Exploiting MeSH indexing in MEDLINE to generate a data set for word sense disambiguation

Evaluation of Word Sense Disambiguation (WSD) methods in the biomedical domain is difficult because the available resources are either too small or too focused on specific types of entities (e.g. diseases or genes). We present a method that can be used to automatically develop a WSD test collection...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 12; no. 1; p. 223
Main Authors Jimeno-Yepes, Antonio J, McInnes, Bridget T, Aronson, Alan R
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 02.06.2011
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Evaluation of Word Sense Disambiguation (WSD) methods in the biomedical domain is difficult because the available resources are either too small or too focused on specific types of entities (e.g. diseases or genes). We present a method that can be used to automatically develop a WSD test collection using the Unified Medical Language System (UMLS) Metathesaurus and the manual MeSH indexing of MEDLINE. We demonstrate the use of this method by developing such a data set, called MSH WSD. In our method, the Metathesaurus is first screened to identify ambiguous terms whose possible senses consist of two or more MeSH headings. We then use each ambiguous term and its corresponding MeSH heading to extract MEDLINE citations where the term and only one of the MeSH headings co-occur. The term found in the MEDLINE citation is automatically assigned the UMLS CUI linked to the MeSH heading. Each instance has been assigned a UMLS Concept Unique Identifier (CUI). We compare the characteristics of the MSH WSD data set to the previously existing NLM WSD data set. The resulting MSH WSD data set consists of 106 ambiguous abbreviations, 88 ambiguous terms and 9 which are a combination of both, for a total of 203 ambiguous entities. For each ambiguous term/abbreviation, the data set contains a maximum of 100 instances per sense obtained from MEDLINE.We evaluated the reliability of the MSH WSD data set using existing knowledge-based methods and compared their performance to that of the results previously obtained by these algorithms on the pre-existing data set, NLM WSD. We show that the knowledge-based methods achieve different results but keep their relative performance except for the Journal Descriptor Indexing (JDI) method, whose performance is below the other methods. The MSH WSD data set allows the evaluation of WSD algorithms in the biomedical domain. Compared to previously existing data sets, MSH WSD contains a larger number of biomedical terms/abbreviations and covers the largest set of UMLS Semantic Types. Furthermore, the MSH WSD data set has been generated automatically reusing already existing annotations and, therefore, can be regenerated from subsequent UMLS versions.
AbstractList Abstract Background Evaluation of Word Sense Disambiguation (WSD) methods in the biomedical domain is difficult because the available resources are either too small or too focused on specific types of entities (e.g. diseases or genes). We present a method that can be used to automatically develop a WSD test collection using the Unified Medical Language System (UMLS) Metathesaurus and the manual MeSH indexing of MEDLINE. We demonstrate the use of this method by developing such a data set, called MSH WSD. Methods In our method, the Metathesaurus is first screened to identify ambiguous terms whose possible senses consist of two or more MeSH headings. We then use each ambiguous term and its corresponding MeSH heading to extract MEDLINE citations where the term and only one of the MeSH headings co-occur. The term found in the MEDLINE citation is automatically assigned the UMLS CUI linked to the MeSH heading. Each instance has been assigned a UMLS Concept Unique Identifier (CUI). We compare the characteristics of the MSH WSD data set to the previously existing NLM WSD data set. Results The resulting MSH WSD data set consists of 106 ambiguous abbreviations, 88 ambiguous terms and 9 which are a combination of both, for a total of 203 ambiguous entities. For each ambiguous term/abbreviation, the data set contains a maximum of 100 instances per sense obtained from MEDLINE. We evaluated the reliability of the MSH WSD data set using existing knowledge-based methods and compared their performance to that of the results previously obtained by these algorithms on the pre-existing data set, NLM WSD. We show that the knowledge-based methods achieve different results but keep their relative performance except for the Journal Descriptor Indexing (JDI) method, whose performance is below the other methods. Conclusions The MSH WSD data set allows the evaluation of WSD algorithms in the biomedical domain. Compared to previously existing data sets, MSH WSD contains a larger number of biomedical terms/abbreviations and covers the largest set of UMLS Semantic Types. Furthermore, the MSH WSD data set has been generated automatically reusing already existing annotations and, therefore, can be regenerated from subsequent UMLS versions.
Evaluation of Word Sense Disambiguation (WSD) methods in the biomedical domain is difficult because the available resources are either too small or too focused on specific types of entities (e.g. diseases or genes). We present a method that can be used to automatically develop a WSD test collection using the Unified Medical Language System (UMLS) Metathesaurus and the manual MeSH indexing of MEDLINE. We demonstrate the use of this method by developing such a data set, called MSH WSD.BACKGROUNDEvaluation of Word Sense Disambiguation (WSD) methods in the biomedical domain is difficult because the available resources are either too small or too focused on specific types of entities (e.g. diseases or genes). We present a method that can be used to automatically develop a WSD test collection using the Unified Medical Language System (UMLS) Metathesaurus and the manual MeSH indexing of MEDLINE. We demonstrate the use of this method by developing such a data set, called MSH WSD.In our method, the Metathesaurus is first screened to identify ambiguous terms whose possible senses consist of two or more MeSH headings. We then use each ambiguous term and its corresponding MeSH heading to extract MEDLINE citations where the term and only one of the MeSH headings co-occur. The term found in the MEDLINE citation is automatically assigned the UMLS CUI linked to the MeSH heading. Each instance has been assigned a UMLS Concept Unique Identifier (CUI). We compare the characteristics of the MSH WSD data set to the previously existing NLM WSD data set.METHODSIn our method, the Metathesaurus is first screened to identify ambiguous terms whose possible senses consist of two or more MeSH headings. We then use each ambiguous term and its corresponding MeSH heading to extract MEDLINE citations where the term and only one of the MeSH headings co-occur. The term found in the MEDLINE citation is automatically assigned the UMLS CUI linked to the MeSH heading. Each instance has been assigned a UMLS Concept Unique Identifier (CUI). We compare the characteristics of the MSH WSD data set to the previously existing NLM WSD data set.The resulting MSH WSD data set consists of 106 ambiguous abbreviations, 88 ambiguous terms and 9 which are a combination of both, for a total of 203 ambiguous entities. For each ambiguous term/abbreviation, the data set contains a maximum of 100 instances per sense obtained from MEDLINE.We evaluated the reliability of the MSH WSD data set using existing knowledge-based methods and compared their performance to that of the results previously obtained by these algorithms on the pre-existing data set, NLM WSD. We show that the knowledge-based methods achieve different results but keep their relative performance except for the Journal Descriptor Indexing (JDI) method, whose performance is below the other methods.RESULTSThe resulting MSH WSD data set consists of 106 ambiguous abbreviations, 88 ambiguous terms and 9 which are a combination of both, for a total of 203 ambiguous entities. For each ambiguous term/abbreviation, the data set contains a maximum of 100 instances per sense obtained from MEDLINE.We evaluated the reliability of the MSH WSD data set using existing knowledge-based methods and compared their performance to that of the results previously obtained by these algorithms on the pre-existing data set, NLM WSD. We show that the knowledge-based methods achieve different results but keep their relative performance except for the Journal Descriptor Indexing (JDI) method, whose performance is below the other methods.The MSH WSD data set allows the evaluation of WSD algorithms in the biomedical domain. Compared to previously existing data sets, MSH WSD contains a larger number of biomedical terms/abbreviations and covers the largest set of UMLS Semantic Types. Furthermore, the MSH WSD data set has been generated automatically reusing already existing annotations and, therefore, can be regenerated from subsequent UMLS versions.CONCLUSIONSThe MSH WSD data set allows the evaluation of WSD algorithms in the biomedical domain. Compared to previously existing data sets, MSH WSD contains a larger number of biomedical terms/abbreviations and covers the largest set of UMLS Semantic Types. Furthermore, the MSH WSD data set has been generated automatically reusing already existing annotations and, therefore, can be regenerated from subsequent UMLS versions.
Evaluation of Word Sense Disambiguation (WSD) methods in the biomedical domain is difficult because the available resources are either too small or too focused on specific types of entities (e.g. diseases or genes). We present a method that can be used to automatically develop a WSD test collection using the Unified Medical Language System (UMLS) Metathesaurus and the manual MeSH indexing of MEDLINE. We demonstrate the use of this method by developing such a data set, called MSH WSD. In our method, the Metathesaurus is first screened to identify ambiguous terms whose possible senses consist of two or more MeSH headings. We then use each ambiguous term and its corresponding MeSH heading to extract MEDLINE citations where the term and only one of the MeSH headings co-occur. The term found in the MEDLINE citation is automatically assigned the UMLS CUI linked to the MeSH heading. Each instance has been assigned a UMLS Concept Unique Identifier (CUI). We compare the characteristics of the MSH WSD data set to the previously existing NLM WSD data set. The resulting MSH WSD data set consists of 106 ambiguous abbreviations, 88 ambiguous terms and 9 which are a combination of both, for a total of 203 ambiguous entities. For each ambiguous term/abbreviation, the data set contains a maximum of 100 instances per sense obtained from MEDLINE.We evaluated the reliability of the MSH WSD data set using existing knowledge-based methods and compared their performance to that of the results previously obtained by these algorithms on the pre-existing data set, NLM WSD. We show that the knowledge-based methods achieve different results but keep their relative performance except for the Journal Descriptor Indexing (JDI) method, whose performance is below the other methods. The MSH WSD data set allows the evaluation of WSD algorithms in the biomedical domain. Compared to previously existing data sets, MSH WSD contains a larger number of biomedical terms/abbreviations and covers the largest set of UMLS Semantic Types. Furthermore, the MSH WSD data set has been generated automatically reusing already existing annotations and, therefore, can be regenerated from subsequent UMLS versions.
In our method, the Metathesaurus is first screened to identify ambiguous terms whose possible senses consist of two or more MeSH headings. We then use each ambiguous term and its corresponding MeSH heading to extract MEDLINE citations where the term and only one of the MeSH headings co-occur. The term found in the MEDLINE citation is automatically assigned the UMLS CUI linked to the MeSH heading. Each instance has been assigned a UMLS Concept Unique Identifier (CUI). We compare the characteristics of the MSH WSD data set to the previously existing NLM WSD data set. The resulting MSH WSD data set consists of 106 ambiguous abbreviations, 88 ambiguous terms and 9 which are a combination of both, for a total of 203 ambiguous entities. For each ambiguous term/abbreviation, the data set contains a maximum of 100 instances per sense obtained from MEDLINE. The MSH WSD data set allows the evaluation of WSD algorithms in the biomedical domain. Compared to previously existing data sets, MSH WSD contains a larger number of biomedical terms/abbreviations and covers the largest set of UMLS Semantic Types. Furthermore, the MSH WSD data set has been generated automatically reusing already existing annotations and, therefore, can be regenerated from subsequent UMLS versions.
BACKGROUND: Evaluation of Word Sense Disambiguation (WSD) methods in the biomedical domain is difficult because the available resources are either too small or too focused on specific types of entities (e.g. diseases or genes). We present a method that can be used to automatically develop a WSD test collection using the Unified Medical Language System (UMLS) Metathesaurus and the manual MeSH indexing of MEDLINE. We demonstrate the use of this method by developing such a data set, called MSH WSD. METHODS: In our method, the Metathesaurus is first screened to identify ambiguous terms whose possible senses consist of two or more MeSH headings. We then use each ambiguous term and its corresponding MeSH heading to extract MEDLINE citations where the term and only one of the MeSH headings co-occur. The term found in the MEDLINE citation is automatically assigned the UMLS CUI linked to the MeSH heading. Each instance has been assigned a UMLS Concept Unique Identifier (CUI). We compare the characteristics of the MSH WSD data set to the previously existing NLM WSD data set. RESULTS: The resulting MSH WSD data set consists of 106 ambiguous abbreviations, 88 ambiguous terms and 9 which are a combination of both, for a total of 203 ambiguous entities. For each ambiguous term/abbreviation, the data set contains a maximum of 100 instances per sense obtained from MEDLINE.We evaluated the reliability of the MSH WSD data set using existing knowledge-based methods and compared their performance to that of the results previously obtained by these algorithms on the pre-existing data set, NLM WSD. We show that the knowledge-based methods achieve different results but keep their relative performance except for the Journal Descriptor Indexing (JDI) method, whose performance is below the other methods. CONCLUSIONS: The MSH WSD data set allows the evaluation of WSD algorithms in the biomedical domain. Compared to previously existing data sets, MSH WSD contains a larger number of biomedical terms/abbreviations and covers the largest set of UMLS Semantic Types. Furthermore, the MSH WSD data set has been generated automatically reusing already existing annotations and, therefore, can be regenerated from subsequent UMLS versions.
ArticleNumber 223
Audience Academic
Author Jimeno-Yepes, Antonio J
Aronson, Alan R
McInnes, Bridget T
AuthorAffiliation 1 National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
2 Department of Pharmacology, University of Minnesota Twin Cities, Minneapolis, MN 55155, USA
AuthorAffiliation_xml – name: 1 National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
– name: 2 Department of Pharmacology, University of Minnesota Twin Cities, Minneapolis, MN 55155, USA
Author_xml – sequence: 1
  givenname: Antonio J
  surname: Jimeno-Yepes
  fullname: Jimeno-Yepes, Antonio J
– sequence: 2
  givenname: Bridget T
  surname: McInnes
  fullname: McInnes, Bridget T
– sequence: 3
  givenname: Alan R
  surname: Aronson
  fullname: Aronson, Alan R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21635749$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhiNURD_gzglZ4oA4pNhO7CQXpGpZ6EpbkChI3CzHngRXib3YXlj-PU63rRrUygd7Zt55bM_McXZgnYUse0nwKSE1f0fKiuSUYJYTmlNaPMmO7lwH986H2XEIVxiTqsbsWXZICS9YVTZH2Y_lbjM4E43t0QVcniNjNewmy1h0sfywXn1eouhQDxa8jIAk0jJKFCCiznn0x3mdDBsAaRPk2Jp-K6Nx9nn2tJNDgBc3-0n2_ePy2-I8X3_5tFqcrfOWUxpzDcA7TKRqoFCU8qbVwEuqqqaFmkKlSfID5grLqiSlZE3HGq46kF1ZdFgXJ9lqz9VOXomNN6P0f4WTRlw7nO-F9NGoAQQGzRgnXGLCSo1pQ3XNp2NVtwWjMrHe71mbbTuCVmCjl8MMOo9Y81P07rcoCC04IQmw2ANa4x4BzCPKjWLqkpi6JAgVqYmJ8ubmGd792kKIYjRBwTBIC24bRF2VUyfr6b7Xe2Uv0_-M7VyiqkktzihrKs445kl1-oAqLQ2jUWmiOpP8s4S3s4SkibCLvdyGIFaXX-faV_drdvfX2xFLAr4XKO9C8NAJZeL1iKRXmEEQLKZZfqgM-L_EW_ajKf8ATFry4g
CitedBy_id crossref_primary_10_1016_j_jbi_2018_06_007
crossref_primary_10_1136_amiajnl_2012_001244
crossref_primary_10_1186_1471_2105_12_355
crossref_primary_10_1186_s13326_023_00282_y
crossref_primary_10_1007_s11042_022_13242_y
crossref_primary_10_1186_s12911_016_0296_1
crossref_primary_10_2139_ssrn_3199176
crossref_primary_10_1186_s12859_019_3079_8
crossref_primary_10_1007_s10115_014_0753_z
crossref_primary_10_1038_s41597_021_00929_4
crossref_primary_10_1186_s13326_017_0123_3
crossref_primary_10_1016_j_jbi_2016_10_020
crossref_primary_10_2196_56955
crossref_primary_10_14778_3551793_3551812
crossref_primary_10_1093_jamia_ocy189
crossref_primary_10_1038_s41597_024_03317_w
crossref_primary_10_1016_j_websem_2014_07_007
crossref_primary_10_1093_bioinformatics_btw529
crossref_primary_10_1136_amiajnl_2012_001350
crossref_primary_10_1093_jamia_ocaa269
crossref_primary_10_1016_j_jbi_2017_08_001
crossref_primary_10_1016_j_procs_2013_09_039
crossref_primary_10_1016_j_jbi_2022_104229
crossref_primary_10_7763_IJBBB_2014_V4_356
crossref_primary_10_5808_gi_21014
crossref_primary_10_1093_bib_bbaa057
crossref_primary_10_1109_ACCESS_2023_3272056
crossref_primary_10_1016_j_jbi_2013_09_009
crossref_primary_10_1109_ACCESS_2019_2912584
crossref_primary_10_1093_jamia_ocy013
crossref_primary_10_1093_database_baac047
crossref_primary_10_1016_j_jbi_2014_11_015
crossref_primary_10_1016_j_artmed_2018_03_002
crossref_primary_10_1016_j_patcog_2017_10_028
crossref_primary_10_1515_jib_2017_0051
crossref_primary_10_1016_j_jbi_2013_08_008
crossref_primary_10_1093_jamia_ocaa136
Cites_doi 10.1186/1471-2105-6-S1-S1
10.1197/jamia.M1101
10.1186/1471-2105-11-569
10.1093/nar/gkh061
10.3115/992730.992783
10.1186/1471-2105-9-S3-S3
10.1093/bioinformatics/bti586
10.1006/jbin.2001.1023
10.1002/asi.20257
10.3115/1075527.1075579
10.1016/j.ijmedinf.2005.03.013
10.1197/jamia.M1533
ContentType Journal Article
Copyright COPYRIGHT 2011 BioMed Central Ltd.
Copyright ©2011 Jimeno-Yepes et al; licensee BioMed Central Ltd. 2011 Jimeno-Yepes et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2011 BioMed Central Ltd.
– notice: Copyright ©2011 Jimeno-Yepes et al; licensee BioMed Central Ltd. 2011 Jimeno-Yepes et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/1471-2105-12-223
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 223
ExternalDocumentID oai_doaj_org_article_0ed55616a0154d0292d86154d78b352a
PMC3123611
oai_biomedcentral_com_1471_2105_12_223
A259765606
21635749
10_1186_1471_2105_12_223
Genre Journal Article
Research Support, N.I.H., Intramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Intramural NIH HHS
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
7X8
-A0
3V.
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
M0N
5PM
PUEGO
ID FETCH-LOGICAL-b622t-dee6f01ac9e3c2269bde642c79be82e7d1e3ce06c0a7414a59f596cfeaf43f0d3
IEDL.DBID RBZ
ISSN 1471-2105
IngestDate Wed Aug 27 01:30:21 EDT 2025
Thu Aug 21 18:17:33 EDT 2025
Wed May 22 07:17:00 EDT 2024
Fri Jul 11 07:05:54 EDT 2025
Tue Jun 17 21:39:09 EDT 2025
Tue Jun 10 20:40:11 EDT 2025
Fri Jun 27 05:06:39 EDT 2025
Mon Jul 21 05:27:44 EDT 2025
Tue Jul 01 03:38:13 EDT 2025
Thu Apr 24 23:09:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b622t-dee6f01ac9e3c2269bde642c79be82e7d1e3ce06c0a7414a59f596cfeaf43f0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1471-2105-12-223
PMID 21635749
PQID 874017881
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0ed55616a0154d0292d86154d78b352a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3123611
biomedcentral_primary_oai_biomedcentral_com_1471_2105_12_223
proquest_miscellaneous_874017881
gale_infotracmisc_A259765606
gale_infotracacademiconefile_A259765606
gale_incontextgauss_ISR_A259765606
pubmed_primary_21635749
crossref_citationtrail_10_1186_1471_2105_12_223
crossref_primary_10_1186_1471_2105_12_223
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-06-02
PublicationDateYYYYMMDD 2011-06-02
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-02
  day: 02
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2011
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References S Gaudan (4593_CR5) 2005; 21
G Leroy (4593_CR34) 2005; 74
A Jimeno (4593_CR3) 2008; 9
C Manning (4593_CR7) 2000
4593_CR17
4593_CR16
4593_CR19
4593_CR18
H Liu (4593_CR11) 2002; 9
4593_CR31
A Schwartz (4593_CR14) 2003; 8
S Humphrey (4593_CR26) 2006; 57
4593_CR32
B McInnes (4593_CR27) 2008
4593_CR35
L Hirschman (4593_CR1) 2005; 6
J Fan (4593_CR15) 2009
C Leacock (4593_CR30) 1998; 24
T Pedersen (4593_CR8) 2010
R Leaman (4593_CR4) 2009
H Liu (4593_CR10) 2001; 34
H Liu (4593_CR12) 2004; 11
B McInnes (4593_CR28) 2009
A Yeh (4593_CR33) 2000
WA Gale (4593_CR9) 1992
4593_CR29
M Stevenson (4593_CR13) 2009
4593_CR20
A Jimeno-Yepes (4593_CR25) 2010; 11
4593_CR22
M Weeber (4593_CR6) 2001
4593_CR21
P Pezik (4593_CR2) 2008
4593_CR24
4593_CR23
11977807 - J Biomed Inform. 2001 Aug;34(4):249-61
15897005 - Int J Med Inform. 2005 Aug;74(7-8):573-85
12386113 - J Am Med Inform Assoc. 2002 Nov-Dec;9(6):621-36
14681409 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D267-70
15064284 - J Am Med Inform Assoc. 2004 Jul-Aug;11(4):320-31
11825285 - Proc AMIA Symp. 2001;:746-50
19890434 - J Am Soc Inf Sci Technol. 2006 Jan 1;57(1):96-113
21092226 - BMC Bioinformatics. 2010;11:569
12603049 - Pac Symp Biocomput. 2003;:451-62
18426548 - BMC Bioinformatics. 2008;9 Suppl 3:S3
15960821 - BMC Bioinformatics. 2005;6 Suppl 1:S1
20351846 - AMIA Annu Symp Proc. 2009;2009:183-7
16037121 - Bioinformatics. 2005 Sep 15;21(18):3658-64
References_xml – ident: 4593_CR18
– ident: 4593_CR20
– start-page: 746
  volume-title: Proceedings of the AMIA Symposium, American Medical Informatics Association
  year: 2001
  ident: 4593_CR6
– ident: 4593_CR22
– ident: 4593_CR24
– volume: 6
  start-page: S1
  issue: Suppl 1
  year: 2005
  ident: 4593_CR1
  publication-title: BMC bioinformatics
  doi: 10.1186/1471-2105-6-S1-S1
– volume-title: Building and evaluating resources for biomedical text mining, LREC Workshop
  year: 2008
  ident: 4593_CR2
– volume: 9
  start-page: 621
  issue: 6
  year: 2002
  ident: 4593_CR11
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1197/jamia.M1101
– volume: 11
  start-page: 565
  year: 2010
  ident: 4593_CR25
  publication-title: BMC bioinformatics
  doi: 10.1186/1471-2105-11-569
– ident: 4593_CR16
  doi: 10.1093/nar/gkh061
– volume-title: PhD thesis
  year: 2009
  ident: 4593_CR28
– ident: 4593_CR29
– start-page: 947
  volume-title: Proceedings of the 18th conference on Computational linguistics-Volume 2, Association for Computational Linguistics
  year: 2000
  ident: 4593_CR33
  doi: 10.3115/992730.992783
– volume-title: Proceedings of the 2009 Symposium on Languages in Biology and Medicine
  year: 2009
  ident: 4593_CR4
– ident: 4593_CR32
– volume: 9
  start-page: S3
  issue: Suppl 3
  year: 2008
  ident: 4593_CR3
  publication-title: BMC bioinformatics
  doi: 10.1186/1471-2105-9-S3-S3
– volume-title: Proceedings of the 1st ACM International Health Informatics Symposium, Arlington, VA
  year: 2010
  ident: 4593_CR8
– ident: 4593_CR19
– volume: 21
  start-page: 3658
  issue: 18
  year: 2005
  ident: 4593_CR5
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti586
– volume: 24
  start-page: 147
  year: 1998
  ident: 4593_CR30
  publication-title: Computational Linguistics
– ident: 4593_CR17
– ident: 4593_CR21
– ident: 4593_CR23
– volume: 8
  start-page: 451
  year: 2003
  ident: 4593_CR14
  publication-title: Pacific Symposium on Biocomputing
– volume: 34
  start-page: 249
  issue: 4
  year: 2001
  ident: 4593_CR10
  publication-title: Journal of Biomedical Informatics
  doi: 10.1006/jbin.2001.1023
– start-page: 49
  volume-title: Proceedings of the ACL-08: HLT Student Research Workshop, Columbus, Ohio: Association for Computational Linguistics
  year: 2008
  ident: 4593_CR27
– start-page: 71
  volume-title: Proceedings of the Workshop on BioNLP, Association for Computational Linguistics
  year: 2009
  ident: 4593_CR13
– volume: 57
  start-page: 96
  year: 2006
  ident: 4593_CR26
  publication-title: Journal of the American Society for Information Science and Technology (Print)
  doi: 10.1002/asi.20257
– ident: 4593_CR31
– start-page: 233
  volume-title: HLT '91: Proceedings of the workshop on Speech and Natural Language, Morristown, NJ, USA: Association for Computational Linguistics
  year: 1992
  ident: 4593_CR9
  doi: 10.3115/1075527.1075579
– ident: 4593_CR35
– start-page: 183
  volume-title: AMIA Annual Symposium Proceedings, Volume 2009, American Medical Informatics Association
  year: 2009
  ident: 4593_CR15
– volume: 74
  start-page: 573
  issue: 7-8
  year: 2005
  ident: 4593_CR34
  publication-title: International Journal of Medical Informatics
  doi: 10.1016/j.ijmedinf.2005.03.013
– volume-title: Foundations of statistical natural language processing
  year: 2000
  ident: 4593_CR7
– volume: 11
  start-page: 320
  issue: 4
  year: 2004
  ident: 4593_CR12
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1197/jamia.M1533
– reference: 21092226 - BMC Bioinformatics. 2010;11:569
– reference: 19890434 - J Am Soc Inf Sci Technol. 2006 Jan 1;57(1):96-113
– reference: 11825285 - Proc AMIA Symp. 2001;:746-50
– reference: 18426548 - BMC Bioinformatics. 2008;9 Suppl 3:S3
– reference: 15897005 - Int J Med Inform. 2005 Aug;74(7-8):573-85
– reference: 12386113 - J Am Med Inform Assoc. 2002 Nov-Dec;9(6):621-36
– reference: 16037121 - Bioinformatics. 2005 Sep 15;21(18):3658-64
– reference: 15064284 - J Am Med Inform Assoc. 2004 Jul-Aug;11(4):320-31
– reference: 15960821 - BMC Bioinformatics. 2005;6 Suppl 1:S1
– reference: 11977807 - J Biomed Inform. 2001 Aug;34(4):249-61
– reference: 12603049 - Pac Symp Biocomput. 2003;:451-62
– reference: 20351846 - AMIA Annu Symp Proc. 2009;2009:183-7
– reference: 14681409 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D267-70
SSID ssj0017805
Score 2.3442416
Snippet Evaluation of Word Sense Disambiguation (WSD) methods in the biomedical domain is difficult because the available resources are either too small or too focused...
In our method, the Metathesaurus is first screened to identify ambiguous terms whose possible senses consist of two or more MeSH headings. We then use each...
Background Evaluation of Word Sense Disambiguation (WSD) methods in the biomedical domain is difficult because the available resources are either too small or...
BACKGROUND: Evaluation of Word Sense Disambiguation (WSD) methods in the biomedical domain is difficult because the available resources are either too small or...
Abstract Background Evaluation of Word Sense Disambiguation (WSD) methods in the biomedical domain is difficult because the available resources are either too...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 223
SubjectTerms Abstracting and Indexing as Topic
Algorithms
Humans
Intermedin
Knowledge Bases
Medical Subject Headings
MEDLINE
Natural Language Processing
Online health care information services
Physiological aspects
Semantics
Unified Medical Language System
United States
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPginp_VU4II4kPZfiYN-HLqHnvi3oPnwb6FNJ2shbMrtsvhf-9M2l02qPjiW5ukNMlMOjPpL79h7BWgmTFS5nHtd6sgK2MjSxe70romVcpZQ_uQywuxuCo-rsrVQaovwoSN9MDjxM0SaCiDozBk7JskU1lTCbqUVY3Og3eN0Obtgqnp_wEx9ftzRTKNMagpdz8oKzHblxEoIaM0RcFJ9-vAQHke_9-_1gfmKoRSHtims3vs7uRU8tNxMMfsFnT32e0xzeTPB2zlgXYtAZz5Ei4X3FMk0l3b8eX8w6fzizkfNnztKagH4IYTcJT3MHD0afkNBqh40_XAm7Y33-p2PRKEP2RXZ_Mv7xfxlFEhrkWWDXEDIFySGqsgt-h4qboBDECsVDVUGcgmxXJIhE0MehqFKZUrlbAOjCtylzT5I3bUbTp4wrhE36xWaWbLQhQCrIFSJi5XZBEt5FXE3gbTqr-P7Bma-KzDGlxamqSiSSo6zTRKJWKznRS0ndjKKWnGtfZRSyX-8MSb_RO7d_297TsSbNAnX4CapyfN0__SvIi9JLXQxKLREUxnbbZ9r88vP-tTDCol0RqJiL2eGrkN9t-a6dQDTiIRbwUtT4KWuMxtUM132qepirBxHWy2vfZJFSkrQMQej8q4H1eWEt1goSImAzUNBh7WdO1XTzKee1qe9On_mKln7M64FU949xN2NPzYwnP05Yb6hV-2vwDwt0DL
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgCIkXxDeBgSyEhHgIy6cdSyA0oFOH6B4YlfpmOc6lVCopNKlg_z13TrrNUCTekviS2L673J1z_h1jzwHNjJEyDUu3WgVJHhqZ12Gd27qKlaqtoXXIyYkYT7OPs3x2sT16mMB2Z2hH9aSm6-WrXz_O3qLCv3EKX4iDGD-wIYYuOaUZoLm7yq6hXZKkppPs4p8Cofe7vUYD9fan5Y4n_LH7fekZLYft__cX_JIJ89MrL9mro1vs5uBo8sNeMm6zK9DcYdf70pNnd9nMJd8tKOmZT-B0zB1sIp0tGj4Zffh0fDLi3YrPHSx1B9xwSiblLXQc_Vz-E4NWPGla4NWiNd_KxbwHDb_HpkejL-_H4VBlISxFknRhBSDqKDZWQWrRGVNlBRiUWKlKKBKQVYzXIRI2Muh9ZCZXda6ErcHUWVpHVXqf7TWrBh4yLtFfK1Wc2DwTmQBrIJdRnSqykhbSImCvvWnV33tEDU0Y134Lqpsmrmjiio4TjVwJ2MGWC9oOCOZUSGOpXSRTiB13vDy_Y_uuf9O-I8Z6fXIXVuu5HtRYR1BRPVFhyPWsokQlVSHoUBYlurImYM9ILDQhazSUujM3m7bVx6ef9SEGmpKgjkTAXgxE9Qr7b82wEwInkcC4PMp9jxJV33rNfCt9mpooX66B1abVrtAiVQoI2INeGM_HlcQEQZipgElPTL2B-y3N4qsDHk8dVE_86H8G-Zjd6JffKcd9n-116w08Qf-tK586tfwNdGk-TQ
  priority: 102
  providerName: Scholars Portal
Title Exploiting MeSH indexing in MEDLINE to generate a data set for word sense disambiguation
URI https://www.ncbi.nlm.nih.gov/pubmed/21635749
https://www.proquest.com/docview/874017881
http://dx.doi.org/10.1186/1471-2105-12-223
https://pubmed.ncbi.nlm.nih.gov/PMC3123611
https://doaj.org/article/0ed55616a0154d0292d86154d78b352a
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYJiReEN8ERmUhJMRDtHzascRLCy1bRSu0MqnixXIcu1QaKSKpEP89d05a5jGeeMmXL1--s-_OPv-OkFcG1IziPA1LN1plkjxUPLehzbWtYiGsVjgOOZuz04tsusyXf2Byrs3gxwU7iaH7DMExyTGIAJTZATlKMtCD6JmPvuxnDBCb360k6ql3U5I3POHa2vZLTyU55P6_--crCsoPnryijSb3yN3ejKTDju_3yS1TPyC3u8SSvx6SpQutW2NIM52ZxSl1oIh4tq7pbPz-49l8TNsNXTnQ6dZQRTFUlDampWDF0p_gksJJ3RharRv1rVyvOkjwR-RiMv787jTscyiEJUuSNqyMYTaKlRYm1WBqibIy4HJoLkpTJIZXMVw3EdORgjrNVC5sLpi2RtkstVGVPiaH9aY2TwnlYI2VIk50nrGMGa1MziObCtSB2qRFQN561Sq_d3gZEhGs_RJoTBK5IpErMk4kcCUgJzsuSN3jk2OajEvp_JSC3XDHm_0du3f9m3aEjPW-yV0AUZN9I5WRqTBbKFNoWFZRIpKqYHjIixIMVRWQlygWEnEzagzMWalt08izxbkcghvJEciIBeR1T2Q38P1a9escoBIRasujPPYooWFrr5jupE9iEUbD1WazbaRLo4h5AALypBPG_X8lMQIMZiIg3BNT78f9knr91cGKpw6IJ372f2x8Tu50w-4Y235MDtsfW_MC7La2HJADvuSwLSYfBuRoOJwuprAfjeefzgduLAS2s6wYuIb9G2rCQY8
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKEaIXxLMEClgICXEIzct2LHFpYastdHvoQ1pxsRzHXiJtk6rJCvHv8TjJag3lxC2JJw97xp4ZZ-YbhN5pq2YkY2lYuN0qnZBQMmJCQ5QpY86NkrAPOTul08vs65zMt9BszIUprlRRNQNoKAAVf9xMQ1-6tXsMGetnfE73Y7vChtZ3IRBnYPXdHXSXEcKgoMHZ4ff1TwWA73fJRgP1-Nfylif8kf6-9LSWA_f_ewnf0GF-fOWGwjp6iB4MliY-6LvxCG3p-jG619ee_PUEzV30XQVRz3imz6fY4SbCWVXj2eTLyfHpBHcNXjhc6k5jiSGaFLe6w3bY8E_rtdqTutW4rFp5VVSLHjX8Kbo8mlx8noZDmYWwoEnShaXW1ESxVFynylpjvCi19UoU44XOE83K2F7XEVWRtOZHJgk3hFNltDRZaqIyfYa266bWzxFm1mAreJwoktGMaiU1YZFJOahJpdM8QJ-8YRXXPaSGAJBrv8UyWgBXBHBFxImwXAnQ_sgFoQYIc6iksRTOlcnpLXd8WN8xvuvftIfAWO-b3IXmZiEGmRORLqGgKJVge5ZRwpMyp3DI8sLasjJAb0EsBEBr1BC7s5CrthXH52fiwHqaDLCOaIDeD0Smsd-v5JAKYQcR0Lg8yj2P0s595TXjUfoENEHAXK2bVStcpUUoFRCg3V4Y1_1KYsAgzHiAmCemXsf9lrr64ZDHU4fVE7_4Pza-QfenF7MTYQX520u00-_SQyj8Htrublb6lTXzuuK1m7y_AU7sTB4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfGEIgXxOcIDLAQEuIhNF-2Y4mXjbXqgFZoY9LEi-U4donokmlJhfjv8TlpVcN44i2JL03ju_PdOXe_Q-i1tmZGMpaGhdut0gkJJSMmNESZMubcKAn7kLM5nZ5lH8_J-Q6ar2thigtVVM0AGgpAxe-2y9CXbu22B-rH6LI0vcrndBTbJTa0wQuBRANr8G6gm4wQBop6cvht81UB8PtdtdFAvf5sec0v_FH_vvTMlkP3_3sN3zJifoLllsWa3EN3B1cTH_SycR_t6PoButU3n_z1EJ279LsK0p7xTJ9OsQNOhLOqxrPx0efj-Rh3DV44YOpOY4khnRS3usN23vBPG7bak7rVuKxaeVFUix42_BE6m4y_fpiGQ5-FsKBJ0oWl1tREsVRcp8q6Y7wotQ1LFOOFzhPNythe1xFVkbT-RyYJN4RTZbQ0WWqiMn2Mduum1k8QZtZjK3icKJLRjGolNWGRSTnYSaXTPEDvvWkVlz2mhgCUa3_EcloAVwRwRcSJsFwJ0GjNBaEGDHNopbEULpbJ6TV3vN3csX7Wv2kPgbHef3IXmquFGBRZRLqEjqJUgvNZRglPypzCIcsL68zKAL0CsRCArVFD8s5CrtpWHJ-eiAMbajIAO6IBejMQmQakWQ61EHYSAY7Lo9z3KK3yK28Yr6VPwBBkzNW6WbXCtVqEXgEB2uuFcfNeSQwghBkPEPPE1Htxf6Suvjvo8dSB9cRP_4-NL9HtL0cTYeX40zN0p9-lh1T4fbTbXa30c-vmdcULp7u_AbY6S-k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+MeSH+indexing+in+MEDLINE+to+generate+a+data+set+for+word+sense+disambiguation&rft.jtitle=BMC+bioinformatics&rft.au=Jimeno-Yepes%2C+Antonio+J&rft.au=McInnes%2C+Bridget+T&rft.au=Aronson%2C+Alan+R&rft.date=2011-06-02&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=12&rft.spage=223&rft_id=info:doi/10.1186%2F1471-2105-12-223&rft.externalDBID=ISR&rft.externalDocID=A259765606
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon