Validation of Reference Genes for Quantitative Expression Analysis by Real-Time RT-PCR in Four Lepidopteran Insects

Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been...

Full description

Saved in:
Bibliographic Details
Published inJournal of insect science (Tucson, Ariz.) Vol. 12; no. 60; pp. 1 - 17
Main Authors Teng, Xiaolu, Zhang, Zan, He, Guiling, Yang, Liwen, Li, Fei
Format Journal Article
LanguageEnglish
Published United States University of Wisconsin Library 2012
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hübner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2-ΔΔCt method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR.
AbstractList Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hübner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2(-ΔΔCt) method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR.
Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hubner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2-AACt method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR.
Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen ( actin A3 , actin A1 , GAPDH , G3PDH , E2F , rp49 ) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hübner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis , but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua , respectively. In different tissues, GAPDH , E2F , and Rp49 were the most stable in B. mori , S. exigua , and C. suppressalis , respectively. The relative abundances of Siwi genes estimated by 2 -ΔΔCt method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR.
Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Huebner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and Delta Ct analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2- Delta Delta Ct method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR.
Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hubner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2-AACt method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR. Keywords: expression stability, housekeeping gene, qPCR, reference gene
Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hübner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2−ΔΔCt method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR.
Audience Academic
Author He, Guiling
Teng, Xiaolu
Zhang, Zan
Yang, Liwen
Li, Fei
Author_xml – sequence: 1
  givenname: Xiaolu
  surname: Teng
  fullname: Teng, Xiaolu
  organization: Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, 210095, China
– sequence: 2
  givenname: Zan
  surname: Zhang
  fullname: Zhang, Zan
  organization: Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, 210095, China
– sequence: 3
  givenname: Guiling
  surname: He
  fullname: He, Guiling
  organization: Department of Chemistry, Jiaying University, Meizhou, Guangzhou, 514015, China
– sequence: 4
  givenname: Liwen
  surname: Yang
  fullname: Yang, Liwen
  organization: Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, 210095, China
– sequence: 5
  givenname: Fei
  surname: Li
  fullname: Li, Fei
  organization: Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, 210095, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22938136$$D View this record in MEDLINE/PubMed
BookMark eNqNks1v0zAYxiM0xD7gxhl8BESKPxLHuSBV1TYqVQK6wtVynNfFKLUzO5nW_x5XGdN6QcgHW_bved7X9nOenTjvIMteEzwjvGKfMCMzTOiMY0yeZWekZDynRUFPnqxPs_MYf2NMcSHqF9kppTUThPGzLP5UnW3VYL1D3qA1GAjgNKBrcBCR8QF9H5Ub7JCYO0CX932AGA_43KluH21EzT7pVJdv7A7QepN_W6yRdejKjwGtoLet7wcIyqGli6CH-DJ7blQX4dXDfJFtri43iy_56uv1cjFf5Q0n5ZDrmgAuWmZaJqjWvOSc1rwm3IBoa0Vx1WAQIDRrMdBKsNZUGNqSACVlRdlF9nmy7cdmB60GNwTVyT7YnQp76ZWVxyfO_pJbfydZIUjBSTJ492AQ_O0IcZA7GzV0nXLgxygJTt3UJSP8P1BWCUGr-oDOJnSrOpDWGZ-K6zRa2Fmd_tbYtD9ntKjKiogqCd4fCRIzwP2wVWOMcnmzPmY_TqwOPsYA5vG6BMtDXGSKi0xxkYe4JPzN0yd6hP_mIwFvJ8AoL9U22Ch_3FBMkhozKkqciA8T0Vifmv93vT9oWdEp
CitedBy_id crossref_primary_10_1016_j_aspen_2015_01_001
crossref_primary_10_1016_j_aspen_2022_101900
crossref_primary_10_1016_j_gene_2020_145061
crossref_primary_10_1016_j_jocn_2014_09_013
crossref_primary_10_1002_arch_21896
crossref_primary_10_17776_csj_1069230
crossref_primary_10_1093_jee_toy180
crossref_primary_10_1017_S0007485323000536
crossref_primary_10_1093_jisesa_iev082
crossref_primary_10_1016_j_pestbp_2019_10_005
crossref_primary_10_1371_journal_pone_0075609
crossref_primary_10_1111_1744_7917_12310
crossref_primary_10_1038_s41598_017_08630_6
crossref_primary_10_1371_journal_pone_0152730
crossref_primary_10_1016_j_aspen_2017_03_008
crossref_primary_10_1017_S0031182016001025
crossref_primary_10_1038_srep32939
crossref_primary_10_1016_j_ibmb_2016_04_010
crossref_primary_10_1016_j_ibmb_2018_10_002
crossref_primary_10_3892_etm_2016_3646
crossref_primary_10_1016_j_cbpb_2016_06_009
crossref_primary_10_1093_jisesa_ieaa003
crossref_primary_10_1016_j_cbpb_2021_110579
crossref_primary_10_1073_pnas_1703449114
crossref_primary_10_1371_journal_pone_0084730
crossref_primary_10_1016_S2095_3119_18_61973_2
crossref_primary_10_1111_ens_12383
crossref_primary_10_1038_srep12114
crossref_primary_10_1111_1744_7917_13134
crossref_primary_10_1371_journal_pone_0225881
crossref_primary_10_1016_j_gene_2014_11_038
crossref_primary_10_1111_1744_7917_12164
crossref_primary_10_1653_024_101_0102
crossref_primary_10_1007_s10811_022_02865_1
crossref_primary_10_1007_s10529_017_2465_4
crossref_primary_10_3390_v15102084
crossref_primary_10_1038_s41598_019_54881_w
crossref_primary_10_3389_fphys_2018_01560
crossref_primary_10_1007_s11105_012_0534_3
crossref_primary_10_3389_fphys_2021_752768
crossref_primary_10_1371_journal_pone_0205182
crossref_primary_10_1016_j_cbpb_2015_03_001
crossref_primary_10_1139_gen_2013_0051
crossref_primary_10_1371_journal_pone_0120401
crossref_primary_10_1016_j_pestbp_2016_06_002
crossref_primary_10_1093_toxsci_kfab114
crossref_primary_10_1371_journal_pone_0195096
crossref_primary_10_1371_journal_pone_0118693
crossref_primary_10_1111_imb_12219
crossref_primary_10_1111_1744_7917_12053
crossref_primary_10_1111_imb_12739
crossref_primary_10_1093_jee_toy328
crossref_primary_10_3389_fphys_2021_818210
crossref_primary_10_1021_acs_jafc_0c01367
crossref_primary_10_1016_j_aspen_2022_101919
crossref_primary_10_1093_jisesa_iez130
crossref_primary_10_3390_insects5030668
crossref_primary_10_3389_fcell_2021_757168
crossref_primary_10_3389_fmicb_2021_650099
crossref_primary_10_1016_j_peptides_2016_09_011
crossref_primary_10_1038_s41598_022_08434_3
crossref_primary_10_1093_jee_toz142
crossref_primary_10_1002_ps_5149
crossref_primary_10_1016_j_gep_2017_08_003
crossref_primary_10_1016_j_ttbdis_2013_12_002
crossref_primary_10_1016_j_aspen_2023_102066
crossref_primary_10_1016_j_pestbp_2020_104650
crossref_primary_10_1042_BSR20201313
crossref_primary_10_3389_fphys_2022_932596
crossref_primary_10_1002_arch_21458
crossref_primary_10_1371_journal_pone_0087514
crossref_primary_10_1002_arch_21213
crossref_primary_10_1038_s41598_019_53544_0
crossref_primary_10_1186_1756_0500_6_93
crossref_primary_10_1111_imb_12870
crossref_primary_10_1002_jez_b_22626
crossref_primary_10_1038_srep20229
crossref_primary_10_1016_j_aspen_2019_10_017
crossref_primary_10_12677_HJAS_2019_96063
crossref_primary_10_1002_iid3_1076
crossref_primary_10_3389_finsc_2024_1362473
crossref_primary_10_1007_s00204_020_02879_z
crossref_primary_10_1016_j_ecoenv_2017_08_067
crossref_primary_10_1139_gen_2017_0176
crossref_primary_10_1007_s11033_022_08120_7
crossref_primary_10_1371_journal_pone_0097038
crossref_primary_10_1038_srep08110
crossref_primary_10_3390_insects12010036
crossref_primary_10_3390_insects13080731
crossref_primary_10_1016_j_pestbp_2019_11_022
crossref_primary_10_1111_imb_12525
crossref_primary_10_1111_imb_12921
crossref_primary_10_1007_s00217_018_03225_5
crossref_primary_10_30516_bilgesci_1067570
crossref_primary_10_1371_journal_pone_0159060
crossref_primary_10_1002_arch_21862
crossref_primary_10_1111_1744_7917_12802
crossref_primary_10_1038_s41598_017_08813_1
crossref_primary_10_3390_ijms17071034
crossref_primary_10_1016_j_pestbp_2015_03_009
crossref_primary_10_1371_journal_pone_0188477
crossref_primary_10_1139_gen_2014_0041
crossref_primary_10_1038_hdy_2014_72
crossref_primary_10_1093_ee_nvv010
crossref_primary_10_1002_ps_5171
crossref_primary_10_1134_S0026893314060156
crossref_primary_10_1002_arch_21831
crossref_primary_10_1111_imb_12096
crossref_primary_10_3390_insects13020140
crossref_primary_10_3390_v14061119
crossref_primary_10_1007_s13592_021_00850_0
crossref_primary_10_1038_s41598_020_79030_6
crossref_primary_10_1016_j_ibmb_2013_06_007
crossref_primary_10_1002_arch_21150
crossref_primary_10_1017_S0007485316000948
crossref_primary_10_3389_fgene_2017_00233
crossref_primary_10_1371_journal_pone_0129026
crossref_primary_10_1016_j_ecoenv_2021_113145
crossref_primary_10_1016_j_gep_2022_119233
crossref_primary_10_1007_s11033_021_06766_3
crossref_primary_10_1016_j_ygcen_2016_06_022
crossref_primary_10_1038_s41598_019_47020_y
crossref_primary_10_2478_s11756_013_0267_2
crossref_primary_10_1111_imb_12143
crossref_primary_10_1002_arch_21164
crossref_primary_10_1038_s41419_020_2581_2
crossref_primary_10_7554_eLife_64114
crossref_primary_10_1016_j_genrep_2018_10_007
crossref_primary_10_1038_s41598_020_67449_w
Cites_doi 10.1186/1471-2229-8-131
10.1016/j.mimet.2009.12.007
10.2144/05391RV01
10.1093/nar/gkn749
10.1016/j.molbiopara.2005.05.011
10.1093/jis/5.1.48
10.1186/1471-2229-4-14
10.1006/mcpr.2001.0376
10.1093/nar/29.9.e45
10.1016/j.mam.2005.12.003
10.1186/1471-2199-9-59
10.1126/science.296.5567.557
10.1007/s10529-006-9127-2
10.1186/1471-2199-7-33
10.1677/jme.0.0250169
10.1016/j.bbrc.2006.04.140
10.1007/s11033-010-0648-3
10.1111/j.1467-7652.2008.00346.x
10.1038/nprot.2006.236
10.1007/s11626-010-9318-y
10.1111/j.1744-7917.2008.00227.x
10.1016/j.molimm.2009.02.020
10.1186/1471-2229-8-1
10.1093/jxb/erh181
10.1158/0008-5472.CAN-04-0496
10.1016/j.ab.2006.12.005
ContentType Journal Article
Copyright This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.
COPYRIGHT 2012 Oxford University Press
2012 2012
Copyright_xml – notice: This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.
– notice: COPYRIGHT 2012 Oxford University Press
– notice: 2012 2012
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISR
7X8
7SS
F1W
H95
L.G
5PM
DOI 10.1673/031.012.6001
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Science
MEDLINE - Academic
Entomology Abstracts (Full archive)
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Entomology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList MEDLINE


Entomology Abstracts



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1536-2442
EndPage 17
ExternalDocumentID A324757187
10_1673_031_012_6001
22938136
US201600032850
10.1673/031.012.6001
Genre Validation Studies
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
-JH
0R~
29K
2WC
2XV
36B
53G
5GY
5VS
AACFU
AAEFD
AAFWJ
AAMVS
AAPPN
AAPSS
AAVAP
ABPTD
ABPTK
ACGFS
ADBBV
ADEHT
ADHSS
ADHZD
ADOYD
ADRAZ
ADRYA
AEDJY
AENEX
AENZO
AEPYG
AFNWH
AFPKN
AFULF
AGJBV
AKPMI
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AOIJS
BAWUL
BAYMD
BCNDV
BTTYL
C1A
CIDKT
CS3
D-I
DIK
DU5
E3Z
EBS
ECGQY
EJD
ESX
GROUPED_DOAJ
H13
HYE
IAG
IAO
INH
INR
ISR
ITC
KQ8
KSI
M48
ML0
M~E
O9-
OAWHX
OJQWA
OK1
P2P
PEELM
PQ0
RBO
REY
RHF
RNS
ROL
ROX
RPM
RXO
RZN
SJN
TBO
TOX
WOQ
XSB
AAPXW
DC7
FBQ
IPNFZ
O5R
O5S
OJZSN
RIG
AAHBH
ABXVV
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ABEJV
7X8
7SS
F1W
H95
L.G
5PM
ID FETCH-LOGICAL-b615t-c91e04d3fd382cc6566296916fe8d9a207b0e8e8c3d0e2783df70ed51e215723
IEDL.DBID RPM
ISSN 1536-2442
IngestDate Tue Sep 17 21:14:39 EDT 2024
Thu Jul 25 08:48:50 EDT 2024
Fri Aug 16 20:58:23 EDT 2024
Tue Nov 12 23:17:35 EST 2024
Thu Aug 01 19:14:18 EDT 2024
Fri Aug 23 02:53:04 EDT 2024
Tue Aug 27 13:46:44 EDT 2024
Tue Nov 07 23:18:44 EST 2023
Tue Feb 07 16:46:54 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 60
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b615t-c91e04d3fd382cc6566296916fe8d9a207b0e8e8c3d0e2783df70ed51e215723
Notes http://www.insectscience.org/12.60/
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Undefined-2
ObjectType-Feature-2
Editor: Kostas latrou was editor of this paper.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3481461/
PMID 22938136
PQID 1037882796
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3481461
proquest_miscellaneous_1069195316
proquest_miscellaneous_1037882796
gale_infotracacademiconefile_A324757187
gale_incontextgauss_ISR_A324757187
crossref_primary_10_1673_031_012_6001
pubmed_primary_22938136
fao_agris_US201600032850
bioone_primary_10_1673_031_012_6001
PublicationCentury 2000
PublicationDate 2012-00-00
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012-00-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of insect science (Tucson, Ariz.)
PublicationTitleAlternate J Insect Sci
PublicationYear 2012
Publisher University of Wisconsin Library
Oxford University Press
Publisher_xml – name: University of Wisconsin Library
– name: Oxford University Press
References 17026756 - BMC Mol Biol. 2006;7:33
21161394 - Mol Biol Rep. 2011 Nov;38(8):5017-23
15331581 - J Biomol Tech. 2004 Sep;15(3):155-66
12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034
20026205 - J Microbiol Methods. 2010 Feb;80(2):219-21
11735303 - Mol Cell Probes. 2001 Oct;15(5):307-11
11964485 - Science. 2002 Apr 19;296(5567):557-9
11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45
18433420 - Plant Biotechnol J. 2008 Aug;6(6):609-18
15993958 - Mol Biochem Parasitol. 2005 Oct;143(2):241-4
16900335 - Biotechnol Lett. 2006 Oct;28(19):1601-13
11013345 - J Mol Endocrinol. 2000 Oct;25(2):169-93
19102748 - BMC Plant Biol. 2008;8:131
16469371 - Mol Aspects Med. 2006 Apr-Jun;27(2-3):126-39
19297025 - Mol Immunol. 2009 May;46(8-9):1688-95
15208338 - J Exp Bot. 2004 Jul;55(402):1445-54
17119630 - J Insect Sci. 2005;5:48
20440577 - In Vitro Cell Dev Biol Anim. 2010 Jul;46(7):595-9
16690022 - Biochem Biophys Res Commun. 2006 Jun 30;345(2):646-51
15317655 - BMC Plant Biol. 2004 Aug 18;4:14
17406449 - Nat Protoc. 2006;1(3):1559-82
17239340 - Anal Biochem. 2007 Apr 15;363(2):291-3
18573215 - BMC Mol Biol. 2008;9:59
16060372 - Biotechniques. 2005 Jul;39(1):75-85
18171480 - BMC Plant Biol. 2008;8:1
15289330 - Cancer Res. 2004 Aug 1;64(15):5245-50
18940859 - Nucleic Acids Res. 2009 Jan;37(Database issue):D408-11
bibr10
bibr11
bibr13
bibr14
bibr15
bibr17
bibr18
bibr19
bibr09
Huang CX (bibr12) 2002; 39
Merkx-Jacques M (bibr16) 2005; 5
bibr20
bibr21
bibr22
bibr01
bibr23
bibr02
bibr03
bibr25
bibr26
bibr05
bibr27
bibr06
bibr28
bibr07
bibr29
bibr08
Bustin SA (bibr04) 2004; 15
References_xml – ident: bibr07
  doi: 10.1186/1471-2229-8-131
– ident: bibr15
  doi: 10.1016/j.mimet.2009.12.007
– ident: bibr29
  doi: 10.2144/05391RV01
– ident: bibr26
  doi: 10.1093/nar/gkn749
– ident: bibr23
  doi: 10.1016/j.molbiopara.2005.05.011
– volume: 5
  start-page: 48
  year: 2005
  ident: bibr16
  publication-title: Journal of Insect Science
  doi: 10.1093/jis/5.1.48
  contributor:
    fullname: Merkx-Jacques M
– ident: bibr02
  doi: 10.1186/1471-2229-4-14
– volume: 39
  start-page: 229
  year: 2002
  ident: bibr12
  publication-title: Entomological Knowledge
  contributor:
    fullname: Huang CX
– ident: bibr21
  doi: 10.1006/mcpr.2001.0376
– ident: bibr20
  doi: 10.1093/nar/29.9.e45
– ident: bibr08
  doi: 10.1016/j.mam.2005.12.003
– ident: bibr14
  doi: 10.1186/1471-2199-9-59
– ident: bibr25
  doi: 10.1126/science.296.5567.557
– ident: bibr09
  doi: 10.1007/s10529-006-9127-2
– ident: bibr22
  doi: 10.1186/1471-2199-7-33
– ident: bibr03
  doi: 10.1677/jme.0.0250169
– ident: bibr13
  doi: 10.1016/j.bbrc.2006.04.140
– ident: bibr06
  doi: 10.1007/s11033-010-0648-3
– ident: bibr11
  doi: 10.1111/j.1467-7652.2008.00346.x
– volume: 15
  start-page: 155
  year: 2004
  ident: bibr04
  publication-title: Journal of Biomolecular Techniques
  contributor:
    fullname: Bustin SA
– ident: bibr17
  doi: 10.1038/nprot.2006.236
– ident: bibr28
  doi: 10.1007/s11626-010-9318-y
– ident: bibr27
  doi: 10.1111/j.1744-7917.2008.00227.x
– ident: bibr05
  doi: 10.1016/j.molimm.2009.02.020
– ident: bibr18
  doi: 10.1186/1471-2229-8-1
– ident: bibr10
  doi: 10.1093/jxb/erh181
– ident: bibr01
  doi: 10.1158/0008-5472.CAN-04-0496
– ident: bibr19
  doi: 10.1016/j.ab.2006.12.005
SSID ssj0020489
Score 2.36098
Snippet Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are...
SourceID pubmedcentral
proquest
gale
crossref
pubmed
fao
bioone
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms actin
Actins - genetics
Actins - metabolism
algorithms
Animals
Bombycidae
Bombyx mori
Chilo suppressalis
Crambidae
developmental stages
E2F4 Transcription Factor - genetics
E2F4 Transcription Factor - metabolism
essential genes
expression stability
Gene expression
Genes, Essential
Genes, Insect
Genetic aspects
Glyceraldehyde-3-Phosphate Dehydrogenases - genetics
Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism
Glycerolphosphate Dehydrogenase - genetics
Glycerolphosphate Dehydrogenase - metabolism
housekeeping gene
insects
Lepidoptera
Life Cycle Stages
Moths - genetics
Moths - growth & development
Moths - metabolism
Noctuidae
Plutella xylostella
Plutellidae
Polymerase chain reaction
qPCR
quantitative polymerase chain reaction
Real-Time Polymerase Chain Reaction
reference gene
reverse transcriptase polymerase chain reaction
Ribosomal Proteins - genetics
Ribosomal Proteins - metabolism
Spodoptera exigua
tissues
Varieties
SummonAdditionalLinks – databaseName: BioOne Free
  dbid: TBO
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtQwELXaSki8IO5dbjI38ZSSOBfHj6XqqkWIy3aLKl4sO7HLSshZkV0J_p4zSXbVgAQ8Z6IkPuOZk2TmDGMvFCiIzHOqC4t9lBGHM0iEUVKI0qWqRHzs1D7fFyfn2duL_GKHbQb_UVWlXTRNcN1ffNrWxvazRwqZvoYHHiCiHlCW3gUZismP528-bF-x4I-qV0gtIiQuMZS6_34u0k1_lVE22vWm-TMyX0lN47LJK3loepPdGAgkP-wRv8V2XLjNrn1pus_jd1j7GcS6n5PEG8-3OrKc9KVbDorKP61N6FrLEOj48Y-hEjbwjT4Jtz9xnvkWUXsIn82jj0czvgh8ikvzd265qJsl9S0HfhpaKga5y-bT4_nRSTQMVogsCMwqqlTi4qxOfZ2WoqqI0glVgCh6V9bKAD0bu9KVVVrHjkZx1F7Grs4TB4IgRXqP7QUs3j7jiUyMVV7YNDaZFA70M7NOldYUyid1OmHP-4XWy148Q9NLB-DQgEMDDk1wTNjLDQr_sNsHRNpcIv7p8zNB6ngxCQLm8YQ9I9w0SVoEqpm5NOu21adnM30Izihz5GA5Ya8GI98AwcoMLQi4P1LBGlk-3eCvsd_oJ4oJrlm3mvoq4dFSFX-zwWIqRDfY3O99ZvtcAvyqTFIckSNv2hqQ3vf4SFh87XS_qWc6K5IH_7WmD9l1rI_ovxY9Ynur72v3GPxpZZ90W-YXZ1gOsw
  priority: 102
  providerName: BioOne
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3battAEF1yodCX0nvcS9je6JMcaXVZ7UMpIcQkpZTWsUvoy7KSVqkhrNzIhuTve0aSTZSWtM8aIXvO7MxZaeYsY28VKIiMY-oL80svIg5nUAi9IBGpDVWK_NiofX5JjqbRp9P4dIOtThvtHFj_dWtH50lNL86Hl7-uPmLBf6AFn8hwD3E5RJ4dUu3eZNsiwh6dmvii9fcEUqdVrXJq4qGgia4F_ubdKEPZrKqc7VWpzdJUf2bsayWr3055rT6N7rN7HbHk-20kPGAb1j1kd35UzWvzR6z-DsLdnp_Eq5Kv9WU56U7XHNSVf1sa14ycIQHyw8uuQ9bxlW4Jz65wnzn3aGyEjyfe14Mxnzk-wqP5ZzufFdWc5pkdP3Y1NYk8ZpPR4eTgyOsOXPAyEJuFl6vA-lERlkWYijwnqidUAgJZ2rRQBqhmvk1tmoeFb-mIjqKUvi3iwII4SBE-YVsOztthPJCByVQpstA3kRQWtDTKrEozk6gyKMIBe9M6Ws9bUQ1NmxHAoQGHBhya4BiwdysU_mG3A4i0OUNe1NMTQap5PgkFxv6AvSbcNEldOOqlOTPLutbHJ2O9Dy4pY9RmOWDvO6OyAoK56UYT8PtIHatn-WqFv8Y6pI8rxtlqWWuat0SkS5XcZgNnKmQ92DxtY2b9vwR4VxqEuCJ70bQ2IB3w_hU3-9nogdMsdZQEz_7Lp8_ZXfhHtG-RXrCtxcXSvgSvWmS7zZL5Dc7bGBQ
  priority: 102
  providerName: Scholars Portal
Title Validation of Reference Genes for Quantitative Expression Analysis by Real-Time RT-PCR in Four Lepidopteran Insects
URI http://www.bioone.org/doi/abs/10.1673/031.012.6001
https://www.ncbi.nlm.nih.gov/pubmed/22938136
https://search.proquest.com/docview/1037882796
https://search.proquest.com/docview/1069195316
https://pubmed.ncbi.nlm.nih.gov/PMC3481461
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZxaKGX0He2j6C-6GntfUs6piYmKU2TOk4xvQhpV0oXEq3p2tD--87sw2QptNCLLp7Fa32jmU_yzCdC3gqgICxNsS4ssH6CHE5BIvTDLOImFhziY6P2-Tk7vkw-LtPlDkn7XpimaD_X5dhd34xd-b2prVzd5JO-TmxyfjrF5tEkCycjMgIH7bfo3S4LXFJ0Fe4ZiyfgtGMIwmNM7Kj8C-mNhyjIfEeXVeXMIB-NrKr-jM23ktOwcPJWJprdJ3sdhaSH7as-IDvGPSR3v1XNAfkjUn8Fat3elEQrS7dKshQVpmsKJJV-2SjXNJdBqKNHP7taWEd7hRKqf8Fz6trHBhE6X_jn0zktHZ3BV9NPZlUW1Qo7lx09cTWWgzwmi9nRYnrsd1cr-BoozNrPRWiCpIhtEfMoz5HURSIDqmgNL4QC_HRguOF5XAQGL-MoLAtMkYYGKAKL4idk18Hk7RMaslBpYSMdByphkQECmmgjuFaZsGERe-RNO9Fy1cpnSNx2ADISkJGAjERkPPKuR-EfdvsAkVRXEAHl5UWE-ngBSgKmgUdeI24SRS0cVs1cqU1dy5OLuTwE1shSyMLMI-87I1sBgrnqmhDg_VAHa2D5qsdfworDv1GUM9WmlthZCT7NRPY3G5hMAfENbJ62PrP9Xb0LeoQNvGlrgIrfw09gITTK353jP_vvJ5-TezBnUXuG9ILsrn9szEtgVWt90JxGwHia8INmRcG4-HCG49nyN9ZxIEo
link.rule.ids 109,230,315,730,783,787,867,888,2228,4031,24330,27935,27936,27937,52731,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB61BQQviLvmXC7x5MT3eh-rqFECaVXSFFV9We3a62KpXUc4keDfM-MjaoQEEs8ey-v9Zme-tWe-BfggkILwOKa6MK9wI-JwChOh6ydBakKRYnxs1D6Pk8lZ9Pk8Pt-BuO-FaYr2M10O7NX1wJbfm9rK5XU27OvEhidHI2oejRJ_uAu3cL16Ub9J7_ZZ6JSiq3FPeDhEtx1gGB5QaiftX0xwqU-SzLd1WVXWbGWk3UJVf0bnG-lpu3TyRi4aP4D7HYlkB-1gH8KOsY_gzkXVfCJ_DPU3JNftWUmsKthGS5aRxnTNkKayr2tlm_YyDHbs8GdXDWtZr1HC9C-8T1251CLC5gv3ZDRnpWVjfDSbmWWZV0vqXbZsamsqCHkCi_HhYjRxu8MVXI0kZuVmwjdelIdFHqZBlhGtC0SCZLEwaS4UIqg9k5o0C3PP0HEcecE9k8e-QZLAg_Ap7FmcvH1gPveVFkWgQ09FPDBIQSNtRKpVIgo_Dx143060XLYCGpI2HoiMRGQkIiMJGQc-9ij8w24fIZLqEmOgPDsNSCHPI1HA2HPgHeEmSdbCUt3MpVrXtZyezuUB8kYeYx7mDnzqjIoKEcxU14aA4yMlrC3Ltz3-Etcc_UhR1lTrWlJvJXo1F8nfbHAyBUY4tHnW-szmvXoXdIBvedPGgDS_t6_gUmi0vzvXf_7fd76Bu5PF0UzOpsdfXsA9nL-g_aL0EvZWP9bmFXKslX7drKjfHikfrw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLa2IRAviPvK1dzEU7bEuTh-HGPVCtMYXTdNvFhOYo9KyKlIK8G_5ztJWq0gAc85URJ_5_IlOeczY68VKIhMU-oLC12QEIczKIRBlIncxipHfmzVPo-zw7Pkw0V6scF2l7MwxbSuvW1_4VNMzyrXxnUm41243w7S6Q6V6E12jZTDKBIn7z6t3rDgjqoTSM0C1C3Rd7r_fjaqTXedtWK06Uz9Z2K-UpnWuyavlKHhbXar5498rwP8Dtuw_i67_qVuv47fY805eHW3TRKvHV_JyHKSl244GCr_vDC-nSxDnuMHP_pGWM-X8iS8-InzzLeApkP4eBKc7I_51PMhLs2P7Gxa1TMaW_Z85BvqBbnPJsODyf5h0O-rEBTgL_OgVJENkyp2VZyLsiRGJ1QGnuhsXikD8IrQ5jYv4yq0tBNH5WRoqzSy4AdSxA_YlsfibTMeycgUyokiDk0ihQX7TAqr8sJkykVVPGCvuoXWs047Q9M7B-DQgEMDDk1wDNibJQr_sNsGRNpcIv3ps1NB4ngh6QGm4YC9JNw0KVp4apm5NIum0aPTsd4DZZQpSrAcsLe9kauBYGn6CQTcH4lgrVm-WOKvEW70D8V4Wy8aTWOVcGipsr_ZYDEVkhtsHnY-s3ouAXqVRzGOyDVvWhmQ3Pf6ET_92sp-08h0kkWP_mtNn7MbJ--H-mh0_PExu4mlEt13oydsa_59YZ-CSc2LZ230_AKndRCM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+Reference+Genes+for+Quantitative+Expression+Analysis+by+Real-Time+RT-PCR+in+Four+Lepidopteran+Insects&rft.jtitle=Journal+of+insect+science+%28Tucson%2C+Ariz.%29&rft.au=Teng%2C+Xiaolu&rft.au=Zhang%2C+Zan&rft.au=He%2C+Guiling&rft.au=Yang%2C+Liwen&rft.date=2012&rft.pub=University+of+Wisconsin+Library&rft.issn=1536-2442&rft.eissn=1536-2442&rft.volume=12&rft.issue=60&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1673%2F031.012.6001&rft.externalDocID=10.1673%2F031.012.6001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-2442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-2442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-2442&client=summon