Rhythmic Cilium in SCN Neuron is a Gatekeeper for the Intrinsic Circadian Clock
The internal circadian rhythm is controlled by the central pacemaker in the hypothalamic suprachiasmatic nucleus (SCN). SCN drives coherent and synchronized circadian oscillations via intercellular coupling, which are resistant to environmental perturbations. Here we report that primary cilium is a...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
31.01.2022
Cold Spring Harbor Laboratory |
Edition | 1.2 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The internal circadian rhythm is controlled by the central pacemaker in the hypothalamic suprachiasmatic nucleus (SCN). SCN drives coherent and synchronized circadian oscillations via intercellular coupling, which are resistant to environmental perturbations. Here we report that primary cilium is a critical device for intercellular coupling among SCN neurons and acts as a gatekeeper to maintain the internal clock in mice. A subset of SCN neurons, namely neuromedin S-producing (NMS) neurons, exhibit cilia dynamics with a pronounced circadian rhythmicity. Genetic ablation of ciliogenesis in NMS neurons enables a rapid phase shift of the internal clock under experimental jet lag conditions. The circadian rhythms of individual neurons in cilia deficient SCN slices lose their coherence following external perturbations. Rhythmic cilia dynamics drive oscillations of Sonic Hedgehog (Shh) signaling and oscillated expressions of multiple circadian genes in SCN neurons. Genetic and chemical inactivation of Shh signaling in NMS neurons phenocopies the effect of cilia ablation. Our findings establish ciliary signaling as a novel interneuronal coupling mechanism in the SCN and may lead to novel therapy of circadian disruption-linked diseases. Competing Interest Statement The authors have declared no competing interest. |
---|---|
AbstractList | The internal circadian rhythm is controlled by the central pacemaker in the hypothalamic suprachiasmatic nucleus (SCN). SCN drives coherent and synchronized circadian oscillations via intercellular coupling, which are resistant to environmental perturbations. Here we report that primary cilium is a critical device for intercellular coupling among SCN neurons and acts as a gatekeeper to maintain the internal clock in mice. A subset of SCN neurons, namely neuromedin S-producing (NMS) neurons, exhibit cilia dynamics with a pronounced circadian rhythmicity. Genetic ablation of ciliogenesis in NMS neurons enables a rapid phase shift of the internal clock under experimental jet lag conditions. The circadian rhythms of individual neurons in cilia deficient SCN slices lose their coherence following external perturbations. Rhythmic cilia dynamics drive oscillations of Sonic Hedgehog (Shh) signaling and oscillated expressions of multiple circadian genes in SCN neurons. Genetic and chemical inactivation of Shh signaling in NMS neurons phenocopies the effect of cilia ablation. Our findings establish ciliary signaling as a novel interneuronal coupling mechanism in the SCN and may lead to novel therapy of circadian disruption-linked diseases. Competing Interest Statement The authors have declared no competing interest. The internal circadian rhythm is controlled by the central pacemaker in the hypothalamic suprachiasmatic nucleus (SCN). SCN drives coherent and synchronized circadian oscillations via intercellular coupling, which are resistant to environmental perturbations. Here we report that primary cilium is a critical device for intercellular coupling among SCN neurons and acts as a gatekeeper to maintain the internal clock in mice. A subset of SCN neurons, namely neuromedin S-producing (NMS) neurons, exhibit cilia dynamics with a pronounced circadian rhythmicity. Genetic ablation of ciliogenesis in NMS neurons enables a rapid phase shift of the internal clock under experimental jet lag conditions. The circadian rhythms of individual neurons in cilia-deficient SCN slices lose their coherence following external perturbations. Rhythmic cilia dynamics drive oscillations of Sonic Hedgehog (Shh) signaling and oscillated expressions of multiple circadian genes in SCN neurons. Genetic and chemical inactivation of Shh signaling in NMS neurons phenocopies the effect of cilia ablation. Our findings establish ciliary signaling as a novel interneuronal coupling mechanism in the SCN and may lead to novel therapy of circadian disruption-linked diseases. Rhythmic cilium is a critical device for intercellular coupling among SCN neurons and acts as gatekeeper for the internal clock. |
Author | Wu, Min Hu Huai-Bin Xiao-Lin, Shen Hai-Qing, Tu Zhou, Tao Pei-Yao, Li Sen, Li Song Guang-Ping Zeng-Qing, Song Xue-Min, Zhang Yu-Ling, Xu Jin-Feng, Yuan Yu-Cheng, Zhang Jia-Ning, Li Li-Yun, Liang Xiao-Xiao, Jian Ai-Ling, Li Qiu-Ying, Han Hui-Yan, Li Wang, Kai Zhang, Tao |
Author_xml | – sequence: 1 givenname: Tu surname: Hai-Qing fullname: Hai-Qing, Tu – sequence: 2 givenname: Li surname: Sen fullname: Sen, Li – sequence: 3 givenname: Xu surname: Yu-Ling fullname: Yu-Ling, Xu – sequence: 4 givenname: Zhang surname: Yu-Cheng fullname: Yu-Cheng, Zhang – sequence: 5 givenname: Jian surname: Xiao-Xiao fullname: Xiao-Xiao, Jian – sequence: 6 fullname: Song Guang-Ping – sequence: 7 givenname: Min surname: Wu fullname: Wu, Min – sequence: 8 givenname: Song surname: Zeng-Qing fullname: Zeng-Qing, Song – sequence: 9 fullname: Hu Huai-Bin – sequence: 10 givenname: Li surname: Pei-Yao fullname: Pei-Yao, Li – sequence: 11 givenname: Liang surname: Li-Yun fullname: Li-Yun, Liang – sequence: 12 givenname: Yuan surname: Jin-Feng fullname: Jin-Feng, Yuan – sequence: 13 givenname: Shen surname: Xiao-Lin fullname: Xiao-Lin, Shen – sequence: 14 givenname: Li surname: Jia-Ning fullname: Jia-Ning, Li – sequence: 15 givenname: Han surname: Qiu-Ying fullname: Qiu-Ying, Han – sequence: 16 givenname: Kai surname: Wang fullname: Wang, Kai – sequence: 17 givenname: Tao surname: Zhang fullname: Zhang, Tao – sequence: 18 givenname: Tao surname: Zhou fullname: Zhou, Tao – sequence: 19 givenname: Li surname: Ai-Ling fullname: Ai-Ling, Li – sequence: 20 givenname: Zhang surname: Xue-Min fullname: Xue-Min, Zhang – sequence: 21 givenname: Li surname: Hui-Yan fullname: Hui-Yan, Li |
BookMark | eNpNkEtPwzAQhC1UJErpD-BmiQuXBO_6kfiIIiiVqlaC3iMndVX3YRcnQfTfE1oOnHa0-mY0mlsy8MFbQu6BpQAMnpAhpgxSVKnIMi3yKzJEpTHJkcnBP31Dxk2zZYyhVsAzMSSL982p3RxcTQu3d92BOk8_ijmd2y4GT11DDZ2Y1u6sPdpI1yHSdmPp1LfR-eZsi7VZOeNpsQ_17o5cr82-seO_OyLL15dl8ZbMFpNp8TxLKgUyMVpCVctcCwNWrhCE4GubK60yBBRV_2FgLHDNMsxqgFxyjvW5tRWM8RF5vMRWLsRv91UeozuYeCp_pygZlKjKyxQ9-nBBjzF8drZpy23oou_L9RAKxlFLyX8AosBcPA |
ContentType | Paper |
Copyright | 2022. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2022.01.26.477948v1 2022, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2022. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2022.01.26.477948v1 – notice: 2022, Posted by Cold Spring Harbor Laboratory |
DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
DOI | 10.1101/2022.01.26.477948 |
DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.2 |
ExternalDocumentID | 2022.01.26.477948v2 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
ID | FETCH-LOGICAL-b615-a951bc5894a1e5d21443fe869672124bd2101ae1390727c1185332c29613e4003 |
IEDL.DBID | BENPR |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 18:57:43 EST 2025 Fri Jul 25 09:23:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
License | The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b615-a951bc5894a1e5d21443fe869672124bd2101ae1390727c1185332c29613e4003 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 Competing Interest Statement: The authors have declared no competing interest. |
OpenAccessLink | https://www.proquest.com/docview/2624032955?pq-origsite=%requestingapplication% |
PQID | 2624032955 |
PQPubID | 2050091 |
PageCount | 24 |
ParticipantIDs | biorxiv_primary_2022_01_26_477948 proquest_journals_2624032955 |
PublicationCentury | 2000 |
PublicationDate | 20220131 20220201 |
PublicationDateYYYYMMDD | 2022-01-31 2022-02-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 20220131 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Cold Spring Harbor |
PublicationPlace_xml | – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationYear | 2022 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | Liu (2022.01.26.477948v2.4) 2007; 129 Mohawk, Green, Takahashi (2022.01.26.477948v2.5) 2012; 35 Aton, Huettner, Straume, Herzog (2022.01.26.477948v2.16) 2006; 103 Pazour (2022.01.26.477948v2.29) 2000 Follit, Tuft, Fogarty, Pazour (2022.01.26.477948v2.30) 2006; 17 Rohatgi, Milenkovic, Scott (2022.01.26.477948v2.22) 2007; 317 Hildebrandt, Benzing, Katsanis (2022.01.26.477948v2.24) 2011; 364 Moore (2022.01.26.477948v2.37) 2016; 113 Takahashi (2022.01.26.477948v2.11) 2017; 18 Park (2022.01.26.477948v2.38) 2018 Lee (2022.01.26.477948v2.28) 2015; 85 Patke, Young, Axelrod (2022.01.26.477948v2.8) 2020; 21 Mure (2022.01.26.477948v2.1) 2018; 359 Koike (2022.01.26.477948v2.12) 2012; 338 Takahashi, Hong, Ko, McDearmon (2022.01.26.477948v2.6) 2008; 9 Hastings, Maywood, Brancaccio (2022.01.26.477948v2.3) 2019; 8 Hastings, Maywood, Brancaccio (2022.01.26.477948v2.2) 2018; 19 Maywood (2022.01.26.477948v2.20) 2006; 16 Corbit (2022.01.26.477948v2.35) 2005; 437 Brancaccio (2022.01.26.477948v2.10) 2019; 363 Sancar, Van Gelder (2022.01.26.477948v2.7) 2021; 371 Sun (2022.01.26.477948v2.25) 2021; 131 Kiessling, Eichele, Oster (2022.01.26.477948v2.39) 2010; 120 Xu (2022.01.26.477948v2.9) 2021 Zhang (2022.01.26.477948v2.34) 2009; 139 Zielinski, Moore, Troup, Halliday, Millar (2022.01.26.477948v2.40) 2014; 9 Buhr, Yoo, Takahashi (2022.01.26.477948v2.15) 2010; 330 Sonoda (2022.01.26.477948v2.14) 2020; 368 Mohawk, Takahashi (2022.01.26.477948v2.13) 2011; 34 Hilgendorf (2022.01.26.477948v2.23) 2019; 179 Yamaguchi (2022.01.26.477948v2.18) 2013; 342 Parsons (2022.01.26.477948v2.21) 2015; 162 Ray (2022.01.26.477948v2.27) 2020 Harmar (2022.01.26.477948v2.17) 2002; 109 Kovacs (2022.01.26.477948v2.32) 2008; 320 Wong (2022.01.26.477948v2.33) 2009; 15 Shan (2022.01.26.477948v2.19) 2020; 108 Kopinke, Roberson, Reiter (2022.01.26.477948v2.31) 2017; 170 Yoo (2022.01.26.477948v2.36) 2003 Bunger (2022.01.26.477948v2.26) 2000 |
References_xml | – volume: 18 start-page: 164 year: 2017 end-page: 179 ident: 2022.01.26.477948v2.11 article-title: Transcriptional architecture of the mammalian circadian clock publication-title: Nat Rev Genet – volume: 19 start-page: 453 year: 2018 end-page: 469 ident: 2022.01.26.477948v2.2 article-title: Generation of circadian rhythms in the suprachiasmatic nucleus publication-title: Nat Rev Neurosci – year: 2000 ident: 2022.01.26.477948v2.29 article-title: Chlamydomonas IFT88 and Its Mouse Homologue, Polycystic Kidney Disease Gene Tg737, Are Required for Assembly of Cilia and Flagella publication-title: J Cell Biol – year: 2000 ident: 2022.01.26.477948v2.26 article-title: Mop3 Is an Essential Component of the Master Circadian Pacemaker in Mammals publication-title: Cell – volume: 109 start-page: 497 year: 2002 end-page: 508 ident: 2022.01.26.477948v2.17 article-title: The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei publication-title: Cell – volume: 437 start-page: 1018 year: 2005 end-page: 1021 ident: 2022.01.26.477948v2.35 article-title: Vertebrate Smoothened functions at the primary cilium publication-title: Nature – volume: 170 start-page: 340 year: 2017 end-page: 351 e312 ident: 2022.01.26.477948v2.31 article-title: Ciliary Hedgehog Signaling Restricts Injury-Induced Adipogenesis publication-title: Cell – year: 2021 ident: 2022.01.26.477948v2.9 article-title: NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior publication-title: Neuron – volume: 179 start-page: 1289 year: 2019 end-page: 1305 e1221 ident: 2022.01.26.477948v2.23 article-title: Omega-3 Fatty Acids Activate Ciliary FFAR4 to Control Adipogenesis publication-title: Cell – volume: 35 start-page: 445 year: 2012 end-page: 462 ident: 2022.01.26.477948v2.5 article-title: Central and peripheral circadian clocks in mammals publication-title: Annu Rev Neurosci – volume: 113 start-page: 13069 year: 2016 end-page: 13074 ident: 2022.01.26.477948v2.37 article-title: Cilia have high cAMP levels that are inhibited by Sonic Hedgehog-regulated calcium dynamics publication-title: Proc Natl Acad Sci U S A – volume: 368 start-page: 527 year: 2020 end-page: 531 ident: 2022.01.26.477948v2.14 article-title: A noncanonical inhibitory circuit dampens behavioral sensitivity to light publication-title: Science – volume: 16 start-page: 599 year: 2006 end-page: 605 ident: 2022.01.26.477948v2.20 article-title: Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling publication-title: Curr Biol – volume: 139 start-page: 199 year: 2009 end-page: 210 ident: 2022.01.26.477948v2.34 article-title: A genome-wide RNAi screen for modifiers of the circadian clock in human cells publication-title: Cell – volume: 21 start-page: 67 year: 2020 end-page: 84 ident: 2022.01.26.477948v2.8 article-title: Molecular mechanisms and physiological importance of circadian rhythms publication-title: Nat Rev Mol Cell Biol – volume: 129 start-page: 605 year: 2007 end-page: 616 ident: 2022.01.26.477948v2.4 article-title: Intercellular coupling confers robustness against mutations in the SCN circadian clock network publication-title: Cell – volume: 363 start-page: 187 year: 2019 end-page: 192 ident: 2022.01.26.477948v2.10 article-title: Cell-autonomous clock of astrocytes drives circadian behavior in mammals publication-title: Science – volume: 9 start-page: 764 year: 2008 end-page: 775 ident: 2022.01.26.477948v2.6 article-title: The genetics of mammalian circadian order and disorder: implications for physiology and disease publication-title: Nat Rev Genet – volume: 85 start-page: 1086 year: 2015 end-page: 1102 ident: 2022.01.26.477948v2.28 article-title: Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms publication-title: Neuron – volume: 371 year: 2021 ident: 2022.01.26.477948v2.7 article-title: Clocks, cancer, and chronochemotherapy publication-title: Science – volume: 338 start-page: 349 year: 2012 end-page: 354 ident: 2022.01.26.477948v2.12 article-title: Transcriptional architecture and chromatin landscape of the core circadian clock in mammals publication-title: Science – year: 2020 ident: 2022.01.26.477948v2.27 article-title: Circadian rhythms in the absence of the clock gene Bmal1 publication-title: Science – volume: 120 start-page: 2600 year: 2010 end-page: 2609 ident: 2022.01.26.477948v2.39 article-title: Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag publication-title: J Clin Invest – volume: 342 start-page: 85 year: 2013 end-page: 90 ident: 2022.01.26.477948v2.18 article-title: Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag publication-title: Science – volume: 317 start-page: 372 year: 2007 end-page: 376 ident: 2022.01.26.477948v2.22 article-title: Patched1 regulates hedgehog signaling at the primary cilium publication-title: Science – volume: 17 start-page: 3781 year: 2006 end-page: 3792 ident: 2022.01.26.477948v2.30 article-title: The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly publication-title: Mol Biol Cell – volume: 320 start-page: 1777 year: 2008 end-page: 1781 ident: 2022.01.26.477948v2.32 article-title: Beta-arrestin-mediated localization of smoothened to the primary cilium publication-title: Science – volume: 162 start-page: 607 year: 2015 end-page: 621 ident: 2022.01.26.477948v2.21 article-title: The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis publication-title: Cell – volume: 9 start-page: e96462 year: 2014 ident: 2022.01.26.477948v2.40 article-title: Strengths and limitations of period estimation methods for circadian data publication-title: PLoS One – year: 2003 ident: 2022.01.26.477948v2.36 article-title: PERIOD2LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues publication-title: PNAS – volume: 359 year: 2018 ident: 2022.01.26.477948v2.1 article-title: Diurnal transcriptome atlas of a primate across major neural and peripheral tissues publication-title: Science – volume: 8 year: 2019 ident: 2022.01.26.477948v2.3 article-title: The Mammalian Circadian Timing System and the Suprachiasmatic Nucleus as Its Pacemaker publication-title: Biology – volume: 131 year: 2021 ident: 2022.01.26.477948v2.25 article-title: Ventromedial hypothalamic primary cilia control energy and skeletal homeostasis publication-title: J Clin Invest – year: 2018 ident: 2022.01.26.477948v2.38 article-title: Protection of tissue physicochemical properties using polyfunctional crosslinkers publication-title: Nat Biotechnol – volume: 103 start-page: 19188 year: 2006 end-page: 19193 ident: 2022.01.26.477948v2.16 article-title: GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons publication-title: Proc Natl Acad Sci U S A – volume: 330 start-page: 379 year: 2010 end-page: 385 ident: 2022.01.26.477948v2.15 article-title: Temperature as a universal resetting cue for mammalian circadian oscillators publication-title: Science – volume: 108 start-page: 164 year: 2020 end-page: 179 e167 ident: 2022.01.26.477948v2.19 article-title: Dual-Color Single-Cell Imaging of the Suprachiasmatic Nucleus Reveals a Circadian Role in Network Synchrony publication-title: Neuron – volume: 364 start-page: 1533 year: 2011 end-page: 1543 ident: 2022.01.26.477948v2.24 article-title: Ciliopathies publication-title: N Engl J Med – volume: 34 start-page: 349 year: 2011 end-page: 358 ident: 2022.01.26.477948v2.13 article-title: Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators publication-title: Trends Neurosci – volume: 15 start-page: 1055 year: 2009 end-page: 1061 ident: 2022.01.26.477948v2.33 article-title: Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis publication-title: Nat Med |
SSID | ssj0002961374 |
Score | 1.6474582 |
SecondaryResourceType | preprint |
Snippet | The internal circadian rhythm is controlled by the central pacemaker in the hypothalamic suprachiasmatic nucleus (SCN). SCN drives coherent and synchronized... |
SourceID | biorxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Ablation Brain slice preparation Cilia Circadian rhythm Circadian rhythms Hedgehog protein Hypothalamus Neuromedin Neurons Neuroscience Oscillations Pacemakers Suprachiasmatic nucleus |
SummonAdditionalLinks | – databaseName: bioRxiv dbid: FX. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA66IfjmT5xOieBrR5OmSfNcHFNwik7YW0nTlIW5bnSduP_eS1tF0AefCimXkGsu911y_Q6hG5ErRjRhni-EggCFM09mKvK4ppKb3A-ocP8OP4z56JXdT8Ppj1JfLq0ytcvyw77X9_guYRt238a4feJidep4NikfMAFrKdpFXXgwV7VhOB18H6_ASCQQrL3H_FMSEG870q99uHYuwwPUfVIrUx6iHVMcob2mOuT2GD0-z7bVbGE1ju2b3SywLfBLPMY1n0aB7Ror7A6_5saAOAb0iQHN4buiKm2xrsVKXVMP4Bhc1vwETYa3k3jktfUPvBRwhqcA_KQ6jCRTxISZ4zYLchNxySFqoyyFFp8oAxDOBxCiifO8AdX1zA2YZnCKOsWyMGcIR7nIjMw1k8SwzBgpwLKJiYIsiDjP0x66blWRrBqSi8SpK_FJQnnSqKuH-l9KStp1voa3js-PyjA8_0cXF2jftTVJz33UqcqNuQSfXqVX9df7BA2nmBA priority: 102 providerName: Cold Spring Harbor Laboratory Press |
Title | Rhythmic Cilium in SCN Neuron is a Gatekeeper for the Intrinsic Circadian Clock |
URI | https://www.proquest.com/docview/2624032955 https://www.biorxiv.org/content/10.1101/2022.01.26.477948 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA5uQ_DNK17miOBrZ5OmafIkWDam4Bxzwt5Km6aszHWz7cT9e0-6Th8EX1vSwsm5fOdL-x2Ebr0kZEQRZtmeF0KDwpkl41BYXFHJdWI71DP_Dj8P-eCNPU3daU24FfVnlbucWCXqeKkMR35HuVGOo9J171cflpkaZU5X6xEaDdSCFCyg-Wo99Iaj8Q_LAi8kTiXFTLmE0Ke2Wx9tgiuaxp8a0U7Ku8wDxxQAgqN0mX-ln39Sc1Vv-oeoNQpXOj9Cezo7RvvbgZGbE_Qynm3K2SJV2E_f0_UCpxl-9Ye4ktjIcFrgEBs-bK41LMcASDEAPPyYlXmaFdWyXFVqBNiHKjY_RZN-b-IPrHokghUB9LBCwEORcoVkIdFubOTOnEQLLjk0cpRFcMUmoQZUZwMuUcQUY4eqygoaotU5Q81smelzhEXixVomikmiWay19CDYiRZO7AjOk-gC3dSmCFZb3YvAmCuwSUB5sDXXBWrvjBTUrl8Evxt1-f_tK3Rgnmj4DIe0UbPM1_oaKnwZdept7KBGf9r9BntEoFE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BooregBZBS8silaOp9-G191BVIoASHgFBKnFb-TEWFsUJTijkR_EfO-s4cEDixtX2jqzZ2flmZne_AfgR5rHiKVeeH4YxJShaeSaLI0-nwmjMfSlCd3f4tK-7f9TRVXC1AE_zuzDuWOXcJ9aOOhumrkb-U2jHHCdMEPwe3Xmua5TbXZ230JiZxTFOHyhlG__q7dP87ghxeDDodL2mq4CXEHp7MYUUSRpERsUcg8wxhskcI2005UJCJfTE5zFSYOQTtKfc4ZkU7s-5RDJ4SWIXoa0kZTItaO8d9M8vnos69Vc187PQhjyN8INmJ5WEujqDcByhQu-qkNZBRDF3Ugyrx-LfKySo4e1wGdrn8QirFVjAchU-zPpTTj_B2cX1dHJ9W6SsU_wt7m9ZUbLLTp_VjB4lK8YsZq78doNIwxnFv4ziSdYrJ1VRjuthVVqTH7AOgebNZxi8h67WoFUOS1wHFuVhhiZPleGoMkQTkm_hGMlMRlrnyQZsN6qwoxnNhnXqsj63QtuZujZgc64k26y0sX2xiy9vv96Cpe7g9MSe9PrHX-Gjk-5KKZJvQmtS3eM3Ci4myfdmShnYdzai_6hh14s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gE4gbTzEYECSunZo0TZtzodp4jAmGtFvVhyuqsW7qOsT-PU5bEBIcuDZKojp2_NlxvhBy5aShYDEThuk4IQYoUhgqCV1DxlxJSE2LO_ru8MNQ9l_E7cSe_LgLo8sqo2xefGTv1Tm-LtjG3bc2bpPpWJ1rnk0ue8JBXXJ7Ok3dWyTpJmlrsjOt2f6k951nwSmZ5YjmQPPPIRD6NlP-2pArL-PvkvYoXECxRzYg3ydb9TOR6wPy-PS6Ll9nWUy97C1bzWiW02dvSCtijZxmSxpSnQWbAmB3ijCUIqyjg7wssnxZdSviioOAeui7podk7N-Mvb7RPIRgRAg4jBBRUBTbrhIhAzvRJGdWCq5UEsM3LiL8YrIQEMuZiEZipl2wxePqzwFt1DoirXyewzGhbuokoNJYKAYiAVAOmjgD10osV8o06pDLRhTBoma7CLS4ApMFXAa1uDqk-yWkoFH4JbZqYj-ubPvkH0NckO3RtR_cD4Z3p2RHN9eF0F3SKosVnKGfL6PzaiE_AfWAnfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhythmic+Cilium+in+SCN+Neuron+is+a+Gatekeeper+for+the+Intrinsic+Circadian+Clock&rft.jtitle=bioRxiv&rft.au=Hai-Qing%2C+Tu&rft.au=Sen%2C+Li&rft.au=Yu-Ling%2C+Xu&rft.au=Yu-Cheng%2C+Zhang&rft.date=2022-01-31&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2022.01.26.477948 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |