Functional Properties and Genomics of Glucose Transporters
Glucose is the major energy source for mammalian cells as well as an important substrate for protein and lipid synthesis. Mammalian cells take up glucose from extracellular fluid into the cell through two families of structurallyrelated glucose transporters. The facilitative glucose transporter fami...
Saved in:
Published in | Current genomics Vol. 8; no. 2; pp. 113 - 128 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United Arab Emirates
Bentham Science Publishers Ltd
01.04.2007
|
Subjects | |
Online Access | Get full text |
ISSN | 1389-2029 1875-5488 |
DOI | 10.2174/138920207780368187 |
Cover
Loading…
Abstract | Glucose is the major energy source for mammalian cells as well as an important substrate for protein and lipid synthesis. Mammalian cells take up glucose from extracellular fluid into the cell through two families of structurallyrelated glucose transporters. The facilitative glucose transporter family (solute carriers SLC2A, protein symbol GLUT) mediates a bidirectional and energy-independent process of glucose transport in most tissues and cells, while the Na+/glucose cotransporter family (solute carriers SLC5A, protein symbol SGLT) mediates an active, Na+-linked transport process against an electrochemical gradient. The GLUT family consists of thirteen members (GLUT1-12 and HMIT). Phylogenetically, the members of the GLUT family are split into three classes based on protein similarities. Up to now, at least six members of the SGLT family have been cloned (SGLT1-6). In this review, we report both the genomic structure and function of each transporter as well as intra-species comparative genomic analysis of some of these transporters. The affinity for glucose and transport kinetics of each transporter differs and ranges from 0.2 to 17mM. The ability of each protein to transport alternative substrates also differs and includes substrates such as fructose and galactose. In addition, the tissue distribution pattern varies between species. There are different regulation mechanisms of these transporters. Characterization of transcriptional control of some of the gene promoters has been investigated and alternative promoter usage to generate different protein isoforms has been demonstrated. We also introduce some pathophysiological roles of these transporters in human. |
---|---|
AbstractList | Glucose is the major energy source for mammalian cells as well as an important substrate for protein and lipid synthesis. Mammalian cells take up glucose from extracellular fluid into the cell through two families of structurallyrelated glucose transporters. The facilitative glucose transporter family (solute carriers SLC2A, protein symbol GLUT) mediates a bidirectional and energy-independent process of glucose transport in most tissues and cells, while the NaM(+)/glucose cotransporter family (solute carriers SLC5A, protein symbol SGLT) mediates an active, Na(+)-linked transport process against an electrochemical gradient. The GLUT family consists of thirteen members (GLUT1-12 and HMIT). Phylogenetically, the members of the GLUT family are split into three classes based on protein similarities. Up to now, at least six members of the SGLT family have been cloned (SGLT1-6). In this review, we report both the genomic structure and function of each transporter as well as intra-species comparative genomic analysis of some of these transporters. The affinity for glucose and transport kinetics of each transporter differs and ranges from 0.2 to 17mM. The ability of each protein to transport alternative substrates also differs and includes substrates such as fructose and galactose. In addition, the tissue distribution pattern varies between species. There are different regulation mechanisms of these transporters. Characterization of transcriptional control of some of the gene promoters has been investigated and alternative promoter usage to generate different protein isoforms has been demonstrated. We also introduce some pathophysiological roles of these transporters in human. Glucose is the major energy source for mammalian cells as well as an important substrate for protein and lipid synthesis. Mammalian cells take up glucose from extracellular fluid into the cell through two families of structurallyrelated glucose transporters. The facilitative glucose transporter family (solute carriers SLC2A, protein symbol GLUT) mediates a bidirectional and energy-independent process of glucose transport in most tissues and cells, while the NaM(+)/glucose cotransporter family (solute carriers SLC5A, protein symbol SGLT) mediates an active, Na(+)-linked transport process against an electrochemical gradient. The GLUT family consists of thirteen members (GLUT1-12 and HMIT). Phylogenetically, the members of the GLUT family are split into three classes based on protein similarities. Up to now, at least six members of the SGLT family have been cloned (SGLT1-6). In this review, we report both the genomic structure and function of each transporter as well as intra-species comparative genomic analysis of some of these transporters. The affinity for glucose and transport kinetics of each transporter differs and ranges from 0.2 to 17mM. The ability of each protein to transport alternative substrates also differs and includes substrates such as fructose and galactose. In addition, the tissue distribution pattern varies between species. There are different regulation mechanisms of these transporters. Characterization of transcriptional control of some of the gene promoters has been investigated and alternative promoter usage to generate different protein isoforms has been demonstrated. We also introduce some pathophysiological roles of these transporters in human.Glucose is the major energy source for mammalian cells as well as an important substrate for protein and lipid synthesis. Mammalian cells take up glucose from extracellular fluid into the cell through two families of structurallyrelated glucose transporters. The facilitative glucose transporter family (solute carriers SLC2A, protein symbol GLUT) mediates a bidirectional and energy-independent process of glucose transport in most tissues and cells, while the NaM(+)/glucose cotransporter family (solute carriers SLC5A, protein symbol SGLT) mediates an active, Na(+)-linked transport process against an electrochemical gradient. The GLUT family consists of thirteen members (GLUT1-12 and HMIT). Phylogenetically, the members of the GLUT family are split into three classes based on protein similarities. Up to now, at least six members of the SGLT family have been cloned (SGLT1-6). In this review, we report both the genomic structure and function of each transporter as well as intra-species comparative genomic analysis of some of these transporters. The affinity for glucose and transport kinetics of each transporter differs and ranges from 0.2 to 17mM. The ability of each protein to transport alternative substrates also differs and includes substrates such as fructose and galactose. In addition, the tissue distribution pattern varies between species. There are different regulation mechanisms of these transporters. Characterization of transcriptional control of some of the gene promoters has been investigated and alternative promoter usage to generate different protein isoforms has been demonstrated. We also introduce some pathophysiological roles of these transporters in human. Glucose is the major energy source for mammalian cells as well as an important substrate for protein and lipid synthesis. Mammalian cells take up glucose from extracellular fluid into the cell through two families of structurallyrelated glucose transporters. The facilitative glucose transporter family (solute carriers SLC2A, protein symbol GLUT) mediates a bidirectional and energy-independent process of glucose transport in most tissues and cells, while the Na+/glucose cotransporter family (solute carriers SLC5A, protein symbol SGLT) mediates an active, Na+-linked transport process against an electrochemical gradient. The GLUT family consists of thirteen members (GLUT1-12 and HMIT). Phylogenetically, the members of the GLUT family are split into three classes based on protein similarities. Up to now, at least six members of the SGLT family have been cloned (SGLT1-6). In this review, we report both the genomic structure and function of each transporter as well as intra-species comparative genomic analysis of some of these transporters. The affinity for glucose and transport kinetics of each transporter differs and ranges from 0.2 to 17mM. The ability of each protein to transport alternative substrates also differs and includes substrates such as fructose and galactose. In addition, the tissue distribution pattern varies between species. There are different regulation mechanisms of these transporters. Characterization of transcriptional control of some of the gene promoters has been investigated and alternative promoter usage to generate different protein isoforms has been demonstrated. We also introduce some pathophysiological roles of these transporters in human. Glucose is the major energy source for mammalian cells as well as an important substrate for protein and lipid synthesis. Mammalian cells take up glucose from extracellular fluid into the cell through two families of structurallyrelated glucose transporters. The facilitative glucose transporter family (solute carriers SLC2A, protein symbol GLUT) mediates a bidirectional and energy-independent process of glucose transport in most tissues and cells, while the NaM + /glucose cotransporter family (solute carriers SLC5A, protein symbol SGLT) mediates an active, Na + -linked transport process against an electrochemical gradient. The GLUT family consists of thirteen members (GLUT1-12 and HMIT). Phylogenetically, the members of the GLUT family are split into three classes based on protein similarities. Up to now, at least six members of the SGLT family have been cloned (SGLT1-6). In this review, we report both the genomic structure and function of each transporter as well as intra-species comparative genomic analysis of some of these transporters. The affinity for glucose and transport kinetics of each transporter differs and ranges from 0.2 to 17mM. The ability of each protein to transport alternative substrates also differs and includes substrates such as fructose and galactose. In addition, the tissue distribution pattern varies between species. There are different regulation mechanisms of these transporters. Characterization of transcriptional control of some of the gene promoters has been investigated and alternative promoter usage to generate different protein isoforms has been demonstrated. We also introduce some pathophysiological roles of these transporters in human. |
Author | Aileen Keating Feng-Qi Zhao |
AuthorAffiliation | Lactation and Mammary Gland Biology Group, Department of Animal Science, University of Vermont, Burlington, VT, USA |
AuthorAffiliation_xml | – name: Lactation and Mammary Gland Biology Group, Department of Animal Science, University of Vermont, Burlington, VT, USA |
Author_xml | – sequence: 1 givenname: Feng-Qi surname: Zhao fullname: Zhao, Feng-Qi – sequence: 2 givenname: Aileen surname: Keating fullname: Keating, Aileen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18660845$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAQxyNURB_wBTignOAU8COxvRyQqoouSJXgUM4jx5nsGhw72E5XXPnkeLVteUn1wTOyf_-Z8YxPqyMfPFbVc0peMyrbN5SrFSOMSKkIF4oq-ag6KXvXdK1SR8UvQFOI1XF1mtJXUlglyZPqmCohiGq7k-rt5eJNtsFrV3-OYcaYLaZa-6Feow-TNakOY712iwkJ6-uofZpDzBjT0-rxqF3CZ7f2rPpy-f764kNz9Wn98eL8qukFo7kZVSeGFaVGcyJJy2SLfGi5YtKQgZqh2E62vNdskGYlRT9wysVYVs86zpGfVe8Oceeln3Aw6HPUDuZoJx1_QNAW_r7xdgubcAOs5R3vRAnw6jZADN8XTBkmmww6pz2GJYHkXAhZii3kywdJRkTLVEsK-OLPmu6LuWtsAdgBMDGkFHH8jRDYTw_-n14RqX9Exma9n055l3UPS38epH1pwlZPyVj0Bu-zbnOeYbfbAS4Rv-mEDk0GEyYoM_dLdMX3uWhh3s6wQR8RdPkLxiHYlPxdzhXcBLdMCGp_vCAwSLPeIFDK-S_sbM_L |
CitedBy_id | crossref_primary_10_1007_s12035_015_9672_6 crossref_primary_10_3168_jds_2023_23582 crossref_primary_10_1073_pnas_1100495108 crossref_primary_10_3390_ani11020373 crossref_primary_10_1128_EC_00037_09 crossref_primary_10_1016_j_forsciint_2014_08_015 crossref_primary_10_1590_S0100_879X2010007500115 crossref_primary_10_1038_s41467_025_56890_y crossref_primary_10_1242_bio_016709 crossref_primary_10_1007_s00018_012_1219_7 crossref_primary_10_1038_s41598_017_03342_3 crossref_primary_10_1111_j_1469_7580_2011_01385_x crossref_primary_10_3390_molecules24112159 crossref_primary_10_1002_hed_21664 crossref_primary_10_1093_femspd_ftx108 crossref_primary_10_1093_carcin_bgx035 crossref_primary_10_1093_biolre_ioy086 crossref_primary_10_1210_endocr_bqaa098 crossref_primary_10_1074_jbc_M112_369587 crossref_primary_10_2174_1389201020666190613152030 crossref_primary_10_1152_ajpheart_00736_2019 crossref_primary_10_3389_fimmu_2017_01516 crossref_primary_10_1016_j_jff_2014_12_050 crossref_primary_10_3168_jds_2016_11808 crossref_primary_10_3390_nu5082860 crossref_primary_10_1016_j_xphs_2017_04_033 crossref_primary_10_3390_jcm7060152 crossref_primary_10_1002_jcp_21885 crossref_primary_10_1124_mol_117_110510 crossref_primary_10_1038_s41598_018_20449_3 crossref_primary_10_1042_BJ20101864 crossref_primary_10_1016_j_ejpb_2020_07_019 crossref_primary_10_1080_13813455_2017_1312460 crossref_primary_10_1155_2013_682673 crossref_primary_10_1530_REP_10_0146 crossref_primary_10_3347_PHD_24051 crossref_primary_10_3390_ijms22179507 crossref_primary_10_1016_j_suc_2014_11_003 crossref_primary_10_1371_journal_pone_0088883 crossref_primary_10_1016_j_cbpa_2018_02_015 crossref_primary_10_3390_ijms242216480 crossref_primary_10_5187_JAST_2009_51_6_493 crossref_primary_10_1111_j_1476_5381_2010_00956_x crossref_primary_10_1016_j_molstruc_2015_07_074 crossref_primary_10_1146_annurev_immunol_042617_053019 crossref_primary_10_3109_07388551_2013_793649 crossref_primary_10_3390_ijms241210069 crossref_primary_10_4331_wjbc_v11_i3_76 crossref_primary_10_1097_MOH_0b013e328329905c crossref_primary_10_1016_j_lfs_2020_118215 crossref_primary_10_1016_j_foodchem_2024_140107 crossref_primary_10_1093_biolre_ioz191 crossref_primary_10_1152_ajpendo_00045_2016 crossref_primary_10_3109_13813455_2010_539616 crossref_primary_10_1152_ajpendo_00214_2012 crossref_primary_10_1016_j_domaniend_2012_09_001 crossref_primary_10_1007_s11011_023_01207_5 crossref_primary_10_1007_s40071_014_0069_3 crossref_primary_10_1016_j_canlet_2023_216179 crossref_primary_10_1016_j_ccell_2016_09_006 crossref_primary_10_1186_s12917_024_04130_8 crossref_primary_10_1186_1423_0127_21_8 crossref_primary_10_4161_cc_10_10_15672 crossref_primary_10_1016_j_expneurol_2018_10_007 crossref_primary_10_1007_s12094_012_0882_3 crossref_primary_10_4196_kjpp_2014_18_4_333 crossref_primary_10_1016_j_carres_2017_04_020 crossref_primary_10_1080_14656566_2017_1414801 crossref_primary_10_1016_j_metabol_2015_10_007 crossref_primary_10_1016_j_cbpb_2019_110351 crossref_primary_10_1071_RD12064 crossref_primary_10_1371_journal_pone_0057847 crossref_primary_10_1007_s10911_013_9310_8 crossref_primary_10_1186_2049_1891_5_55 crossref_primary_10_3390_ijms21249345 crossref_primary_10_1016_j_biochi_2019_04_010 crossref_primary_10_1186_s12864_015_2144_6 crossref_primary_10_1016_j_physbeh_2009_12_018 crossref_primary_10_3389_fnhum_2021_667709 crossref_primary_10_1371_journal_pone_0053130 crossref_primary_10_1016_j_physbeh_2009_12_012 crossref_primary_10_1093_jn_nxab374 crossref_primary_10_1128_EC_00138_09 crossref_primary_10_1016_j_jff_2017_10_013 crossref_primary_10_1007_s10309_014_0372_4 crossref_primary_10_1002_ejic_201600801 crossref_primary_10_1016_j_biomag_2013_09_003 crossref_primary_10_1152_physrev_00040_2011 crossref_primary_10_3389_fmed_2017_00198 crossref_primary_10_3168_jds_2011_4430 crossref_primary_10_1016_j_clnu_2021_02_012 crossref_primary_10_18632_oncotarget_18964 crossref_primary_10_1016_j_freeradbiomed_2012_02_017 crossref_primary_10_3389_fmars_2022_814022 crossref_primary_10_1016_j_marenvres_2015_09_007 crossref_primary_10_4103_jomfp_JOMFP_22_18 crossref_primary_10_3390_molecules25246019 crossref_primary_10_1371_journal_pone_0065013 crossref_primary_10_1080_10408363_2020_1752141 crossref_primary_10_1142_S0192415X19500423 crossref_primary_10_1021_acs_jmedchem_1c01737 crossref_primary_10_1007_s10620_014_3487_6 crossref_primary_10_1016_j_acthis_2017_07_004 crossref_primary_10_1039_c3ra47611a crossref_primary_10_1159_000343325 crossref_primary_10_1371_journal_pone_0077003 crossref_primary_10_3389_fphar_2022_970553 crossref_primary_10_1016_j_tice_2014_11_005 crossref_primary_10_1371_journal_pone_0108994 crossref_primary_10_1016_j_pep_2009_10_011 crossref_primary_10_1039_C8CC04843F crossref_primary_10_1002_cbic_201900028 crossref_primary_10_1016_j_cellsig_2013_01_009 crossref_primary_10_1007_s00441_015_2140_9 crossref_primary_10_1016_j_cbpa_2009_02_033 crossref_primary_10_1016_j_jare_2024_04_005 crossref_primary_10_1021_acs_orglett_6b00280 crossref_primary_10_1002_mrm_27489 crossref_primary_10_1016_j_aquaculture_2016_02_007 crossref_primary_10_3390_ijms242216079 crossref_primary_10_1002_ddrr_93 crossref_primary_10_1242_bio_024836 crossref_primary_10_3389_fcvm_2022_859253 crossref_primary_10_3389_fendo_2018_00460 crossref_primary_10_1080_07391102_2020_1798283 crossref_primary_10_3390_biom10040496 crossref_primary_10_1177_0883073811426503 crossref_primary_10_1021_acs_bioconjchem_8b00357 crossref_primary_10_1016_j_braindev_2009_02_008 crossref_primary_10_1017_S0007114516001641 crossref_primary_10_1080_10408398_2023_2253468 crossref_primary_10_1007_s10620_016_4418_5 crossref_primary_10_1016_j_bbrc_2013_03_076 crossref_primary_10_1016_j_cbpa_2023_111492 crossref_primary_10_3892_mmr_2022_12844 crossref_primary_10_1186_s12929_017_0371_7 crossref_primary_10_2174_0113894501335877240926101134 crossref_primary_10_1016_j_anireprosci_2022_106968 crossref_primary_10_1111_j_1600_0854_2010_01057_x crossref_primary_10_3390_life14121547 crossref_primary_10_1021_jm101024j crossref_primary_10_1016_j_reprotox_2018_01_007 crossref_primary_10_1152_ajpregu_00144_2010 crossref_primary_10_1016_j_bbabio_2010_03_025 crossref_primary_10_1016_j_biochi_2021_06_017 crossref_primary_10_18632_oncotarget_19610 crossref_primary_10_1038_s41557_018_0155_z crossref_primary_10_1002_iub_1047 crossref_primary_10_1002_bit_26960 crossref_primary_10_1007_s12035_020_02133_8 crossref_primary_10_1155_2014_980547 crossref_primary_10_33549_physiolres_933715 crossref_primary_10_3390_molecules26061659 crossref_primary_10_1016_j_tet_2009_12_003 crossref_primary_10_1208_s12249_015_0287_z crossref_primary_10_26873_SVR_638_2018 crossref_primary_10_1371_journal_pone_0281705 crossref_primary_10_1016_j_bcp_2021_114687 crossref_primary_10_1111_jop_12427 crossref_primary_10_1021_ic401714p crossref_primary_10_1002_1873_3468_12755 crossref_primary_10_1007_s13577_020_00483_y crossref_primary_10_1242_jeb_229989 crossref_primary_10_1016_j_livsci_2013_08_022 crossref_primary_10_3389_fendo_2018_00155 crossref_primary_10_1016_j_diabres_2011_12_012 crossref_primary_10_3390_molecules25184174 crossref_primary_10_1183_09031936_00052612 crossref_primary_10_3390_s21144672 crossref_primary_10_1111_jdi_13255 crossref_primary_10_1242_jcs_194480 crossref_primary_10_1158_1535_7163_MCT_16_0670 crossref_primary_10_1051_e3sconf_202339101097 crossref_primary_10_2967_jnumed_110_075721 crossref_primary_10_18632_oncotarget_19630 crossref_primary_10_1097_MAO_0000000000000293 crossref_primary_10_1152_ajpcell_00030_2010 crossref_primary_10_1186_2049_1891_5_9 crossref_primary_10_1080_17446651_2018_1537779 crossref_primary_10_3390_biom10111573 crossref_primary_10_1142_S0192415X15500688 crossref_primary_10_3168_jds_2018_15713 crossref_primary_10_3724_SP_J_1005_2010_00583 crossref_primary_10_1074_jbc_M114_628826 crossref_primary_10_1002_anie_202214326 crossref_primary_10_1039_C8BM01461B crossref_primary_10_25259_GJMPBU_56_2023 crossref_primary_10_1016_j_metabol_2023_155743 crossref_primary_10_1002_mrd_23570 crossref_primary_10_1016_j_fgb_2015_05_006 crossref_primary_10_1016_j_aquaculture_2017_03_009 crossref_primary_10_1002_jcb_29868 crossref_primary_10_1007_s13105_012_0227_2 crossref_primary_10_1039_D0TB02787A crossref_primary_10_1016_j_bcp_2021_114597 crossref_primary_10_3390_nu10040438 crossref_primary_10_51335_organoid_2023_3_e9 crossref_primary_10_3109_10799893_2012_703674 crossref_primary_10_1038_s41591_018_0003_0 crossref_primary_10_1016_j_neuroimage_2022_119762 crossref_primary_10_2527_jas_2012_6138 crossref_primary_10_1111_jbg_12860 crossref_primary_10_1039_C5TB01799H crossref_primary_10_1128_MCB_00480_20 crossref_primary_10_3389_fmars_2022_880103 crossref_primary_10_1371_journal_pone_0128516 crossref_primary_10_1128_JVI_02168_16 crossref_primary_10_1007_BF03174092 crossref_primary_10_1371_journal_pone_0023205 crossref_primary_10_1002_jcp_24133 crossref_primary_10_1016_j_jbc_2021_100954 crossref_primary_10_1002_chem_200802013 crossref_primary_10_1016_j_bbalip_2016_04_019 crossref_primary_10_1016_j_avdiab_2012_02_003 crossref_primary_10_1039_c3tx20086h crossref_primary_10_1177_0192623318784514 crossref_primary_10_1371_journal_pone_0068475 crossref_primary_10_1053_j_semnuclmed_2020_02_010 crossref_primary_10_1158_1541_7786_MCR_10_0011 crossref_primary_10_1152_ajpendo_91019_2008 crossref_primary_10_2174_1389200224666230608110349 crossref_primary_10_1002_cbic_201900544 crossref_primary_10_1002_mabi_201600529 crossref_primary_10_1002_ange_202214326 crossref_primary_10_1016_j_ejmech_2014_05_072 crossref_primary_10_1073_pnas_1716788115 crossref_primary_10_1097_CAD_0000000000001029 crossref_primary_10_3390_nu9091026 crossref_primary_10_1038_ni_1688 crossref_primary_10_1038_s41380_023_02379_3 crossref_primary_10_3389_fphar_2018_00398 crossref_primary_10_1007_s13181_010_0072_z crossref_primary_10_1038_nature14909 crossref_primary_10_1093_jas_skac044 crossref_primary_10_1016_j_neulet_2010_12_029 crossref_primary_10_1071_AN15056 crossref_primary_10_1007_s10695_018_0477_1 crossref_primary_10_1016_j_aquaculture_2017_10_001 crossref_primary_10_1002_iub_315 crossref_primary_10_2174_0109298673251493231011192520 crossref_primary_10_3389_fcell_2017_00063 crossref_primary_10_1093_infdis_jiw306 crossref_primary_10_1152_ajprenal_00046_2017 crossref_primary_10_3168_jds_2016_12459 crossref_primary_10_3390_ijms20102590 crossref_primary_10_1016_j_neo_2021_02_003 crossref_primary_10_1093_jjco_hyab076 crossref_primary_10_5528_wjtm_v3_i2_37 crossref_primary_10_1016_j_aquaculture_2018_04_028 crossref_primary_10_3390_ijms222413522 crossref_primary_10_1007_s11033_014_3682_8 crossref_primary_10_1016_j_ygcen_2019_03_010 crossref_primary_10_3390_molecules27206918 crossref_primary_10_3168_jds_2018_14715 crossref_primary_10_1016_j_aquaculture_2018_12_002 crossref_primary_10_2174_1568026619666190828161409 crossref_primary_10_1016_j_chom_2024_08_015 crossref_primary_10_1089_ars_2021_0207 crossref_primary_10_1002_ptr_7667 crossref_primary_10_1016_j_jhep_2009_02_009 crossref_primary_10_1002_2211_5463_12068 crossref_primary_10_1016_j_lfs_2021_120261 crossref_primary_10_1186_s12943_017_0722_8 crossref_primary_10_1016_j_ijcard_2016_12_083 crossref_primary_10_1161_ATVBAHA_111_237065 crossref_primary_10_3390_ijms23084380 crossref_primary_10_3390_ph12010033 crossref_primary_10_1016_j_jare_2022_09_007 crossref_primary_10_1038_ncb2721 crossref_primary_10_1038_nrmicro2351 crossref_primary_10_1002_cmdc_201200176 crossref_primary_10_1155_2016_8197325 crossref_primary_10_1016_j_bpj_2017_01_030 crossref_primary_10_3389_fphys_2018_00640 crossref_primary_10_1038_nri2629 crossref_primary_10_1038_s41598_021_87687_w crossref_primary_10_1002_jcb_28274 crossref_primary_10_3892_or_2013_2886 crossref_primary_10_1136_jitc_2024_010540 crossref_primary_10_1007_s11064_022_03620_1 crossref_primary_10_1158_1078_0432_CCR_12_2123 crossref_primary_10_3892_mmr_2012_969 crossref_primary_10_1152_ajpregu_00047_2011 crossref_primary_10_1186_1471_2350_12_100 crossref_primary_10_5005_jp_journals_10024_2048 crossref_primary_10_1016_j_ijpharm_2020_119138 crossref_primary_10_1016_S1957_2557_15_30051_1 crossref_primary_10_1155_anu_9966429 crossref_primary_10_1111_jpn_12259 crossref_primary_10_1111_febs_15620 crossref_primary_10_3390_ijms21176286 crossref_primary_10_1016_j_ympev_2017_12_007 crossref_primary_10_1038_s41419_017_0060_1 crossref_primary_10_1016_j_gendis_2021_09_002 crossref_primary_10_3390_ijms24076278 crossref_primary_10_1021_om100597g crossref_primary_10_1073_pnas_1410326111 crossref_primary_10_3389_fphar_2022_1094405 crossref_primary_10_3945_an_115_009225 crossref_primary_10_1016_j_bbamem_2009_01_014 crossref_primary_10_3390_nu11102432 crossref_primary_10_1016_j_colsurfb_2017_05_032 crossref_primary_10_1016_j_bbadis_2015_10_009 crossref_primary_10_1177_1010428317702901 crossref_primary_10_1186_2047_783X_18_12 crossref_primary_10_1111_febs_16413 crossref_primary_10_1016_j_jembe_2015_10_004 crossref_primary_10_1016_j_mehy_2018_01_010 crossref_primary_10_1007_s10557_012_6406_0 crossref_primary_10_1248_bpb_b19_00814 crossref_primary_10_1016_j_freeradbiomed_2013_10_809 crossref_primary_10_1016_j_isci_2024_109499 crossref_primary_10_1080_21691401_2017_1416391 crossref_primary_10_1111_dmcn_12096 crossref_primary_10_1016_j_radonc_2012_03_008 crossref_primary_10_2174_1389200221666200810125924 crossref_primary_10_1080_21691401_2018_1434663 crossref_primary_10_1158_1535_7163_MCT_13_0393 crossref_primary_10_2527_jas_2011_4180 crossref_primary_10_1371_journal_pone_0084461 crossref_primary_10_1152_ajprenal_00409_2017 crossref_primary_10_1155_2020_3608315 crossref_primary_10_3389_fmars_2021_743663 crossref_primary_10_1038_nprot_2011_392 crossref_primary_10_2337_dc20_0093 crossref_primary_10_3390_ijms22126350 crossref_primary_10_1016_j_gendis_2022_12_011 crossref_primary_10_1210_en_2012_1558 crossref_primary_10_1016_j_bbadis_2019_05_019 crossref_primary_10_31083_j_fbl2909321 crossref_primary_10_1002_jcp_30998 crossref_primary_10_1016_j_yexmp_2017_05_014 crossref_primary_10_2174_1568009618666180430144441 crossref_primary_10_1016_j_jep_2016_10_056 crossref_primary_10_1021_acs_molpharmaceut_0c00630 crossref_primary_10_1016_j_ygcen_2009_07_017 crossref_primary_10_3168_jds_2015_10435 crossref_primary_10_1007_s13105_012_0153_3 crossref_primary_10_1093_chemse_bjr052 crossref_primary_10_18632_oncotarget_25525 crossref_primary_10_1186_s40657_020_00231_8 crossref_primary_10_3390_cancers13164184 crossref_primary_10_1002_PHAR_1010 crossref_primary_10_1089_ars_2020_8166 crossref_primary_10_1038_ncb3094 crossref_primary_10_1002_ejoc_201500529 crossref_primary_10_1007_s13577_015_0125_3 crossref_primary_10_1371_journal_pone_0016166 crossref_primary_10_1139_apnm_2014_0430 crossref_primary_10_1007_s12576_017_0544_x crossref_primary_10_1007_s00441_011_1210_x crossref_primary_10_1016_j_jinorgbio_2022_111977 crossref_primary_10_1016_j_anifeedsci_2014_10_007 crossref_primary_10_3390_cells10071580 crossref_primary_10_4062_biomolther_2016_128 crossref_primary_10_29219_fnr_v62_1473 crossref_primary_10_1016_j_gene_2022_146586 crossref_primary_10_1007_s11010_014_2107_2 crossref_primary_10_3168_jds_2020_19101 crossref_primary_10_5812_jjcmb_115014 crossref_primary_10_1071_AN15376 crossref_primary_10_1021_bi200958s crossref_primary_10_1007_s11010_010_0634_z crossref_primary_10_1177_1535370217723578 crossref_primary_10_1016_j_aqrep_2022_101119 crossref_primary_10_1016_j_bbagrm_2016_02_005 crossref_primary_10_1002_jcp_27426 crossref_primary_10_1016_j_cbpb_2017_10_003 crossref_primary_10_1016_j_chembiol_2019_06_005 crossref_primary_10_1002_jcb_25817 crossref_primary_10_1002_mnfr_201500915 crossref_primary_10_3389_fphys_2022_1048008 crossref_primary_10_1016_j_lfs_2024_122932 crossref_primary_10_1590_1677_5449_0069 crossref_primary_10_1017_S0022149X12000120 crossref_primary_10_1016_j_ejphar_2019_172664 crossref_primary_10_1038_s41598_019_52169_7 crossref_primary_10_1016_j_ejphar_2019_172425 crossref_primary_10_1016_j_ijcard_2019_02_035 crossref_primary_10_1016_j_lfs_2020_118603 crossref_primary_10_1002_cmdc_201800447 crossref_primary_10_1007_s13402_018_0385_5 crossref_primary_10_1111_acel_13067 crossref_primary_10_1016_j_mce_2010_12_028 crossref_primary_10_1016_j_cbpa_2021_111002 |
ContentType | Journal Article |
Copyright | 2007 Bentham Science Publishers Ltd. 2007 |
Copyright_xml | – notice: 2007 Bentham Science Publishers Ltd. 2007 |
DBID | AAYXX CITATION NPM 8FD FR3 P64 RC3 7X8 5PM |
DOI | 10.2174/138920207780368187 |
DatabaseName | CrossRef PubMed Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Functional Properties and Genomics of Glucose Transporters |
EISSN | 1875-5488 |
EndPage | 128 |
ExternalDocumentID | PMC2435356 18660845 10_2174_138920207780368187 http_www_eurekaselect_com_openurl_content_php_genre_article_issn_13892029_volume_8_issue_2_spage_113 |
Genre | Journal Article |
GroupedDBID | --- .5. 0R~ 29F 2WC 4.4 53G 5GY AAEGP ABEEF ABJNI ACGFS ACIWK ACPRK ADBBV AENEX AFRAH AFUQM AGJNZ ALMA_UNASSIGNED_HOLDINGS ANTIV AOIJS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P GH2 GX1 HYE HZ~ IPNFZ KCGFV O9- OK1 P2P RIG RPM TR2 AAYXX AFHZU CITATION NPM 8FD FR3 P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-b621t-f856d911ca30704274e3d43827c0d1cd27c5743ba2d7c976bd3136ffffb2533e3 |
ISSN | 1389-2029 |
IngestDate | Thu Aug 21 13:37:26 EDT 2025 Thu Jul 10 19:20:14 EDT 2025 Thu Jul 10 23:14:20 EDT 2025 Sat Sep 28 08:49:13 EDT 2024 Tue Jul 01 02:59:03 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 Tue Aug 27 15:42:00 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | glucose transporters genomic organization Bioinformatics comparative genomics gene promoter |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-b621t-f856d911ca30704274e3d43827c0d1cd27c5743ba2d7c976bd3136ffffb2533e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | http://www.eurekaselect.com/article/3979 |
PMID | 18660845 |
PQID | 20642840 |
PQPubID | 23462 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2435356 proquest_miscellaneous_733667621 proquest_miscellaneous_20642840 pubmed_primary_18660845 crossref_primary_10_2174_138920207780368187 crossref_citationtrail_10_2174_138920207780368187 benthamscience_primary_http_www_eurekaselect_com_openurl_content_php_genre_article_issn_13892029_volume_8_issue_2_spage_113 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-April 2007-04-01 2007-Apr 20070401 |
PublicationDateYYYYMMDD | 2007-04-01 |
PublicationDate_xml | – month: 04 year: 2007 text: 2007-April |
PublicationDecade | 2000 |
PublicationPlace | United Arab Emirates |
PublicationPlace_xml | – name: United Arab Emirates – name: Sharjah |
PublicationTitle | Current genomics |
PublicationTitleAlternate | CG |
PublicationYear | 2007 |
Publisher | Bentham Science Publishers Ltd |
Publisher_xml | – name: Bentham Science Publishers Ltd |
References | 1634504 - J Biol Chem. 1992 Jul 25;267(21):14523-6 11319835 - Cell Biol Int. 2001;25(4):277-88 15591382 - J Dairy Sci. 2005 Jan;88(1):182-94 2692709 - Biochemistry. 1989 Nov 28;28(24):9447-52 9293784 - J Nucl Med. 1997 Sep;38(9):1344-8 12548393 - Pflugers Arch. 2003 Jan;445(4):482-90 19912773 - Mol Cell Neurosci. 1990 Dec;1(3):224-32 1550217 - Am J Physiol. 1992 Mar;262(3 Pt 1):C795-800 9856403 - J Anim Sci. 1998 Nov;76(11):2921-9 9603935 - J Biol Chem. 1998 Jun 5;273(23):14285-92 16823474 - J Clin Invest. 2006 Jul;116(7):1767-75 11133510 - Am J Physiol Renal Physiol. 2001 Jan;280(1):F10-8 15061260 - Nucl Med Commun. 2004 Jan;25(1):11-7 1339457 - J Biol Chem. 1992 May 5;267(13):9300-6 15010337 - Am J Physiol Endocrinol Metab. 2004 Jul;287(1):E8-E15 16778577 - Curr Opin Clin Nutr Metab Care. 2006 Jul;9(4):458-62 8764197 - Am J Physiol. 1996 Jun;270(6 Pt 1):G919-26 1745825 - Recent Prog Horm Res. 1991;47:349-87; discussion 387-8 11882521 - Am J Physiol Endocrinol Metab. 2002 Apr;282(4):E974-6 16543226 - J Biol Chem. 2006 May 12;281(19):13382-7 16669350 - J Physiol Biochem. 2005 Dec;61(4):529-37 9027564 - J Anim Sci. 1997 Jan;75(1):182-8 8457197 - Biochem J. 1993 Mar 15;290 ( Pt 3):701-6 15059920 - Cancer Res. 2004 Apr 1;64(7):2627-33 10970791 - Biochem J. 2000 Sep 15;350 Pt 3:771-6 8917597 - Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13367-70 12926062 - Anticancer Res. 2003 Jul-Aug;23(4):3263-72 12748858 - Pflugers Arch. 2004 Feb;447(5):510-8 15052413 - Cell Mol Life Sci. 2004 Mar;61(6):709-20 9806888 - Biochem J. 1998 Nov 15;336 ( Pt 1):83-90 16154905 - Mol Membr Biol. 2005 Jul-Aug;22(4):339-51 8333543 - Am J Physiol. 1993 Jun;264(6 Pt 1):G1169-76 8778099 - J Anim Sci. 1996 Jan;74(1):183-9 11562503 - Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11330-5 15654919 - Acta Physiol Scand. 2005 Jan;183(1):43-58 12031501 - Biochim Biophys Acta. 2002 Jun 7;1576(1-2):191-7 16523487 - J Cell Physiol. 2006 Jun;207(3):614-27 12641495 - Biochem J. 2003 Jun 1;372(Pt 2):617-24 16336637 - BMC Med Genet. 2005;6:42 11801731 - J Cell Sci. 2002 Jan 1;115(Pt 1):131-40 10969832 - Diabetes. 2000 Sep;49(9):1485-91 16284803 - Mamm Genome. 2005 Nov;16(11):873-83 8452538 - Biochem J. 1993 Mar 1;290 ( Pt 2):497-501 15033637 - Am J Physiol Gastrointest Liver Physiol. 2004 Jul;287(1):G236-42 8923459 - Mol Endocrinol. 1996 Nov;10(11):1327-34 11583593 - Biochem J. 2001 Oct 15;359(Pt 2):443-9 14630949 - Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14725-30 2446136 - Nature. 1987 Nov 26-Dec 2;330(6146):379-81 1415574 - Am J Physiol. 1992 Sep;263(3 Pt 2):F459-65 11546675 - Am J Physiol Cell Physiol. 2001 Oct;281(4):C1365-72 12436245 - Hum Genet. 2002 Dec;111(6):544-7 9335548 - Biochemistry. 1997 Oct 21;36(42):12897-902 16319959 - EMBO Rep. 2005 Dec;6(12):1137-42 16586067 - Diabetologia. 2006 Jun;49(6):1214-21 16550171 - Nat Genet. 2006 Apr;38(4):452-7 14644496 - Gene. 2003 Dec 11;322:47-55 15650020 - Mol Endocrinol. 2005 Apr;19(4):1067-77 7675081 - Nature. 1995 Sep 14;377(6545):151-5 12031879 - Nucl Med Biol. 2002 May;29(4):443-53 8580998 - World J Urol. 1995;13(5):277-84 3048400 - Biochim Biophys Acta. 1988 Oct 11;947(3):385-404 8466186 - Annu Rev Physiol. 1993;55:575-89 16105857 - Am J Physiol Endocrinol Metab. 2005 Dec;289(6):E1071-6 12175779 - Mol Genet Metab. 2002 May;76(1):37-45 8700847 - Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1847-52 16563942 - Am J Med. 2006 May;119(5 Suppl 1):S10-6 16162661 - Am J Physiol Cell Physiol. 2006 Feb;290(2):C337-44 7619085 - Biochem J. 1995 Jul 1;309 ( Pt 1):7-12 1514590 - Am J Physiol. 1992 Aug;263(2 Pt 1):C443-52 12440698 - Biochem Cell Biol. 2002;80(5):569-78 16051383 - Biochim Biophys Acta. 2005 Aug 15;1730(2):147-58 11309621 - Nature. 2001 Apr 19;410(6831):944-8 2553725 - J Biol Chem. 1989 Nov 15;264(32):18884-9 12667615 - Biochim Biophys Acta. 2003 Apr 7;1621(1):92-101 10522065 - Hepatogastroenterology. 1999 Jul-Aug;46(28):2683-9 1704223 - Biochem Biophys Res Commun. 1991 Jan 31;174(2):470-7 10932232 - Nat Med. 2000 Aug;6(8):924-8 11006027 - Gynecol Oncol. 2000 Oct;79(1):33-7 8674846 - Mol Cell Endocrinol. 1995 Oct 30;114(1-2):205-15 16581179 - Mol Cell Endocrinol. 2006 Jun 7;251(1-2):9-16 16899262 - Physiol Behav. 2006 Nov 30;89(4):486-9 16322792 - J Clin Invest. 2005 Dec;115(12):3545-53 7588207 - Endocrinology. 1995 Nov;136(11):4782-9 8405361 - FEBS Lett. 1993 Jun 21;324(3):258-61 11994746 - Nat Rev Mol Cell Biol. 2002 Apr;3(4):267-77 15817843 - Am J Physiol Regul Integr Comp Physiol. 2005 Jul;289(1):R187-97 10969836 - Diabetes. 2000 Sep;49(9):1517-24 7559512 - J Biol Chem. 1995 Oct 6;270(40):23491-5 9354799 - Nat Genet. 1997 Nov;17(3):327-30 11780755 - Mol Membr Biol. 2001 Oct-Dec;18(4):265-73 16567520 - Diabetes. 2006 Apr;55(4):988-95 11546823 - J Biol Chem. 2001 Nov 9;276(45):42436-44 16914513 - Mol Biol Cell. 2006 Oct;17(10):4484-93 8138027 - Int J Biochem. 1993 Dec;25(12):1897-903 10825161 - J Biol Chem. 2000 Aug 4;275(31):23666-73 15919789 - Diabetes. 2005 Jun;54(6):1684-91 14739288 - J Biol Chem. 2004 Apr 16;279(16):16229-36 17517754 - J Dairy Sci. 2007 Jun;90 Suppl 1:E76-86 14642859 - Best Pract Res Clin Gastroenterol. 2003 Dec;17(6):943-56 10823833 - J Biol Chem. 2000 Aug 4;275(31):23751-8 7820678 - Brain Res. 1994 Oct 3;659(1-2):292-7 11147773 - Diabetes. 2001 Jan;50(1):1-11 1560011 - J Biol Chem. 1992 Apr 15;267(11):7770-6 14734665 - J Nucl Med. 2004 Jan;45(1):22-9 11592815 - Mol Genet Metab. 2001 Sep-Oct;74(1-2):186-99 8033812 - Endocrinology. 1994 Aug;135(2):649-54 2256938 - Biochem Biophys Res Commun. 1990 Nov 30;173(1):67-73 10671487 - J Biol Chem. 2000 Feb 18;275(7):4607-12 15928024 - Am J Physiol Endocrinol Metab. 2005 Oct;289(4):E551-61 15362741 - Hepatogastroenterology. 2004 Sep-Oct;51(59):1315-8 14749729 - EMBO J. 2004 Feb 11;23(3):531-40 10748140 - J Biol Chem. 2000 Jun 16;275(24):18358-65 2182619 - J Biol Chem. 1990 Apr 25;265(12):6548-51 16186415 - Diabetes. 2005 Oct;54(10):3056-62 16705176 - Mol Cell Biol. 2006 Jun;26(11):4268-76 15449313 - J Cell Biochem. 2004 Dec 15;93(6):1134-42 11718554 - J Mol Biol. 2001 Nov 23;314(2):195-204 1761560 - J Biol Chem. 1991 Dec 25;266(36):24632-6 15975113 - Diabet Med. 2005 Jul;22(7):946-9 10860667 - Genomics. 2000 Jun 1;66(2):217-20 12135767 - FEBS Lett. 2002 Jul 31;524(1-3):199-203 16828707 - Biochem Biophys Res Commun. 2006 Aug 25;347(2):433-8 10821868 - J Biol Chem. 2000 May 26;275(21):16275-80 15110322 - Mol Genet Metab. 2004 May;82(1):56-8 3170580 - J Biol Chem. 1988 Oct 25;263(30):15245-8 16186102 - J Biol Chem. 2005 Dec 30;280(52):42978-83 16880201 - J Biol Chem. 2006 Sep 29;281(39):29174-80 11500374 - EMBO J. 2001 Aug 15;20(16):4467-77 8504756 - Endocrinology. 1993 Jun;132(6):2538-43 12706881 - Cancer Lett. 2003 Apr 25;193(2):225-33 12237511 - J Vet Med Sci. 2002 Aug;64(8):677-81 16273245 - Oncol Rep. 2005 Dec;14(6):1499-504 11375328 - Diabetes. 2001 Jun;50(6):1282-9 8157690 - J Biol Chem. 1994 Apr 15;269(15):11578-83 15331928 - Oncology. 2004;66(5):404-10 11502760 - J Cell Biol. 2001 Aug 20;154(4):829-40 11089547 - Endocrinology. 2000 Nov;141(11):4146-55 15774496 - Mol Endocrinol. 2005 Aug;19(8):2145-53 10677349 - Biochem J. 2000 Mar 1;346 Pt 2:321-8 8221565 - Cancer. 1993 Nov 15;72(10):2979-85 15254270 - Mol Biol Cell. 2004 Oct;15(10):4406-15 10413738 - N Engl J Med. 1999 Jul 22;341(4):248-57 10665907 - Hum Pathol. 2000 Jan;31(1):11-22 10412367 - Cell Mol Life Sci. 1999 Jun;55(6-7):839-56 7961896 - J Biol Chem. 1994 Nov 18;269(46):29265-70 9729315 - Brain Res Mol Brain Res. 1998 Aug 15;59(1):109-13 11689004 - Biochem Biophys Res Commun. 2001 Nov 9;288(4):969-74 12914765 - Biochem Biophys Res Commun. 2003 Aug 29;308(3):422-6 16787385 - Biochem J. 2006 Oct 1;399(1):131-9 10926839 - Biochem J. 2000 Aug 15;350 Pt 1:155-62 15488990 - Biochim Biophys Acta. 2004 Oct 21;1680(2):103-13 1765007 - Development. 1991 Sep;113(1):363-72 8544849 - Mol Endocrinol. 1995 Oct;9(10):1413-26 2479821 - Mol Cell Biol. 1989 Oct;9(10):4187-95 11435467 - J Clin Invest. 2001 Jul;108(1):153-60 8300630 - J Biol Chem. 1994 Jan 28;269(4):2982-6 10860996 - Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7313-8 15735652 - Nat Med. 2005 Mar;11(3):320-7 11780753 - Mol Membr Biol. 2001 Oct-Dec;18(4):247-56 12512027 - Gastroenterology. 2003 Jan;124(1):34-9 8282810 - J Clin Invest. 1994 Jan;93(1):397-404 11741323 - Biochem Biophys Res Commun. 2001 Dec 21;289(5):1218-24 16644684 - Diabetes. 2006 May;55(5):1283-8 16027187 - J Dairy Sci. 2005 Aug;88(8):2738-48 16220828 - Anal Quant Cytol Histol. 2005 Aug;27(4):181-6 11247674 - Genomics. 2001 Feb 15;72(1):113-7 1417839 - Biochem Biophys Res Commun. 1992 Oct 15;188(1):149-54 9059504 - Biochim Biophys Acta. 1997 Feb 21;1324(1):111-9 9776278 - J Nucl Med. 1998 Oct;39(10):1727-35 15517916 - Anticancer Res. 2004 Sep-Oct;24(5A):3057-63 11832379 - Am J Physiol Endocrinol Metab. 2002 Mar;282(3):E733-8 16293642 - Mol Endocrinol. 2006 Mar;20(3):686-97 11513753 - Biochem J. 2001 Sep 1;358(Pt 2):517-22 15919790 - Diabetes. 2005 Jun;54(6):1692-7 2055200 - Endocrinology. 1991 Jul;129(1):455-64 16377570 - Cell. 2005 Dec 29;123(7):1307-21 7487915 - Biochem J. 1995 Oct 15;311 ( Pt 2):699-704 |
References_xml | – reference: 11502760 - J Cell Biol. 2001 Aug 20;154(4):829-40 – reference: 16644684 - Diabetes. 2006 May;55(5):1283-8 – reference: 7487915 - Biochem J. 1995 Oct 15;311 ( Pt 2):699-704 – reference: 17517754 - J Dairy Sci. 2007 Jun;90 Suppl 1:E76-86 – reference: 10970791 - Biochem J. 2000 Sep 15;350 Pt 3:771-6 – reference: 8778099 - J Anim Sci. 1996 Jan;74(1):183-9 – reference: 10926839 - Biochem J. 2000 Aug 15;350 Pt 1:155-62 – reference: 1745825 - Recent Prog Horm Res. 1991;47:349-87; discussion 387-8 – reference: 8452538 - Biochem J. 1993 Mar 1;290 ( Pt 2):497-501 – reference: 11882521 - Am J Physiol Endocrinol Metab. 2002 Apr;282(4):E974-6 – reference: 14642859 - Best Pract Res Clin Gastroenterol. 2003 Dec;17(6):943-56 – reference: 2055200 - Endocrinology. 1991 Jul;129(1):455-64 – reference: 9603935 - J Biol Chem. 1998 Jun 5;273(23):14285-92 – reference: 8466186 - Annu Rev Physiol. 1993;55:575-89 – reference: 11562503 - Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11330-5 – reference: 1704223 - Biochem Biophys Res Commun. 1991 Jan 31;174(2):470-7 – reference: 8300630 - J Biol Chem. 1994 Jan 28;269(4):2982-6 – reference: 1514590 - Am J Physiol. 1992 Aug;263(2 Pt 1):C443-52 – reference: 8221565 - Cancer. 1993 Nov 15;72(10):2979-85 – reference: 11513753 - Biochem J. 2001 Sep 1;358(Pt 2):517-22 – reference: 15654919 - Acta Physiol Scand. 2005 Jan;183(1):43-58 – reference: 16051383 - Biochim Biophys Acta. 2005 Aug 15;1730(2):147-58 – reference: 11133510 - Am J Physiol Renal Physiol. 2001 Jan;280(1):F10-8 – reference: 9059504 - Biochim Biophys Acta. 1997 Feb 21;1324(1):111-9 – reference: 10412367 - Cell Mol Life Sci. 1999 Jun;55(6-7):839-56 – reference: 11546823 - J Biol Chem. 2001 Nov 9;276(45):42436-44 – reference: 15817843 - Am J Physiol Regul Integr Comp Physiol. 2005 Jul;289(1):R187-97 – reference: 10522065 - Hepatogastroenterology. 1999 Jul-Aug;46(28):2683-9 – reference: 3048400 - Biochim Biophys Acta. 1988 Oct 11;947(3):385-404 – reference: 8917597 - Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13367-70 – reference: 12135767 - FEBS Lett. 2002 Jul 31;524(1-3):199-203 – reference: 16828707 - Biochem Biophys Res Commun. 2006 Aug 25;347(2):433-8 – reference: 10932232 - Nat Med. 2000 Aug;6(8):924-8 – reference: 11583593 - Biochem J. 2001 Oct 15;359(Pt 2):443-9 – reference: 8580998 - World J Urol. 1995;13(5):277-84 – reference: 9776278 - J Nucl Med. 1998 Oct;39(10):1727-35 – reference: 11375328 - Diabetes. 2001 Jun;50(6):1282-9 – reference: 15362741 - Hepatogastroenterology. 2004 Sep-Oct;51(59):1315-8 – reference: 15928024 - Am J Physiol Endocrinol Metab. 2005 Oct;289(4):E551-61 – reference: 8138027 - Int J Biochem. 1993 Dec;25(12):1897-903 – reference: 16336637 - BMC Med Genet. 2005;6:42 – reference: 11319835 - Cell Biol Int. 2001;25(4):277-88 – reference: 2182619 - J Biol Chem. 1990 Apr 25;265(12):6548-51 – reference: 15059920 - Cancer Res. 2004 Apr 1;64(7):2627-33 – reference: 16154905 - Mol Membr Biol. 2005 Jul-Aug;22(4):339-51 – reference: 16319959 - EMBO Rep. 2005 Dec;6(12):1137-42 – reference: 8544849 - Mol Endocrinol. 1995 Oct;9(10):1413-26 – reference: 16550171 - Nat Genet. 2006 Apr;38(4):452-7 – reference: 8700847 - Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1847-52 – reference: 15650020 - Mol Endocrinol. 2005 Apr;19(4):1067-77 – reference: 14749729 - EMBO J. 2004 Feb 11;23(3):531-40 – reference: 7619085 - Biochem J. 1995 Jul 1;309 ( Pt 1):7-12 – reference: 11309621 - Nature. 2001 Apr 19;410(6831):944-8 – reference: 9335548 - Biochemistry. 1997 Oct 21;36(42):12897-902 – reference: 12512027 - Gastroenterology. 2003 Jan;124(1):34-9 – reference: 8674846 - Mol Cell Endocrinol. 1995 Oct 30;114(1-2):205-15 – reference: 9293784 - J Nucl Med. 1997 Sep;38(9):1344-8 – reference: 16027187 - J Dairy Sci. 2005 Aug;88(8):2738-48 – reference: 12641495 - Biochem J. 2003 Jun 1;372(Pt 2):617-24 – reference: 11780753 - Mol Membr Biol. 2001 Oct-Dec;18(4):247-56 – reference: 14734665 - J Nucl Med. 2004 Jan;45(1):22-9 – reference: 2553725 - J Biol Chem. 1989 Nov 15;264(32):18884-9 – reference: 11689004 - Biochem Biophys Res Commun. 2001 Nov 9;288(4):969-74 – reference: 8157690 - J Biol Chem. 1994 Apr 15;269(15):11578-83 – reference: 1339457 - J Biol Chem. 1992 May 5;267(13):9300-6 – reference: 10969832 - Diabetes. 2000 Sep;49(9):1485-91 – reference: 12914765 - Biochem Biophys Res Commun. 2003 Aug 29;308(3):422-6 – reference: 15010337 - Am J Physiol Endocrinol Metab. 2004 Jul;287(1):E8-E15 – reference: 15052413 - Cell Mol Life Sci. 2004 Mar;61(6):709-20 – reference: 1550217 - Am J Physiol. 1992 Mar;262(3 Pt 1):C795-800 – reference: 16787385 - Biochem J. 2006 Oct 1;399(1):131-9 – reference: 15735652 - Nat Med. 2005 Mar;11(3):320-7 – reference: 2479821 - Mol Cell Biol. 1989 Oct;9(10):4187-95 – reference: 12031879 - Nucl Med Biol. 2002 May;29(4):443-53 – reference: 15919790 - Diabetes. 2005 Jun;54(6):1692-7 – reference: 7559512 - J Biol Chem. 1995 Oct 6;270(40):23491-5 – reference: 1415574 - Am J Physiol. 1992 Sep;263(3 Pt 2):F459-65 – reference: 9806888 - Biochem J. 1998 Nov 15;336 ( Pt 1):83-90 – reference: 16669350 - J Physiol Biochem. 2005 Dec;61(4):529-37 – reference: 11832379 - Am J Physiol Endocrinol Metab. 2002 Mar;282(3):E733-8 – reference: 10665907 - Hum Pathol. 2000 Jan;31(1):11-22 – reference: 12440698 - Biochem Cell Biol. 2002;80(5):569-78 – reference: 16567520 - Diabetes. 2006 Apr;55(4):988-95 – reference: 15591382 - J Dairy Sci. 2005 Jan;88(1):182-94 – reference: 11780755 - Mol Membr Biol. 2001 Oct-Dec;18(4):265-73 – reference: 11006027 - Gynecol Oncol. 2000 Oct;79(1):33-7 – reference: 12175779 - Mol Genet Metab. 2002 May;76(1):37-45 – reference: 16543226 - J Biol Chem. 2006 May 12;281(19):13382-7 – reference: 15254270 - Mol Biol Cell. 2004 Oct;15(10):4406-15 – reference: 15919789 - Diabetes. 2005 Jun;54(6):1684-91 – reference: 10821868 - J Biol Chem. 2000 May 26;275(21):16275-80 – reference: 15449313 - J Cell Biochem. 2004 Dec 15;93(6):1134-42 – reference: 7588207 - Endocrinology. 1995 Nov;136(11):4782-9 – reference: 16293642 - Mol Endocrinol. 2006 Mar;20(3):686-97 – reference: 12926062 - Anticancer Res. 2003 Jul-Aug;23(4):3263-72 – reference: 7820678 - Brain Res. 1994 Oct 3;659(1-2):292-7 – reference: 16914513 - Mol Biol Cell. 2006 Oct;17(10):4484-93 – reference: 12706881 - Cancer Lett. 2003 Apr 25;193(2):225-33 – reference: 16273245 - Oncol Rep. 2005 Dec;14(6):1499-504 – reference: 16284803 - Mamm Genome. 2005 Nov;16(11):873-83 – reference: 10748140 - J Biol Chem. 2000 Jun 16;275(24):18358-65 – reference: 16880201 - J Biol Chem. 2006 Sep 29;281(39):29174-80 – reference: 10677349 - Biochem J. 2000 Mar 1;346 Pt 2:321-8 – reference: 10413738 - N Engl J Med. 1999 Jul 22;341(4):248-57 – reference: 15975113 - Diabet Med. 2005 Jul;22(7):946-9 – reference: 11147773 - Diabetes. 2001 Jan;50(1):1-11 – reference: 3170580 - J Biol Chem. 1988 Oct 25;263(30):15245-8 – reference: 2256938 - Biochem Biophys Res Commun. 1990 Nov 30;173(1):67-73 – reference: 11801731 - J Cell Sci. 2002 Jan 1;115(Pt 1):131-40 – reference: 16220828 - Anal Quant Cytol Histol. 2005 Aug;27(4):181-6 – reference: 12548393 - Pflugers Arch. 2003 Jan;445(4):482-90 – reference: 8504756 - Endocrinology. 1993 Jun;132(6):2538-43 – reference: 16322792 - J Clin Invest. 2005 Dec;115(12):3545-53 – reference: 2692709 - Biochemistry. 1989 Nov 28;28(24):9447-52 – reference: 16899262 - Physiol Behav. 2006 Nov 30;89(4):486-9 – reference: 7961896 - J Biol Chem. 1994 Nov 18;269(46):29265-70 – reference: 10860996 - Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7313-8 – reference: 14644496 - Gene. 2003 Dec 11;322:47-55 – reference: 11718554 - J Mol Biol. 2001 Nov 23;314(2):195-204 – reference: 16586067 - Diabetologia. 2006 Jun;49(6):1214-21 – reference: 8457197 - Biochem J. 1993 Mar 15;290 ( Pt 3):701-6 – reference: 9027564 - J Anim Sci. 1997 Jan;75(1):182-8 – reference: 16186102 - J Biol Chem. 2005 Dec 30;280(52):42978-83 – reference: 8923459 - Mol Endocrinol. 1996 Nov;10(11):1327-34 – reference: 11089547 - Endocrinology. 2000 Nov;141(11):4146-55 – reference: 11741323 - Biochem Biophys Res Commun. 2001 Dec 21;289(5):1218-24 – reference: 10969836 - Diabetes. 2000 Sep;49(9):1517-24 – reference: 8764197 - Am J Physiol. 1996 Jun;270(6 Pt 1):G919-26 – reference: 15517916 - Anticancer Res. 2004 Sep-Oct;24(5A):3057-63 – reference: 8282810 - J Clin Invest. 1994 Jan;93(1):397-404 – reference: 16563942 - Am J Med. 2006 May;119(5 Suppl 1):S10-6 – reference: 10825161 - J Biol Chem. 2000 Aug 4;275(31):23666-73 – reference: 1634504 - J Biol Chem. 1992 Jul 25;267(21):14523-6 – reference: 15110322 - Mol Genet Metab. 2004 May;82(1):56-8 – reference: 12748858 - Pflugers Arch. 2004 Feb;447(5):510-8 – reference: 16581179 - Mol Cell Endocrinol. 2006 Jun 7;251(1-2):9-16 – reference: 12667615 - Biochim Biophys Acta. 2003 Apr 7;1621(1):92-101 – reference: 16823474 - J Clin Invest. 2006 Jul;116(7):1767-75 – reference: 12031501 - Biochim Biophys Acta. 2002 Jun 7;1576(1-2):191-7 – reference: 9354799 - Nat Genet. 1997 Nov;17(3):327-30 – reference: 12436245 - Hum Genet. 2002 Dec;111(6):544-7 – reference: 8033812 - Endocrinology. 1994 Aug;135(2):649-54 – reference: 1560011 - J Biol Chem. 1992 Apr 15;267(11):7770-6 – reference: 16105857 - Am J Physiol Endocrinol Metab. 2005 Dec;289(6):E1071-6 – reference: 15033637 - Am J Physiol Gastrointest Liver Physiol. 2004 Jul;287(1):G236-42 – reference: 15331928 - Oncology. 2004;66(5):404-10 – reference: 11546675 - Am J Physiol Cell Physiol. 2001 Oct;281(4):C1365-72 – reference: 9729315 - Brain Res Mol Brain Res. 1998 Aug 15;59(1):109-13 – reference: 11500374 - EMBO J. 2001 Aug 15;20(16):4467-77 – reference: 9856403 - J Anim Sci. 1998 Nov;76(11):2921-9 – reference: 7675081 - Nature. 1995 Sep 14;377(6545):151-5 – reference: 10860667 - Genomics. 2000 Jun 1;66(2):217-20 – reference: 11435467 - J Clin Invest. 2001 Jul;108(1):153-60 – reference: 1765007 - Development. 1991 Sep;113(1):363-72 – reference: 16778577 - Curr Opin Clin Nutr Metab Care. 2006 Jul;9(4):458-62 – reference: 10823833 - J Biol Chem. 2000 Aug 4;275(31):23751-8 – reference: 11592815 - Mol Genet Metab. 2001 Sep-Oct;74(1-2):186-99 – reference: 11994746 - Nat Rev Mol Cell Biol. 2002 Apr;3(4):267-77 – reference: 14739288 - J Biol Chem. 2004 Apr 16;279(16):16229-36 – reference: 14630949 - Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14725-30 – reference: 16162661 - Am J Physiol Cell Physiol. 2006 Feb;290(2):C337-44 – reference: 15488990 - Biochim Biophys Acta. 2004 Oct 21;1680(2):103-13 – reference: 8333543 - Am J Physiol. 1993 Jun;264(6 Pt 1):G1169-76 – reference: 16705176 - Mol Cell Biol. 2006 Jun;26(11):4268-76 – reference: 8405361 - FEBS Lett. 1993 Jun 21;324(3):258-61 – reference: 16186415 - Diabetes. 2005 Oct;54(10):3056-62 – reference: 16523487 - J Cell Physiol. 2006 Jun;207(3):614-27 – reference: 16377570 - Cell. 2005 Dec 29;123(7):1307-21 – reference: 19912773 - Mol Cell Neurosci. 1990 Dec;1(3):224-32 – reference: 1417839 - Biochem Biophys Res Commun. 1992 Oct 15;188(1):149-54 – reference: 1761560 - J Biol Chem. 1991 Dec 25;266(36):24632-6 – reference: 2446136 - Nature. 1987 Nov 26-Dec 2;330(6146):379-81 – reference: 10671487 - J Biol Chem. 2000 Feb 18;275(7):4607-12 – reference: 11247674 - Genomics. 2001 Feb 15;72(1):113-7 – reference: 15774496 - Mol Endocrinol. 2005 Aug;19(8):2145-53 – reference: 12237511 - J Vet Med Sci. 2002 Aug;64(8):677-81 – reference: 15061260 - Nucl Med Commun. 2004 Jan;25(1):11-7 |
SSID | ssj0020870 |
Score | 2.3347807 |
SecondaryResourceType | review_article |
Snippet | Glucose is the major energy source for mammalian cells as well as an important substrate for protein and lipid synthesis. Mammalian cells take up glucose from... |
SourceID | pubmedcentral proquest pubmed crossref benthamscience |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113 |
Title | Functional Properties and Genomics of Glucose Transporters |
URI | http://www.eurekaselect.com/openurl/content.php?genre=article&issn=13892029&volume=8&issue=2&spage=113 https://www.ncbi.nlm.nih.gov/pubmed/18660845 https://www.proquest.com/docview/20642840 https://www.proquest.com/docview/733667621 https://pubmed.ncbi.nlm.nih.gov/PMC2435356 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELZgERJIIG7CmQfeUCC2c7i8rdC2K7QsILVS30Zx4lLYJa26qSrgzzPjOE2y5a6qpEodO8o3Hs-M52DsGe3lkWYVyCiWQcTzLFDcZEEuEmVUlOdFQbHDb4-Tw0n0ZhpP2xKqNrqk0i_ybz-NK_kfVPEa4kpRsv-A7LZTvIC_EV88IsJ4_CuMh7goOVveezKqryg7qt0OGBkbbmz9NEbOK73NY-52cD73E49-dPd0bMnWjjoMPrRsOatcEZR95xPcWAzSjqNJzeQkeTaFztLguKDqgC06HI3XoaJuceR1JPd5vkt6DZkAsGPsN0xThQsjigJpu8o0O-vH72A4OTqC8cF0fJFdEijdEz8dTbeeOSJUaR3c7R6zjnWiMV7ujnCVXdP4jubZFycy9AWMHa3hvPNrR5oY32DXnRrg79eY3mQXTHmLXa4Lg369zV61yPotsj4i6zfI-ouZ75D1u8jeYZPhwfj1YeCqXAQ6EbwKZipOClxy8ozYbyTSyMiCtmfTPCx4XuA5RjFPZ6JIcxQedSG5TGb40QJldSPvsr1yUZr7zBex4VLrQRhpjV8-wDaZliZTJCfPjMe-998VLOuUJja4CzabDZj1ypxkZ7YGE-DMAFfEDShyguo-L-dLsGQPjuyBaAocMAOoyQkUWFICAZaMUNGUHuMNMJC7BPRUB-UUUBEldGEXXY89397TPOvvWj9t8AbkkrT1lZVmsT4DYfXsKPSY_4sWlBY0QcmAe-xeTSDtgCpJQhXFHkt7pLNtQCna-_-Un-Y2VbtAbUTGyYM_PthDdqWdqo_YXrVam8co7lb6iZ0cPwD67q8h |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Properties+and+Genomics+of+Glucose+Transporters&rft.jtitle=Current+genomics&rft.au=Zhao%2C+F-Q&rft.au=Keating%2C+A+F&rft.date=2007-04-01&rft.issn=1389-2029&rft.volume=8&rft.issue=2&rft.spage=113&rft.epage=128&rft_id=info:doi/10.2174%2F138920207780368187&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-2029&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-2029&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-2029&client=summon |