Rhythmic Cilium in SCN Neuron is a Gatekeeper for the Intrinsic Circadian Clock

The internal circadian rhythm is controlled by the central pacemaker in the hypothalamic suprachiasmatic nucleus (SCN). SCN drives coherent and synchronized circadian oscillations via intercellular coupling, which are resistant to environmental perturbations. Here we report that primary cilium is a...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Hai-Qing, Tu, Sen, Li, Yu-Ling, Xu, Yu-Cheng, Zhang, Xiao-Xiao, Jian, Song Guang-Ping, Wu, Min, Zeng-Qing, Song, Hu Huai-Bin, Pei-Yao, Li, Li-Yun, Liang, Jin-Feng, Yuan, Xiao-Lin, Shen, Jia-Ning, Li, Qiu-Ying, Han, Wang, Kai, Zhang, Tao, Zhou, Tao, Ai-Ling, Li, Xue-Min, Zhang, Hui-Yan, Li
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 31.01.2022
Cold Spring Harbor Laboratory
Edition1.2
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The internal circadian rhythm is controlled by the central pacemaker in the hypothalamic suprachiasmatic nucleus (SCN). SCN drives coherent and synchronized circadian oscillations via intercellular coupling, which are resistant to environmental perturbations. Here we report that primary cilium is a critical device for intercellular coupling among SCN neurons and acts as a gatekeeper to maintain the internal clock in mice. A subset of SCN neurons, namely neuromedin S-producing (NMS) neurons, exhibit cilia dynamics with a pronounced circadian rhythmicity. Genetic ablation of ciliogenesis in NMS neurons enables a rapid phase shift of the internal clock under experimental jet lag conditions. The circadian rhythms of individual neurons in cilia deficient SCN slices lose their coherence following external perturbations. Rhythmic cilia dynamics drive oscillations of Sonic Hedgehog (Shh) signaling and oscillated expressions of multiple circadian genes in SCN neurons. Genetic and chemical inactivation of Shh signaling in NMS neurons phenocopies the effect of cilia ablation. Our findings establish ciliary signaling as a novel interneuronal coupling mechanism in the SCN and may lead to novel therapy of circadian disruption-linked diseases. Competing Interest Statement The authors have declared no competing interest.
AbstractList The internal circadian rhythm is controlled by the central pacemaker in the hypothalamic suprachiasmatic nucleus (SCN). SCN drives coherent and synchronized circadian oscillations via intercellular coupling, which are resistant to environmental perturbations. Here we report that primary cilium is a critical device for intercellular coupling among SCN neurons and acts as a gatekeeper to maintain the internal clock in mice. A subset of SCN neurons, namely neuromedin S-producing (NMS) neurons, exhibit cilia dynamics with a pronounced circadian rhythmicity. Genetic ablation of ciliogenesis in NMS neurons enables a rapid phase shift of the internal clock under experimental jet lag conditions. The circadian rhythms of individual neurons in cilia deficient SCN slices lose their coherence following external perturbations. Rhythmic cilia dynamics drive oscillations of Sonic Hedgehog (Shh) signaling and oscillated expressions of multiple circadian genes in SCN neurons. Genetic and chemical inactivation of Shh signaling in NMS neurons phenocopies the effect of cilia ablation. Our findings establish ciliary signaling as a novel interneuronal coupling mechanism in the SCN and may lead to novel therapy of circadian disruption-linked diseases. Competing Interest Statement The authors have declared no competing interest.
The internal circadian rhythm is controlled by the central pacemaker in the hypothalamic suprachiasmatic nucleus (SCN). SCN drives coherent and synchronized circadian oscillations via intercellular coupling, which are resistant to environmental perturbations. Here we report that primary cilium is a critical device for intercellular coupling among SCN neurons and acts as a gatekeeper to maintain the internal clock in mice. A subset of SCN neurons, namely neuromedin S-producing (NMS) neurons, exhibit cilia dynamics with a pronounced circadian rhythmicity. Genetic ablation of ciliogenesis in NMS neurons enables a rapid phase shift of the internal clock under experimental jet lag conditions. The circadian rhythms of individual neurons in cilia-deficient SCN slices lose their coherence following external perturbations. Rhythmic cilia dynamics drive oscillations of Sonic Hedgehog (Shh) signaling and oscillated expressions of multiple circadian genes in SCN neurons. Genetic and chemical inactivation of Shh signaling in NMS neurons phenocopies the effect of cilia ablation. Our findings establish ciliary signaling as a novel interneuronal coupling mechanism in the SCN and may lead to novel therapy of circadian disruption-linked diseases. Rhythmic cilium is a critical device for intercellular coupling among SCN neurons and acts as gatekeeper for the internal clock.
Author Wu, Min
Hu Huai-Bin
Xiao-Lin, Shen
Hai-Qing, Tu
Zhou, Tao
Pei-Yao, Li
Sen, Li
Song Guang-Ping
Zeng-Qing, Song
Xue-Min, Zhang
Yu-Ling, Xu
Jin-Feng, Yuan
Yu-Cheng, Zhang
Jia-Ning, Li
Li-Yun, Liang
Xiao-Xiao, Jian
Ai-Ling, Li
Qiu-Ying, Han
Hui-Yan, Li
Wang, Kai
Zhang, Tao
Author_xml – sequence: 1
  givenname: Tu
  surname: Hai-Qing
  fullname: Hai-Qing, Tu
– sequence: 2
  givenname: Li
  surname: Sen
  fullname: Sen, Li
– sequence: 3
  givenname: Xu
  surname: Yu-Ling
  fullname: Yu-Ling, Xu
– sequence: 4
  givenname: Zhang
  surname: Yu-Cheng
  fullname: Yu-Cheng, Zhang
– sequence: 5
  givenname: Jian
  surname: Xiao-Xiao
  fullname: Xiao-Xiao, Jian
– sequence: 6
  fullname: Song Guang-Ping
– sequence: 7
  givenname: Min
  surname: Wu
  fullname: Wu, Min
– sequence: 8
  givenname: Song
  surname: Zeng-Qing
  fullname: Zeng-Qing, Song
– sequence: 9
  fullname: Hu Huai-Bin
– sequence: 10
  givenname: Li
  surname: Pei-Yao
  fullname: Pei-Yao, Li
– sequence: 11
  givenname: Liang
  surname: Li-Yun
  fullname: Li-Yun, Liang
– sequence: 12
  givenname: Yuan
  surname: Jin-Feng
  fullname: Jin-Feng, Yuan
– sequence: 13
  givenname: Shen
  surname: Xiao-Lin
  fullname: Xiao-Lin, Shen
– sequence: 14
  givenname: Li
  surname: Jia-Ning
  fullname: Jia-Ning, Li
– sequence: 15
  givenname: Han
  surname: Qiu-Ying
  fullname: Qiu-Ying, Han
– sequence: 16
  givenname: Kai
  surname: Wang
  fullname: Wang, Kai
– sequence: 17
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
– sequence: 18
  givenname: Tao
  surname: Zhou
  fullname: Zhou, Tao
– sequence: 19
  givenname: Li
  surname: Ai-Ling
  fullname: Ai-Ling, Li
– sequence: 20
  givenname: Zhang
  surname: Xue-Min
  fullname: Xue-Min, Zhang
– sequence: 21
  givenname: Li
  surname: Hui-Yan
  fullname: Hui-Yan, Li
BookMark eNpNkEtPwzAQhC1UJErpD-BmiQuXBO_6kfiIIiiVqlaC3iMndVX3YRcnQfTfE1oOnHa0-mY0mlsy8MFbQu6BpQAMnpAhpgxSVKnIMi3yKzJEpTHJkcnBP31Dxk2zZYyhVsAzMSSL982p3RxcTQu3d92BOk8_ijmd2y4GT11DDZ2Y1u6sPdpI1yHSdmPp1LfR-eZsi7VZOeNpsQ_17o5cr82-seO_OyLL15dl8ZbMFpNp8TxLKgUyMVpCVctcCwNWrhCE4GubK60yBBRV_2FgLHDNMsxqgFxyjvW5tRWM8RF5vMRWLsRv91UeozuYeCp_pygZlKjKyxQ9-nBBjzF8drZpy23oou_L9RAKxlFLyX8AosBcPA
ContentType Paper
Copyright 2022. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2022.01.26.477948v1
2022, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2022. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2022.01.26.477948v1
– notice: 2022, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/2022.01.26.477948
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.2
ExternalDocumentID 2022.01.26.477948v2
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b615-a951bc5894a1e5d21443fe869672124bd2101ae1390727c1185332c29613e4003
IEDL.DBID BENPR
ISSN 2692-8205
IngestDate Tue Jan 07 18:57:43 EST 2025
Fri Jul 25 09:23:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b615-a951bc5894a1e5d21443fe869672124bd2101ae1390727c1185332c29613e4003
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
Competing Interest Statement: The authors have declared no competing interest.
OpenAccessLink https://www.proquest.com/docview/2624032955?pq-origsite=%requestingapplication%
PQID 2624032955
PQPubID 2050091
PageCount 24
ParticipantIDs biorxiv_primary_2022_01_26_477948
proquest_journals_2624032955
PublicationCentury 2000
PublicationDate 20220131
20220201
PublicationDateYYYYMMDD 2022-01-31
2022-02-01
PublicationDate_xml – month: 01
  year: 2022
  text: 20220131
  day: 31
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2022
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Liu (2022.01.26.477948v2.4) 2007; 129
Mohawk, Green, Takahashi (2022.01.26.477948v2.5) 2012; 35
Aton, Huettner, Straume, Herzog (2022.01.26.477948v2.16) 2006; 103
Pazour (2022.01.26.477948v2.29) 2000
Follit, Tuft, Fogarty, Pazour (2022.01.26.477948v2.30) 2006; 17
Rohatgi, Milenkovic, Scott (2022.01.26.477948v2.22) 2007; 317
Hildebrandt, Benzing, Katsanis (2022.01.26.477948v2.24) 2011; 364
Moore (2022.01.26.477948v2.37) 2016; 113
Takahashi (2022.01.26.477948v2.11) 2017; 18
Park (2022.01.26.477948v2.38) 2018
Lee (2022.01.26.477948v2.28) 2015; 85
Patke, Young, Axelrod (2022.01.26.477948v2.8) 2020; 21
Mure (2022.01.26.477948v2.1) 2018; 359
Koike (2022.01.26.477948v2.12) 2012; 338
Takahashi, Hong, Ko, McDearmon (2022.01.26.477948v2.6) 2008; 9
Hastings, Maywood, Brancaccio (2022.01.26.477948v2.3) 2019; 8
Hastings, Maywood, Brancaccio (2022.01.26.477948v2.2) 2018; 19
Maywood (2022.01.26.477948v2.20) 2006; 16
Corbit (2022.01.26.477948v2.35) 2005; 437
Brancaccio (2022.01.26.477948v2.10) 2019; 363
Sancar, Van Gelder (2022.01.26.477948v2.7) 2021; 371
Sun (2022.01.26.477948v2.25) 2021; 131
Kiessling, Eichele, Oster (2022.01.26.477948v2.39) 2010; 120
Xu (2022.01.26.477948v2.9) 2021
Zhang (2022.01.26.477948v2.34) 2009; 139
Zielinski, Moore, Troup, Halliday, Millar (2022.01.26.477948v2.40) 2014; 9
Buhr, Yoo, Takahashi (2022.01.26.477948v2.15) 2010; 330
Sonoda (2022.01.26.477948v2.14) 2020; 368
Mohawk, Takahashi (2022.01.26.477948v2.13) 2011; 34
Hilgendorf (2022.01.26.477948v2.23) 2019; 179
Yamaguchi (2022.01.26.477948v2.18) 2013; 342
Parsons (2022.01.26.477948v2.21) 2015; 162
Ray (2022.01.26.477948v2.27) 2020
Harmar (2022.01.26.477948v2.17) 2002; 109
Kovacs (2022.01.26.477948v2.32) 2008; 320
Wong (2022.01.26.477948v2.33) 2009; 15
Shan (2022.01.26.477948v2.19) 2020; 108
Kopinke, Roberson, Reiter (2022.01.26.477948v2.31) 2017; 170
Yoo (2022.01.26.477948v2.36) 2003
Bunger (2022.01.26.477948v2.26) 2000
References_xml – volume: 18
  start-page: 164
  year: 2017
  end-page: 179
  ident: 2022.01.26.477948v2.11
  article-title: Transcriptional architecture of the mammalian circadian clock
  publication-title: Nat Rev Genet
– volume: 19
  start-page: 453
  year: 2018
  end-page: 469
  ident: 2022.01.26.477948v2.2
  article-title: Generation of circadian rhythms in the suprachiasmatic nucleus
  publication-title: Nat Rev Neurosci
– year: 2000
  ident: 2022.01.26.477948v2.29
  article-title: Chlamydomonas IFT88 and Its Mouse Homologue, Polycystic Kidney Disease Gene Tg737, Are Required for Assembly of Cilia and Flagella
  publication-title: J Cell Biol
– year: 2000
  ident: 2022.01.26.477948v2.26
  article-title: Mop3 Is an Essential Component of the Master Circadian Pacemaker in Mammals
  publication-title: Cell
– volume: 109
  start-page: 497
  year: 2002
  end-page: 508
  ident: 2022.01.26.477948v2.17
  article-title: The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei
  publication-title: Cell
– volume: 437
  start-page: 1018
  year: 2005
  end-page: 1021
  ident: 2022.01.26.477948v2.35
  article-title: Vertebrate Smoothened functions at the primary cilium
  publication-title: Nature
– volume: 170
  start-page: 340
  year: 2017
  end-page: 351 e312
  ident: 2022.01.26.477948v2.31
  article-title: Ciliary Hedgehog Signaling Restricts Injury-Induced Adipogenesis
  publication-title: Cell
– year: 2021
  ident: 2022.01.26.477948v2.9
  article-title: NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior
  publication-title: Neuron
– volume: 179
  start-page: 1289
  year: 2019
  end-page: 1305 e1221
  ident: 2022.01.26.477948v2.23
  article-title: Omega-3 Fatty Acids Activate Ciliary FFAR4 to Control Adipogenesis
  publication-title: Cell
– volume: 35
  start-page: 445
  year: 2012
  end-page: 462
  ident: 2022.01.26.477948v2.5
  article-title: Central and peripheral circadian clocks in mammals
  publication-title: Annu Rev Neurosci
– volume: 113
  start-page: 13069
  year: 2016
  end-page: 13074
  ident: 2022.01.26.477948v2.37
  article-title: Cilia have high cAMP levels that are inhibited by Sonic Hedgehog-regulated calcium dynamics
  publication-title: Proc Natl Acad Sci U S A
– volume: 368
  start-page: 527
  year: 2020
  end-page: 531
  ident: 2022.01.26.477948v2.14
  article-title: A noncanonical inhibitory circuit dampens behavioral sensitivity to light
  publication-title: Science
– volume: 16
  start-page: 599
  year: 2006
  end-page: 605
  ident: 2022.01.26.477948v2.20
  article-title: Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling
  publication-title: Curr Biol
– volume: 139
  start-page: 199
  year: 2009
  end-page: 210
  ident: 2022.01.26.477948v2.34
  article-title: A genome-wide RNAi screen for modifiers of the circadian clock in human cells
  publication-title: Cell
– volume: 21
  start-page: 67
  year: 2020
  end-page: 84
  ident: 2022.01.26.477948v2.8
  article-title: Molecular mechanisms and physiological importance of circadian rhythms
  publication-title: Nat Rev Mol Cell Biol
– volume: 129
  start-page: 605
  year: 2007
  end-page: 616
  ident: 2022.01.26.477948v2.4
  article-title: Intercellular coupling confers robustness against mutations in the SCN circadian clock network
  publication-title: Cell
– volume: 363
  start-page: 187
  year: 2019
  end-page: 192
  ident: 2022.01.26.477948v2.10
  article-title: Cell-autonomous clock of astrocytes drives circadian behavior in mammals
  publication-title: Science
– volume: 9
  start-page: 764
  year: 2008
  end-page: 775
  ident: 2022.01.26.477948v2.6
  article-title: The genetics of mammalian circadian order and disorder: implications for physiology and disease
  publication-title: Nat Rev Genet
– volume: 85
  start-page: 1086
  year: 2015
  end-page: 1102
  ident: 2022.01.26.477948v2.28
  article-title: Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms
  publication-title: Neuron
– volume: 371
  year: 2021
  ident: 2022.01.26.477948v2.7
  article-title: Clocks, cancer, and chronochemotherapy
  publication-title: Science
– volume: 338
  start-page: 349
  year: 2012
  end-page: 354
  ident: 2022.01.26.477948v2.12
  article-title: Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
  publication-title: Science
– year: 2020
  ident: 2022.01.26.477948v2.27
  article-title: Circadian rhythms in the absence of the clock gene Bmal1
  publication-title: Science
– volume: 120
  start-page: 2600
  year: 2010
  end-page: 2609
  ident: 2022.01.26.477948v2.39
  article-title: Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag
  publication-title: J Clin Invest
– volume: 342
  start-page: 85
  year: 2013
  end-page: 90
  ident: 2022.01.26.477948v2.18
  article-title: Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag
  publication-title: Science
– volume: 317
  start-page: 372
  year: 2007
  end-page: 376
  ident: 2022.01.26.477948v2.22
  article-title: Patched1 regulates hedgehog signaling at the primary cilium
  publication-title: Science
– volume: 17
  start-page: 3781
  year: 2006
  end-page: 3792
  ident: 2022.01.26.477948v2.30
  article-title: The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly
  publication-title: Mol Biol Cell
– volume: 320
  start-page: 1777
  year: 2008
  end-page: 1781
  ident: 2022.01.26.477948v2.32
  article-title: Beta-arrestin-mediated localization of smoothened to the primary cilium
  publication-title: Science
– volume: 162
  start-page: 607
  year: 2015
  end-page: 621
  ident: 2022.01.26.477948v2.21
  article-title: The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis
  publication-title: Cell
– volume: 9
  start-page: e96462
  year: 2014
  ident: 2022.01.26.477948v2.40
  article-title: Strengths and limitations of period estimation methods for circadian data
  publication-title: PLoS One
– year: 2003
  ident: 2022.01.26.477948v2.36
  article-title: PERIOD2LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues
  publication-title: PNAS
– volume: 359
  year: 2018
  ident: 2022.01.26.477948v2.1
  article-title: Diurnal transcriptome atlas of a primate across major neural and peripheral tissues
  publication-title: Science
– volume: 8
  year: 2019
  ident: 2022.01.26.477948v2.3
  article-title: The Mammalian Circadian Timing System and the Suprachiasmatic Nucleus as Its Pacemaker
  publication-title: Biology
– volume: 131
  year: 2021
  ident: 2022.01.26.477948v2.25
  article-title: Ventromedial hypothalamic primary cilia control energy and skeletal homeostasis
  publication-title: J Clin Invest
– year: 2018
  ident: 2022.01.26.477948v2.38
  article-title: Protection of tissue physicochemical properties using polyfunctional crosslinkers
  publication-title: Nat Biotechnol
– volume: 103
  start-page: 19188
  year: 2006
  end-page: 19193
  ident: 2022.01.26.477948v2.16
  article-title: GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons
  publication-title: Proc Natl Acad Sci U S A
– volume: 330
  start-page: 379
  year: 2010
  end-page: 385
  ident: 2022.01.26.477948v2.15
  article-title: Temperature as a universal resetting cue for mammalian circadian oscillators
  publication-title: Science
– volume: 108
  start-page: 164
  year: 2020
  end-page: 179 e167
  ident: 2022.01.26.477948v2.19
  article-title: Dual-Color Single-Cell Imaging of the Suprachiasmatic Nucleus Reveals a Circadian Role in Network Synchrony
  publication-title: Neuron
– volume: 364
  start-page: 1533
  year: 2011
  end-page: 1543
  ident: 2022.01.26.477948v2.24
  article-title: Ciliopathies
  publication-title: N Engl J Med
– volume: 34
  start-page: 349
  year: 2011
  end-page: 358
  ident: 2022.01.26.477948v2.13
  article-title: Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators
  publication-title: Trends Neurosci
– volume: 15
  start-page: 1055
  year: 2009
  end-page: 1061
  ident: 2022.01.26.477948v2.33
  article-title: Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis
  publication-title: Nat Med
SSID ssj0002961374
Score 1.6474582
SecondaryResourceType preprint
Snippet The internal circadian rhythm is controlled by the central pacemaker in the hypothalamic suprachiasmatic nucleus (SCN). SCN drives coherent and synchronized...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Ablation
Brain slice preparation
Cilia
Circadian rhythm
Circadian rhythms
Hedgehog protein
Hypothalamus
Neuromedin
Neurons
Neuroscience
Oscillations
Pacemakers
Suprachiasmatic nucleus
SummonAdditionalLinks – databaseName: bioRxiv
  dbid: FX.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA66IfjmT5xOieBrR5OmSfNcHFNwik7YW0nTlIW5bnSduP_eS1tF0AefCimXkGsu911y_Q6hG5ErRjRhni-EggCFM09mKvK4ppKb3A-ocP8OP4z56JXdT8Ppj1JfLq0ytcvyw77X9_guYRt238a4feJidep4NikfMAFrKdpFXXgwV7VhOB18H6_ASCQQrL3H_FMSEG870q99uHYuwwPUfVIrUx6iHVMcob2mOuT2GD0-z7bVbGE1ju2b3SywLfBLPMY1n0aB7Ror7A6_5saAOAb0iQHN4buiKm2xrsVKXVMP4Bhc1vwETYa3k3jktfUPvBRwhqcA_KQ6jCRTxISZ4zYLchNxySFqoyyFFp8oAxDOBxCiifO8AdX1zA2YZnCKOsWyMGcIR7nIjMw1k8SwzBgpwLKJiYIsiDjP0x66blWRrBqSi8SpK_FJQnnSqKuH-l9KStp1voa3js-PyjA8_0cXF2jftTVJz33UqcqNuQSfXqVX9df7BA2nmBA
  priority: 102
  providerName: Cold Spring Harbor Laboratory Press
Title Rhythmic Cilium in SCN Neuron is a Gatekeeper for the Intrinsic Circadian Clock
URI https://www.proquest.com/docview/2624032955
https://www.biorxiv.org/content/10.1101/2022.01.26.477948
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA5uQ_DNK17miOBrZ5OmafIkWDam4Bxzwt5Km6aszHWz7cT9e0-6Th8EX1vSwsm5fOdL-x2Ebr0kZEQRZtmeF0KDwpkl41BYXFHJdWI71DP_Dj8P-eCNPU3daU24FfVnlbucWCXqeKkMR35HuVGOo9J171cflpkaZU5X6xEaDdSCFCyg-Wo99Iaj8Q_LAi8kTiXFTLmE0Ke2Wx9tgiuaxp8a0U7Ku8wDxxQAgqN0mX-ln39Sc1Vv-oeoNQpXOj9Cezo7RvvbgZGbE_Qynm3K2SJV2E_f0_UCpxl-9Ye4ktjIcFrgEBs-bK41LMcASDEAPPyYlXmaFdWyXFVqBNiHKjY_RZN-b-IPrHokghUB9LBCwEORcoVkIdFubOTOnEQLLjk0cpRFcMUmoQZUZwMuUcQUY4eqygoaotU5Q81smelzhEXixVomikmiWay19CDYiRZO7AjOk-gC3dSmCFZb3YvAmCuwSUB5sDXXBWrvjBTUrl8Evxt1-f_tK3Rgnmj4DIe0UbPM1_oaKnwZdept7KBGf9r9BntEoFE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BooregBZBS8silaOp9-G191BVIoASHgFBKnFb-TEWFsUJTijkR_EfO-s4cEDixtX2jqzZ2flmZne_AfgR5rHiKVeeH4YxJShaeSaLI0-nwmjMfSlCd3f4tK-7f9TRVXC1AE_zuzDuWOXcJ9aOOhumrkb-U2jHHCdMEPwe3Xmua5TbXZ230JiZxTFOHyhlG__q7dP87ghxeDDodL2mq4CXEHp7MYUUSRpERsUcg8wxhskcI2005UJCJfTE5zFSYOQTtKfc4ZkU7s-5RDJ4SWIXoa0kZTItaO8d9M8vnos69Vc187PQhjyN8INmJ5WEujqDcByhQu-qkNZBRDF3Ugyrx-LfKySo4e1wGdrn8QirFVjAchU-zPpTTj_B2cX1dHJ9W6SsU_wt7m9ZUbLLTp_VjB4lK8YsZq78doNIwxnFv4ziSdYrJ1VRjuthVVqTH7AOgebNZxi8h67WoFUOS1wHFuVhhiZPleGoMkQTkm_hGMlMRlrnyQZsN6qwoxnNhnXqsj63QtuZujZgc64k26y0sX2xiy9vv96Cpe7g9MSe9PrHX-Gjk-5KKZJvQmtS3eM3Ci4myfdmShnYdzai_6hh14s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gE4gbTzEYECSunZo0TZtzodp4jAmGtFvVhyuqsW7qOsT-PU5bEBIcuDZKojp2_NlxvhBy5aShYDEThuk4IQYoUhgqCV1DxlxJSE2LO_ru8MNQ9l_E7cSe_LgLo8sqo2xefGTv1Tm-LtjG3bc2bpPpWJ1rnk0ue8JBXXJ7Ok3dWyTpJmlrsjOt2f6k951nwSmZ5YjmQPPPIRD6NlP-2pArL-PvkvYoXECxRzYg3ydb9TOR6wPy-PS6Ll9nWUy97C1bzWiW02dvSCtijZxmSxpSnQWbAmB3ijCUIqyjg7wssnxZdSviioOAeui7podk7N-Mvb7RPIRgRAg4jBBRUBTbrhIhAzvRJGdWCq5UEsM3LiL8YrIQEMuZiEZipl2wxePqzwFt1DoirXyewzGhbuokoNJYKAYiAVAOmjgD10osV8o06pDLRhTBoma7CLS4ApMFXAa1uDqk-yWkoFH4JbZqYj-ubPvkH0NckO3RtR_cD4Z3p2RHN9eF0F3SKosVnKGfL6PzaiE_AfWAnfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhythmic+Cilium+in+SCN+Neuron+is+a+Gatekeeper+for+the+Intrinsic+Circadian+Clock&rft.jtitle=bioRxiv&rft.au=Hai-Qing%2C+Tu&rft.au=Sen%2C+Li&rft.au=Yu-Ling%2C+Xu&rft.au=Yu-Cheng%2C+Zhang&rft.date=2022-01-31&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2022.01.26.477948
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon