Validation of Reference Genes for Quantitative Expression Analysis by Real-Time RT-PCR in Four Lepidopteran Insects
Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been...
Saved in:
Published in | Journal of insect science (Tucson, Ariz.) Vol. 12; no. 60; pp. 1 - 17 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
University of Wisconsin Library
2012
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hübner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2-ΔΔCt method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR. |
---|---|
AbstractList | Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hübner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2(-ΔΔCt) method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR. Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hubner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2-AACt method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR. Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen ( actin A3 , actin A1 , GAPDH , G3PDH , E2F , rp49 ) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hübner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis , but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua , respectively. In different tissues, GAPDH , E2F , and Rp49 were the most stable in B. mori , S. exigua , and C. suppressalis , respectively. The relative abundances of Siwi genes estimated by 2 -ΔΔCt method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR. Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Huebner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and Delta Ct analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2- Delta Delta Ct method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR. Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hubner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2-AACt method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR. Keywords: expression stability, housekeeping gene, qPCR, reference gene Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hübner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2−ΔΔCt method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR. |
Audience | Academic |
Author | He, Guiling Teng, Xiaolu Zhang, Zan Yang, Liwen Li, Fei |
Author_xml | – sequence: 1 givenname: Xiaolu surname: Teng fullname: Teng, Xiaolu organization: Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, 210095, China – sequence: 2 givenname: Zan surname: Zhang fullname: Zhang, Zan organization: Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, 210095, China – sequence: 3 givenname: Guiling surname: He fullname: He, Guiling organization: Department of Chemistry, Jiaying University, Meizhou, Guangzhou, 514015, China – sequence: 4 givenname: Liwen surname: Yang fullname: Yang, Liwen organization: Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, 210095, China – sequence: 5 givenname: Fei surname: Li fullname: Li, Fei organization: Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, 210095, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22938136$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1v0zAYxiM0xD7gxhl8BESKPxLHuSBV1TYqVQK6wtVynNfFKLUzO5nW_x5XGdN6QcgHW_bved7X9nOenTjvIMteEzwjvGKfMCMzTOiMY0yeZWekZDynRUFPnqxPs_MYf2NMcSHqF9kppTUThPGzLP5UnW3VYL1D3qA1GAjgNKBrcBCR8QF9H5Ub7JCYO0CX932AGA_43KluH21EzT7pVJdv7A7QepN_W6yRdejKjwGtoLet7wcIyqGli6CH-DJ7blQX4dXDfJFtri43iy_56uv1cjFf5Q0n5ZDrmgAuWmZaJqjWvOSc1rwm3IBoa0Vx1WAQIDRrMdBKsNZUGNqSACVlRdlF9nmy7cdmB60GNwTVyT7YnQp76ZWVxyfO_pJbfydZIUjBSTJ492AQ_O0IcZA7GzV0nXLgxygJTt3UJSP8P1BWCUGr-oDOJnSrOpDWGZ-K6zRa2Fmd_tbYtD9ntKjKiogqCd4fCRIzwP2wVWOMcnmzPmY_TqwOPsYA5vG6BMtDXGSKi0xxkYe4JPzN0yd6hP_mIwFvJ8AoL9U22Ch_3FBMkhozKkqciA8T0Vifmv93vT9oWdEp |
CitedBy_id | crossref_primary_10_1016_j_aspen_2015_01_001 crossref_primary_10_1016_j_aspen_2022_101900 crossref_primary_10_1016_j_gene_2020_145061 crossref_primary_10_1016_j_jocn_2014_09_013 crossref_primary_10_1002_arch_21896 crossref_primary_10_17776_csj_1069230 crossref_primary_10_1093_jee_toy180 crossref_primary_10_1017_S0007485323000536 crossref_primary_10_1093_jisesa_iev082 crossref_primary_10_1016_j_pestbp_2019_10_005 crossref_primary_10_1371_journal_pone_0075609 crossref_primary_10_1111_1744_7917_12310 crossref_primary_10_1038_s41598_017_08630_6 crossref_primary_10_1371_journal_pone_0152730 crossref_primary_10_1016_j_aspen_2017_03_008 crossref_primary_10_1017_S0031182016001025 crossref_primary_10_1038_srep32939 crossref_primary_10_1016_j_ibmb_2016_04_010 crossref_primary_10_1016_j_ibmb_2018_10_002 crossref_primary_10_3892_etm_2016_3646 crossref_primary_10_1016_j_cbpb_2016_06_009 crossref_primary_10_1093_jisesa_ieaa003 crossref_primary_10_1016_j_cbpb_2021_110579 crossref_primary_10_1073_pnas_1703449114 crossref_primary_10_1371_journal_pone_0084730 crossref_primary_10_1016_S2095_3119_18_61973_2 crossref_primary_10_1111_ens_12383 crossref_primary_10_1038_srep12114 crossref_primary_10_1111_1744_7917_13134 crossref_primary_10_1371_journal_pone_0225881 crossref_primary_10_1016_j_gene_2014_11_038 crossref_primary_10_1111_1744_7917_12164 crossref_primary_10_1653_024_101_0102 crossref_primary_10_1007_s10811_022_02865_1 crossref_primary_10_1007_s10529_017_2465_4 crossref_primary_10_3390_v15102084 crossref_primary_10_1038_s41598_019_54881_w crossref_primary_10_3389_fphys_2018_01560 crossref_primary_10_1007_s11105_012_0534_3 crossref_primary_10_3389_fphys_2021_752768 crossref_primary_10_1371_journal_pone_0205182 crossref_primary_10_1016_j_cbpb_2015_03_001 crossref_primary_10_1139_gen_2013_0051 crossref_primary_10_1371_journal_pone_0120401 crossref_primary_10_1016_j_pestbp_2016_06_002 crossref_primary_10_1093_toxsci_kfab114 crossref_primary_10_1371_journal_pone_0195096 crossref_primary_10_1371_journal_pone_0118693 crossref_primary_10_1111_imb_12219 crossref_primary_10_1111_1744_7917_12053 crossref_primary_10_1111_imb_12739 crossref_primary_10_1093_jee_toy328 crossref_primary_10_3389_fphys_2021_818210 crossref_primary_10_1021_acs_jafc_0c01367 crossref_primary_10_1016_j_aspen_2022_101919 crossref_primary_10_1093_jisesa_iez130 crossref_primary_10_3390_insects5030668 crossref_primary_10_3389_fcell_2021_757168 crossref_primary_10_3389_fmicb_2021_650099 crossref_primary_10_1016_j_peptides_2016_09_011 crossref_primary_10_1038_s41598_022_08434_3 crossref_primary_10_1093_jee_toz142 crossref_primary_10_1002_ps_5149 crossref_primary_10_1016_j_gep_2017_08_003 crossref_primary_10_1016_j_ttbdis_2013_12_002 crossref_primary_10_1016_j_aspen_2023_102066 crossref_primary_10_1016_j_pestbp_2020_104650 crossref_primary_10_1042_BSR20201313 crossref_primary_10_3389_fphys_2022_932596 crossref_primary_10_1002_arch_21458 crossref_primary_10_1371_journal_pone_0087514 crossref_primary_10_1002_arch_21213 crossref_primary_10_1038_s41598_019_53544_0 crossref_primary_10_1186_1756_0500_6_93 crossref_primary_10_1111_imb_12870 crossref_primary_10_1002_jez_b_22626 crossref_primary_10_1038_srep20229 crossref_primary_10_1016_j_aspen_2019_10_017 crossref_primary_10_12677_HJAS_2019_96063 crossref_primary_10_1002_iid3_1076 crossref_primary_10_3389_finsc_2024_1362473 crossref_primary_10_1007_s00204_020_02879_z crossref_primary_10_1016_j_ecoenv_2017_08_067 crossref_primary_10_1139_gen_2017_0176 crossref_primary_10_1007_s11033_022_08120_7 crossref_primary_10_1371_journal_pone_0097038 crossref_primary_10_1038_srep08110 crossref_primary_10_3390_insects12010036 crossref_primary_10_3390_insects13080731 crossref_primary_10_1016_j_pestbp_2019_11_022 crossref_primary_10_1111_imb_12525 crossref_primary_10_1111_imb_12921 crossref_primary_10_1007_s00217_018_03225_5 crossref_primary_10_30516_bilgesci_1067570 crossref_primary_10_1371_journal_pone_0159060 crossref_primary_10_1002_arch_21862 crossref_primary_10_1111_1744_7917_12802 crossref_primary_10_1038_s41598_017_08813_1 crossref_primary_10_3390_ijms17071034 crossref_primary_10_1016_j_pestbp_2015_03_009 crossref_primary_10_1371_journal_pone_0188477 crossref_primary_10_1139_gen_2014_0041 crossref_primary_10_1038_hdy_2014_72 crossref_primary_10_1093_ee_nvv010 crossref_primary_10_1002_ps_5171 crossref_primary_10_1134_S0026893314060156 crossref_primary_10_1002_arch_21831 crossref_primary_10_1111_imb_12096 crossref_primary_10_3390_insects13020140 crossref_primary_10_3390_v14061119 crossref_primary_10_1007_s13592_021_00850_0 crossref_primary_10_1038_s41598_020_79030_6 crossref_primary_10_1016_j_ibmb_2013_06_007 crossref_primary_10_1002_arch_21150 crossref_primary_10_1017_S0007485316000948 crossref_primary_10_3389_fgene_2017_00233 crossref_primary_10_1371_journal_pone_0129026 crossref_primary_10_1016_j_ecoenv_2021_113145 crossref_primary_10_1016_j_gep_2022_119233 crossref_primary_10_1007_s11033_021_06766_3 crossref_primary_10_1016_j_ygcen_2016_06_022 crossref_primary_10_1038_s41598_019_47020_y crossref_primary_10_2478_s11756_013_0267_2 crossref_primary_10_1111_imb_12143 crossref_primary_10_1002_arch_21164 crossref_primary_10_1038_s41419_020_2581_2 crossref_primary_10_7554_eLife_64114 crossref_primary_10_1016_j_genrep_2018_10_007 crossref_primary_10_1038_s41598_020_67449_w |
Cites_doi | 10.1186/1471-2229-8-131 10.1016/j.mimet.2009.12.007 10.2144/05391RV01 10.1093/nar/gkn749 10.1016/j.molbiopara.2005.05.011 10.1093/jis/5.1.48 10.1186/1471-2229-4-14 10.1006/mcpr.2001.0376 10.1093/nar/29.9.e45 10.1016/j.mam.2005.12.003 10.1186/1471-2199-9-59 10.1126/science.296.5567.557 10.1007/s10529-006-9127-2 10.1186/1471-2199-7-33 10.1677/jme.0.0250169 10.1016/j.bbrc.2006.04.140 10.1007/s11033-010-0648-3 10.1111/j.1467-7652.2008.00346.x 10.1038/nprot.2006.236 10.1007/s11626-010-9318-y 10.1111/j.1744-7917.2008.00227.x 10.1016/j.molimm.2009.02.020 10.1186/1471-2229-8-1 10.1093/jxb/erh181 10.1158/0008-5472.CAN-04-0496 10.1016/j.ab.2006.12.005 |
ContentType | Journal Article |
Copyright | This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed. COPYRIGHT 2012 Oxford University Press 2012 2012 |
Copyright_xml | – notice: This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed. – notice: COPYRIGHT 2012 Oxford University Press – notice: 2012 2012 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION ISR 7X8 7SS F1W H95 L.G 5PM |
DOI | 10.1673/031.012.6001 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Science MEDLINE - Academic Entomology Abstracts (Full archive) ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Entomology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | MEDLINE Entomology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1536-2442 |
EndPage | 17 |
ExternalDocumentID | A324757187 10_1673_031_012_6001 22938136 US201600032850 10.1673/031.012.6001 |
Genre | Validation Studies Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- -JH 0R~ 29K 2WC 2XV 36B 53G 5GY 5VS AACFU AAEFD AAFWJ AAMVS AAPPN AAPSS AAVAP ABPTD ABPTK ACGFS ADBBV ADEHT ADHSS ADHZD ADOYD ADRAZ ADRYA AEDJY AENEX AENZO AEPYG AFNWH AFPKN AFULF AGJBV AKPMI ALMA_UNASSIGNED_HOLDINGS ALUQC AOIJS BAWUL BAYMD BCNDV BTTYL C1A CIDKT CS3 D-I DIK DU5 E3Z EBS ECGQY EJD ESX GROUPED_DOAJ H13 HYE IAG IAO INH INR ISR ITC KQ8 KSI M48 ML0 M~E O9- OAWHX OJQWA OK1 P2P PEELM PQ0 RBO REY RHF RNS ROL ROX RPM RXO RZN SJN TBO TOX WOQ XSB AAPXW DC7 FBQ IPNFZ O5R O5S OJZSN RIG AAHBH ABXVV CGR CUY CVF ECM EIF NPM AAYXX CITATION ABEJV 7X8 7SS F1W H95 L.G 5PM |
ID | FETCH-LOGICAL-b615t-c91e04d3fd382cc6566296916fe8d9a207b0e8e8c3d0e2783df70ed51e215723 |
IEDL.DBID | RPM |
ISSN | 1536-2442 |
IngestDate | Tue Sep 17 21:14:39 EDT 2024 Thu Jul 25 08:48:50 EDT 2024 Fri Aug 16 20:58:23 EDT 2024 Tue Nov 12 23:17:35 EST 2024 Thu Aug 01 19:14:18 EDT 2024 Fri Aug 23 02:53:04 EDT 2024 Tue Aug 27 13:46:44 EDT 2024 Tue Nov 07 23:18:44 EST 2023 Tue Feb 07 16:46:54 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 60 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b615t-c91e04d3fd382cc6566296916fe8d9a207b0e8e8c3d0e2783df70ed51e215723 |
Notes | http://www.insectscience.org/12.60/ ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Undefined-2 ObjectType-Feature-2 Editor: Kostas latrou was editor of this paper. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3481461/ |
PMID | 22938136 |
PQID | 1037882796 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3481461 proquest_miscellaneous_1069195316 proquest_miscellaneous_1037882796 gale_infotracacademiconefile_A324757187 gale_incontextgauss_ISR_A324757187 crossref_primary_10_1673_031_012_6001 pubmed_primary_22938136 fao_agris_US201600032850 bioone_primary_10_1673_031_012_6001 |
PublicationCentury | 2000 |
PublicationDate | 2012-00-00 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – year: 2012 text: 2012-00-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of insect science (Tucson, Ariz.) |
PublicationTitleAlternate | J Insect Sci |
PublicationYear | 2012 |
Publisher | University of Wisconsin Library Oxford University Press |
Publisher_xml | – name: University of Wisconsin Library – name: Oxford University Press |
References | 17026756 - BMC Mol Biol. 2006;7:33 21161394 - Mol Biol Rep. 2011 Nov;38(8):5017-23 15331581 - J Biomol Tech. 2004 Sep;15(3):155-66 12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 20026205 - J Microbiol Methods. 2010 Feb;80(2):219-21 11735303 - Mol Cell Probes. 2001 Oct;15(5):307-11 11964485 - Science. 2002 Apr 19;296(5567):557-9 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45 18433420 - Plant Biotechnol J. 2008 Aug;6(6):609-18 15993958 - Mol Biochem Parasitol. 2005 Oct;143(2):241-4 16900335 - Biotechnol Lett. 2006 Oct;28(19):1601-13 11013345 - J Mol Endocrinol. 2000 Oct;25(2):169-93 19102748 - BMC Plant Biol. 2008;8:131 16469371 - Mol Aspects Med. 2006 Apr-Jun;27(2-3):126-39 19297025 - Mol Immunol. 2009 May;46(8-9):1688-95 15208338 - J Exp Bot. 2004 Jul;55(402):1445-54 17119630 - J Insect Sci. 2005;5:48 20440577 - In Vitro Cell Dev Biol Anim. 2010 Jul;46(7):595-9 16690022 - Biochem Biophys Res Commun. 2006 Jun 30;345(2):646-51 15317655 - BMC Plant Biol. 2004 Aug 18;4:14 17406449 - Nat Protoc. 2006;1(3):1559-82 17239340 - Anal Biochem. 2007 Apr 15;363(2):291-3 18573215 - BMC Mol Biol. 2008;9:59 16060372 - Biotechniques. 2005 Jul;39(1):75-85 18171480 - BMC Plant Biol. 2008;8:1 15289330 - Cancer Res. 2004 Aug 1;64(15):5245-50 18940859 - Nucleic Acids Res. 2009 Jan;37(Database issue):D408-11 bibr10 bibr11 bibr13 bibr14 bibr15 bibr17 bibr18 bibr19 bibr09 Huang CX (bibr12) 2002; 39 Merkx-Jacques M (bibr16) 2005; 5 bibr20 bibr21 bibr22 bibr01 bibr23 bibr02 bibr03 bibr25 bibr26 bibr05 bibr27 bibr06 bibr28 bibr07 bibr29 bibr08 Bustin SA (bibr04) 2004; 15 |
References_xml | – ident: bibr07 doi: 10.1186/1471-2229-8-131 – ident: bibr15 doi: 10.1016/j.mimet.2009.12.007 – ident: bibr29 doi: 10.2144/05391RV01 – ident: bibr26 doi: 10.1093/nar/gkn749 – ident: bibr23 doi: 10.1016/j.molbiopara.2005.05.011 – volume: 5 start-page: 48 year: 2005 ident: bibr16 publication-title: Journal of Insect Science doi: 10.1093/jis/5.1.48 contributor: fullname: Merkx-Jacques M – ident: bibr02 doi: 10.1186/1471-2229-4-14 – volume: 39 start-page: 229 year: 2002 ident: bibr12 publication-title: Entomological Knowledge contributor: fullname: Huang CX – ident: bibr21 doi: 10.1006/mcpr.2001.0376 – ident: bibr20 doi: 10.1093/nar/29.9.e45 – ident: bibr08 doi: 10.1016/j.mam.2005.12.003 – ident: bibr14 doi: 10.1186/1471-2199-9-59 – ident: bibr25 doi: 10.1126/science.296.5567.557 – ident: bibr09 doi: 10.1007/s10529-006-9127-2 – ident: bibr22 doi: 10.1186/1471-2199-7-33 – ident: bibr03 doi: 10.1677/jme.0.0250169 – ident: bibr13 doi: 10.1016/j.bbrc.2006.04.140 – ident: bibr06 doi: 10.1007/s11033-010-0648-3 – ident: bibr11 doi: 10.1111/j.1467-7652.2008.00346.x – volume: 15 start-page: 155 year: 2004 ident: bibr04 publication-title: Journal of Biomolecular Techniques contributor: fullname: Bustin SA – ident: bibr17 doi: 10.1038/nprot.2006.236 – ident: bibr28 doi: 10.1007/s11626-010-9318-y – ident: bibr27 doi: 10.1111/j.1744-7917.2008.00227.x – ident: bibr05 doi: 10.1016/j.molimm.2009.02.020 – ident: bibr18 doi: 10.1186/1471-2229-8-1 – ident: bibr10 doi: 10.1093/jxb/erh181 – ident: bibr01 doi: 10.1158/0008-5472.CAN-04-0496 – ident: bibr19 doi: 10.1016/j.ab.2006.12.005 |
SSID | ssj0020489 |
Score | 2.36098 |
Snippet | Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are... |
SourceID | pubmedcentral proquest gale crossref pubmed fao bioone |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | actin Actins - genetics Actins - metabolism algorithms Animals Bombycidae Bombyx mori Chilo suppressalis Crambidae developmental stages E2F4 Transcription Factor - genetics E2F4 Transcription Factor - metabolism essential genes expression stability Gene expression Genes, Essential Genes, Insect Genetic aspects Glyceraldehyde-3-Phosphate Dehydrogenases - genetics Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism Glycerolphosphate Dehydrogenase - genetics Glycerolphosphate Dehydrogenase - metabolism housekeeping gene insects Lepidoptera Life Cycle Stages Moths - genetics Moths - growth & development Moths - metabolism Noctuidae Plutella xylostella Plutellidae Polymerase chain reaction qPCR quantitative polymerase chain reaction Real-Time Polymerase Chain Reaction reference gene reverse transcriptase polymerase chain reaction Ribosomal Proteins - genetics Ribosomal Proteins - metabolism Spodoptera exigua tissues Varieties |
SummonAdditionalLinks | – databaseName: BioOne Free dbid: TBO link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtQwELXaSki8IO5dbjI38ZSSOBfHj6XqqkWIy3aLKl4sO7HLSshZkV0J_p4zSXbVgAQ8Z6IkPuOZk2TmDGMvFCiIzHOqC4t9lBGHM0iEUVKI0qWqRHzs1D7fFyfn2duL_GKHbQb_UVWlXTRNcN1ffNrWxvazRwqZvoYHHiCiHlCW3gUZismP528-bF-x4I-qV0gtIiQuMZS6_34u0k1_lVE22vWm-TMyX0lN47LJK3loepPdGAgkP-wRv8V2XLjNrn1pus_jd1j7GcS6n5PEG8-3OrKc9KVbDorKP61N6FrLEOj48Y-hEjbwjT4Jtz9xnvkWUXsIn82jj0czvgh8ikvzd265qJsl9S0HfhpaKga5y-bT4_nRSTQMVogsCMwqqlTi4qxOfZ2WoqqI0glVgCh6V9bKAD0bu9KVVVrHjkZx1F7Grs4TB4IgRXqP7QUs3j7jiUyMVV7YNDaZFA70M7NOldYUyid1OmHP-4XWy148Q9NLB-DQgEMDDk1wTNjLDQr_sNsHRNpcIv7p8zNB6ngxCQLm8YQ9I9w0SVoEqpm5NOu21adnM30Izihz5GA5Ya8GI98AwcoMLQi4P1LBGlk-3eCvsd_oJ4oJrlm3mvoq4dFSFX-zwWIqRDfY3O99ZvtcAvyqTFIckSNv2hqQ3vf4SFh87XS_qWc6K5IH_7WmD9l1rI_ovxY9Ynur72v3GPxpZZ90W-YXZ1gOsw priority: 102 providerName: BioOne – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3battAEF1yodCX0nvcS9je6JMcaXVZ7UMpIcQkpZTWsUvoy7KSVqkhrNzIhuTve0aSTZSWtM8aIXvO7MxZaeYsY28VKIiMY-oL80svIg5nUAi9IBGpDVWK_NiofX5JjqbRp9P4dIOtThvtHFj_dWtH50lNL86Hl7-uPmLBf6AFn8hwD3E5RJ4dUu3eZNsiwh6dmvii9fcEUqdVrXJq4qGgia4F_ubdKEPZrKqc7VWpzdJUf2bsayWr3055rT6N7rN7HbHk-20kPGAb1j1kd35UzWvzR6z-DsLdnp_Eq5Kv9WU56U7XHNSVf1sa14ycIQHyw8uuQ9bxlW4Jz65wnzn3aGyEjyfe14Mxnzk-wqP5ZzufFdWc5pkdP3Y1NYk8ZpPR4eTgyOsOXPAyEJuFl6vA-lERlkWYijwnqidUAgJZ2rRQBqhmvk1tmoeFb-mIjqKUvi3iwII4SBE-YVsOztthPJCByVQpstA3kRQWtDTKrEozk6gyKMIBe9M6Ws9bUQ1NmxHAoQGHBhya4BiwdysU_mG3A4i0OUNe1NMTQap5PgkFxv6AvSbcNEldOOqlOTPLutbHJ2O9Dy4pY9RmOWDvO6OyAoK56UYT8PtIHatn-WqFv8Y6pI8rxtlqWWuat0SkS5XcZgNnKmQ92DxtY2b9vwR4VxqEuCJ70bQ2IB3w_hU3-9nogdMsdZQEz_7Lp8_ZXfhHtG-RXrCtxcXSvgSvWmS7zZL5Dc7bGBQ priority: 102 providerName: Scholars Portal |
Title | Validation of Reference Genes for Quantitative Expression Analysis by Real-Time RT-PCR in Four Lepidopteran Insects |
URI | http://www.bioone.org/doi/abs/10.1673/031.012.6001 https://www.ncbi.nlm.nih.gov/pubmed/22938136 https://search.proquest.com/docview/1037882796 https://search.proquest.com/docview/1069195316 https://pubmed.ncbi.nlm.nih.gov/PMC3481461 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZxaKGX0He2j6C-6GntfUs6piYmKU2TOk4xvQhpV0oXEq3p2tD--87sw2QptNCLLp7Fa32jmU_yzCdC3gqgICxNsS4ssH6CHE5BIvTDLOImFhziY6P2-Tk7vkw-LtPlDkn7XpimaD_X5dhd34xd-b2prVzd5JO-TmxyfjrF5tEkCycjMgIH7bfo3S4LXFJ0Fe4ZiyfgtGMIwmNM7Kj8C-mNhyjIfEeXVeXMIB-NrKr-jM23ktOwcPJWJprdJ3sdhaSH7as-IDvGPSR3v1XNAfkjUn8Fat3elEQrS7dKshQVpmsKJJV-2SjXNJdBqKNHP7taWEd7hRKqf8Fz6trHBhE6X_jn0zktHZ3BV9NPZlUW1Qo7lx09cTWWgzwmi9nRYnrsd1cr-BoozNrPRWiCpIhtEfMoz5HURSIDqmgNL4QC_HRguOF5XAQGL-MoLAtMkYYGKAKL4idk18Hk7RMaslBpYSMdByphkQECmmgjuFaZsGERe-RNO9Fy1cpnSNx2ADISkJGAjERkPPKuR-EfdvsAkVRXEAHl5UWE-ngBSgKmgUdeI24SRS0cVs1cqU1dy5OLuTwE1shSyMLMI-87I1sBgrnqmhDg_VAHa2D5qsdfworDv1GUM9WmlthZCT7NRPY3G5hMAfENbJ62PrP9Xb0LeoQNvGlrgIrfw09gITTK353jP_vvJ5-TezBnUXuG9ILsrn9szEtgVWt90JxGwHia8INmRcG4-HCG49nyN9ZxIEo |
link.rule.ids | 109,230,315,730,783,787,867,888,2228,4031,24330,27935,27936,27937,52731,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB61BQQviLvmXC7x5MT3eh-rqFECaVXSFFV9We3a62KpXUc4keDfM-MjaoQEEs8ey-v9Zme-tWe-BfggkILwOKa6MK9wI-JwChOh6ydBakKRYnxs1D6Pk8lZ9Pk8Pt-BuO-FaYr2M10O7NX1wJbfm9rK5XU27OvEhidHI2oejRJ_uAu3cL16Ub9J7_ZZ6JSiq3FPeDhEtx1gGB5QaiftX0xwqU-SzLd1WVXWbGWk3UJVf0bnG-lpu3TyRi4aP4D7HYlkB-1gH8KOsY_gzkXVfCJ_DPU3JNftWUmsKthGS5aRxnTNkKayr2tlm_YyDHbs8GdXDWtZr1HC9C-8T1251CLC5gv3ZDRnpWVjfDSbmWWZV0vqXbZsamsqCHkCi_HhYjRxu8MVXI0kZuVmwjdelIdFHqZBlhGtC0SCZLEwaS4UIqg9k5o0C3PP0HEcecE9k8e-QZLAg_Ap7FmcvH1gPveVFkWgQ09FPDBIQSNtRKpVIgo_Dx143060XLYCGpI2HoiMRGQkIiMJGQc-9ij8w24fIZLqEmOgPDsNSCHPI1HA2HPgHeEmSdbCUt3MpVrXtZyezuUB8kYeYx7mDnzqjIoKEcxU14aA4yMlrC3Ltz3-Etcc_UhR1lTrWlJvJXo1F8nfbHAyBUY4tHnW-szmvXoXdIBvedPGgDS_t6_gUmi0vzvXf_7fd76Bu5PF0UzOpsdfXsA9nL-g_aL0EvZWP9bmFXKslX7drKjfHikfrw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLa2IRAviPvK1dzEU7bEuTh-HGPVCtMYXTdNvFhOYo9KyKlIK8G_5ztJWq0gAc85URJ_5_IlOeczY68VKIhMU-oLC12QEIczKIRBlIncxipHfmzVPo-zw7Pkw0V6scF2l7MwxbSuvW1_4VNMzyrXxnUm41243w7S6Q6V6E12jZTDKBIn7z6t3rDgjqoTSM0C1C3Rd7r_fjaqTXedtWK06Uz9Z2K-UpnWuyavlKHhbXar5498rwP8Dtuw_i67_qVuv47fY805eHW3TRKvHV_JyHKSl244GCr_vDC-nSxDnuMHP_pGWM-X8iS8-InzzLeApkP4eBKc7I_51PMhLs2P7Gxa1TMaW_Z85BvqBbnPJsODyf5h0O-rEBTgL_OgVJENkyp2VZyLsiRGJ1QGnuhsXikD8IrQ5jYv4yq0tBNH5WRoqzSy4AdSxA_YlsfibTMeycgUyokiDk0ihQX7TAqr8sJkykVVPGCvuoXWs047Q9M7B-DQgEMDDk1wDNibJQr_sNsGRNpcIv3ps1NB4ngh6QGm4YC9JNw0KVp4apm5NIum0aPTsd4DZZQpSrAcsLe9kauBYGn6CQTcH4lgrVm-WOKvEW70D8V4Wy8aTWOVcGipsr_ZYDEVkhtsHnY-s3ouAXqVRzGOyDVvWhmQ3Pf6ET_92sp-08h0kkWP_mtNn7MbJ--H-mh0_PExu4mlEt13oydsa_59YZ-CSc2LZ230_AKndRCM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+Reference+Genes+for+Quantitative+Expression+Analysis+by+Real-Time+RT-PCR+in+Four+Lepidopteran+Insects&rft.jtitle=Journal+of+insect+science+%28Tucson%2C+Ariz.%29&rft.au=Teng%2C+Xiaolu&rft.au=Zhang%2C+Zan&rft.au=He%2C+Guiling&rft.au=Yang%2C+Liwen&rft.date=2012&rft.pub=University+of+Wisconsin+Library&rft.issn=1536-2442&rft.eissn=1536-2442&rft.volume=12&rft.issue=60&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1673%2F031.012.6001&rft.externalDocID=10.1673%2F031.012.6001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-2442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-2442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-2442&client=summon |