasHWenDWilliamsRAHeat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)International Journal of Heat and Mass Transfer20064924025010.1016/j.ijheatmasstransfer.2005.07.009 WangLQFanJNanofluids research: key issuesNanoscale Research Letter201051241125210.1007/s11671-010-9638-6 EastmanJAChoiUSLiSThompsonLJLeeSKomarneniSParkerJCWollenbergerHJEnhanced thermal conductivity through the development of nanofluidsNanophase and Nanocomposite Materials II1997PittsburgMaterials Research Society311 JeffreyDJConduction through a random suspension of spheresProceedings of Royal Society, A197333535536710.1098/rspa.1973.0130 HashinZShtrikmanSConductivity of polycrystalsPhysical Review196313012913310.1103/PhysRev.130.129 LealLGOn the effective conductivity of a dilute suspension of spherical drops in the limit of low particle Peclet numberChem Eng Commun19731213110.1080/00986447308960412 GupteSKAdvaniSGRole of micro-convection due to non-affine motion of particles in a mono-disperse suspensionInt J Heat Mass Transfer199538162945295810.1016/0017-9310(95)00060-M SinghDTimofeevaEYuWRoutbortJFranceDSmithDLopez-CeperoJMAn investigation of silicon carbide-water nanofluid for heat transfer applicationsJournal of Applied Physics2009 JangSPChoiSUSEffects of various parameters on nanofluid thermal conductivityASME J Heat Transfer200712961762310.1115/1.2712475 ShalkevichNEscherWBuergiTMichelBAhmedLPoulikakosDOn the thermal conductivity of gold nanoparticle colloidLangmuir201026266367010.1021/la9022757 PaulGChopkarMMannaIDasPKTechniques for measuring the thermal conductivity of nanofluids: a reviewRenewable and Sustainable Energy Reviews2010141913192410.1016/j.rser.2010.03.017 ChopkarMSudarshanSDasPKMannaIEffect of particle size on thermal conductivity of nanofluidMetallurgical and Materials Transactions A200839A1535154210.1007/s11661-007-9444-7 TimofeevaEVGavrilovANMcCloskeyJMTolmachevYVThermal conductivity and particle agglomeration in alumina nanofluids: experiment and theoryPhysical Review E200710.1103/PhysRevE.76.061203 DavisRHThe effective thermal conductivity of a composite material with spherical inclusionsInternational Journal of Thermophysics1986760962010.1007/BF00502394 KeblinskiPPhillpotSRChoiSUSEastmanJAMechanisms of heat flow in suspensions of nanos-sezed particles (nanofluids)International Journal of Heat and Mass Transfer20024585586310.1016/S0017-9310(01)00175-2 LeeSChoiSUSMeasuring thermal conductivity of fluids containing oxide nanoparticlesJournal of Heat Transfer199912128028910.1115/1.2825978 KusiakAPradereCBattagliaJLMeasuring the thermal conductivity of liquids using photo-thermal radiometryMeasurement Science and Technology201010.1088/0957-0233/21/1/015403 WeiXKongTZhuHWangLCuS/Cu2S nanofluids: synthesis and thermal conductivityInternational of Heat and Mass Transfer2010531841184310.1016/j.ijheatmasstransfer.2010.01.006 RousanAARoyDMA thermal comparator method for measuring thermal conductivity of cementitious materialsIndustrial and Engineering Chemistry Product Research and Development19832234935110.1021/i300010a035 VenerusDCSchieberJDIddirHGuzmanJDBroermanAWMeasurement of thermal diffusivity in polymer melts using forced rayleigh light scatteringJournal of Polymer Science: Part B: Polymer Physics1999371069107810.1002/(SICI)1099-0488(19990601)37:11<1069::AID-POLB3>3.0.CO;2-U MurshedSMSLeongKCYangCEnhanced thermal conductivity of TiO2-water based nanofluidsInternational Journal of Thermal Sciences20054436710.1016/j.ijthermalsci.2004.12.005 WenDDingYExperimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditionsInternational Journal of Heat and Mass Transfer2004475181518810.1016/j.ijheatmasstransfer.2004.07.012 ChoiTYManeshianMHMeasurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3-w methodNanotechnology2009 HerisSZEsfahanyMNEtemadSGExperimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tubeInternational Journal of Heat and Fluid Flow20072820321010.1016/j.ijheatfluidflow.2006.05.001 LiJComputational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS, PhD Thesis2008Raleigh, NC, the United StatesNC State University WeiYXieHChenLLiYInvestigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticlesPowder Technology201019721822110.1016/j.powtec.2009.09.016 AliFMYunusWMMMoksinMMTalibZAThe effect of volume fraction concentration on the thermal conductivity and thermal diffusivity of nanofluids: numerical and experimentalReview of Scientific Instruments201010.1063/1.3458011 TengTPHungYHTengTCMoHEHsuHGThe effect of alumina/water nanofluid particle size on thermal conductivityApplied Thermal Engineering2010302213221810.1016/j.applthermaleng.2010.05.036 AbareshiMGoharshiadiEKZebarjadSMFadafanHKYoussefiAFabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluidsJournal of Magnetism and Magnetic Materials2010322243895390110.1016/j.jmmm.2010.08.016 FengY DA Nield (159_CR74) 2010 R Rusconi (159_CR6) 2006 SK Das (159_CR22) 2008 X Wei (159_CR59) 2010; 53 D Wu (159_CR88) 2009; 5 EV Timofeeva (159_CR52) 2007 SZ Heris (159_CR95) 2007; 28 CH Li (159_CR44) 2006; 99 SA Putnam (159_CR7) 2006 Y Ding (159_CR94) 2006; 49 XW Wang (159_CR43) 1999; 13 DH Yoo (159_CR12) 2007 S Lee (159_CR42) 1999; 121 SMS Murshed (159_CR54) 2005; 44 JH Lee (159_CR36) 2009 J Eapen (159_CR5) 2010 A Kusiak (159_CR34) 2010 G Paul (159_CR19) 2010; 14 SP Jang (159_CR78) 2007; 129 J Koo (159_CR70) 2004; 6 SP Jang (159_CR51) 2004; 84 N Shalkevich (159_CR62) 2010; 26 SK Gupte (159_CR76) 1995; 38 R Prasher (159_CR81) 2006; 128 LQ Wang (159_CR72) 2010; 5 AR Moghadassi (159_CR47) 2010; 49 B Kolade (159_CR37) 2009 HT Zhu (159_CR55) 2007; 111 M Chopkar (159_CR87) 2008; 39A T Prevenslik (159_CR73) 2010 W Williams (159_CR49) 2008 W Duangthongsuk (159_CR14) 2009; 33 SMS Murshed (159_CR46) 2009; 29 Y Feng (159_CR86) 2010; 53 H Xie (159_CR45) 2002; 23 J Koo (159_CR69) 2008 M Chiesa (159_CR23) 2010 159_CR10 H Masuda (159_CR2) 1993; 4 SA Putnam (159_CR40) 2004; 75 DC Venerus (159_CR8) 2006 W Czarnetzki (159_CR17) 1995; 16 Y Feng (159_CR20) 2010 AS Iygengar (159_CR33) 2009 159_CR85 D Singh (159_CR89) 2009 U Rea (159_CR96) 2009; 52 SZ Heris (159_CR97) 2009; 22 YS Ju (159_CR29) 2008 WH Yu (159_CR4) 2009; 29 S Oezerinc (159_CR71) 2010; 8 DH Kumar (159_CR83) 2004 HA Mintsa (159_CR26) 2009; 48 Q Li (159_CR92) 2002; 45 MP Beck (159_CR58) 2009; 11 PL Woodfield (159_CR25) 2008; 29 Y Wei (159_CR61) 2010; 197 RL Hamilton (159_CR41) 1962; 1 C Kleinstreuer (159_CR80) 2008 RH Davis (159_CR65) 1986; 7 TP Teng (159_CR15) 2010; 30 J Li (159_CR82) 2008 LG Leal (159_CR75) 1973; 1 M Abareshi (159_CR48) 2010; 322 LQ Wang (159_CR67) 2008 EV Timofeeva (159_CR53) 2010 A Turgut (159_CR31) 2009; 30 CH Li (159_CR60) 2010 AA Rousan (159_CR35) 1983; 22 CH Li (159_CR30) 2008 P Vadasz (159_CR21) 2010 HE Patel (159_CR56) 2003; 83 CH Chon (159_CR57) 2005 FM Ali (159_CR27) 2010 MP Beck (159_CR63) 2010; 12 R Rusconi (159_CR38) 2004; 21 TY Choi (159_CR18) 2009 YJ Jung (159_CR90) 2009; 52 J Buongiorno (159_CR9) 2009 BC Pak (159_CR91) 1998; 11 SK Das (159_CR16) 2003; 125 DJ Jeffrey (159_CR64) 1973; 335 JC Maxwell (159_CR1) 1891 HE Patel (159_CR28) 2010; 12 Z Hashin (159_CR68) 1963; 130 P Keblinski (159_CR77) 2002; 45 X Zhang (159_CR24) 2006; 41 JA Eastman (159_CR3) 1997 D Wen (159_CR93) 2004; 47 JM Koo (159_CR84) 2005 D Zhu (159_CR50) 2009; 9 I Tavman (159_CR32) 2010; 0 DAG Bruggeman (159_CR66) 1935; 24 JAN Bazan (159_CR11) 2010 AJ Schmidt (159_CR13) 2008 SP Jang (159_CR79) 2006; 26 DC Venerus (159_CR39) 1999; 37 21722375 - Nanoscale Res Lett. 2011 Jul 01;6(1):439 |
References_xml | – reference: JangSPChoiSUSRole of Brownian motion in the enhanced thermal conductivity of nanofluidsApplied Physics Letters2004844316431810.1063/1.1756684 – reference: LeeSChoiSUSMeasuring thermal conductivity of fluids containing oxide nanoparticlesJournal of Heat Transfer199912128028910.1115/1.2825978 – reference: HashinZShtrikmanSConductivity of polycrystalsPhysical Review196313012913310.1103/PhysRev.130.129 – reference: TurgutATavmanIChirtocMSchuchmannHPSauterCTavmanSThermal conductivity and viscosity measurements of water-based TiO2 nanofluidsInternational Journal of Thermophysics2009301213122610.1007/s10765-009-0594-2 – reference: PutnamSACahillDGMicron-scale apparatus for measurements of thermodiffusion in liquidsReview of Scientific Instruments20047572368237210.1063/1.1765761 – reference: WangXWXuXFChoiSUSThermal conductivity of nanoparticle-fluid mixtureJournal of Thermalphysics and Heat Transfer19991347448010.2514/2.6486 – reference: WuDZhuHWangLLiuLCritical issues in nanofluids preparation, characterization and thermal conductivityCurrent Nanoscience2009510311210.2174/157341309787314548 – reference: VadaszPRendering the transient hot wire experimental method for thermal conductivity estimation to two-phase systems-theoretical leading order resultsJournal of Heat Transfer2010 – reference: AbareshiMGoharshiadiEKZebarjadSMFadafanHKYoussefiAFabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluidsJournal of Magnetism and Magnetic Materials2010322243895390110.1016/j.jmmm.2010.08.016 – reference: Shaikh S, Lafdi K: Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An Experimental Study. Journal of Applied Physics 101: 064302–1-064302–7. 064302-1-064302-7. – reference: TimofeevaEVGavrilovANMcCloskeyJMTolmachevYVThermal conductivity and particle agglomeration in alumina nanofluids: experiment and theoryPhysical Review E200710.1103/PhysRevE.76.061203 – reference: IygengarASAbramsonARComparative radial heat flow method for thermal conductivity measurement of liquidsJournal of Heat Transfer2009 – reference: MurshedSMSLeongKCYangCEnhanced thermal conductivity of TiO2-water based nanofluidsInternational Journal of Thermal Sciences20054436710.1016/j.ijthermalsci.2004.12.005 – reference: JangSPChoiSUSCooling performance of a microchannel heat sink with nanofluidsAppl Therm Eng2006262457246310.1016/j.applthermaleng.2006.02.036 – reference: WeiXKongTZhuHWangLCuS/Cu2S nanofluids: synthesis and thermal conductivityInternational of Heat and Mass Transfer2010531841184310.1016/j.ijheatmasstransfer.2010.01.006 – reference: NieldDAKuznetsovAVThe effect of local thermal nonequilibrium on the onset of convection in a nanofluidJournal of Heat Transfer2010 – reference: KeblinskiPPhillpotSRChoiSUSEastmanJAMechanisms of heat flow in suspensions of nanos-sezed particles (nanofluids)International Journal of Heat and Mass Transfer20024585586310.1016/S0017-9310(01)00175-2 – reference: PrasherRBrownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluidsJournal of Heat Transfer200612858859510.1115/1.2188509 – reference: PrevenslikTNanoscale Heat Transfer by Quantum MechanicsFifth International Conference on Thermal Engineering: Theory and Applications, Marrakesh, Morocco2010 – reference: ChiesaMSimonsenAJThe importance of suspension stability for hot-wire measurements of thermal conductivity of colloidal suspensions16th Australasian Fluid Mechanics Conference, Gold Coast, Australia2010 – reference: ZhangXGuHFujiiMExperimental study on the effective thermal conductivity and thermal diffusivity of nanofluidAIAA Journal20064183184010.2514/2.2044 – reference: ReaUMcKrellTHuLBuongiornoJLaminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluidsInternational Journal of Heat and Mass Transfer2009522042204810.1016/j.ijheatmasstransfer.2008.10.025 – reference: MaxwellJCA Treatise on Electricity and Magnetism1891OxfordClarendon – reference: HerisSZEtemadSGhEsfahanyMNConvective heat transfer of a Cu/water nanofluid flowing through a circular tubeExperimental Heat Transfer20092221722710.1080/08916150902950145 – reference: VenerusDCSchieberJDIddirHGuzmanJDBroermanAWMeasurement of thermal diffusivity in polymer melts using forced rayleigh light scatteringJournal of Polymer Science: Part B: Polymer Physics1999371069107810.1002/(SICI)1099-0488(19990601)37:11<1069::AID-POLB3>3.0.CO;2-U – reference: EastmanJAChoiUSLiSThompsonLJLeeSKomarneniSParkerJCWollenbergerHJEnhanced thermal conductivity through the development of nanofluidsNanophase and Nanocomposite Materials II1997PittsburgMaterials Research Society311 – reference: BeckMPYuanYWarrierPTejaASThe effect of particle size on the thermal conductivity of alumina nanofluidsJournal of Nanoparticle Research2009111129113610.1007/s11051-008-9500-2 – reference: FengYKleinstreuerCNanofluid convective heat transfer in a parallel-disk systemInternational Journal of Heat and Mass Transfer2010534619462810.1016/j.ijheatmasstransfer.2010.06.031 – reference: KooJKleinstreuerCA new thermal conductivity model for nanofluidsJournal of Nanoparticle Research2004657758810.1007/s11051-004-3170-5 – reference: LiCHPetersonGPExperimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)Journal of Applied Physics200699808431410.1063/1.2191571 – reference: WeiYXieHChenLLiYInvestigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticlesPowder Technology201019721822110.1016/j.powtec.2009.09.016 – reference: KleinstreuerCLiJDiscussion: effects of various parameters on nanofluid thermal conductivityASME Journal of Heat Transfer200810.1115/1.2812307 – reference: HamiltonRLCrosserOKThermal conductivity of heterogeneous two-component systemsIndustrial Engineering and Chemistry Fundamentals19621318719110.1021/i160003a005 – reference: YuWHFranceDMRoutbortJLChoiSUSReview and comparison of nanofluid thermal conductivity and heat transfer enhancementsHeat Transfer Engineering20092943246010.1080/01457630701850851 – reference: Bao Y: Thermal conductivity equations based on Brownian motion in suspensions of nanoparticles (nanofluids). Journal of Heat Transfer 130: 042408–1-042408–5. 042408-1-042408-5. – reference: XieHWangJXiTLiuYThermal conductivity of suspensions containing nanosized SiC particlesInternational Journal of Thermophysics200223257158010.1023/A:1015121805842 – reference: HerisSZEsfahanyMNEtemadSGExperimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tubeInternational Journal of Heat and Fluid Flow20072820321010.1016/j.ijheatfluidflow.2006.05.001 – reference: JuYSKimJHungMTExperimental study of heat conduction in aqueous suspensions of aluminum oxide nanoparticlesJournal of Heat Transfer2008 – reference: RusconiRRodariEPiazzaROptical measurements of the thermal properties of nanofluidsApplied Physics Letters200610.1063/1.2425015 – reference: AliFMYunusWMMMoksinMMTalibZAThe effect of volume fraction concentration on the thermal conductivity and thermal diffusivity of nanofluids: numerical and experimentalReview of Scientific Instruments201010.1063/1.3458011 – reference: SinghDTimofeevaEYuWRoutbortJFranceDSmithDLopez-CeperoJMAn investigation of silicon carbide-water nanofluid for heat transfer applicationsJournal of Applied Physics2009 – reference: TimofeevaEVSmithDSYuWFranceDMSinghDRoutbortJLParticle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluidsNanotechnology201010.1088/0957-4484/21/21/215703 – reference: LiQXuanYConvective heat transfer and flow characteristics of Cu-water nanofluidScience in China (Series E)200245408416 – reference: KumarDHPatelHEKumarVRRSundararajanTPradeepTDasSKModel for heat conduction in nanofluidsPhysical Review Letters200410.1103/PhysRevLett.93.144301 – reference: LealLGOn the effective conductivity of a dilute suspension of spherical drops in the limit of low particle Peclet numberChem Eng Commun19731213110.1080/00986447308960412 – reference: FengYA new thermal conductivity model for nanofluids with convection heat transfer application. MS thesis, North Carolina State University, Raleigh, NC, USA2010 – reference: RousanAARoyDMA thermal comparator method for measuring thermal conductivity of cementitious materialsIndustrial and Engineering Chemistry Product Research and Development19832234935110.1021/i300010a035 – reference: BeckMPYuanYWarrierPTejaASThe thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtureJournal of Nanoparticles Research2010121469147710.1007/s11051-009-9716-9 – reference: MasudaHEbataATerameaKHishinumaNAlteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particlesNetsu Bussei1993422723310.2963/jjtp.7.227 – reference: BruggemanDAGBerechnung verschiedener physikalischer konstanten von heterogenen substanzen, I-Dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzenAnnalen der Physik, Leipzig19352463667910.1002/andp.19354160705 – reference: KooJMComputational nanofluid flow and heat transfer analyses applied to micro-systems, Ph.D Thesis2005Raleigh, NC, USANC State University – reference: LeeJHConvection Performance of Nanofluids for Electronics Cooling, Ph. D. Dissertation2009CA, USAStanford University – reference: ZhuDLiXWangNWangXGaoJLiHDispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluidsCurrent Applied Physics2009913113910.1016/j.cap.2007.12.008 – reference: KooJKangYKleinstreuerCA nonlinear effective thermal conductivity model for carbon nanotube and nanofiber suspensionsNanotechnology2008 – reference: DasSKPutraNTheisenPRoetzelWTemperature dependence of thermal conductivity enhancement for nanofluidsJournal of Heat Transfer200312556757410.1115/1.1571080 – reference: MintsaHARoyGNguyenCTDoucetDNew temperature dependent thermal conductivity data for water-based nanofluidsInternational Journal of Thermal Sciences20094836337110.1016/j.ijthermalsci.2008.03.009 – reference: ShalkevichNEscherWBuergiTMichelBAhmedLPoulikakosDOn the thermal conductivity of gold nanoparticle colloidLangmuir201026266367010.1021/la9022757 – reference: LiCHWilliamsWTransient and steady-state experimental comparison study of effective thermal conductivity of Al2O3-water nanofluidsJournal of Heat Transfer2008 – reference: PatelHEDasSKSundararajanTSreekumanranNAGeorgeBPradeepTThermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effectsApplied Physics Letters2003832931293310.1063/1.1602578 – reference: ChoiTYManeshianMHMeasurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3-w methodNanotechnology2009 – reference: TengTPHungYHTengTCMoHEHsuHGThe effect of alumina/water nanofluid particle size on thermal conductivityApplied Thermal Engineering2010302213221810.1016/j.applthermaleng.2010.05.036 – reference: EapenJRusconiRPiazzaRYipSThe classical nature of thermal conduction in nanofluidsJournal of Heat Transfer201010.1115/1.4001304 – reference: BuongiornoJVenerusDCPrabhatNA benchmark study on the thermal conductivity of nanofluidsJournal of Applied Physics200910.1063/1.3245330 – reference: CzarnetzkiWRoetzelWTemperature oscillation techniques for simultaneous measurement of thermal diffusivitiy and conductivityInternational Journal of Thermophysics19951641342210.1007/BF01441907 – reference: KoladeBGoodsonKEEatonJKConvective performance of nanofluids in a laminar thermally developing tube flowJournal of Heat Transfer200910.1115/1.3013831 – reference: OezerincSKakacSYaziciogluAGEnhanced thermal conductivity of nanofluids: A state-of-the-art reviewMicrofluid Nanofluid2010814517010.1007/s10404-009-0524-4 – reference: DuangthongsukWWongwisesSMeasurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluidsExperimental Thermal and Fluid Science20093370671410.1016/j.expthermflusci.2009.01.005 – reference: VenerusDCKabadiMSLeeSPerez-LunaVStudy of thermal transport in nanoparticle suspensions using forced Rayleigh scatteringJournal of Applied Physics200610.1063/1.2360378 – reference: JungYJJungYYThermal conductivity enhancement of nanofluids in conjunction with electrical double layer (EDL)International Journal of Heat and Mass Transfer20095252552810.1016/j.ijheatmasstransfer.2008.07.016 – reference: WangLQFanJNanofluids research: key issuesNanoscale Research Letter201051241125210.1007/s11671-010-9638-6 – reference: YooDHHongKSYangHSStudy of thermal conductivity of nanofluids for the application of heat transfer fluidsThermochim Acta2007455 – reference: LiCHPetersonGPExperimental studies of natural convection heat transfer of Al2O3/DI water nanoparticle suspensions (nanofluids)Advances in Mechanical Engineering2010 – reference: MoghadassiARHosseiniSMHennekeDEEffect of CuO nanoparticles in enhancing the thermal conductivities of monoethylene glycol and paraffin fluidsIndustrial Engineering and Chemistry Research2010491900190410.1021/ie901060e – reference: PakBCChoYIHydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particlesExp Heat Transfer19981115117010.1080/08916159808946559 – reference: PutnamSACahillDGBraunPVThermal conductivity of nanoparticle suspensionsJournal of Applied Physics200610.1063/1.2189933 – reference: ChonCHKihmKDLeeSPChoiSUSEmpirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancementApplied Physics Letters200510.1063/1.2093936 – reference: DasSKChoiSUSYuWPradeepTNanofluids: Science and Technology2008New JerseyWiley – reference: WoodfieldPLA two-dimensional analytical solution for the transient short-hot-wire methodInternational Journal of Thermophysics2008291278129810.1007/s10765-008-0469-y – reference: KusiakAPradereCBattagliaJLMeasuring the thermal conductivity of liquids using photo-thermal radiometryMeasurement Science and Technology201010.1088/0957-0233/21/1/015403 – reference: ChopkarMSudarshanSDasPKMannaIEffect of particle size on thermal conductivity of nanofluidMetallurgical and Materials Transactions A200839A1535154210.1007/s11661-007-9444-7 – reference: GupteSKAdvaniSGRole of micro-convection due to non-affine motion of particles in a mono-disperse suspensionInt J Heat Mass Transfer199538162945295810.1016/0017-9310(95)00060-M – reference: SchmidtAJChiesaMTorchinskyDHJohnsonJANelsonKAChenGThermal conductivity of nanoparticle suspension in insulating media measured with a transient optical grating and a hotwireJournal of Applied Physics2008 – reference: BazanJANThermal conductivity of poly-aelpha-olefin (PAO)-based nanofluids. Ph.D. Thesis, University of Dayton, Dayton, OH, USA2010 – reference: WangLQZhouXSWeiXHHeat conduction mathematical models and analytical solutions2008BerlinSpringer-Verlag – reference: PatelHESundararajanTDasSKAn experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluidsJournal of Nanoparticle Research2010121015103110.1007/s11051-009-9658-2 – reference: ZhuHTZhangCYTangYMWangJXNovel synthesis and thermal conductivity of CuO nanofluidJournal of Physical Chemistry C2007111164610.1021/jp065926t – reference: DavisRHThe effective thermal conductivity of a composite material with spherical inclusionsInternational Journal of Thermophysics1986760962010.1007/BF00502394 – reference: JeffreyDJConduction through a random suspension of spheresProceedings of Royal Society, A197333535536710.1098/rspa.1973.0130 – reference: PaulGChopkarMMannaIDasPKTechniques for measuring the thermal conductivity of nanofluids: a reviewRenewable and Sustainable Energy Reviews2010141913192410.1016/j.rser.2010.03.017 – reference: MurshedSMSLeongKCYangCA combined model for the effective thermal conductivity of nanofluidsApplied Thermal Engineering2009292477248310.1016/j.applthermaleng.2008.12.018 – reference: RusconiRIsaLPiazzaRThermal-lensing measurement of particle thermophoresis in aqueous dispersionsJournal of Optical Society of America200421360561610.1364/JOSAB.21.000605 – reference: LiJComputational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS, PhD Thesis2008Raleigh, NC, the United StatesNC State University – reference: WenDDingYExperimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditionsInternational Journal of Heat and Mass Transfer2004475181518810.1016/j.ijheatmasstransfer.2004.07.012 – reference: DingYAliasHWenDWilliamsRAHeat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)International Journal of Heat and Mass Transfer20064924025010.1016/j.ijheatmasstransfer.2005.07.009 – reference: TavmanITurgutAAn investigation on thermal conductivity and viscosity of water based nanofluidsMicrofluidics Based Microsystems2010013916210.1007/978-90-481-9029-4_8 – reference: WilliamsWBuongiornoJHuLWExperimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubesJournal of Heat Transfer200810.1115/1.2818775 – reference: JangSPChoiSUSEffects of various parameters on nanofluid thermal conductivityASME J Heat Transfer200712961762310.1115/1.2712475 – volume: 335 start-page: 355 year: 1973 ident: 159_CR64 publication-title: Proceedings of Royal Society, A doi: 10.1098/rspa.1973.0130 – volume: 23 start-page: 571 issue: 2 year: 2002 ident: 159_CR45 publication-title: International Journal of Thermophysics doi: 10.1023/A:1015121805842 – volume: 13 start-page: 474 year: 1999 ident: 159_CR43 publication-title: Journal of Thermalphysics and Heat Transfer doi: 10.2514/2.6486 – volume: 197 start-page: 218 year: 2010 ident: 159_CR61 publication-title: Powder Technology doi: 10.1016/j.powtec.2009.09.016 – volume: 26 start-page: 663 issue: 2 year: 2010 ident: 159_CR62 publication-title: Langmuir doi: 10.1021/la9022757 – ident: 159_CR10 doi: 10.1063/1.2710337 – volume-title: Journal of Heat Transfer year: 2010 ident: 159_CR5 – volume-title: Journal of Heat Transfer year: 2010 ident: 159_CR21 – volume-title: A Treatise on Electricity and Magnetism year: 1891 ident: 159_CR1 – volume-title: Heat conduction mathematical models and analytical solutions year: 2008 ident: 159_CR67 – volume-title: Applied Physics Letters year: 2006 ident: 159_CR6 – volume: 52 start-page: 525 year: 2009 ident: 159_CR90 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2008.07.016 – volume: 37 start-page: 1069 year: 1999 ident: 159_CR39 publication-title: Journal of Polymer Science: Part B: Polymer Physics doi: 10.1002/(SICI)1099-0488(19990601)37:11<1069::AID-POLB3>3.0.CO;2-U – volume: 7 start-page: 609 year: 1986 ident: 159_CR65 publication-title: International Journal of Thermophysics doi: 10.1007/BF00502394 – volume: 38 start-page: 2945 issue: 16 year: 1995 ident: 159_CR76 publication-title: Int J Heat Mass Transfer doi: 10.1016/0017-9310(95)00060-M – volume: 6 start-page: 577 year: 2004 ident: 159_CR70 publication-title: Journal of Nanoparticle Research doi: 10.1007/s11051-004-3170-5 – volume-title: Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS, PhD Thesis year: 2008 ident: 159_CR82 – volume-title: Physical Review E year: 2007 ident: 159_CR52 – volume: 84 start-page: 4316 year: 2004 ident: 159_CR51 publication-title: Applied Physics Letters doi: 10.1063/1.1756684 – start-page: 3 volume-title: Nanophase and Nanocomposite Materials II year: 1997 ident: 159_CR3 – volume-title: Journal of Heat Transfer year: 2010 ident: 159_CR74 – volume: 45 start-page: 408 year: 2002 ident: 159_CR92 publication-title: Science in China (Series E) doi: 10.1360/02ye9047 – volume: 9 start-page: 131 year: 2009 ident: 159_CR50 publication-title: Current Applied Physics doi: 10.1016/j.cap.2007.12.008 – volume: 30 start-page: 2213 year: 2010 ident: 159_CR15 publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2010.05.036 – volume-title: Journal of Heat Transfer year: 2009 ident: 159_CR33 – volume: 5 start-page: 103 year: 2009 ident: 159_CR88 publication-title: Current Nanoscience doi: 10.2174/157341309787314548 – volume: 0 start-page: 139 year: 2010 ident: 159_CR32 publication-title: Microfluidics Based Microsystems doi: 10.1007/978-90-481-9029-4_8 – volume-title: Nanotechnology year: 2008 ident: 159_CR69 – volume: 26 start-page: 2457 year: 2006 ident: 159_CR79 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2006.02.036 – volume: 49 start-page: 240 year: 2006 ident: 159_CR94 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2005.07.009 – volume-title: Journal of Applied Physics year: 2006 ident: 159_CR8 – volume: 16 start-page: 413 year: 1995 ident: 159_CR17 publication-title: International Journal of Thermophysics doi: 10.1007/BF01441907 – volume-title: Measurement Science and Technology year: 2010 ident: 159_CR34 – volume-title: Convection Performance of Nanofluids for Electronics Cooling, Ph. D. Dissertation year: 2009 ident: 159_CR36 – volume: 83 start-page: 2931 year: 2003 ident: 159_CR56 publication-title: Applied Physics Letters doi: 10.1063/1.1602578 – volume-title: Journal of Applied Physics year: 2006 ident: 159_CR7 – volume: 111 start-page: 1646 year: 2007 ident: 159_CR55 publication-title: Journal of Physical Chemistry C doi: 10.1021/jp065926t – volume: 33 start-page: 706 year: 2009 ident: 159_CR14 publication-title: Experimental Thermal and Fluid Science doi: 10.1016/j.expthermflusci.2009.01.005 – volume-title: Journal of Heat Transfer year: 2008 ident: 159_CR29 – volume-title: Nanotechnology year: 2010 ident: 159_CR53 – volume: 4 start-page: 227 year: 1993 ident: 159_CR2 publication-title: Netsu Bussei doi: 10.2963/jjtp.7.227 – volume: 1 start-page: 187 issue: 3 year: 1962 ident: 159_CR41 publication-title: Industrial Engineering and Chemistry Fundamentals doi: 10.1021/i160003a005 – volume-title: Journal of Applied Physics year: 2009 ident: 159_CR9 – volume: 41 start-page: 831 year: 2006 ident: 159_CR24 publication-title: AIAA Journal doi: 10.2514/2.2044 – volume-title: Journal of Heat Transfer year: 2008 ident: 159_CR49 – volume: 5 start-page: 1241 year: 2010 ident: 159_CR72 publication-title: Nanoscale Research Letter doi: 10.1007/s11671-010-9638-6 – volume-title: A new thermal conductivity model for nanofluids with convection heat transfer application. MS thesis, North Carolina State University, Raleigh, NC, USA year: 2010 ident: 159_CR20 – volume-title: Nanofluids: Science and Technology year: 2008 ident: 159_CR22 – volume: 75 start-page: 2368 issue: 7 year: 2004 ident: 159_CR40 publication-title: Review of Scientific Instruments doi: 10.1063/1.1765761 – volume-title: Physical Review Letters year: 2004 ident: 159_CR83 – volume-title: Journal of Applied Physics year: 2008 ident: 159_CR13 – start-page: 455 volume-title: Thermochim Acta year: 2007 ident: 159_CR12 – volume: 14 start-page: 1913 year: 2010 ident: 159_CR19 publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2010.03.017 – volume: 11 start-page: 1129 year: 2009 ident: 159_CR58 publication-title: Journal of Nanoparticle Research doi: 10.1007/s11051-008-9500-2 – volume-title: Computational nanofluid flow and heat transfer analyses applied to micro-systems, Ph.D Thesis year: 2005 ident: 159_CR84 – volume: 48 start-page: 363 year: 2009 ident: 159_CR26 publication-title: International Journal of Thermal Sciences doi: 10.1016/j.ijthermalsci.2008.03.009 – volume: 47 start-page: 5181 year: 2004 ident: 159_CR93 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2004.07.012 – volume: 1 start-page: 21 year: 1973 ident: 159_CR75 publication-title: Chem Eng Commun doi: 10.1080/00986447308960412 – volume: 24 start-page: 636 year: 1935 ident: 159_CR66 publication-title: Annalen der Physik, Leipzig doi: 10.1002/andp.19354160705 – volume: 129 start-page: 617 year: 2007 ident: 159_CR78 publication-title: ASME J Heat Transfer doi: 10.1115/1.2712475 – volume: 52 start-page: 2042 year: 2009 ident: 159_CR96 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2008.10.025 – ident: 159_CR85 – volume: 11 start-page: 151 year: 1998 ident: 159_CR91 publication-title: Exp Heat Transfer doi: 10.1080/08916159808946559 – volume-title: Thermal conductivity of poly-aelpha-olefin (PAO)-based nanofluids. Ph.D. Thesis, University of Dayton, Dayton, OH, USA year: 2010 ident: 159_CR11 – volume: 322 start-page: 3895 issue: 24 year: 2010 ident: 159_CR48 publication-title: Journal of Magnetism and Magnetic Materials doi: 10.1016/j.jmmm.2010.08.016 – volume: 99 start-page: 084314 issue: 8 year: 2006 ident: 159_CR44 publication-title: Journal of Applied Physics doi: 10.1063/1.2191571 – volume: 12 start-page: 1469 year: 2010 ident: 159_CR63 publication-title: Journal of Nanoparticles Research doi: 10.1007/s11051-009-9716-9 – volume-title: Applied Physics Letters year: 2005 ident: 159_CR57 – volume-title: Nanotechnology year: 2009 ident: 159_CR18 – volume: 130 start-page: 129 year: 1963 ident: 159_CR68 publication-title: Physical Review doi: 10.1103/PhysRev.130.129 – volume-title: Review of Scientific Instruments year: 2010 ident: 159_CR27 – volume-title: 16th Australasian Fluid Mechanics Conference, Gold Coast, Australia year: 2010 ident: 159_CR23 – volume-title: Fifth International Conference on Thermal Engineering: Theory and Applications, Marrakesh, Morocco year: 2010 ident: 159_CR73 – volume: 30 start-page: 1213 year: 2009 ident: 159_CR31 publication-title: International Journal of Thermophysics doi: 10.1007/s10765-009-0594-2 – volume: 12 start-page: 1015 year: 2010 ident: 159_CR28 publication-title: Journal of Nanoparticle Research doi: 10.1007/s11051-009-9658-2 – volume: 21 start-page: 605 issue: 3 year: 2004 ident: 159_CR38 publication-title: Journal of Optical Society of America doi: 10.1364/JOSAB.21.000605 – volume-title: Journal of Applied Physics year: 2009 ident: 159_CR89 – volume: 39A start-page: 1535 year: 2008 ident: 159_CR87 publication-title: Metallurgical and Materials Transactions A doi: 10.1007/s11661-007-9444-7 – volume: 53 start-page: 4619 year: 2010 ident: 159_CR86 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2010.06.031 – volume: 8 start-page: 145 year: 2010 ident: 159_CR71 publication-title: Microfluid Nanofluid doi: 10.1007/s10404-009-0524-4 – volume: 45 start-page: 855 year: 2002 ident: 159_CR77 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/S0017-9310(01)00175-2 – volume: 121 start-page: 280 year: 1999 ident: 159_CR42 publication-title: Journal of Heat Transfer doi: 10.1115/1.2825978 – volume-title: ASME Journal of Heat Transfer year: 2008 ident: 159_CR80 – volume-title: Journal of Heat Transfer year: 2008 ident: 159_CR30 – volume: 22 start-page: 217 year: 2009 ident: 159_CR97 publication-title: Experimental Heat Transfer doi: 10.1080/08916150902950145 – volume: 125 start-page: 567 year: 2003 ident: 159_CR16 publication-title: Journal of Heat Transfer doi: 10.1115/1.1571080 – volume: 44 start-page: 367 year: 2005 ident: 159_CR54 publication-title: International Journal of Thermal Sciences doi: 10.1016/j.ijthermalsci.2004.12.005 – volume: 29 start-page: 432 year: 2009 ident: 159_CR4 publication-title: Heat Transfer Engineering doi: 10.1080/01457630701850851 – volume: 128 start-page: 588 year: 2006 ident: 159_CR81 publication-title: Journal of Heat Transfer doi: 10.1115/1.2188509 – volume: 28 start-page: 203 year: 2007 ident: 159_CR95 publication-title: International Journal of Heat and Fluid Flow doi: 10.1016/j.ijheatfluidflow.2006.05.001 – volume: 29 start-page: 1278 year: 2008 ident: 159_CR25 publication-title: International Journal of Thermophysics doi: 10.1007/s10765-008-0469-y – volume: 49 start-page: 1900 year: 2010 ident: 159_CR47 publication-title: Industrial Engineering and Chemistry Research doi: 10.1021/ie901060e – volume-title: Journal of Heat Transfer year: 2009 ident: 159_CR37 – volume: 22 start-page: 349 year: 1983 ident: 159_CR35 publication-title: Industrial and Engineering Chemistry Product Research and Development doi: 10.1021/i300010a035 – volume-title: Advances in Mechanical Engineering year: 2010 ident: 159_CR60 – volume: 29 start-page: 2477 year: 2009 ident: 159_CR46 publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2008.12.018 – volume: 53 start-page: 1841 year: 2010 ident: 159_CR59 publication-title: International of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2010.01.006 – reference: 21722375 - Nanoscale Res Lett. 2011 Jul 01;6(1):439 |
SSID | ssj0047076 |
Score | 2.4845297 |
SecondaryResourceType | review_article |
Snippet | Nanofluids,
i.e.
, well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity,
k
nf
, over the... Nanofluids, i.e., well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, knf, over the... Abstract Nanofluids, i.e., well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, knf,... |
SourceID | doaj pubmedcentral biomedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 229 |
SubjectTerms | Chemistry and Materials Science Materials Science Molecular Medicine Nano Review Nanochemistry Nanofluids Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA_Skx7E-rlWJQcPeoh9m2STrJ5UWoqgJwvvIITJFy089hXfe-Cf7yTZLW-txYunwG6-Z5KZSSa_IeS1TobLLiyYFM4zqX1iwGVgKvokRIAgXT7v-PpNnZ3LL8tuuRfqK_uEVXjgOnHHQkPbAQql_IQT5bXzgDVmmCbjuAGfd1-UeZMxVfdgqRclrBxqJy3TnRYjqE9r1DEKUMW4Vr8YJlmznD10X83kU4Hx_5vuedOF8o971CKeTh-Q-6NeST_W8RySO3F4SO7toQ0-Ij9O9tD8KQyB7r1ipJvqUEjXiQ4wrNNqd1ky4Ma9omg0Z1zYEmiCxuEis0qu5z0FWh-_PCbnpyffP5-xMbgCc4rLLUsmhC7hPAZclTL0AZwGA7FHoinwaLtCaCVIw0N03vddl7qFStpx70UPvXhCDob1EJ8RaqLgOrUpRuFQJmZnqsCl4wsdBCAtGvJhNsX2qgJp2AxtPf-Dq8xmAlkk0NJiwvuGvJsIYv2IW57DZ6xssV-MulngzXWBqaVbs37KFJ51qHxADrQjB9p_cWBD6MQfFtdmvnCBIa53G2t0lvZCiIY8rexy3RJagm2rBfZAzxhp1pX5n-HyosB_C7TZ0c5tyNuJ5ey472xuG-fz_zHOI3K3HqgL1qoX5GD7cxdfoka2da_K4vsNhVQy1A priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 dbid: 40G link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcoED4k1aQD5wgINhYzu2AydALRUSnKi0ByTLT1pplaDu7v9n7CTVpo8Dp0ixHTueGc-MPfMZ4I1KmokmLKjgzlOhfKKWiUBl9InzYINweb_jx095ciq-L5vlHtRTLkyJdp-OJMtKXcRayw-o-CRlSi4pPlh7B-5mLLEcxSUW36bFVyj0y0cEnxsaXclqX82UUcHsv8nQvB4veeXQtOii44fwYDQiyeeB6o9gL3aP4f4OtOAT-H20A91PbBfITsoiWQ_Rg6RPpLNdn1bb81IBV-kVQQ85g8CWWyVI7M4yX-TvfCSWDJkuT-H0-OjX1xM63qRAnWRiQ5MOoUnoSwUUQRHaYJ2y2sYWKSStR0fVhlpYoVmIzvu2aVKzkEk55j1vbcufwX7Xd_EFEB05U6lOMXKHCjBHTgUmHFuowC3OfwWfZlNs_g6oGSbjWM9LkLomE8hkAhl8sLaC9xNBjB9ByvNdGStTnBUtrzd4e9lg6unWql8yhWcDKi_6iz9mlFPDla0bizZQzhhG89B5iwycUcG0Y9r6CsjEHwYFMZ-u2C7227XRKqt2znkFzwd2uewJ3b66VhxHoGaMNBvKvKQ7PytY3xwddHRqK3g3sZwZF5n1bf958B91D-HesEnOaS1fwv7mYhtfoZW1ca-LXP0DgqIk9A priority: 102 providerName: Springer Nature |
Title | Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review |
URI | https://link.springer.com/article/10.1186/1556-276X-6-229 https://www.ncbi.nlm.nih.gov/pubmed/21711739 https://www.proquest.com/docview/874299333 http://dx.doi.org/10.1186/1556-276X-6-229 https://pubmed.ncbi.nlm.nih.gov/PMC3211287 https://doaj.org/article/37a15a2934394250bca47c14098b28ac |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9QwELZoe4ED4k14rHzgAIeUje3YDgihdrXbCqkVQqy0ByTLj7itFGVhHxL8e8ZOsmzo7sVRHo6TzHyZGT--QeiN8JKw3A1TRo1NmbA-1YS5lJfWU-q0Yyb0d1xc8vMp-zLLZ__SAbUfcLkztAv5pKaL6vj3rz-fAfCfIuAlfw8mkadE8FkKG1IcoCMwSyKg9IJthhSYgIi95fbZUSmSAossEyFreG_pe9WzWJHYf5c3entS5X8jq9FgTR6g-62niU8a1XiI7pT1I3Rvi3_wMfox3uL3x7p2eGtdI142Uwzx3ONa13NfrW_iBfArrzCE0YEpNqaewGV9HZQn3OcD1rhZDvMETSfj76PztE23kBpO2Cr10rncQ8DlAKfMFU4boaUuCxAj1xaiWe0yppkkrjTWFnnu8yH3whBraaEL-hQd1vO6fI6wLCkRPvNlSQ1YyTC9yhFmyFA4qkEUCfrY-8TqZ0OtoQLZdf8M4E4FWakgKwUbUiTouBOIsi2TeUioUakY0Uh-u8LbTYWupb2XngYJ9x4oHpgvrlQLZkWFznINjlJYVgw-pLEatDxQh0lDpLYJwp1-KEBrGILRdTlfL5UUwf5TShP0rFGXTUud-iVI9BSp9yj9M_XNdSQEpxDFQ-SboHedyqkOSPve88Xe9l-iu02_OU0z_godrhbr8jU4XiszQAdseAalnEB5dDq-_PoN9kZ8NIhdGVCezbJBhB2UU3LyFy8SMsE |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOUAPFW9SXj5wgINhYzu2AydYtVqg7amV9oBk-alWWmUrdvf_M86j2vRx4BQptmMnM-OZL_Z8BvigkmaiChMquPNUKJ-oZSJQGX3iPNggXP7fcXwiZ2fi17ya9yRJORdme_2-1PILujtJmZJzihdW34cHAmFy3rs3ldNhyhUK0XjP23NLo2u57IuRC2qZ-m8LL2_ukry2VNp6oMPHsNeHjuR7J-sncC82T2F3i1DwGfw52CLsJ7YJZCtRkay6PYNkmUhjm2VabC7aCjg3Lwji4kz92p4lQWJznrUhP-crsaTLb3kOZ4cHp9MZ7c9PoE4ysaZJh1AlRFABDU-EOlinrLaxRrlI6xGe2lAKKzQL0XlfV1WqJjIpx7znta35C9hplk18BURHzlQqU4zcodvL-6UCE45NVOAWv38B30af2Fx2XBkms1ePS9CQTBaQyQIyeGF1AZ8HgRjfU5PnEzIWpoUoWt5s8PGqwdDTnVV_ZAmPBtTeQC0zvXUarmxZWYx8cp4wBoXOW1TbzAWmHdPWF0AG_TBofnlNxTZxuVkZrbJD55wX8LJTl6ueEOyVpeI4AjVSpNFQxiXNxXnL8M0RliOULeDToHKmn1pWd73n_n_UfQ8PZ6fHR-bo58nv1_Co-03OaSnfwM767ya-xThr7d61NvYPbqUj8g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAgOqLxKgIIPHOBgurEd24FTu3RVXhUHKu0ByfKTVlo5VXf3_zPOo9r0ceAUKbZjxzPjmbFnPiP0TkZFeeUnhDPrCJcuEkO5JyK4yJg3ntu83_HzWByd8G_zat7H5iyHaPfhSLLLacgoTWm1d-5jJ-JK7IESFIRKMSfwoPVddA_clPaUdiqmw0LMJfjoPZrPDY2uZLgvRoqpxe-_yei8Hjt55QC11UuzbfSoNyjxfscBj9GdkJ6ghxswg0_Rn8MNGH9skscb6Yt42UUS4ibiZFITF-uztgKs2AsM05IBYdsbJnBIp5lH8nc-YYO7rJdn6GR2-Ht6RPpbFYgVlK9IVN5XEfwqD-LIfe2NlUaZUAO1hHHgtBpfcsMV9cE6V1dVrCYiSkudY7Wp2XO0lZoUXiCsAqMyljEEZkEZ5igqT7mlE-mZgfkv0OfRFOvzDkFDZ0zrcQlQWmcC6UwgDQ9aF-jjQBDtesDyfG_GQreOixLXG7y_bDD0dGvVg0zh0YDaF83FX93LrGbSlJUBeyhnD4OpaJ0BZs4IYcpSZVyB8MAfGoQyn7SYFJr1UiuZ1TxjrEA7Hbtc9gQuYFlKBiOQI0YaDWVcks5OW9xvBs46OLgF-jCwnO4XnOVt__nyP-q-Rfd_fZnpH1-Pv79CD7q9c0ZK8RptrS7WYReMr5V904rYP9IfLDk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+theoretical+studies+of+nanofluid+thermal+conductivity+enhancement%3A+a+review&rft.jtitle=Nanoscale+research+letters&rft.au=Kleinstreuer%2C+Clement&rft.au=Feng%2C+Yu&rft.date=2011-03-16&rft.eissn=1556-276X&rft.volume=6&rft.issue=1&rft.spage=229&rft_id=info:doi/10.1186%2F1556-276X-6-229&rft_id=info%3Apmid%2F21711739&rft.externalDocID=21711739 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-276X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-276X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-276X&client=summon |