Ensemble analyses improve signatures of tumour hypoxia and reveal inter-platform differences
The reproducibility of transcriptomic biomarkers across datasets remains poor, limiting clinical application. We and others have suggested that this is in-part caused by differential error-structure between datasets, and their incomplete removal by pre-processing algorithms. To test this hypothesis,...
Saved in:
Published in | BMC bioinformatics Vol. 15; no. 1; p. 170 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
06.06.2014
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The reproducibility of transcriptomic biomarkers across datasets remains poor, limiting clinical application. We and others have suggested that this is in-part caused by differential error-structure between datasets, and their incomplete removal by pre-processing algorithms.
To test this hypothesis, we systematically assessed the effects of pre-processing on biomarker classification using 24 different pre-processing methods and 15 distinct signatures of tumour hypoxia in 10 datasets (2,143 patients).
We confirm strong pre-processing effects for all datasets and signatures, and find that these differ between microarray versions. Importantly, exploiting different pre-processing techniques in an ensemble technique improved classification for a majority of signatures.
Assessing biomarkers using an ensemble of pre-processing techniques shows clear value across multiple diseases, datasets and biomarkers. Importantly, ensemble classification improves biomarkers with initially good results but does not result in spuriously improved performance for poor biomarkers. While further research is required, this approach has the potential to become a standard for transcriptomic biomarkers. |
---|---|
AbstractList | Background: The reproducibility of transcriptomic biomarkers across datasets remains poor, limiting clinical application. We and others have suggested that this is in-part caused by differential error-structure between datasets, and their incomplete removal by pre-processing algorithms. Methods: To test this hypothesis, we systematically assessed the effects of pre-processing on biomarker classification using 24 different pre-processing methods and 15 distinct signatures of tumour hypoxia in 10 datasets (2,143 patients). Results: We confirm strong pre-processing effects for all datasets and signatures, and find that these differ between microarray versions. Importantly, exploiting different pre-processing techniques in an ensemble technique improved classification for a majority of signatures. Conclusions: Assessing biomarkers using an ensemble of pre-processing techniques shows clear value across multiple diseases, datasets and biomarkers. Importantly, ensemble classification improves biomarkers with initially good results but does not result in spuriously improved performance for poor biomarkers. While further research is required, this approach has the potential to become a standard for transcriptomic biomarkers. The reproducibility of transcriptomic biomarkers across datasets remains poor, limiting clinical application. We and others have suggested that this is in-part caused by differential error-structure between datasets, and their incomplete removal by pre-processing algorithms. To test this hypothesis, we systematically assessed the effects of pre-processing on biomarker classification using 24 different pre-processing methods and 15 distinct signatures of tumour hypoxia in 10 datasets (2,143 patients). We confirm strong pre-processing effects for all datasets and signatures, and find that these differ between microarray versions. Importantly, exploiting different pre-processing techniques in an ensemble technique improved classification for a majority of signatures. Assessing biomarkers using an ensemble of pre-processing techniques shows clear value across multiple diseases, datasets and biomarkers. Importantly, ensemble classification improves biomarkers with initially good results but does not result in spuriously improved performance for poor biomarkers. While further research is required, this approach has the potential to become a standard for transcriptomic biomarkers. Doc number: 170 Abstract Background: The reproducibility of transcriptomic biomarkers across datasets remains poor, limiting clinical application. We and others have suggested that this is in-part caused by differential error-structure between datasets, and their incomplete removal by pre-processing algorithms. Methods: To test this hypothesis, we systematically assessed the effects of pre-processing on biomarker classification using 24 different pre-processing methods and 15 distinct signatures of tumour hypoxia in 10 datasets (2,143 patients). Results: We confirm strong pre-processing effects for all datasets and signatures, and find that these differ between microarray versions. Importantly, exploiting different pre-processing techniques in an ensemble technique improved classification for a majority of signatures. Conclusions: Assessing biomarkers using an ensemble of pre-processing techniques shows clear value across multiple diseases, datasets and biomarkers. Importantly, ensemble classification improves biomarkers with initially good results but does not result in spuriously improved performance for poor biomarkers. While further research is required, this approach has the potential to become a standard for transcriptomic biomarkers. BACKGROUNDThe reproducibility of transcriptomic biomarkers across datasets remains poor, limiting clinical application. We and others have suggested that this is in-part caused by differential error-structure between datasets, and their incomplete removal by pre-processing algorithms. METHODSTo test this hypothesis, we systematically assessed the effects of pre-processing on biomarker classification using 24 different pre-processing methods and 15 distinct signatures of tumour hypoxia in 10 datasets (2,143 patients). RESULTSWe confirm strong pre-processing effects for all datasets and signatures, and find that these differ between microarray versions. Importantly, exploiting different pre-processing techniques in an ensemble technique improved classification for a majority of signatures. CONCLUSIONSAssessing biomarkers using an ensemble of pre-processing techniques shows clear value across multiple diseases, datasets and biomarkers. Importantly, ensemble classification improves biomarkers with initially good results but does not result in spuriously improved performance for poor biomarkers. While further research is required, this approach has the potential to become a standard for transcriptomic biomarkers. The reproducibility of transcriptomic biomarkers across datasets remains poor, limiting clinical application. We and others have suggested that this is in-part caused by differential error-structure between datasets, and their incomplete removal by pre-processing algorithms. To test this hypothesis, we systematically assessed the effects of pre-processing on biomarker classification using 24 different pre-processing methods and 15 distinct signatures of tumour hypoxia in 10 datasets (2,143 patients). We confirm strong pre-processing effects for all datasets and signatures, and find that these differ between microarray versions. Importantly, exploiting different pre-processing techniques in an ensemble technique improved classification for a majority of signatures. Assessing biomarkers using an ensemble of pre-processing techniques shows clear value across multiple diseases, datasets and biomarkers. Importantly, ensemble classification improves biomarkers with initially good results but does not result in spuriously improved performance for poor biomarkers. While further research is required, this approach has the potential to become a standard for transcriptomic biomarkers. |
ArticleNumber | 170 |
Audience | Academic |
Author | Starmans, Maud H W Fox, Natalie S Lambin, Philippe Haider, Syed Boutros, Paul C |
AuthorAffiliation | 5 Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada 2 Department of Radiation Oncology (Maastro), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands 4 Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada 1 Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, Canada 3 Centre for Molecular Oncology, Barts Cancer Institute, London EC1M 6BQ, UK |
AuthorAffiliation_xml | – name: 1 Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, Canada – name: 4 Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada – name: 3 Centre for Molecular Oncology, Barts Cancer Institute, London EC1M 6BQ, UK – name: 5 Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada – name: 2 Department of Radiation Oncology (Maastro), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands |
Author_xml | – sequence: 1 givenname: Natalie S surname: Fox fullname: Fox, Natalie S – sequence: 2 givenname: Maud H W surname: Starmans fullname: Starmans, Maud H W – sequence: 3 givenname: Syed surname: Haider fullname: Haider, Syed – sequence: 4 givenname: Philippe surname: Lambin fullname: Lambin, Philippe – sequence: 5 givenname: Paul C surname: Boutros fullname: Boutros, Paul C email: Paul.Boutros@oicr.on.ca organization: Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, Canada. Paul.Boutros@oicr.on.ca |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24902696$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1r3DAQhkVJaT7ae0_F0Et6cCrZWlm-FMKSNoFAoR-3ghjLo42CLbmSvWT_fbXZZIlLCpUGJGaeeRlm5pgcOO-QkLeMnjEmxUfGK5YXjC5ylqyiL8jR3nXw5H9IjmO8pZRVki5ekcOC17QQtTgivy5cxL7pMAMH3SZizGw_BL_GLNqVg3EKyeVNNk69n0J2sxn8nYVEt1nANUKXWTdiyIcORuNDn7XWGAzoNMbX5KWBLuKbh_eE_Px88WN5mV9__XK1PL_OG8HkmAO0tBYCoeAoSl5SzRALLQ3XiFRq1lCuDRQgGlbXZSPbFmpTltAutKSFKU_Ip53uMDU9thrdGKBTQ7A9hI3yYNU84uyNWvm14lSwquJJYLkTaKz_h8A8on2vtt1V2-4qlqyiSeX0oYzgf08YR9XbqLHrwKGfYsI4pzSB_D_QsuaiqqRI6Pu_0Ns0iDSse6riQpbp7KkVdKisMz7Vqbei6vxei9ULmaizZ6h0W-ytTrtlbPLPEj7MEhIz4t24gilGdfX925ylO1YHH2NAs-8fo2q7rs917N3Twe0THvez_AMlaec0 |
CitedBy_id | crossref_primary_10_1186_s12943_017_0673_0 crossref_primary_10_3389_fimmu_2022_997316 crossref_primary_10_1093_intimm_dxac017 crossref_primary_10_1016_j_bspc_2024_106067 crossref_primary_10_1186_s12967_020_02667_4 crossref_primary_10_3389_fonc_2020_579868 crossref_primary_10_1101_gr_191114_115 crossref_primary_10_1038_s41467_022_33946_x crossref_primary_10_4251_wjgo_v13_i5_312 crossref_primary_10_1038_s42255_019_0045_8 crossref_primary_10_1158_1078_0432_CCR_17_0038 crossref_primary_10_1186_s13059_016_0999_8 crossref_primary_10_3389_fimmu_2020_613114 crossref_primary_10_1371_journal_pone_0204123 crossref_primary_10_3389_fonc_2021_726794 crossref_primary_10_1016_j_clon_2015_07_004 crossref_primary_10_1016_j_addr_2023_114992 crossref_primary_10_3390_cancers13030495 crossref_primary_10_3389_fonc_2021_782043 crossref_primary_10_15252_emmm_201404271 crossref_primary_10_1038_s41596_019_0136_8 crossref_primary_10_1002_advs_202309885 |
Cites_doi | 10.1093/biostatistics/4.2.249 10.1038/nrclinonc.2012.196 10.4137/BMI.S5740 10.1089/cmb.2005.12.882 10.1038/nrc1367 10.1186/gm385 10.1186/bcr1325 10.1158/0008-5472.CAN-06-3322 10.1371/journal.pcbi.1002240 10.1172/JCI60534 10.1152/physrev.00038.2010 10.1007/s10549-010-0856-5 10.1007/s10549-010-0897-9 10.1093/bioinformatics/18.12.1585 10.1038/nature06915 10.1016/S0140-6736(05)70933-8 10.1093/bioinformatics/19.2.185 10.1371/journal.pone.0028320 10.1038/ng.2932 10.1158/0008-5472.CAN-12-3232 10.1172/JCI57088 10.1186/1471-2105-7-105 10.1038/sj.bjc.6605450 10.3109/02841861003614343 10.1200/JCO.2010.28.4273 10.1186/1741-7015-10-87 10.1074/jbc.M511408200 10.1038/nature08021 10.1186/1471-2407-11-143 10.1007/s10549-008-0183-2 10.1186/gb-2001-2-8-research0032 10.1038/nature10983 10.1186/1741-7015-7-9 10.1016/j.drup.2003.12.004 10.1371/journal.pmed.0030047 10.1016/j.radonc.2012.02.002 10.1073/pnas.0506230102 10.1093/jnci/djj052 10.1038/nbt.1665 10.1073/pnas.0809444106 10.1016/j.radonc.2007.05.002 10.1093/nar/gni179 10.1093/jnci/djq025 10.1158/1078-0432.CCR-06-2765 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 BioMed Central Ltd. 2014 Fox et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Copyright © 2014 Fox et al.; licensee BioMed Central Ltd. 2014 Fox et al.; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2014 BioMed Central Ltd. – notice: 2014 Fox et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. – notice: Copyright © 2014 Fox et al.; licensee BioMed Central Ltd. 2014 Fox et al.; licensee BioMed Central Ltd. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1186/1471-2105-15-170 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Science in Context ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Advanced Technologies Database with Aerospace ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Biological Science Collection ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2105 |
EndPage | 170 |
ExternalDocumentID | oai_biomedcentral_com_1471_2105_15_170 3339809271 A539461958 10_1186_1471_2105_15_170 24902696 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -A0 0R~ 23N 2WC 3V. 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACRMQ ADBBV ADINQ ADRAZ ADUKV AEAQA AENEX AFKRA AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C24 C6C CCPQU CGR CS3 CUY CVF DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS ECM EIF EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IHR INH INR ISR ITC K6V K7- KQ8 LK8 M0N M1P M48 M7P MK~ ML0 M~E NPM O5R O5S OK1 P2P P62 PGMZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION AFGXO AFPKN 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D P64 PQEST PQUKI PRINS Q9U 7X8 ABVAZ AFNRJ 5PM |
ID | FETCH-LOGICAL-b618t-aad0966ea24e63430c1ee2c8f4cee08c1b04cfa2a6b1993b8dda9f33ad5c802f3 |
IEDL.DBID | RBZ |
ISSN | 1471-2105 |
IngestDate | Tue Sep 17 21:15:27 EDT 2024 Wed May 22 07:13:04 EDT 2024 Fri Oct 25 09:36:15 EDT 2024 Thu Oct 24 22:52:49 EDT 2024 Thu Oct 10 20:32:48 EDT 2024 Tue Nov 19 20:57:49 EST 2024 Tue Nov 12 22:57:57 EST 2024 Thu Aug 01 19:41:38 EDT 2024 Fri Nov 22 00:55:46 EST 2024 Tue Oct 15 23:52:28 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b618t-aad0966ea24e63430c1ee2c8f4cee08c1b04cfa2a6b1993b8dda9f33ad5c802f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://dx.doi.org/10.1186/1471-2105-15-170 |
PMID | 24902696 |
PQID | 1537468333 |
PQPubID | 44065 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4061774 biomedcentral_primary_oai_biomedcentral_com_1471_2105_15_170 proquest_miscellaneous_1544007034 proquest_miscellaneous_1539467786 proquest_journals_1537468333 gale_infotracmisc_A539461958 gale_infotracacademiconefile_A539461958 gale_incontextgauss_ISR_A539461958 crossref_primary_10_1186_1471_2105_15_170 pubmed_primary_24902696 |
PublicationCentury | 2000 |
PublicationDate | 2014-06-06 |
PublicationDateYYYYMMDD | 2014-06-06 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC bioinformatics |
PublicationTitleAlternate | BMC Bioinformatics |
PublicationYear | 2014 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | 19196983 - Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2824-8 12490442 - Bioinformatics. 2002 Dec;18(12):1585-92 21501481 - BMC Cancer. 2011;11:143 16417408 - PLoS Med. 2006 Mar;3(3):e47 22163293 - PLoS One. 2011;6(12):e28320 21742796 - Physiol Rev. 2011 Jul;91(3):1071-121 20352488 - Breast Cancer Res Treat. 2011 Feb;125(3):637-46 16108723 - J Comput Biol. 2005 Jul-Aug;12(6):882-93 17545524 - Clin Cancer Res. 2007 Jun 1;13(11):3207-14 16565084 - J Biol Chem. 2006 Jun 2;281(22):15215-26 23172309 - Cancer Res. 2012 Dec 1;72(23):6097-101 17532074 - Radiother Oncol. 2007 Jun;83(3):374-82 16280042 - Breast Cancer Res. 2005;7(6):R953-64 22522925 - Nature. 2012 Jun 21;486(7403):346-52 17409455 - Cancer Res. 2007 Apr 1;67(7):3441-9 20490655 - Breast Cancer Res Treat. 2011 Apr;126(2):407-20 12925520 - Biostatistics. 2003 Apr;4(2):249-64 18385730 - Nature. 2008 Apr 3;452(7187):564-70 15721472 - Lancet. 2005 Feb 19-25;365(9460):671-9 15072769 - Drug Resist Updat. 2004 Feb;7(1):25-40 22356756 - Radiother Oncol. 2012 Mar;102(3):436-43 23165123 - Nat Rev Clin Oncol. 2013 Jan;10(1):27-40 20233996 - J Natl Cancer Inst. 2010 Apr 7;102(7):464-74 16284200 - Nucleic Acids Res. 2005;33(20):e175 20087356 - Br J Cancer. 2010 Jan 19;102(2):428-35 19291283 - BMC Med. 2009;7:9 21965338 - J Clin Invest. 2011 Oct;121(10):3810-8 16512908 - BMC Bioinformatics. 2006;7:105 22876833 - BMC Med. 2012;10:87 16478745 - J Natl Cancer Inst. 2006 Feb 15;98(4):262-72 21965334 - J Clin Invest. 2011 Oct;121(10):3786-8 19421193 - Nature. 2009 Jun 18;459(7249):1005-9 23146350 - Genome Med. 2012 Nov 12;4(11):84 21082037 - Biomark Insights. 2010 Oct 27;5:103-18 16141321 - Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13550-5 24675517 - Nat Genet. 2014 Apr;46(4):318-9 20676074 - Nat Biotechnol. 2010 Aug;28(8):827-38 20429727 - Acta Oncol. 2010 Oct;49(7):895-905 22028643 - PLoS Comput Biol. 2011 Oct;7(10):e1002240 11532216 - Genome Biol. 2001;2(8):RESEARCH0032 12538238 - Bioinformatics. 2003 Jan 22;19(2):185-93 18821012 - Breast Cancer Res Treat. 2009 Jul;116(2):303-9 20697068 - J Clin Oncol. 2010 Sep 20;28(27):4111-9 15170446 - Nat Rev Cancer. 2004 Jun;4(6):437-47 BM Bolstad (6439_CR40) 2003; 19 BS Sørensen (6439_CR18) 2010; 49 Y Wang (6439_CR23) 2005; 365 MHW Starmans (6439_CR43) 2011; 6 C Desmedt (6439_CR27) 2007; 13 E Hubbell (6439_CR33) 2002; 18 Z Wu (6439_CR35) 2005; 12 J Subramanian (6439_CR41) 2010; 102 PC Boutros (6439_CR37) 2014; 46 PD Bos (6439_CR31) 2009; 459 J-T Chi (6439_CR14) 2006; 3 Z Hu (6439_CR16) 2009; 7 L Shi (6439_CR38) 2010; 28 C Curtis (6439_CR2) 2012; 486 HG Russnes (6439_CR3) 2011; 121 LJ Van ’t Veer (6439_CR4) 2008; 452 MHW Starmans (6439_CR20) 2012; 102 LD Miller (6439_CR21) 2005; 102 MH Starmans (6439_CR9) 2012; 4 JM Brown (6439_CR11) 2004; 4 K Polyak (6439_CR1) 2011; 121 BG Wouters (6439_CR12) 2004; 7 M Abba (6439_CR6) 2010; 5 M Schmidt (6439_CR22) 2011; 125 SE Kern (6439_CR7) 2012; 72 GP Elvidge (6439_CR15) 2006; 281 K-J Kao (6439_CR30) 2011; 11 SC Winter (6439_CR19) 2007; 67 Y Pawitan (6439_CR25) 2005; 7 R Sabatier (6439_CR29) 2011; 126 RA Irizarry (6439_CR32) 2003; 4 C Li (6439_CR34) 2001; 2 PC Boutros (6439_CR42) 2009; 106 P Lambin (6439_CR5) 2013; 10 WF Symmans (6439_CR26) 2010; 28 M Dai (6439_CR36) 2005; 33 FM Buffa (6439_CR13) 2010; 102 S Goel (6439_CR10) 2011; 91 D Venet (6439_CR44) 2011; 7 EP Diamandis (6439_CR8) 2012; 10 R Seigneuric (6439_CR17) 2007; 83 Y Zhang (6439_CR28) 2009; 116 RGW Verhaak (6439_CR39) 2006; 7 C Sotiriou (6439_CR24) 2006; 98 |
References_xml | – volume: 4 start-page: 249 year: 2003 ident: 6439_CR32 publication-title: Biostatistics doi: 10.1093/biostatistics/4.2.249 contributor: fullname: RA Irizarry – volume: 10 start-page: 27 year: 2013 ident: 6439_CR5 publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2012.196 contributor: fullname: P Lambin – volume: 5 start-page: 103 year: 2010 ident: 6439_CR6 publication-title: Biomark Insights doi: 10.4137/BMI.S5740 contributor: fullname: M Abba – volume: 12 start-page: 882 year: 2005 ident: 6439_CR35 publication-title: J Comput Biol doi: 10.1089/cmb.2005.12.882 contributor: fullname: Z Wu – volume: 4 start-page: 437 year: 2004 ident: 6439_CR11 publication-title: Nat Rev Cancer doi: 10.1038/nrc1367 contributor: fullname: JM Brown – volume: 4 start-page: 84 year: 2012 ident: 6439_CR9 publication-title: Genome Med doi: 10.1186/gm385 contributor: fullname: MH Starmans – volume: 7 start-page: R953 year: 2005 ident: 6439_CR25 publication-title: Breast Cancer Res doi: 10.1186/bcr1325 contributor: fullname: Y Pawitan – volume: 67 start-page: 3441 year: 2007 ident: 6439_CR19 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-3322 contributor: fullname: SC Winter – volume: 7 start-page: e1002240 year: 2011 ident: 6439_CR44 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002240 contributor: fullname: D Venet – volume: 121 start-page: 3786 year: 2011 ident: 6439_CR1 publication-title: J Clin Invest doi: 10.1172/JCI60534 contributor: fullname: K Polyak – volume: 91 start-page: 1071 year: 2011 ident: 6439_CR10 publication-title: Physiol Rev doi: 10.1152/physrev.00038.2010 contributor: fullname: S Goel – volume: 125 start-page: 637 year: 2011 ident: 6439_CR22 publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-010-0856-5 contributor: fullname: M Schmidt – volume: 126 start-page: 407 year: 2011 ident: 6439_CR29 publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-010-0897-9 contributor: fullname: R Sabatier – volume: 18 start-page: 1585 year: 2002 ident: 6439_CR33 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.12.1585 contributor: fullname: E Hubbell – volume: 452 start-page: 564 year: 2008 ident: 6439_CR4 publication-title: Nature doi: 10.1038/nature06915 contributor: fullname: LJ Van ’t Veer – volume: 365 start-page: 671 year: 2005 ident: 6439_CR23 publication-title: Lancet doi: 10.1016/S0140-6736(05)70933-8 contributor: fullname: Y Wang – volume: 19 start-page: 185 year: 2003 ident: 6439_CR40 publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.2.185 contributor: fullname: BM Bolstad – volume: 6 start-page: e28320 year: 2011 ident: 6439_CR43 publication-title: PLoS ONE doi: 10.1371/journal.pone.0028320 contributor: fullname: MHW Starmans – volume: 46 start-page: 318 year: 2014 ident: 6439_CR37 publication-title: Nat Genet doi: 10.1038/ng.2932 contributor: fullname: PC Boutros – volume: 72 start-page: 6097 year: 2012 ident: 6439_CR7 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-3232 contributor: fullname: SE Kern – volume: 121 start-page: 3810 year: 2011 ident: 6439_CR3 publication-title: J Clin Invest doi: 10.1172/JCI57088 contributor: fullname: HG Russnes – volume: 7 start-page: 105 year: 2006 ident: 6439_CR39 publication-title: BMC Bioinforma doi: 10.1186/1471-2105-7-105 contributor: fullname: RGW Verhaak – volume: 102 start-page: 428 year: 2010 ident: 6439_CR13 publication-title: Br J Cancer doi: 10.1038/sj.bjc.6605450 contributor: fullname: FM Buffa – volume: 49 start-page: 895 year: 2010 ident: 6439_CR18 publication-title: Acta Oncol doi: 10.3109/02841861003614343 contributor: fullname: BS Sørensen – volume: 28 start-page: 4111 year: 2010 ident: 6439_CR26 publication-title: J Clin Oncol doi: 10.1200/JCO.2010.28.4273 contributor: fullname: WF Symmans – volume: 10 start-page: 87 year: 2012 ident: 6439_CR8 publication-title: BMC Med doi: 10.1186/1741-7015-10-87 contributor: fullname: EP Diamandis – volume: 281 start-page: 15215 year: 2006 ident: 6439_CR15 publication-title: J Biol Chem doi: 10.1074/jbc.M511408200 contributor: fullname: GP Elvidge – volume: 459 start-page: 1005 year: 2009 ident: 6439_CR31 publication-title: Nature doi: 10.1038/nature08021 contributor: fullname: PD Bos – volume: 11 start-page: 143 year: 2011 ident: 6439_CR30 publication-title: BMC Cancer doi: 10.1186/1471-2407-11-143 contributor: fullname: K-J Kao – volume: 116 start-page: 303 year: 2009 ident: 6439_CR28 publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-008-0183-2 contributor: fullname: Y Zhang – volume: 2 start-page: research0032.1 year: 2001 ident: 6439_CR34 publication-title: Genome Biol doi: 10.1186/gb-2001-2-8-research0032 contributor: fullname: C Li – volume: 486 start-page: 346 year: 2012 ident: 6439_CR2 publication-title: Nature doi: 10.1038/nature10983 contributor: fullname: C Curtis – volume: 7 start-page: 9 year: 2009 ident: 6439_CR16 publication-title: BMC Med doi: 10.1186/1741-7015-7-9 contributor: fullname: Z Hu – volume: 7 start-page: 25 year: 2004 ident: 6439_CR12 publication-title: Drug Resist Updat doi: 10.1016/j.drup.2003.12.004 contributor: fullname: BG Wouters – volume: 3 start-page: e47 year: 2006 ident: 6439_CR14 publication-title: PLoS Med doi: 10.1371/journal.pmed.0030047 contributor: fullname: J-T Chi – volume: 102 start-page: 436 year: 2012 ident: 6439_CR20 publication-title: Radiother Oncol doi: 10.1016/j.radonc.2012.02.002 contributor: fullname: MHW Starmans – volume: 102 start-page: 13550 year: 2005 ident: 6439_CR21 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0506230102 contributor: fullname: LD Miller – volume: 98 start-page: 262 year: 2006 ident: 6439_CR24 publication-title: JNCI J Natl Cancer Inst doi: 10.1093/jnci/djj052 contributor: fullname: C Sotiriou – volume: 28 start-page: 827 year: 2010 ident: 6439_CR38 publication-title: Nat Biotechnol doi: 10.1038/nbt.1665 contributor: fullname: L Shi – volume: 106 start-page: 2824 year: 2009 ident: 6439_CR42 publication-title: PNAS doi: 10.1073/pnas.0809444106 contributor: fullname: PC Boutros – volume: 83 start-page: 374 year: 2007 ident: 6439_CR17 publication-title: Radiother Oncol doi: 10.1016/j.radonc.2007.05.002 contributor: fullname: R Seigneuric – volume: 33 start-page: e175 year: 2005 ident: 6439_CR36 publication-title: Nucleic Acids Res doi: 10.1093/nar/gni179 contributor: fullname: M Dai – volume: 102 start-page: 464 year: 2010 ident: 6439_CR41 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djq025 contributor: fullname: J Subramanian – volume: 13 start-page: 3207 year: 2007 ident: 6439_CR27 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-06-2765 contributor: fullname: C Desmedt |
SSID | ssj0017805 |
Score | 2.308271 |
Snippet | The reproducibility of transcriptomic biomarkers across datasets remains poor, limiting clinical application. We and others have suggested that this is in-part... Background The reproducibility of transcriptomic biomarkers across datasets remains poor, limiting clinical application. We and others have suggested that this... Doc number: 170 Abstract Background: The reproducibility of transcriptomic biomarkers across datasets remains poor, limiting clinical application. We and... BACKGROUNDThe reproducibility of transcriptomic biomarkers across datasets remains poor, limiting clinical application. We and others have suggested that this... Background: The reproducibility of transcriptomic biomarkers across datasets remains poor, limiting clinical application. We and others have suggested that... BACKGROUND: The reproducibility of transcriptomic biomarkers across datasets remains poor, limiting clinical application. We and others have suggested that... |
SourceID | pubmedcentral biomedcentral proquest gale crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 170 |
SubjectTerms | Algorithms Biomarkers Breast cancer Cancer therapies Cell Hypoxia Classification Colleges & universities Gene expression Gene Expression Regulation, Neoplastic Genetic aspects Genomes Humans Hypoxia Medical prognosis Medical research Neoplasms - pathology Oncology Patients Physiological aspects Prognosis Reproducibility of Results Tissue Array Analysis Tumors |
SummonAdditionalLinks | – databaseName: PubMed Central dbid: RPM link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fi9QwEA53B4Iv4m-rp0QRxIfcpk2apuDLcdxxCieiHtyDUJI09RZ222XbBe-_dybbLhcRH4S8zaRNm0xmpv3yDSFvfeprmUvDHM8bJoWXzBZOMaWVd97aTAUmpovP6vxSfrrKr_ZIPp2FCaB9Z-dH7WJ51M6vA7ZytXSzCSc2-3Jxgk4IwpbZPtkH9zul6OOvAyTpn_5HajVLYfdlkNfkLIVWYOU3yDgg80Ca_uiM-yJyTX9u0Lc8VIyevOWOzu6Te2McSY-3431A9nz7kNzZVpa8eUR-nLa9X9qFpyawjviezsPnA08RsRHYPHvaNXTYQO6_ptc3q-7X3IB2TZHUCS6NRBJrtlqYAeNaOlVSgX3lMbk8O_1-cs7GQgrMqlQPzJgaMhXlTSa9ElJwl3qfOd1IcJFcu9Ry6RqTGWURz2d1XZuyEcLUudM8a8QTctB2rX9GaCkdN9zkRqtCWmGtaUpZZHVZ8KbMlEvIh-idVqstaUaFNNaxBCyqwtmpcHaqFFrBE_J-moJdz5CmaPUX3Tc4RxWyWLQIk_lpNn1fffz2tTrORSkV8ugk5N2o1HRwV2fGUwfwNEh8FWkeRppgZi4WT0uhGs28h4GIQiothEjI650YeyJ0rfXdJujAJZCm7186EuvTcyET8nS7unaPP63WhBTRuovebCwBuwlE4aOdPP_vni_IXQgQZYDGqUNyMKw3_iUEYYN9FYzuNxrhNEw priority: 500 providerName: National Library of Medicine – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYogPoRLmzRNQZBDbj0FfVAP7kEISZreLaztuu2C9987k-2uF5GDvM0kbTLJZCaZ_IaQVyEPjSylZZ6XLZMiSOYqr5jSKvjgXKEiEtPnL-r4RH46LU-nA7dhCqvc6sSoqJve4xn5AazMSiothHi3_MUwaxTerk4pNK6TG3lRKQzp07MPu1sExOvfXk1qdZCDImbg4pQsh4LpiZM37otka_pXQV_aodLoyUvb0ewOuT3ZkfRwI_i75Fro7pGbm8ySF_fJj6NuCD_dIlAbUUfCQOfx-CBQjNiIaJ4D7Vs6rsH3X9Hzi2X_e26Bu6EI6gRNI5DEii0XdkS7lm4zqYBeeUBOZkff3x-zKZECcyrXI7O2AU9FBVvIoIQU3OchFF63ErZIrn3uuPStLaxyGM_ndNPYuhXCNqXXvGjFQ7LX9V14TGgtPbfcllarSjrhnG1rWRVNXfG2LpTPyNtkTM1yA5phEMY6pYB0DYrEoEhMDqXiGXmzFcGuZnRTtPoP70uUkUEUiw7DZM7sehjMx29fzWEpaqkQRycjryemtoeveju9OoDeIPBVwrmfcMIy8yl5OxXMtMwH83dSZuTFjow1MXStC_068kATCNN3FY_E_PRcyIw82syuXffBPwY_uYbaVTLvkpFNKd38PAKFo7EG5v2Tq3_9KbkFVqCM8W9qn-yNq3V4BpbW6J7H5fQHsdorVQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA9yIvgifls9JYogPkTTJk1TUOSQO07hfFAX7kEoSZp6C3vtuu3C7X_vTLa7dzkWQehbJmmTzGRmmpnfEPLap76WuTTM8bxhUnjJbOEUU1p5563NVEBiOvmmjify62l-epkePS5gv9O1w3pSk8Xs3cWf1ScQ-I9B4LV6n8IBy8B1yVkKTwEO_M0M9CIGeJ3IyzsFRO8PuUYj9ebScscI17LfZ5HSun50X9FdcVzlFUV1dJfcGS1MerBmiXvkhm_vk1vrmpOrB-TXYdv7czvz1AQ8Et_Tafix4CnGcgScz552DR2W5zAUPVvNu4upAeqaItwTDI0QEws2n5kBLV66qbECJ85DMjk6_Pn5mI0lFphVqR6YMTX4MMqbTHolpOAu9T5zupGgPLl2qeXSNSYzymKkn9V1bcpGCFPnTvOsEY_IXtu1_gmhpXTccJMbrQpphbWmKWWR1WXBmzJTLiEfojWt5ms4jQoBruMWkLUKt6TCLalSeAqekLebLdj2DA6MVjtoX-EeVYhv0WIAzW-z7Pvqy4_v1UEuSqkQYSchb0aipoO3OjPmI8BsEBIrotyPKEEAXdy8YYVqw7_wIaKQSgshEvJy24w9Mait9d0y0MAQCOD3LxqJleu5kAl5vOau7fTBcwYPuoTeRcR30crGLe30LECIoxkHhv_T_1jUZ-Q2GIsyhMmpfbI3LJb-ORhkg30R5Owv8_UywA priority: 102 providerName: Scholars Portal |
Title | Ensemble analyses improve signatures of tumour hypoxia and reveal inter-platform differences |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24902696 https://www.proquest.com/docview/1537468333 https://search.proquest.com/docview/1539467786 https://search.proquest.com/docview/1544007034 http://dx.doi.org/10.1186/1471-2105-15-170 https://pubmed.ncbi.nlm.nih.gov/PMC4061774 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA96h-CLnJ9X7yxRBPEh2DZpkoIvd7LrKdwhqweLCCVJU29hbZdtF7z_3km2u16Wwxch5GUmaZPJJDPJ5BeEXtvUVixnipgkrwmjlhEtDCdccmus1hn3SEznF_zskn2e5tO_MDk7J_ip5O9SmD4JOCY5SSEJcM_3wWWgztGanH7fnhg4bH5_k2jg3hxJ3lLDzt32ebAk7U7MN1amMGryxjI0PkAPBvsRn6wF_hDdsc0jdG_9ouT1Y_Rj1HT2l55brDzaiO3wzG8bWOwiNTyKZ4fbGvcr8PmX-Op60f6eKeCusANzgqodgMSSLOaqd_Ys3rygAvPJE3Q5Hn37cEaGBxSI5qnsiVIVeCjcqoxZThlNTGptZmTNYGlMpEl1wkytMsW1i-PTsqpUUVOqqtzIJKvpU7TXtI09RLhgJlGJypXkgmmqtaoLJrKqEEldZNxE6H3Qp-ViDZZROvjqkAKaVDqRlE4kZQpJJBF6uxHBtqR3TyS_hfeVk1Hp0CsaFx7zU626rvz0dVKe5LRg3OHnROjNwFS38FWjhtsG0BoHeBVwHgecoF4mJG-GQjmodwc_QgXjklIaoZdbsivpQtYa2648D1Th4Pn-xcPcu_QJZRF6th5d2-bDIAf_uIDSIhh3Qc-GlGZ25QHCnZEGZv3z_5PJEboP1iHzcXH8GO31y5V9ARZYr2N0V0wF5HL8MUb7p6OLL5PY72ZAfs5k7FUz9ltnfwDg_DSB |
link.rule.ids | 108,230,314,727,780,784,864,885,2221,12056,12765,21388,24318,24937,27924,27925,31719,31720,33373,33374,33744,33745,43310,43600,43805,53791,53793,75811,75812 |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3_a9QwFA96Q9wv4tdZnVpFEH8IS5s0bUGQKTduuh0yN9gPQkjS1B3c2vPaA_ff-16vPReRQX57L2mTl7y8l7x8HiFvXeQKkQhNLUtKKrgT1KRWUplJZ50xseyQmI6ncnImvpwn5_2BW9OHVQ46sVPURW3xjHwPVmYqZMY5_7j4RTFrFN6u9ik0bpMtRE5PRmTr03j67WRzj4CI_cPlZCb3IlDFFJychEZQMEGx98p97m1O_6roa3uUHz95bUM6uE_u9ZZkuL8W_QNyy1UPyZ11bsmrR-THuGrcpZm7UHe4I64JZ90BggsxZqPD82zCugzbFXj_y_DialH_nmngLkKEdYKmEUpiSRdz3aJlGw65VECzPCZnB-PTzxPap1KgRkZZS7UuwFeRTsfCSS44s5Fzsc1KAZsky2xkmLCljrU0GNFnsqLQecm5LhKbsbjkT8ioqiv3lIS5sEwznehMpsJwY3SZizQu8pSVeSxtQD54Y6oWa9gMhUDWPgXkq1AkCkWiIigpC8j7QQSbmp2jksn_8L5BGSnEsagwUOanXjWNOvx-ovYTnguJSDoBedczlTV81er-3QH0BqGvPM5djxMWmvXJw1RQ_UJv1N9pGZDXGzLWxOC1ytWrjgeaQKC-m3gEZqhnXARkZz27Nt0HDxk85Rxqp96880bWp1Sziw4qHM01MPCf3fzrr8jdyenxkTo6nH59TrbBJhRdNJzcJaN2uXIvwO5qzct-cf0B3zwvpg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA_HieKL-G311CqC-FAvbdK0BV9OveXOj0VODw45KEmaeIu77XLtgvffO5O2y-Y4fBH6UMgkNJnJZKaZ-Q0hr0xsKp5yGWma2ogzwyOVaRGJXBhtlEqEQ2L6OhUHx_zTSXqyRaZjLoxaaDVrBtBQBCp-u5mGPne6G170791lZfstn4vdGFRsBM5LGsXwZODCXwM72G3Uo_c_17cKiN_vso0G6vHa8ooRLuW_z71j67Ly3ji9_MjKjaNqcpvcGmzMcK8Xijtky9R3yfW-6uTFPXK6X7dmoeYmlA6RxLThzP1aMCFGczikzzZsbNitFjBUeHaxbP7MJFBXIQI-wdAIMnEeLeeywxUMxyoroHPuk-PJ_o8PB9FQZCFSIs67SMoKvBhhZMKNYJxRHRuT6NxyOD5prmNFubYykUJhrJ_Kq0oWljFZpTqniWUPyHbd1OYRCQuuqaQylbnIuGJKSVvwLKmKjNoiETog77w1LZc9oEaJENd-C7C5RJaUyJIyhiejAXkzsmDd07kwubiC9iXyqESEixpDaH7JVduWh9-Pyr2UFVwgxk5AXg9EtkGZkkNGAswGQbE8yh2PErag9ptHUSgHFdDCh7CMi5wxFpAX62bsiWFttWlWjgaGQAi_f9FwrF1PGQ_Iw1661tMH3xl86AJ6Z57ceSvrt9SzMwcijoYcmP6P_48nz8mNbx8n5ZfD6ecn5CYYk9yF0Ykdst2dr8xTMNg69cztwr_WpT9N |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+analyses+improve+signatures+of+tumour+hypoxia+and+reveal+inter-platform+differences&rft.jtitle=BMC+bioinformatics&rft.au=Fox%2C+Natalie+S&rft.au=Starmans%2C+Maud+HW&rft.au=Haider%2C+Syed&rft.au=Lambin%2C+Philippe&rft.date=2014-06-06&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1186%2F1471-2105-15-170&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_1471_2105_15_170 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |