Computing travel time when the exact address is unknown: a comparison of point and polygon ZIP code approximation methods

Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric ce...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of health geographics Vol. 8; no. 1; p. 23
Main Authors Berke, Ethan M, Shi, Xun
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 29.04.2009
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas. Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable.
AbstractList Background Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Results Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas. Conclusion Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable.
Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available.BACKGROUNDTravel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available.Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas.RESULTSUsing simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas.Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable.CONCLUSIONPopulation-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable.
Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas. Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable.
Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas.
Abstract Background Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Results Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas. Conclusion Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable.
Audience Academic
Author Berke, Ethan M
Shi, Xun
AuthorAffiliation 4 Veterans' Rural Health Research Center–Eastern Region, VA Medical Center, White River Junction, Vermont, USA
2 The Dartmouth Institute for Health Policy and Clinical Practice, Dartmouth Medical School, Hanover, New Hampshire, USA
3 The Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
5 Department of Geography, Dartmouth College, Hanover, New Hampshire, USA
1 Department of Community and Family Medicine, Dartmouth Medical School, Hanover, New Hampshire, USA
AuthorAffiliation_xml – name: 5 Department of Geography, Dartmouth College, Hanover, New Hampshire, USA
– name: 2 The Dartmouth Institute for Health Policy and Clinical Practice, Dartmouth Medical School, Hanover, New Hampshire, USA
– name: 3 The Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
– name: 1 Department of Community and Family Medicine, Dartmouth Medical School, Hanover, New Hampshire, USA
– name: 4 Veterans' Rural Health Research Center–Eastern Region, VA Medical Center, White River Junction, Vermont, USA
Author_xml – sequence: 1
  givenname: Ethan M
  surname: Berke
  fullname: Berke, Ethan M
– sequence: 2
  givenname: Xun
  surname: Shi
  fullname: Shi, Xun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19400969$$D View this record in MEDLINE/PubMed
BookMark eNp1ktuL1DAUxousuBd99VECguBDxzTp1QdhGLwMLCheQHwJaXrSydomtUl3Z_57z-ysy1ZX-tDw5ft-OTk5p9GRdRai6GlCF0lS5q-StMhjWrDvcRkz_iA6uRWO7qyPo1PvLyhlLEnzR9FxUqWUVnl1Eu1Wrh-mYGxLwigvoSPB9ECuNmBJ2ACBrVSByKYZwXtiPJnsT-uu7GsiicKoHI13ljhNBmcsOm2Dq27Xovhj_Qk9DRA5DKPbml4Gg3IPYeMa_zh6qGXn4cnN_yz69u7t19WH-Pzj-_VqeR7XecJDnGWUFZoVDZZOy6puNCsLXaQVlbzIWEUhS3SdppymdQa1kpxzQIFqqivgip9F6wO3cfJCDCOWMe6Ek0ZcC25shRyDUR0IgIojQ-tMYp-kqlkNdZZr2tCCN0mCrDcH1jDVPTQKLDatm0HnO9ZsROsuBctLXjKKgOUBUBv3H8B8B3ss9s8o9s8oSsE4Ml7cFDG6XxP4IHrjFXSdtOAmL_KCZTyr9oc9PxhbiZczVjtEqr1ZLBmlCU1LVqJrcY8LvwZ6o3DatEF9Fng5C6AnwDa0cvJerL98nnuf3W3Y7UX_DCAa0oNBjc77EbRQJlzPCVZhOpFQsZ_zf3uw-Ct2S74_8Bts1f-l
CitedBy_id crossref_primary_10_1080_03007995_2018_1465906
crossref_primary_10_1016_j_amjsurg_2016_04_006
crossref_primary_10_1016_j_japh_2022_07_003
crossref_primary_10_1186_s40066_023_00455_z
crossref_primary_10_1016_j_artd_2023_101131
crossref_primary_10_1038_s41598_024_76518_3
crossref_primary_10_1016_j_drugpo_2020_102923
crossref_primary_10_1007_s12032_010_9607_z
crossref_primary_10_1016_j_lisr_2015_11_008
crossref_primary_10_1108_IJES_10_2012_0044
crossref_primary_10_1016_j_socscimed_2018_05_023
crossref_primary_10_1016_j_ypmed_2021_106856
crossref_primary_10_1097_CCE_0000000000001175
crossref_primary_10_4081_gh_2020_891
crossref_primary_10_1186_1476_072X_10_4
crossref_primary_10_1186_s12954_015_0043_4
crossref_primary_10_1177_00222429231207830
crossref_primary_10_1016_j_jth_2018_06_004
crossref_primary_10_1001_jamanetworkopen_2024_55258
crossref_primary_10_1371_journal_pone_0054900
crossref_primary_10_1002_wmh3_598
crossref_primary_10_1186_s12939_020_01217_0
crossref_primary_10_1080_03007995_2017_1358158
crossref_primary_10_1097_MLR_0000000000001684
crossref_primary_10_1007_s11524_015_0018_5
crossref_primary_10_1016_j_annemergmed_2019_06_018
crossref_primary_10_1080_19475683_2015_1027735
crossref_primary_10_1016_j_compenvurbsys_2021_101726
crossref_primary_10_1016_j_apgeog_2021_102415
crossref_primary_10_1007_s10708_018_9904_1
crossref_primary_10_1016_j_annepidem_2021_10_002
crossref_primary_10_1016_j_acra_2017_02_017
crossref_primary_10_1186_s12954_015_0081_y
crossref_primary_10_1007_s40615_014_0036_0
crossref_primary_10_1016_j_jtrangeo_2020_102770
crossref_primary_10_1016_j_polgeo_2018_05_012
crossref_primary_10_1001_jamasurg_2019_2179
crossref_primary_10_1111_jrh_12022
crossref_primary_10_1002_cncr_28413
crossref_primary_10_1097_SLA_0000000000004555
crossref_primary_10_1371_journal_pone_0089287
crossref_primary_10_1111_tgis_12751
crossref_primary_10_1057_hs_2015_8
crossref_primary_10_1186_s12942_016_0039_7
crossref_primary_10_1186_1472_6963_13_222
crossref_primary_10_1016_j_healthplace_2013_07_012
crossref_primary_10_1016_j_apgeog_2020_102262
crossref_primary_10_1016_j_jacr_2016_01_022
crossref_primary_10_1097_TA_0000000000002156
crossref_primary_10_1016_j_sste_2022_100545
crossref_primary_10_1016_j_acra_2017_03_010
crossref_primary_10_1016_j_jad_2019_04_091
crossref_primary_10_1080_13658816_2018_1557662
crossref_primary_10_3986_AGS54107
crossref_primary_10_3390_ijerph16020225
ContentType Journal Article
Copyright COPYRIGHT 2009 BioMed Central Ltd.
Copyright © 2009 Berke and Shi; licensee BioMed Central Ltd. 2009 Berke and Shi; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2009 BioMed Central Ltd.
– notice: Copyright © 2009 Berke and Shi; licensee BioMed Central Ltd. 2009 Berke and Shi; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/1476-072X-8-23
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Public Health
EISSN 1476-072X
EndPage 23
ExternalDocumentID oai_doaj_org_article_ee935ebff5a146acb2beb56f0d073d11
PMC2683820
oai_biomedcentral_com_1476_072X_8_23
A200104828
19400969
10_1186_1476_072X_8_23
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Arizona
New Hampshire
United States
GeographicLocations_xml – name: New Hampshire
– name: Arizona
– name: United States
GroupedDBID ---
29J
2VQ
2WC
2XV
4.4
44B
53G
5GY
5VS
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACHQT
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ATCPS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CITATION
CS3
DIK
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PYCSY
RBZ
RIG
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PMFND
7X8
-5E
-5G
-A0
-BR
3V.
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
5PM
PUEGO
ID FETCH-LOGICAL-b613t-55027f27d214089bdf287f7490a375290e51fb44304b5ebca333efb40f0f9e3c3
IEDL.DBID RBZ
ISSN 1476-072X
IngestDate Wed Aug 27 01:26:44 EDT 2025
Thu Aug 21 18:32:25 EDT 2025
Wed May 22 07:12:31 EDT 2024
Thu Jul 10 20:50:07 EDT 2025
Tue Jun 17 22:08:23 EDT 2025
Tue Jun 10 21:05:35 EDT 2025
Fri Jun 27 05:30:32 EDT 2025
Mon Jul 21 05:56:06 EDT 2025
Tue Jul 01 01:52:12 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b613t-55027f27d214089bdf287f7490a375290e51fb44304b5ebca333efb40f0f9e3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1476-072X-8-23
PMID 19400969
PQID 67253590
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ee935ebff5a146acb2beb56f0d073d11
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2683820
biomedcentral_primary_oai_biomedcentral_com_1476_072X_8_23
proquest_miscellaneous_67253590
gale_infotracmisc_A200104828
gale_infotracacademiconefile_A200104828
gale_incontextgauss_ISR_A200104828
pubmed_primary_19400969
crossref_citationtrail_10_1186_1476_072X_8_23
crossref_primary_10_1186_1476_072X_8_23
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-04-29
PublicationDateYYYYMMDD 2009-04-29
PublicationDate_xml – month: 04
  year: 2009
  text: 2009-04-29
  day: 29
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle International journal of health geographics
PublicationTitleAlternate Int J Health Geogr
PublicationYear 2009
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 19566611 - J Rural Health. 2009 Summer;25(3):259-66
18282284 - Int J Health Geogr. 2008;7:7
16574290 - Soc Sci Med. 2006 Aug;63(3):691-705
17018146 - Int J Health Geogr. 2006;5:43
19087277 - Int J Health Geogr. 2008;7:63
9240104 - Am J Public Health. 1997 Jul;87(7):1144-50
14645312 - JAMA. 2003 Nov 26;290(20):2703-8
12650392 - Health Serv Res. 2003 Feb;38(1 Pt 1):287-309
References_xml – reference: 12650392 - Health Serv Res. 2003 Feb;38(1 Pt 1):287-309
– reference: 18282284 - Int J Health Geogr. 2008;7:7
– reference: 14645312 - JAMA. 2003 Nov 26;290(20):2703-8
– reference: 19566611 - J Rural Health. 2009 Summer;25(3):259-66
– reference: 19087277 - Int J Health Geogr. 2008;7:63
– reference: 9240104 - Am J Public Health. 1997 Jul;87(7):1144-50
– reference: 17018146 - Int J Health Geogr. 2006;5:43
– reference: 16574290 - Soc Sci Med. 2006 Aug;63(3):691-705
SSID ssj0022146
Score 2.1115804
Snippet Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were...
Background Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code...
BACKGROUND: Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP...
Abstract Background Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 23
SubjectTerms Arizona
Cancer Care Facilities
Data Interpretation, Statistical
Health aspects
Health Services Accessibility
Humans
Management
Measurement
Methodology
Methods
New Hampshire
Time Factors
Transport of sick and wounded
Travel
Travel time (Traffic engineering)
Zip code
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yLwoiev6qnhpE8KlcmzRNc2-neNwJiqgHiy-haZPbhSU9brt4-98707TrxkN88W1JBjaZmWYy7cz3EfJGmqxltcpTxU2WIvxJaqpSpBWTpauRwGhoCvv0uTw9Lz7OxGyH6gtrwgI8cFDcobWKC2ucEzU81HVjmLFGlC5rwTnb0NULMW9KpsZUi019RRLyZclmI1xjXpWH27EUXIT_0ee-jMLTgOJ_86zeCVZxIeVOZDq5T-6NV0p6HLbygNyyfp_cHtnN55t9cje8m6Oh5egh2QQqBwhatEf2oSVFhnn6c249hfsgtdd101M4kjAVp4sVXXt89eaPaE2bLW8h7Ry97BYeJH0Lv5abCxj8cfaFYps8HcDKrxehM5IGourVI3J-8uH7-9N0pGBIDcT5PoX8hUnHZAsKzSplWgcZlpOFymouBVOZFbkzRcGzwgisq-KcWxjIXOaU5Q1_TPZ85-1TQvH7nMsdmCx3ReFMJaVt8yavpJGlzUVCjiJL6MsAt6ERADuega1qNKNGM-pKM56QdDKbbkZwc-TYWOohyanKG_Jvt_LT__xN8h16QbSaYQCcVI9Oqv_lpAl5jT6kEXDDY0XPRb1erfTZt6_6mA0QSaAcWNMo5DpYe1OPDRKgPsToiiQPIkk4EZpo-tXkqhqnsIzO22690qVkgguVJeRJcNzfm1cFZrMqITJy6Wjf8YxfzAc4clZWHO6Rz_6Hop6TO9PnOqYOyF5_tbYv4NbXm5fDA_4LJTdV1g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ri9QwEA56PiiI6Kln9dQggk_VNmma9kDkFI874UTUhcWX0LTJ7kJJz-0u7v57Z9ru3sXVF99KMqWZZJLJNJnvI-Sl1FHFijwOc66jEOFPQp2lIsyYTG2BBEZdUtj55_R0lHwai_Hl_aehA9u_hnbIJzWa169XP9fvYMK_7SZ8lr6JEwlRsWTjEAadXyc3wCtJZDM4T7YnCgwJrAfQxt13OujQBLfz-R-J77XnrzpY_93F-4r38m9WXnFVJ3fJnWGPSY97o7hHrhm3T24OdOfT9T653f-so30O0n2y7rkdwIvRBdIR1RQp5-mvqXEUNojUrIpyQWGNwticzlq6dPgvzh3RgpZbIkPaWHrRzBxIugqe6vUECn-cfaGYN0879PLVrE-VpD1zdfuAjE4-fv9wGg6cDKEGx78IIaBh0jJZQX9GWa4rCyGXlUkeFVwKlkdGxFYnCY8SLfCiFefcQEFkI5sbXvKHZM81zjwiFA_sbGwrWG1tklidSWmquIwzqWVqYhGQI28k1EWPv6EQEduvAVUVjqjCEVWZYjwg4WbYVDmgnSPpRq26qCdLd-RfbeU33_mX5Hu0Aq81XUEzn6hhuitjcg7qWysKsLui1EwbLVIbVbCkgsYBeYE2pBCBw-EVn0mxbFt19u2rOmYdZhJ0DrRpELINtL0showJ6D4E7fIkDz1JWCJKr_r5xlQVVuG9OmeaZatSyQQXeRSQg95wL5Uf5kNApGfSnt5-jZtNO3xylmYcNpaP__vNJ-TW5tCO5YdkbzFfmqew91voZ92k_g0NIFl1
  priority: 102
  providerName: Scholars Portal
Title Computing travel time when the exact address is unknown: a comparison of point and polygon ZIP code approximation methods
URI https://www.ncbi.nlm.nih.gov/pubmed/19400969
https://www.proquest.com/docview/67253590
http://dx.doi.org/10.1186/1476-072X-8-23
https://pubmed.ncbi.nlm.nih.gov/PMC2683820
https://doaj.org/article/ee935ebff5a146acb2beb56f0d073d11
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9swEBZr-7DBGFu3ddm6TIzBnsxsSbasvjWjpR20lG6F0Bdh2VITCHJZHNb8-93ZTlo17GkvJkgXrNOd73SS7jtCvkgTV6xQSaS4iSOEP4lMnqVRzmTmCixg1CaFnZ1nJ1fixzgd3-93PDrBT_LsWyIkxLySjSMQKd8iO0xAOIdx-eh6HVqxVR5RT9vDM27-_1Fe-yxwRy1q_6ZtfuCcwouTDzzR8Uvyol9C0sNO5q_IE-t3ydO-mvlkuUued3txtEsxek2WXekGcFK0wWpDM4oV5emfifUU1n_U3hVlQ8EEYehNp3O68LjV5g9oQct1nUJaO3pbTz1Q-gp-zZY30Hh9ekExLZ624OR30y4TknaFqedvyNXx0a_vJ1FfciEy4NebCOIVJh2TFUxonCtTOYionBQqLrhMmYptmjgjBI-FSfEeFefcQkPsYqcsL_lbsu1rb98RiudxLnEVGFMnhDO5lLZKyiSXRmY2SQfkIJCEvu3gNTQCXoc9wKpGMWoUo8414wMSrcSmyx7MHGtqzHQb1OTZBv3XNf3qPf-iHKEWBKNpG0Andf81a2sVB_adSwtQvKI0zFiTZi6uwGICxwPyGXVII8CGxxs8N8ViPtenPy_1IWshkWByYEw9kath7GXRJ0TA9CEmV0C5H1CCBSiD7k8rVdXYhdfmvK0Xc51JlvJUxQOy1ynuPfNKYPSqBkQGKh3wHfb46aSFH2dZzmHd-P5_5PeBPFsdyzG1T7ab3wv7EVZ3jRmSLTmWQ7IzOjq_uBy2eyTwPBP5sP3k_wLKFVDN
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeBjShGB8FQazEIinQGLHcTKJhw2YWvYhBJtU7cXEid1W6pJpSbX1z-Q_4hwnpabiCe2tsk-pz3e58zn3u0PoDZd-TtIk8BIqfc-UP_FkHDEvJjzSqWlg1IDCjk-i_ln4dciGa-jXAguzfA_WbmepLSZwZNuCmzTw98vg9Glj0btEMmsH4uhDEHIIljkZeqALXX_rQzW_hqiu-jj4DCrwlpCDL6ef-l7beMCT4N1qD07thGvCcwLhR5zIXENcoXmY-CnljCS-YoGWYUj9UDKTTUQpVTDga18nimYUnnsH3eWM8QZStn--iAFJB3hq19bWkVxd718A_KnjN5v2AqtOZMmLuhmeSy7z4AG635518Z7dsodoTRVbaKNtuz6eb6FNe2mILRbqEZrbHhPgTXFt2iJNcT25UPh6rAoMB1WsbtKsxmArzR0BnlR4Vpg7wWIXpzhbNFTEpcaXJYgYp0UOv6bzEQyeD75hg9_HTRX1m4mFbGLbQbt6jM5uRURP0HpRFuoZwubDoQ50DlZfh6GWMecqD7Ig5pJHKmA9tOtIQlzaOiDCVOZ2Z4BVYcQojBhFLAjtIa8Tm8jaquum-cdUNNFXHK3Qv1vQd__zL8p9owXOapqB8mok2pdBKJVQYF9rloLipZkkUkkWaT8H0w4c99Bro0PCVAIpTKrRKJ1VlRj8-C72SFO7CTYH1tQS6RLWnqUtcgO2zxQPcyi3HUowVZkzvdOpqjBTJr-vUOWsEhEnjLLE76GnVnH_MJ-EJsxOeog7Ku3w7c4Uk3FTJ51EMYUD7vP_kd8O2uifHh-Jo8HJ4Qt0r_uWSJJttF5fzdRLOJLW8lXzkmP087atym__6KAn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkAAJIRhfhcEsBOIpLLHjOJnEw8aYVgbTNJhU7cXEid1WlKRaUm39N_mLuMtHaah4QnuL7FPr813ufM7d_Qh5LbWbsjjynIhr18H2J44OA-GETAY2RgCjqijsy3FweOZ_GojBGvm1qIVZvgdrtjO3dU3gsIYFxzTwd8vF6ZPKosND8mN7mtraEITBtudLiJYlGzigDC3A9ZGZX0JYV7zv74MOvGHs4OO3D4dOgzzgaHBvpQPHdiYtkymD-COMdGohsLDSj9yYS8Ei1wjPat_nrq8FphNxzg0MuNa1keEJh9-9QW5KISSiKpzunS-CQNZWPDVraxpJrq73rwr8ScdxVvgCq15kyY12UzyXfObBfXKvOezS3Vo7H5A1k22Q2w3u-mi-Qe7Wt4a0LoZ6SOY1yAS4U1oiLtKEluOfhl6OTEbhpErNVZyUFIwlXhLQcUFnGV4KZjs0pskCUZHmlk5zkDGNsxSeJvMhDJ73TygW8NOqjfrVuK7ZpDWEdvGInF2LiB6T9SzPzFNC8cuh9WwKZt_6vtWhlCb1Ei-UWgbGEz2y05GEmtaNQBS25u7OAKsKxahQjCpUjPeI04pNJU3bdUT_mKgq_AqDFfq3C_r2f_5FuYda0FlNNZBfDFVjd5QxEQf2rRUxKF6caKaNFoF1U7DtwHGPvEIdUtgKJMNco2E8KwrV_3qqdlnVvAk2B9bUENkcX7O4Kd2A7cPuYR3KzQ4l2KqkM73VqqrCKUzwy0w-K1QgmeAicnvkSa24f5iPfIyzox6RHZXu8N2dycajqlE6C0IOJ9xn_yO_LXLrZP9Afe4fHz0nd9pviSzaJOvlxcy8gCNpqV9W7zgl36_bqPwGOJOf8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+travel+time+when+the+exact+address+is+unknown%3A+a+comparison+of+point+and+polygon+ZIP+code+approximation+methods&rft.jtitle=International+journal+of+health+geographics&rft.au=Berke%2C+Ethan+M&rft.au=Shi%2C+Xun&rft.date=2009-04-29&rft.pub=BioMed+Central&rft.eissn=1476-072X&rft.volume=8&rft.spage=23&rft.epage=23&rft_id=info:doi/10.1186%2F1476-072X-8-23&rft_id=info%3Apmid%2F19400969&rft.externalDocID=PMC2683820
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-072X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-072X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-072X&client=summon