Computing travel time when the exact address is unknown: a comparison of point and polygon ZIP code approximation methods
Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric ce...
Saved in:
Published in | International journal of health geographics Vol. 8; no. 1; p. 23 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
29.04.2009
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available.
Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas.
Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable. |
---|---|
AbstractList | Background Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Results Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas. Conclusion Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable. Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available.BACKGROUNDTravel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available.Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas.RESULTSUsing simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas.Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable.CONCLUSIONPopulation-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable. Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas. Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable. Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas. Abstract Background Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Results Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas. Conclusion Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable. |
Audience | Academic |
Author | Berke, Ethan M Shi, Xun |
AuthorAffiliation | 4 Veterans' Rural Health Research Center–Eastern Region, VA Medical Center, White River Junction, Vermont, USA 2 The Dartmouth Institute for Health Policy and Clinical Practice, Dartmouth Medical School, Hanover, New Hampshire, USA 3 The Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA 5 Department of Geography, Dartmouth College, Hanover, New Hampshire, USA 1 Department of Community and Family Medicine, Dartmouth Medical School, Hanover, New Hampshire, USA |
AuthorAffiliation_xml | – name: 5 Department of Geography, Dartmouth College, Hanover, New Hampshire, USA – name: 2 The Dartmouth Institute for Health Policy and Clinical Practice, Dartmouth Medical School, Hanover, New Hampshire, USA – name: 3 The Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA – name: 1 Department of Community and Family Medicine, Dartmouth Medical School, Hanover, New Hampshire, USA – name: 4 Veterans' Rural Health Research Center–Eastern Region, VA Medical Center, White River Junction, Vermont, USA |
Author_xml | – sequence: 1 givenname: Ethan M surname: Berke fullname: Berke, Ethan M – sequence: 2 givenname: Xun surname: Shi fullname: Shi, Xun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19400969$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ktuL1DAUxousuBd99VECguBDxzTp1QdhGLwMLCheQHwJaXrSydomtUl3Z_57z-ysy1ZX-tDw5ft-OTk5p9GRdRai6GlCF0lS5q-StMhjWrDvcRkz_iA6uRWO7qyPo1PvLyhlLEnzR9FxUqWUVnl1Eu1Wrh-mYGxLwigvoSPB9ECuNmBJ2ACBrVSByKYZwXtiPJnsT-uu7GsiicKoHI13ljhNBmcsOm2Dq27Xovhj_Qk9DRA5DKPbml4Gg3IPYeMa_zh6qGXn4cnN_yz69u7t19WH-Pzj-_VqeR7XecJDnGWUFZoVDZZOy6puNCsLXaQVlbzIWEUhS3SdppymdQa1kpxzQIFqqivgip9F6wO3cfJCDCOWMe6Ek0ZcC25shRyDUR0IgIojQ-tMYp-kqlkNdZZr2tCCN0mCrDcH1jDVPTQKLDatm0HnO9ZsROsuBctLXjKKgOUBUBv3H8B8B3ss9s8o9s8oSsE4Ml7cFDG6XxP4IHrjFXSdtOAmL_KCZTyr9oc9PxhbiZczVjtEqr1ZLBmlCU1LVqJrcY8LvwZ6o3DatEF9Fng5C6AnwDa0cvJerL98nnuf3W3Y7UX_DCAa0oNBjc77EbRQJlzPCVZhOpFQsZ_zf3uw-Ct2S74_8Bts1f-l |
CitedBy_id | crossref_primary_10_1080_03007995_2018_1465906 crossref_primary_10_1016_j_amjsurg_2016_04_006 crossref_primary_10_1016_j_japh_2022_07_003 crossref_primary_10_1186_s40066_023_00455_z crossref_primary_10_1016_j_artd_2023_101131 crossref_primary_10_1038_s41598_024_76518_3 crossref_primary_10_1016_j_drugpo_2020_102923 crossref_primary_10_1007_s12032_010_9607_z crossref_primary_10_1016_j_lisr_2015_11_008 crossref_primary_10_1108_IJES_10_2012_0044 crossref_primary_10_1016_j_socscimed_2018_05_023 crossref_primary_10_1016_j_ypmed_2021_106856 crossref_primary_10_1097_CCE_0000000000001175 crossref_primary_10_4081_gh_2020_891 crossref_primary_10_1186_1476_072X_10_4 crossref_primary_10_1186_s12954_015_0043_4 crossref_primary_10_1177_00222429231207830 crossref_primary_10_1016_j_jth_2018_06_004 crossref_primary_10_1001_jamanetworkopen_2024_55258 crossref_primary_10_1371_journal_pone_0054900 crossref_primary_10_1002_wmh3_598 crossref_primary_10_1186_s12939_020_01217_0 crossref_primary_10_1080_03007995_2017_1358158 crossref_primary_10_1097_MLR_0000000000001684 crossref_primary_10_1007_s11524_015_0018_5 crossref_primary_10_1016_j_annemergmed_2019_06_018 crossref_primary_10_1080_19475683_2015_1027735 crossref_primary_10_1016_j_compenvurbsys_2021_101726 crossref_primary_10_1016_j_apgeog_2021_102415 crossref_primary_10_1007_s10708_018_9904_1 crossref_primary_10_1016_j_annepidem_2021_10_002 crossref_primary_10_1016_j_acra_2017_02_017 crossref_primary_10_1186_s12954_015_0081_y crossref_primary_10_1007_s40615_014_0036_0 crossref_primary_10_1016_j_jtrangeo_2020_102770 crossref_primary_10_1016_j_polgeo_2018_05_012 crossref_primary_10_1001_jamasurg_2019_2179 crossref_primary_10_1111_jrh_12022 crossref_primary_10_1002_cncr_28413 crossref_primary_10_1097_SLA_0000000000004555 crossref_primary_10_1371_journal_pone_0089287 crossref_primary_10_1111_tgis_12751 crossref_primary_10_1057_hs_2015_8 crossref_primary_10_1186_s12942_016_0039_7 crossref_primary_10_1186_1472_6963_13_222 crossref_primary_10_1016_j_healthplace_2013_07_012 crossref_primary_10_1016_j_apgeog_2020_102262 crossref_primary_10_1016_j_jacr_2016_01_022 crossref_primary_10_1097_TA_0000000000002156 crossref_primary_10_1016_j_sste_2022_100545 crossref_primary_10_1016_j_acra_2017_03_010 crossref_primary_10_1016_j_jad_2019_04_091 crossref_primary_10_1080_13658816_2018_1557662 crossref_primary_10_3986_AGS54107 crossref_primary_10_3390_ijerph16020225 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2009 BioMed Central Ltd. Copyright © 2009 Berke and Shi; licensee BioMed Central Ltd. 2009 Berke and Shi; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2009 BioMed Central Ltd. – notice: Copyright © 2009 Berke and Shi; licensee BioMed Central Ltd. 2009 Berke and Shi; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM DOA |
DOI | 10.1186/1476-072X-8-23 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Public Health |
EISSN | 1476-072X |
EndPage | 23 |
ExternalDocumentID | oai_doaj_org_article_ee935ebff5a146acb2beb56f0d073d11 PMC2683820 oai_biomedcentral_com_1476_072X_8_23 A200104828 19400969 10_1186_1476_072X_8_23 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Arizona New Hampshire United States |
GeographicLocations_xml | – name: New Hampshire – name: Arizona – name: United States |
GroupedDBID | --- 29J 2VQ 2WC 2XV 4.4 44B 53G 5GY 5VS 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACHQT ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ATCPS BAPOH BAWUL BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CITATION CS3 DIK E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IHR INH INR IPNFZ ISR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PATMY PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PYCSY RBZ RIG RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM PJZUB PPXIY PMFND 7X8 -5E -5G -A0 -BR 3V. ABVAZ ACRMQ ADINQ AFGXO AFNRJ C24 5PM PUEGO |
ID | FETCH-LOGICAL-b613t-55027f27d214089bdf287f7490a375290e51fb44304b5ebca333efb40f0f9e3c3 |
IEDL.DBID | RBZ |
ISSN | 1476-072X |
IngestDate | Wed Aug 27 01:26:44 EDT 2025 Thu Aug 21 18:32:25 EDT 2025 Wed May 22 07:12:31 EDT 2024 Thu Jul 10 20:50:07 EDT 2025 Tue Jun 17 22:08:23 EDT 2025 Tue Jun 10 21:05:35 EDT 2025 Fri Jun 27 05:30:32 EDT 2025 Mon Jul 21 05:56:06 EDT 2025 Tue Jul 01 01:52:12 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b613t-55027f27d214089bdf287f7490a375290e51fb44304b5ebca333efb40f0f9e3c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1186/1476-072X-8-23 |
PMID | 19400969 |
PQID | 67253590 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ee935ebff5a146acb2beb56f0d073d11 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2683820 biomedcentral_primary_oai_biomedcentral_com_1476_072X_8_23 proquest_miscellaneous_67253590 gale_infotracmisc_A200104828 gale_infotracacademiconefile_A200104828 gale_incontextgauss_ISR_A200104828 pubmed_primary_19400969 crossref_citationtrail_10_1186_1476_072X_8_23 crossref_primary_10_1186_1476_072X_8_23 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-04-29 |
PublicationDateYYYYMMDD | 2009-04-29 |
PublicationDate_xml | – month: 04 year: 2009 text: 2009-04-29 day: 29 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | International journal of health geographics |
PublicationTitleAlternate | Int J Health Geogr |
PublicationYear | 2009 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | 19566611 - J Rural Health. 2009 Summer;25(3):259-66 18282284 - Int J Health Geogr. 2008;7:7 16574290 - Soc Sci Med. 2006 Aug;63(3):691-705 17018146 - Int J Health Geogr. 2006;5:43 19087277 - Int J Health Geogr. 2008;7:63 9240104 - Am J Public Health. 1997 Jul;87(7):1144-50 14645312 - JAMA. 2003 Nov 26;290(20):2703-8 12650392 - Health Serv Res. 2003 Feb;38(1 Pt 1):287-309 |
References_xml | – reference: 12650392 - Health Serv Res. 2003 Feb;38(1 Pt 1):287-309 – reference: 18282284 - Int J Health Geogr. 2008;7:7 – reference: 14645312 - JAMA. 2003 Nov 26;290(20):2703-8 – reference: 19566611 - J Rural Health. 2009 Summer;25(3):259-66 – reference: 19087277 - Int J Health Geogr. 2008;7:63 – reference: 9240104 - Am J Public Health. 1997 Jul;87(7):1144-50 – reference: 17018146 - Int J Health Geogr. 2006;5:43 – reference: 16574290 - Soc Sci Med. 2006 Aug;63(3):691-705 |
SSID | ssj0022146 |
Score | 2.1115804 |
Snippet | Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were... Background Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code... BACKGROUND: Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP... Abstract Background Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject... |
SourceID | doaj pubmedcentral biomedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 23 |
SubjectTerms | Arizona Cancer Care Facilities Data Interpretation, Statistical Health aspects Health Services Accessibility Humans Management Measurement Methodology Methods New Hampshire Time Factors Transport of sick and wounded Travel Travel time (Traffic engineering) Zip code |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yLwoiev6qnhpE8KlcmzRNc2-neNwJiqgHiy-haZPbhSU9brt4-98707TrxkN88W1JBjaZmWYy7cz3EfJGmqxltcpTxU2WIvxJaqpSpBWTpauRwGhoCvv0uTw9Lz7OxGyH6gtrwgI8cFDcobWKC2ucEzU81HVjmLFGlC5rwTnb0NULMW9KpsZUi019RRLyZclmI1xjXpWH27EUXIT_0ee-jMLTgOJ_86zeCVZxIeVOZDq5T-6NV0p6HLbygNyyfp_cHtnN55t9cje8m6Oh5egh2QQqBwhatEf2oSVFhnn6c249hfsgtdd101M4kjAVp4sVXXt89eaPaE2bLW8h7Ry97BYeJH0Lv5abCxj8cfaFYps8HcDKrxehM5IGourVI3J-8uH7-9N0pGBIDcT5PoX8hUnHZAsKzSplWgcZlpOFymouBVOZFbkzRcGzwgisq-KcWxjIXOaU5Q1_TPZ85-1TQvH7nMsdmCx3ReFMJaVt8yavpJGlzUVCjiJL6MsAt6ERADuega1qNKNGM-pKM56QdDKbbkZwc-TYWOohyanKG_Jvt_LT__xN8h16QbSaYQCcVI9Oqv_lpAl5jT6kEXDDY0XPRb1erfTZt6_6mA0QSaAcWNMo5DpYe1OPDRKgPsToiiQPIkk4EZpo-tXkqhqnsIzO22690qVkgguVJeRJcNzfm1cFZrMqITJy6Wjf8YxfzAc4clZWHO6Rz_6Hop6TO9PnOqYOyF5_tbYv4NbXm5fDA_4LJTdV1g priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ri9QwEA56PiiI6Kln9dQggk_VNmma9kDkFI874UTUhcWX0LTJ7kJJz-0u7v57Z9ru3sXVF99KMqWZZJLJNJnvI-Sl1FHFijwOc66jEOFPQp2lIsyYTG2BBEZdUtj55_R0lHwai_Hl_aehA9u_hnbIJzWa169XP9fvYMK_7SZ8lr6JEwlRsWTjEAadXyc3wCtJZDM4T7YnCgwJrAfQxt13OujQBLfz-R-J77XnrzpY_93F-4r38m9WXnFVJ3fJnWGPSY97o7hHrhm3T24OdOfT9T653f-so30O0n2y7rkdwIvRBdIR1RQp5-mvqXEUNojUrIpyQWGNwticzlq6dPgvzh3RgpZbIkPaWHrRzBxIugqe6vUECn-cfaGYN0879PLVrE-VpD1zdfuAjE4-fv9wGg6cDKEGx78IIaBh0jJZQX9GWa4rCyGXlUkeFVwKlkdGxFYnCY8SLfCiFefcQEFkI5sbXvKHZM81zjwiFA_sbGwrWG1tklidSWmquIwzqWVqYhGQI28k1EWPv6EQEduvAVUVjqjCEVWZYjwg4WbYVDmgnSPpRq26qCdLd-RfbeU33_mX5Hu0Aq81XUEzn6hhuitjcg7qWysKsLui1EwbLVIbVbCkgsYBeYE2pBCBw-EVn0mxbFt19u2rOmYdZhJ0DrRpELINtL0showJ6D4E7fIkDz1JWCJKr_r5xlQVVuG9OmeaZatSyQQXeRSQg95wL5Uf5kNApGfSnt5-jZtNO3xylmYcNpaP__vNJ-TW5tCO5YdkbzFfmqew91voZ92k_g0NIFl1 priority: 102 providerName: Scholars Portal |
Title | Computing travel time when the exact address is unknown: a comparison of point and polygon ZIP code approximation methods |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19400969 https://www.proquest.com/docview/67253590 http://dx.doi.org/10.1186/1476-072X-8-23 https://pubmed.ncbi.nlm.nih.gov/PMC2683820 https://doaj.org/article/ee935ebff5a146acb2beb56f0d073d11 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9swEBZr-7DBGFu3ddm6TIzBnsxsSbasvjWjpR20lG6F0Bdh2VITCHJZHNb8-93ZTlo17GkvJkgXrNOd73SS7jtCvkgTV6xQSaS4iSOEP4lMnqVRzmTmCixg1CaFnZ1nJ1fixzgd3-93PDrBT_LsWyIkxLySjSMQKd8iO0xAOIdx-eh6HVqxVR5RT9vDM27-_1Fe-yxwRy1q_6ZtfuCcwouTDzzR8Uvyol9C0sNO5q_IE-t3ydO-mvlkuUued3txtEsxek2WXekGcFK0wWpDM4oV5emfifUU1n_U3hVlQ8EEYehNp3O68LjV5g9oQct1nUJaO3pbTz1Q-gp-zZY30Hh9ekExLZ624OR30y4TknaFqedvyNXx0a_vJ1FfciEy4NebCOIVJh2TFUxonCtTOYionBQqLrhMmYptmjgjBI-FSfEeFefcQkPsYqcsL_lbsu1rb98RiudxLnEVGFMnhDO5lLZKyiSXRmY2SQfkIJCEvu3gNTQCXoc9wKpGMWoUo8414wMSrcSmyx7MHGtqzHQb1OTZBv3XNf3qPf-iHKEWBKNpG0Andf81a2sVB_adSwtQvKI0zFiTZi6uwGICxwPyGXVII8CGxxs8N8ViPtenPy_1IWshkWByYEw9kath7GXRJ0TA9CEmV0C5H1CCBSiD7k8rVdXYhdfmvK0Xc51JlvJUxQOy1ynuPfNKYPSqBkQGKh3wHfb46aSFH2dZzmHd-P5_5PeBPFsdyzG1T7ab3wv7EVZ3jRmSLTmWQ7IzOjq_uBy2eyTwPBP5sP3k_wLKFVDN |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeBjShGB8FQazEIinQGLHcTKJhw2YWvYhBJtU7cXEid1W6pJpSbX1z-Q_4hwnpabiCe2tsk-pz3e58zn3u0PoDZd-TtIk8BIqfc-UP_FkHDEvJjzSqWlg1IDCjk-i_ln4dciGa-jXAguzfA_WbmepLSZwZNuCmzTw98vg9Glj0btEMmsH4uhDEHIIljkZeqALXX_rQzW_hqiu-jj4DCrwlpCDL6ef-l7beMCT4N1qD07thGvCcwLhR5zIXENcoXmY-CnljCS-YoGWYUj9UDKTTUQpVTDga18nimYUnnsH3eWM8QZStn--iAFJB3hq19bWkVxd718A_KnjN5v2AqtOZMmLuhmeSy7z4AG635518Z7dsodoTRVbaKNtuz6eb6FNe2mILRbqEZrbHhPgTXFt2iJNcT25UPh6rAoMB1WsbtKsxmArzR0BnlR4Vpg7wWIXpzhbNFTEpcaXJYgYp0UOv6bzEQyeD75hg9_HTRX1m4mFbGLbQbt6jM5uRURP0HpRFuoZwubDoQ50DlZfh6GWMecqD7Ig5pJHKmA9tOtIQlzaOiDCVOZ2Z4BVYcQojBhFLAjtIa8Tm8jaquum-cdUNNFXHK3Qv1vQd__zL8p9owXOapqB8mok2pdBKJVQYF9rloLipZkkUkkWaT8H0w4c99Bro0PCVAIpTKrRKJ1VlRj8-C72SFO7CTYH1tQS6RLWnqUtcgO2zxQPcyi3HUowVZkzvdOpqjBTJr-vUOWsEhEnjLLE76GnVnH_MJ-EJsxOeog7Ku3w7c4Uk3FTJ51EMYUD7vP_kd8O2uifHh-Jo8HJ4Qt0r_uWSJJttF5fzdRLOJLW8lXzkmP087atym__6KAn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkAAJIRhfhcEsBOIpLLHjOJnEw8aYVgbTNJhU7cXEid1WlKRaUm39N_mLuMtHaah4QnuL7FPr813ufM7d_Qh5LbWbsjjynIhr18H2J44OA-GETAY2RgCjqijsy3FweOZ_GojBGvm1qIVZvgdrtjO3dU3gsIYFxzTwd8vF6ZPKosND8mN7mtraEITBtudLiJYlGzigDC3A9ZGZX0JYV7zv74MOvGHs4OO3D4dOgzzgaHBvpQPHdiYtkymD-COMdGohsLDSj9yYS8Ei1wjPat_nrq8FphNxzg0MuNa1keEJh9-9QW5KISSiKpzunS-CQNZWPDVraxpJrq73rwr8ScdxVvgCq15kyY12UzyXfObBfXKvOezS3Vo7H5A1k22Q2w3u-mi-Qe7Wt4a0LoZ6SOY1yAS4U1oiLtKEluOfhl6OTEbhpErNVZyUFIwlXhLQcUFnGV4KZjs0pskCUZHmlk5zkDGNsxSeJvMhDJ73TygW8NOqjfrVuK7ZpDWEdvGInF2LiB6T9SzPzFNC8cuh9WwKZt_6vtWhlCb1Ei-UWgbGEz2y05GEmtaNQBS25u7OAKsKxahQjCpUjPeI04pNJU3bdUT_mKgq_AqDFfq3C_r2f_5FuYda0FlNNZBfDFVjd5QxEQf2rRUxKF6caKaNFoF1U7DtwHGPvEIdUtgKJMNco2E8KwrV_3qqdlnVvAk2B9bUENkcX7O4Kd2A7cPuYR3KzQ4l2KqkM73VqqrCKUzwy0w-K1QgmeAicnvkSa24f5iPfIyzox6RHZXu8N2dycajqlE6C0IOJ9xn_yO_LXLrZP9Afe4fHz0nd9pviSzaJOvlxcy8gCNpqV9W7zgl36_bqPwGOJOf8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+travel+time+when+the+exact+address+is+unknown%3A+a+comparison+of+point+and+polygon+ZIP+code+approximation+methods&rft.jtitle=International+journal+of+health+geographics&rft.au=Berke%2C+Ethan+M&rft.au=Shi%2C+Xun&rft.date=2009-04-29&rft.pub=BioMed+Central&rft.eissn=1476-072X&rft.volume=8&rft.spage=23&rft.epage=23&rft_id=info:doi/10.1186%2F1476-072X-8-23&rft_id=info%3Apmid%2F19400969&rft.externalDocID=PMC2683820 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-072X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-072X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-072X&client=summon |