Impact of methoxyacetic acid on mouse Leydig cell gene expression

Methoxyacetic acid (MAA) is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with various developmental and reproductive toxicities, including neural toxicity, blood and immune disorders, limb degeneration and testicular toxicity. Tes...

Full description

Saved in:
Bibliographic Details
Published inReproductive biology and endocrinology Vol. 8; no. 1; p. 65
Main Authors Bagchi, Gargi, Zhang, Yijing, Waxman, David J
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 18.06.2010
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Methoxyacetic acid (MAA) is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with various developmental and reproductive toxicities, including neural toxicity, blood and immune disorders, limb degeneration and testicular toxicity. Testicular toxicity is caused by degeneration of germ cells in association with changes in gene expression in both germ cells and Sertoli cells of the testis. This study investigates the impact of MAA on gene expression in testicular Leydig cells, which play a critical role in germ cell survival and male reproductive function. Cultured mouse TM3 Leydig cells were treated with MAA for 3, 8, and 24 h and changes in gene expression were monitored by genome-wide transcriptional profiling. A total of 3,912 MAA-responsive genes were identified. Ingenuity Pathway analysis identified reproductive system disease, inflammatory disease and connective tissue disorder as the top biological functions affected by MAA. The MAA-responsive genes were classified into 1,366 early responders, 1,387 mid-responders, and 1,138 late responders, based on the time required for MAA to elicit a response. Analysis of enriched functional clusters for each subgroup identified 106 MAA early response genes involved in transcription regulation, including 32 genes associated with developmental processes. 60 DNA-binding proteins responded to MAA rapidly but transiently, and may contribute to the downstream effects of MAA seen for many mid and late response genes. Genes within the phosphatidylinositol/phospholipase C/calcium signaling pathway, whose activity is required for potentiation of nuclear receptor signaling by MAA, were also enriched in the set of early MAA response genes. In contrast, many of the genes responding to MAA at later time points encode membrane proteins that contribute to cell adhesion and membrane signaling. These findings on the progressive changes in gene expression induced by MAA in a cultured Leydig cell model may help elucidate signaling pathways that lead to the testicular pathophysiological responses induced by MAA exposure and may identify useful biomarkers of MAA toxicity.
AbstractList BACKGROUND: Methoxyacetic acid (MAA) is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with various developmental and reproductive toxicities, including neural toxicity, blood and immune disorders, limb degeneration and testicular toxicity. Testicular toxicity is caused by degeneration of germ cells in association with changes in gene expression in both germ cells and Sertoli cells of the testis. This study investigates the impact of MAA on gene expression in testicular Leydig cells, which play a critical role in germ cell survival and male reproductive function. METHODS: Cultured mouse TM3 Leydig cells were treated with MAA for 3, 8, and 24 h and changes in gene expression were monitored by genome-wide transcriptional profiling. RESULTS: A total of 3,912 MAA-responsive genes were identified. Ingenuity Pathway analysis identified reproductive system disease, inflammatory disease and connective tissue disorder as the top biological functions affected by MAA. The MAA-responsive genes were classified into 1,366 early responders, 1,387 mid-responders, and 1,138 late responders, based on the time required for MAA to elicit a response. Analysis of enriched functional clusters for each subgroup identified 106 MAA early response genes involved in transcription regulation, including 32 genes associated with developmental processes. 60 DNA-binding proteins responded to MAA rapidly but transiently, and may contribute to the downstream effects of MAA seen for many mid and late response genes. Genes within the phosphatidylinositol/phospholipase C/calcium signaling pathway, whose activity is required for potentiation of nuclear receptor signaling by MAA, were also enriched in the set of early MAA response genes. In contrast, many of the genes responding to MAA at later time points encode membrane proteins that contribute to cell adhesion and membrane signaling. CONCLUSIONS: These findings on the progressive changes in gene expression induced by MAA in a cultured Leydig cell model may help elucidate signaling pathways that lead to the testicular pathophysiological responses induced by MAA exposure and may identify useful biomarkers of MAA toxicity.
Abstract Background Methoxyacetic acid (MAA) is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with various developmental and reproductive toxicities, including neural toxicity, blood and immune disorders, limb degeneration and testicular toxicity. Testicular toxicity is caused by degeneration of germ cells in association with changes in gene expression in both germ cells and Sertoli cells of the testis. This study investigates the impact of MAA on gene expression in testicular Leydig cells, which play a critical role in germ cell survival and male reproductive function. Methods Cultured mouse TM3 Leydig cells were treated with MAA for 3, 8, and 24 h and changes in gene expression were monitored by genome-wide transcriptional profiling. Results A total of 3,912 MAA-responsive genes were identified. Ingenuity Pathway analysis identified reproductive system disease, inflammatory disease and connective tissue disorder as the top biological functions affected by MAA. The MAA-responsive genes were classified into 1,366 early responders, 1,387 mid-responders, and 1,138 late responders, based on the time required for MAA to elicit a response. Analysis of enriched functional clusters for each subgroup identified 106 MAA early response genes involved in transcription regulation, including 32 genes associated with developmental processes. 60 DNA-binding proteins responded to MAA rapidly but transiently, and may contribute to the downstream effects of MAA seen for many mid and late response genes. Genes within the phosphatidylinositol/phospholipase C/calcium signaling pathway, whose activity is required for potentiation of nuclear receptor signaling by MAA, were also enriched in the set of early MAA response genes. In contrast, many of the genes responding to MAA at later time points encode membrane proteins that contribute to cell adhesion and membrane signaling. Conclusions These findings on the progressive changes in gene expression induced by MAA in a cultured Leydig cell model may help elucidate signaling pathways that lead to the testicular pathophysiological responses induced by MAA exposure and may identify useful biomarkers of MAA toxicity.
Methoxyacetic acid (MAA) is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with various developmental and reproductive toxicities, including neural toxicity, blood and immune disorders, limb degeneration and testicular toxicity. Testicular toxicity is caused by degeneration of germ cells in association with changes in gene expression in both germ cells and Sertoli cells of the testis. This study investigates the impact of MAA on gene expression in testicular Leydig cells, which play a critical role in germ cell survival and male reproductive function. Cultured mouse TM3 Leydig cells were treated with MAA for 3, 8, and 24 h and changes in gene expression were monitored by genome-wide transcriptional profiling. A total of 3,912 MAA-responsive genes were identified. Ingenuity Pathway analysis identified reproductive system disease, inflammatory disease and connective tissue disorder as the top biological functions affected by MAA. The MAA-responsive genes were classified into 1,366 early responders, 1,387 mid-responders, and 1,138 late responders, based on the time required for MAA to elicit a response. Analysis of enriched functional clusters for each subgroup identified 106 MAA early response genes involved in transcription regulation, including 32 genes associated with developmental processes. 60 DNA-binding proteins responded to MAA rapidly but transiently, and may contribute to the downstream effects of MAA seen for many mid and late response genes. Genes within the phosphatidylinositol/phospholipase C/calcium signaling pathway, whose activity is required for potentiation of nuclear receptor signaling by MAA, were also enriched in the set of early MAA response genes. In contrast, many of the genes responding to MAA at later time points encode membrane proteins that contribute to cell adhesion and membrane signaling. These findings on the progressive changes in gene expression induced by MAA in a cultured Leydig cell model may help elucidate signaling pathways that lead to the testicular pathophysiological responses induced by MAA exposure and may identify useful biomarkers of MAA toxicity.
Abstract Background Methoxyacetic acid (MAA) is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with various developmental and reproductive toxicities, including neural toxicity, blood and immune disorders, limb degeneration and testicular toxicity. Testicular toxicity is caused by degeneration of germ cells in association with changes in gene expression in both germ cells and Sertoli cells of the testis. This study investigates the impact of MAA on gene expression in testicular Leydig cells, which play a critical role in germ cell survival and male reproductive function. Methods Cultured mouse TM3 Leydig cells were treated with MAA for 3, 8, and 24 h and changes in gene expression were monitored by genome-wide transcriptional profiling. Results A total of 3,912 MAA-responsive genes were identified. Ingenuity Pathway analysis identified reproductive system disease, inflammatory disease and connective tissue disorder as the top biological functions affected by MAA. The MAA-responsive genes were classified into 1,366 early responders, 1,387 mid-responders, and 1,138 late responders, based on the time required for MAA to elicit a response. Analysis of enriched functional clusters for each subgroup identified 106 MAA early response genes involved in transcription regulation, including 32 genes associated with developmental processes. 60 DNA-binding proteins responded to MAA rapidly but transiently, and may contribute to the downstream effects of MAA seen for many mid and late response genes. Genes within the phosphatidylinositol/phospholipase C/calcium signaling pathway, whose activity is required for potentiation of nuclear receptor signaling by MAA, were also enriched in the set of early MAA response genes. In contrast, many of the genes responding to MAA at later time points encode membrane proteins that contribute to cell adhesion and membrane signaling. Conclusions These findings on the progressive changes in gene expression induced by MAA in a cultured Leydig cell model may help elucidate signaling pathways that lead to the testicular pathophysiological responses induced by MAA exposure and may identify useful biomarkers of MAA toxicity.
Methoxyacetic acid (MAA) is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with various developmental and reproductive toxicities, including neural toxicity, blood and immune disorders, limb degeneration and testicular toxicity. Testicular toxicity is caused by degeneration of germ cells in association with changes in gene expression in both germ cells and Sertoli cells of the testis. This study investigates the impact of MAA on gene expression in testicular Leydig cells, which play a critical role in germ cell survival and male reproductive function. Cultured mouse TM3 Leydig cells were treated with MAA for 3, 8, and 24 h and changes in gene expression were monitored by genome-wide transcriptional profiling. A total of 3,912 MAA-responsive genes were identified. Ingenuity Pathway analysis identified reproductive system disease, inflammatory disease and connective tissue disorder as the top biological functions affected by MAA. The MAA-responsive genes were classified into 1,366 early responders, 1,387 mid-responders, and 1,138 late responders, based on the time required for MAA to elicit a response. Analysis of enriched functional clusters for each subgroup identified 106 MAA early response genes involved in transcription regulation, including 32 genes associated with developmental processes. 60 DNA-binding proteins responded to MAA rapidly but transiently, and may contribute to the downstream effects of MAA seen for many mid and late response genes. Genes within the phosphatidylinositol/phospholipase C/calcium signaling pathway, whose activity is required for potentiation of nuclear receptor signaling by MAA, were also enriched in the set of early MAA response genes. In contrast, many of the genes responding to MAA at later time points encode membrane proteins that contribute to cell adhesion and membrane signaling. These findings on the progressive changes in gene expression induced by MAA in a cultured Leydig cell model may help elucidate signaling pathways that lead to the testicular pathophysiological responses induced by MAA exposure and may identify useful biomarkers of MAA toxicity.
ArticleNumber 65
Audience Academic
Author Bagchi, Gargi
Zhang, Yijing
Waxman, David J
AuthorAffiliation 1 Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, USA
AuthorAffiliation_xml – name: 1 Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, USA
Author_xml – sequence: 1
  givenname: Gargi
  surname: Bagchi
  fullname: Bagchi, Gargi
  organization: Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, USA
– sequence: 2
  givenname: Yijing
  surname: Zhang
  fullname: Zhang, Yijing
– sequence: 3
  givenname: David J
  surname: Waxman
  fullname: Waxman, David J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20565877$$D View this record in MEDLINE/PubMed
BookMark eNp1kslr3DAUxkVJaZb22mMx9NCTUy3W4kthCF0GBnppz0LLk6NgW1PLUzL_feROOmRoig4S73368b3lEp2NaQSE3hJ8TYgSH0kjZS0VlbWqBX-BLo6Bsyfvc3SZ8x3GFGMlXqFzirngSsoLtFoPW-PmKoVqgPk23e-Ngzm6yrjoqzRWQ9plqDaw97GrHPR91cEIFdxvJ8g5pvE1ehlMn-HN432Ffn75_OPmW735_nV9s9rUVhA616TFIgBYMMFwCoYF07bWMw_cAnWGWa8Mdw3lklrMqGqUYtJYITwVigh2hdYHrk_mTm-nOJhpr5OJ-k8gTZ02U3Heg2ZYUB4IblxLGg9Nq1pYoBg3UMC8sD4dWNudHcA7GOfJ9CfQ08wYb3WXfmva4rZVrABWB4CN6T-A04xLg17GoZdxaKXFYuLDo4kp_dpBnvUQ89JhM0Jpupa84ZxyupT-_qDsTKkujiEVplvUekUZlaVAgovq-hlVOR6G6MrahFjiz31wU8p5gnD0T7Betutfx--etu0o_7tO7AH1jstC
CitedBy_id crossref_primary_10_1016_j_reprotox_2011_05_010
crossref_primary_10_3390_ijms160511750
crossref_primary_10_1038_srep26852
crossref_primary_10_1016_j_ecoenv_2024_116116
crossref_primary_10_1016_j_jff_2024_106281
crossref_primary_10_1186_1477_7827_9_42
crossref_primary_10_3390_genes13122339
crossref_primary_10_1186_s12862_020_01740_2
crossref_primary_10_1371_journal_pone_0019552
crossref_primary_10_3389_fvets_2022_942669
crossref_primary_10_1016_j_jsbmb_2016_01_009
crossref_primary_10_1016_j_livsci_2019_103885
Cites_doi 10.1111/j.1365-2605.2007.00846.x
10.1016/j.molcel.2009.10.020
10.1016/j.tox.2009.01.013
10.1080/10408440091159220
10.1002/j.1939-4640.1996.tb01831.x
10.1080/019262301753385933
10.1016/j.tins.2005.06.005
10.1080/00039890109604050
10.1038/nmeth1107-879
10.1073/pnas.0308114100
10.1016/0272-0590(91)90168-4
10.1016/j.gene.2008.11.003
10.1210/me.2005-0489
10.1093/bioinformatics/bth349
10.1002/tera.1420490318
10.1289/ehp.0900800
10.1016/j.toxlet.2003.08.010
10.1186/1471-2164-9-337
10.1038/nprot.2008.211
10.1016/j.reprotox.2007.07.003
10.1002/jcp.21603
10.1016/j.molcel.2006.05.040
10.1186/gb-2003-4-5-p3
10.1042/BJ20060509
10.1210/en.2002-221030
10.1093/nar/27.15.2991
10.1006/dbio.1996.0276
10.1095/biolreprod.102.004937
10.1007/BF01700883
10.1093/nar/gkj143
10.1095/biolreprod.104.035915
10.1038/nprot.2008.73
10.1006/taap.1994.1228
10.1016/j.steroids.2005.03.015
10.1080/01926230490424752
10.1210/me.2009-0303
10.1038/nbt.1505
10.1016/0378-4274(95)03499-4
10.1074/jbc.C200398200
10.1095/biolreprod.107.065151
10.1210/me.2005-0328
10.1006/faat.1993.1064
10.1210/me.2007-0564
10.1128/MCB.20.14.5261-5268.2000
10.1210/me.2009-0454
10.1095/biolreprod23.1.243
10.1007/s12020-007-9015-0
10.1073/pnas.0402014101
10.1016/j.taap.2008.03.015
10.1539/joh1959.21.29
10.1093/bioinformatics/btl045
10.1095/biolreprod52.2.217
ContentType Journal Article
Copyright COPYRIGHT 2010 BioMed Central Ltd.
Copyright ©2010 Bagchi et al; licensee BioMed Central Ltd. 2010 Bagchi et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2010 BioMed Central Ltd.
– notice: Copyright ©2010 Bagchi et al; licensee BioMed Central Ltd. 2010 Bagchi et al; licensee BioMed Central Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7U7
C1K
5PM
DOA
DOI 10.1186/1477-7827-8-65
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Toxicology Abstracts
Calcium & Calcified Tissue Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList


MEDLINE
CrossRef
Toxicology Abstracts

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1477-7827
EndPage 65
ExternalDocumentID oai_doaj_org_article_30625f104c914de4989e2b03004e2845
oai_biomedcentral_com_1477_7827_8_65
A232749810
10_1186_1477_7827_8_65
20565877
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: 5 P42 ES07381
GroupedDBID ---
-A0
0R~
29P
2VQ
2WC
3V.
4.4
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
ABDBF
ABUWG
ACGFO
ACGFS
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AENEX
AFGXO
AFKRA
AFNRJ
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AN0
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BNQBC
BPHCQ
BVXVI
C24
C6C
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
ICW
IHR
INH
INR
IPNFZ
ITC
KQ8
M1P
M48
M~E
NPM
O5R
O5S
OK1
P2P
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
EBLON
H13
PGMZT
ABVAZ
7QP
7U7
C1K
5PM
ID FETCH-LOGICAL-b612t-1906feebeafa52ea3fa99bd3de5be2ca3bd8a5c42572b032848837ab66d268163
IEDL.DBID RBZ
ISSN 1477-7827
IngestDate Thu Jul 04 21:11:48 EDT 2024
Tue Sep 17 21:27:36 EDT 2024
Wed May 22 07:10:39 EDT 2024
Fri Aug 16 02:35:21 EDT 2024
Thu Feb 22 23:52:15 EST 2024
Fri Feb 02 04:17:13 EST 2024
Thu Sep 12 18:39:12 EDT 2024
Thu May 23 23:15:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b612t-1906feebeafa52ea3fa99bd3de5be2ca3bd8a5c42572b032848837ab66d268163
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1477-7827-8-65
PMID 20565877
PQID 754552526
PQPubID 23462
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_30625f104c914de4989e2b03004e2845
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2909983
biomedcentral_primary_oai_biomedcentral_com_1477_7827_8_65
proquest_miscellaneous_754552526
gale_infotracmisc_A232749810
gale_infotracacademiconefile_A232749810
crossref_primary_10_1186_1477_7827_8_65
pubmed_primary_20565877
PublicationCentury 2000
PublicationDate 2010-06-18
PublicationDateYYYYMMDD 2010-06-18
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-18
  day: 18
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Reproductive biology and endocrinology
PublicationTitleAlternate Reprod Biol Endocrinol
PublicationYear 2010
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 10866682 - Mol Cell Biol. 2000 Jul;20(14):5261-8
12114498 - J Biol Chem. 2002 Aug 30;277(35):31283-6
16469768 - Mol Endocrinol. 2006 Jun;20(6):1333-51
15209406 - Toxicol Pathol. 2004 Mar-Apr;32 Suppl 1:72-83
14745012 - Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1327-32
18844239 - J Cell Physiol. 2009 Feb;218(2):294-303
16239260 - Mol Endocrinol. 2006 Mar;20(3):647-60
8059429 - Teratology. 1994 Mar;49(3):218-27
18546601 - Nat Protoc. 2008;3(6):1101-8
11794376 - Toxicol Pathol. 2001 Nov-Dec;29(6):607-16
15601916 - Biol Reprod. 2005 Apr;72(4):1010-9
20150183 - Mol Endocrinol. 2010 Mar;24(3):667-78
8957698 - J Androl. 1996 Sep-Oct;17(5):538-49
10454592 - Nucleic Acids Res. 1999 Aug 1;27(15):2991-3000
15939447 - Steroids. 2005 Sep;70(10):704-14
19059319 - Gene. 2009 Feb 15;431(1-2):1-12
12697717 - Endocrinology. 2003 May;144(5):2084-91
7974496 - Toxicol Appl Pharmacol. 1994 Nov;129(1):53-60
19901196 - Mol Endocrinol. 2010 Jan;24(1):60-75
12606434 - Biol Reprod. 2003 Apr;68(4):1437-46
17971777 - Nat Methods. 2007 Nov;4(11):879
19917249 - Mol Cell. 2009 Nov 13;36(3):405-16
11256852 - Arch Environ Health. 2001 Jan-Feb;56(1):20-5
12734009 - Genome Biol. 2003;4(5):P3
15103026 - Proc Natl Acad Sci U S A. 2004 May 4;101(18):7199-204
17478497 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W253-8
17706920 - Reprod Toxicol. 2007 Aug-Sep;24(2):265-75
2322686 - Bull Environ Contam Toxicol. 1990 Apr;44(4):602-8
18199887 - Biol Reprod. 2008 May;78(5):822-31
14576461 - J Biomed Sci. 2003;10(6 Pt 1):593-8
16381825 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D108-10
6774781 - Biol Reprod. 1980 Aug;23(1):243-52
15705484 - Toxicol Lett. 2005 Mar 28;156(1):13-28
18486176 - Toxicol Appl Pharmacol. 2009 Jul 15;238(2):101-10
7711191 - Biol Reprod. 1995 Feb;52(2):217-25
8365577 - Fundam Appl Toxicol. 1993 Jul;21(1):1-7
16686604 - Biochem J. 2006 Aug 15;398(1):83-95
8597107 - Toxicol Lett. 1995 Dec;82-83:539-47
470211 - Sangyo Igaku. 1979 Jan;21(1):29-35
15982754 - Trends Neurosci. 2005 Aug;28(8):436-45
20049119 - Environ Health Perspect. 2009 Nov;117(11):1702-6
18179559 - Int J Androl. 2008 Apr;31(2):269-74
18978777 - Nat Biotechnol. 2008 Nov;26(11):1293-300
15180930 - Bioinformatics. 2004 Nov 22;20(17):3246-8
18276827 - Mol Endocrinol. 2008 May;22(5):1274-86
16522673 - Bioinformatics. 2006 May 1;22(9):1111-21
19428929 - Toxicology. 2009 Apr 28;258(2-3):101-5
8903361 - Dev Biol. 1996 Nov 1;179(2):471-84
16857587 - Mol Cell. 2006 Jul 21;23(2):207-17
17955388 - Endocrine. 2007 Aug;32(1):96-106
1715831 - Fundam Appl Toxicol. 1991 May;16(4):830-40
10852499 - Crit Rev Toxicol. 2000 May;30(3):307-45
18631392 - BMC Genomics. 2008;9:337
19131956 - Nat Protoc. 2009;4(1):44-57
H Takahashi (690_CR54) 2006; 23
E Lague (690_CR45) 2009; 258
MG Holloway (690_CR12) 2006; 20
KH Clodfelter (690_CR18) 2006; 20
DV Henley (690_CR53) 2009; 117
Z Hu (690_CR50) 2010; 24
S Philipsen (690_CR30) 1999; 27
L Weng (690_CR17) 2006; 22
OM Tirado (690_CR6) 2003; 68
V Matys (690_CR27) 2006; 34
F Welsch (690_CR1) 2005; 156
G Bagchi (690_CR3) 2008; 31
KK Terry (690_CR10) 1994; 49
WG Tourtellotte (690_CR25) 2000; 20
G Bagchi (690_CR9) 2009; 238
T Kawamoto (690_CR41) 1990; 44
LH Li (690_CR2) 1996; 17
V Wauthier (690_CR15) 2010; 24
TD Schmittgen (690_CR13) 2008; 3
RJ Smialowicz (690_CR42) 1993; 21
G Johanson (690_CR48) 2000; 30
AJ Saldanha (690_CR23) 2004; 20
RD Irwin (690_CR28) 2004; 32
K Nagano (690_CR39) 1979; 21
JWA Carlezon (690_CR29) 2005; 28
MS Jansen (690_CR32) 2004; 101
T Jindo (690_CR31) 2001; 29
MG Wade (690_CR36) 2008; 78
DA Jeyaraj (690_CR47) 2005; 70
S Mahony (690_CR20) 2007
W Huang da (690_CR22) 2009; 4
K Eisermann (690_CR26) 2008; 9
SD Holladay (690_CR38) 1994; 129
JH Exon (690_CR40) 1991; 16
JP Mather (690_CR8) 1980; 23
IC Guo (690_CR43) 2003; 10
JD Norris (690_CR51) 2009; 36
MG Holloway (690_CR16) 2008; 22
AH Payne (690_CR49) 1995; 52
G Dennis Jr (690_CR21) 2003; 4
Q Zhou (690_CR24) 2005; 72
N Happel (690_CR35) 2009; 431
J Kumagai (690_CR46) 2002; 277
JS Lindsey (690_CR52) 1996; 179
F Welsch (690_CR37) 1995; 82-83
Z Chai (690_CR44) 2003; 144
H Ji (690_CR19) 2008; 26
M Takamiya (690_CR7) 2007; 24
S Cabodi (690_CR33) 2009; 218
PN Silva (690_CR34) 2006; 398
TS Shih (690_CR11) 2001; 56
K De Gendt (690_CR4) 2004; 101
Q Xu (690_CR5) 2007; 32
R Chen (690_CR14) 2007; 4
References_xml – volume: 31
  start-page: 269
  year: 2008
  ident: 690_CR3
  publication-title: Int J Androl
  doi: 10.1111/j.1365-2605.2007.00846.x
  contributor:
    fullname: G Bagchi
– start-page: gkm272
  volume-title: Nucl Acids Res
  year: 2007
  ident: 690_CR20
  contributor:
    fullname: S Mahony
– volume: 36
  start-page: 405
  year: 2009
  ident: 690_CR51
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.10.020
  contributor:
    fullname: JD Norris
– volume: 258
  start-page: 101
  year: 2009
  ident: 690_CR45
  publication-title: Toxicology
  doi: 10.1016/j.tox.2009.01.013
  contributor:
    fullname: E Lague
– volume: 30
  start-page: 307
  year: 2000
  ident: 690_CR48
  publication-title: Crit Rev Toxicol
  doi: 10.1080/10408440091159220
  contributor:
    fullname: G Johanson
– volume: 17
  start-page: 538
  year: 1996
  ident: 690_CR2
  publication-title: J Androl
  doi: 10.1002/j.1939-4640.1996.tb01831.x
  contributor:
    fullname: LH Li
– volume: 29
  start-page: 607
  year: 2001
  ident: 690_CR31
  publication-title: Toxicol Pathol
  doi: 10.1080/019262301753385933
  contributor:
    fullname: T Jindo
– volume: 28
  start-page: 436
  year: 2005
  ident: 690_CR29
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2005.06.005
  contributor:
    fullname: JWA Carlezon
– volume: 56
  start-page: 20
  year: 2001
  ident: 690_CR11
  publication-title: Arch Environ Health
  doi: 10.1080/00039890109604050
  contributor:
    fullname: TS Shih
– volume: 4
  start-page: 879
  year: 2007
  ident: 690_CR14
  publication-title: Nat Methods
  doi: 10.1038/nmeth1107-879
  contributor:
    fullname: R Chen
– volume: 101
  start-page: 1327
  year: 2004
  ident: 690_CR4
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0308114100
  contributor:
    fullname: K De Gendt
– volume: 16
  start-page: 830
  year: 1991
  ident: 690_CR40
  publication-title: Fundam Appl Toxicol
  doi: 10.1016/0272-0590(91)90168-4
  contributor:
    fullname: JH Exon
– volume: 431
  start-page: 1
  year: 2009
  ident: 690_CR35
  publication-title: Gene
  doi: 10.1016/j.gene.2008.11.003
  contributor:
    fullname: N Happel
– volume: 20
  start-page: 1333
  year: 2006
  ident: 690_CR18
  publication-title: Mol Endocrinol
  doi: 10.1210/me.2005-0489
  contributor:
    fullname: KH Clodfelter
– volume: 20
  start-page: 3246
  year: 2004
  ident: 690_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth349
  contributor:
    fullname: AJ Saldanha
– volume: 49
  start-page: 218
  year: 1994
  ident: 690_CR10
  publication-title: Teratology
  doi: 10.1002/tera.1420490318
  contributor:
    fullname: KK Terry
– volume: 117
  start-page: 1702
  year: 2009
  ident: 690_CR53
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.0900800
  contributor:
    fullname: DV Henley
– volume: 156
  start-page: 13
  year: 2005
  ident: 690_CR1
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2003.08.010
  contributor:
    fullname: F Welsch
– volume: 9
  start-page: 337
  year: 2008
  ident: 690_CR26
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-337
  contributor:
    fullname: K Eisermann
– volume: 4
  start-page: 44
  year: 2009
  ident: 690_CR22
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2008.211
  contributor:
    fullname: W Huang da
– volume: 24
  start-page: 265
  year: 2007
  ident: 690_CR7
  publication-title: Reprod Toxicol
  doi: 10.1016/j.reprotox.2007.07.003
  contributor:
    fullname: M Takamiya
– volume: 218
  start-page: 294
  year: 2009
  ident: 690_CR33
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.21603
  contributor:
    fullname: S Cabodi
– volume: 23
  start-page: 207
  year: 2006
  ident: 690_CR54
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2006.05.040
  contributor:
    fullname: H Takahashi
– volume: 4
  start-page: P3
  year: 2003
  ident: 690_CR21
  publication-title: Genome Biol
  doi: 10.1186/gb-2003-4-5-p3
  contributor:
    fullname: G Dennis Jr
– volume: 398
  start-page: 83
  year: 2006
  ident: 690_CR34
  publication-title: Biochem J
  doi: 10.1042/BJ20060509
  contributor:
    fullname: PN Silva
– volume: 144
  start-page: 2084
  year: 2003
  ident: 690_CR44
  publication-title: Endocrinology
  doi: 10.1210/en.2002-221030
  contributor:
    fullname: Z Chai
– volume: 27
  start-page: 2991
  year: 1999
  ident: 690_CR30
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/27.15.2991
  contributor:
    fullname: S Philipsen
– volume: 179
  start-page: 471
  year: 1996
  ident: 690_CR52
  publication-title: Dev Biol
  doi: 10.1006/dbio.1996.0276
  contributor:
    fullname: JS Lindsey
– volume: 68
  start-page: 1437
  year: 2003
  ident: 690_CR6
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod.102.004937
  contributor:
    fullname: OM Tirado
– volume: 44
  start-page: 602
  year: 1990
  ident: 690_CR41
  publication-title: Bull Environ Contam Toxicol
  doi: 10.1007/BF01700883
  contributor:
    fullname: T Kawamoto
– volume: 34
  start-page: D108
  year: 2006
  ident: 690_CR27
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj143
  contributor:
    fullname: V Matys
– volume: 72
  start-page: 1010
  year: 2005
  ident: 690_CR24
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod.104.035915
  contributor:
    fullname: Q Zhou
– volume: 3
  start-page: 1101
  year: 2008
  ident: 690_CR13
  publication-title: Nat Protocols
  doi: 10.1038/nprot.2008.73
  contributor:
    fullname: TD Schmittgen
– volume: 129
  start-page: 53
  year: 1994
  ident: 690_CR38
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1006/taap.1994.1228
  contributor:
    fullname: SD Holladay
– volume: 70
  start-page: 704
  year: 2005
  ident: 690_CR47
  publication-title: Steroids
  doi: 10.1016/j.steroids.2005.03.015
  contributor:
    fullname: DA Jeyaraj
– volume: 32
  start-page: 72
  issue: Suppl 1
  year: 2004
  ident: 690_CR28
  publication-title: Toxicol Pathol
  doi: 10.1080/01926230490424752
  contributor:
    fullname: RD Irwin
– volume: 24
  start-page: 60
  year: 2010
  ident: 690_CR50
  publication-title: Mol Endocrinol
  doi: 10.1210/me.2009-0303
  contributor:
    fullname: Z Hu
– volume: 26
  start-page: 1293
  year: 2008
  ident: 690_CR19
  publication-title: Nat Biotech
  doi: 10.1038/nbt.1505
  contributor:
    fullname: H Ji
– volume: 82-83
  start-page: 539
  year: 1995
  ident: 690_CR37
  publication-title: Toxicol Lett
  doi: 10.1016/0378-4274(95)03499-4
  contributor:
    fullname: F Welsch
– volume: 277
  start-page: 31283
  year: 2002
  ident: 690_CR46
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C200398200
  contributor:
    fullname: J Kumagai
– volume: 78
  start-page: 822
  year: 2008
  ident: 690_CR36
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod.107.065151
  contributor:
    fullname: MG Wade
– volume: 20
  start-page: 647
  year: 2006
  ident: 690_CR12
  publication-title: Mol Endocrinol
  doi: 10.1210/me.2005-0328
  contributor:
    fullname: MG Holloway
– volume: 21
  start-page: 1
  year: 1993
  ident: 690_CR42
  publication-title: Fundam Appl Toxicol
  doi: 10.1006/faat.1993.1064
  contributor:
    fullname: RJ Smialowicz
– volume: 22
  start-page: 1274
  year: 2008
  ident: 690_CR16
  publication-title: Mol Endocrinol
  doi: 10.1210/me.2007-0564
  contributor:
    fullname: MG Holloway
– volume: 20
  start-page: 5261
  year: 2000
  ident: 690_CR25
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.20.14.5261-5268.2000
  contributor:
    fullname: WG Tourtellotte
– volume: 24
  start-page: 667
  year: 2010
  ident: 690_CR15
  publication-title: Mol Endocrinol
  doi: 10.1210/me.2009-0454
  contributor:
    fullname: V Wauthier
– volume: 23
  start-page: 243
  year: 1980
  ident: 690_CR8
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod23.1.243
  contributor:
    fullname: JP Mather
– volume: 32
  start-page: 96
  year: 2007
  ident: 690_CR5
  publication-title: Endocrine
  doi: 10.1007/s12020-007-9015-0
  contributor:
    fullname: Q Xu
– volume: 101
  start-page: 7199
  year: 2004
  ident: 690_CR32
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0402014101
  contributor:
    fullname: MS Jansen
– volume: 10
  start-page: 593
  year: 2003
  ident: 690_CR43
  publication-title: J Biomed Sci
  contributor:
    fullname: IC Guo
– volume: 238
  start-page: 101
  year: 2009
  ident: 690_CR9
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2008.03.015
  contributor:
    fullname: G Bagchi
– volume: 21
  start-page: 29
  year: 1979
  ident: 690_CR39
  publication-title: Sangyo Igaku
  doi: 10.1539/joh1959.21.29
  contributor:
    fullname: K Nagano
– volume: 22
  start-page: 1111
  year: 2006
  ident: 690_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl045
  contributor:
    fullname: L Weng
– volume: 52
  start-page: 217
  year: 1995
  ident: 690_CR49
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod52.2.217
  contributor:
    fullname: AH Payne
SSID ssj0020086
Score 2.0218837
Snippet Methoxyacetic acid (MAA) is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with various...
Abstract Background Methoxyacetic acid (MAA) is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is...
Background Methoxyacetic acid (MAA) is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with...
BACKGROUND: Methoxyacetic acid (MAA) is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with...
Abstract Background Methoxyacetic acid (MAA) is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 65
SubjectTerms Acetates - pharmacology
Analysis
Animals
Cells, Cultured
Cluster Analysis
Cytotoxins - pharmacology
Ethylene glycol
Gene expression
Gene Expression - drug effects
Gene Expression Profiling
Health aspects
Leydig Cells - drug effects
Leydig Cells - metabolism
Leydig Cells - physiology
Male
Membrane proteins
Metabolites
Mice
Oligonucleotide Array Sequence Analysis
Response Elements - drug effects
Spermatozoa
Validation Studies as Topic
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQT1wQtLQsLcgHRE-rZp341VtAVAUBp1bqzfJj3EaCTVUFqfn3zHg3UaweuHBdr5P1PHa-8c58ZuyDtcFniRowIXj6zGhbm7JEx0vCegA9C9Qo_OOnuryefbuRNztHfVFN2EAPPAjuDCGtkBmThmi7WYKZNRZEmBBRFOCrdWAv7eQmmRpTLULqpa9I6xZjoB7pGjujzrbXWtNSSKn63H9V4amw-D99V-8Eq7qQcicyXbxkL0ZIyefDUl6xZ9Dvs4N5j-n07zX_yEuRZ9k9P2Dzr6Urki8zL2dHP659pDZG7uMi8WXPaScA-HdYp8Utp119jhYGHB7Hgtn-Nbu--HL1-bIdT1FoA6KXVYsRX2VAXfnspQA_zR4VlKYJZAAR_TQk42Uk3yW5okwNJq0-KJWEMgjXDtlev-zhDeMhe_Tx0FmEJagIjzNjUJhzxWTzxKaGnVfCdPcDY4YjDut6BN3JkSYcacIZp2TDTjeS384rGYpRT-78RIqpfr1cQLtxo924f9kN_h2p1ZEf4xNFP7Yj4EqJEcvNEWpqnNVNGnZS3Yn-F6thvjEMR0NUtNYDKstpRKdSSKEadjTYyfaRBeJOabRumK4sqFpTPdIv7gr7t7AI6s307f8QwjF7PlRDqLYzJ2xv9fAH3iHIWoX3xZ_-AvjyIfg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: PubMed Central
  dbid: RPM
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbanrggoDwWCvIBwWmbrnf94hYqqoIo4kCl3iw_S6TGqaogNf-eGWe3qumNa7xOxjvzeb5xZsaEvNfa2cRBA8o5i38z6laHxAF4gWkboxwcFgqf_RCn58O3C36xQ_hUC1OS9r1bHOar5WFe_C65lddLP5vyxGY_z46ZBl6j-tku2ZV9P4XoY5SFJH3sztgpMesGKVtwg7AXtwLvqWHg8rmS8p8K96vKMZX-_Q936Xtuqk6hvOeTTp6QxyOZpPOt0E_JTszPyP48QyC93NAPtKR3lnPzfTL_Wuoh6SrRcmv07cZ6LGCk1i8CXWWKZwCRfo-bsLikeJ5PwbYijbdjqmx-Ts5Pvvw6Pm3H-xNaB7xl3YKvFymClmyynEXbJwuqCX2I3EXmbe-CstwjapnDvnoA5l5aJ0RgQgFRe0H28irHV4S6ZAHdrtNASAatLMz0TkC05YNORzo05FP1Ms31tleGwe7V9QgAyaBSDCrFKCN4Qz5Ob_5uXolNlHjw5GdUTPXt5YPVzaUZLcRAEMR4Ajm97oYQQVwdcX2wHURYI_4cqtUggkEib8dCBFgp9sIycyCZEmZ1Rw05qJ4E5PlqmE6GYXAI09VyBGUZCbyUM85EQ15u7eRO5Mn8GiIrC6rWVI8ADErf79HsX__3zDfk0Tb5QbSdOiB765s_8S1wqrV7VzD0FyUqInY
  priority: 500
  providerName: National Library of Medicine
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagXLggoDwWWuQDgtNC17t-VUJVQFQFUU5E6s3ys41UNhCClPz7zni3oSYcuMb2xvbMZ39jz4wJeam1s4mDBJRzFq8Zda1D4gC8wLSNUXYOA4VPv4qTaff5jJ_98X8aJ_DXP007fE9qurh8s_q5PgLAv8uAV-Jt00lZw04Hy20t-G1yh3Vth9p-2m1uFPCaf4g0GuuOCRy32_8V-X5ZbFg5r__26n1j-ypdK2_sVcf3yb2RZNLJoBUPyK3YPyS7kx4M7O9r-opmt898nr5LJp9ynCSdJ5pfk16trcfARmr9LNB5T_FsINIvcR1m5xTP-SnoXKRxNbrQ9o_I9Pjjtw8n9fiuQu2Azyxr4AAiRZCeTZazaNtkQWShDZG7yLxtXVCWe0Qzc5hvD0DeSuuECEwoIHCPyU4_7-NTQl2ygHrXaCAqnVYWWnonwArzQacDHSpyWEym-THk0DCY1bosAYAZlIRBSRhlBK_I6-uZ37TLNosSWzXfo2CKr-cf5otzM0LQgHHEeIJ-et10IUJ3dcTxwTIRYYz4dyhWg7oGPfJ2DFCAkWKOLDMB8imhVXNQkb2iJiDSF8X0WjEMFqEbWx9BWEYCX-WMM1GRJ4OebLrMgIlyJWVFZKFBxZjKkn52kfOBMw00X7XP_rv_z8ndwQlC1I3aIzvLxe-4D9xq6V5k0FwBkWUhpg
  priority: 102
  providerName: Scholars Portal
Title Impact of methoxyacetic acid on mouse Leydig cell gene expression
URI https://www.ncbi.nlm.nih.gov/pubmed/20565877
https://search.proquest.com/docview/754552526
http://dx.doi.org/10.1186/1477-7827-8-65
https://pubmed.ncbi.nlm.nih.gov/PMC2909983
https://doaj.org/article/30625f104c914de4989e2b03004e2845
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7R9sIFUcojUCIfEJwiGid-9baLWhVEK4SotOJi2bEDK9FshRap---Z8aZL3T1yySG2E9sz4_lmMjMBeGOMd71ACmjvHX1mNJUJvUDBC9y4GFXrKVH4_EKeXbafZmL2z99x7wt-reX7ulWqQj2Gh2klxQ7scSpxTnb59PvGtCJknvKIxr5jecbt8ffy2n9l6ihV7d8-m-8opzxw8o4mOn0Mj0YIySZrmu_Dgzg8gYPJgObz1Yq9ZSmoM3nLD2DyMWVBskXP0r-ib1auo7RF5rp5YIuBkeUf2ee4CvMfjLz4DDkqsngzBsgOT-Hy9OTbh7Nq_GtC5RGtLCvU8LKPSBvXO8Gja3qHBAlNiMJH3rnGB-1ER7LKPVXTQxFulPNSBi41wrNnsDsshvgCmO8dyrSvDcKQ1miHIzsv0cbqgumPTCjgONtMe72ukGGpZnXeguJjiRKWKGG1laKAd7c7vxmXLBItt3pOiTDZ09MNZBM7CphF04eLHufZmboNEadrIq0PD4GIa6TXEVktyS3OqHNj-gGulCpg2QlCS4Wj6qMCDrOeKG9d1sxuGcNSEwWpDRGJZRWiUcEFlwU8X_PJZsoccabQShWgMg7K1pS3DPOfqdo3NwjidfPyf_b6FTxcRz3IqtaHsLv8_Se-RjC19CXsqJkqYW96cvHla5lcEng9b3WZJKxM_q-_KX0hOQ
link.rule.ids 108,230,315,733,786,790,870,891,2115,2236,24346,24965,27957,27958,31755,33780,53827,53829,76169,76170
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOcAFAeWRUsAHBKdA48QvbltEtYVtT61UISHLr5SVSlJVi9T998w42dWaPXKN7Y3H4xl_4535Qsg7rZ1tOWhAOWfxb0Zd6tByMLzAtI1RNg4LhU_PxPSi-XbJL3fIz1UtDFI5JqZTsPWRhggvU7vQgxENN80fNwvTr5M3XyWRDT5AiU9VI2UJhx944FLwe-S-ROJxDOaPfqzjMYTzqfho7DtyOm6P_6cY_jo7wxLV_7ZD3zjR8mzLjePr-DF5NOJOOhlEeEJ2YveU7E06iLl_L-l7mjJBk-B7ZHKSSidp39L0gem7pfVY60itnwfadxSvCyKdxWWYX1G8-qewDSONd2NWbfeMXBx_Pf8yLcdPLZQOIM6iBFgg2ggKta3lLNq6taDFUIfIXWTe1i4oyz0aOHNIwQd2X0vrhAhMKMB0z8lu13fxJaGuteAIXKUBuzRaWRjpnYDAzAfdHupQkM_ZYpqbgVbDINF13gKqNagJg5owyghekA-rlV-PS2GMEls9j1Ax2a-nB_3tlRn3i4F4ifEW5ul11YQI09UR5QPPEUFGfB2q1aCxw4y8HWsWQFKkzTITwKMSRlWHBTnIeoKR-qyZrjaGwSbMbOsiKMtIgLCccSYK8mLYJ-spMwCnXElZEJntoEymvKWb_0oU4UwD8lf1_v-s9VvyYHp-OjOzk7Pvr8jDIW1ClJU6ILuL2z_xNaCxhXuTbOovHMA05A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgLAsoj0BYfEJxCGyd-9balrFooFUJUqrhYdmyXFSWpqkXq_ntmnHS1Zo_cVrGd9Xge_saZGRPyRmtnIwcOKOcsfmbUpfaRg-J5pm0IsnGYKPzlVBydNZ_O-fl4VSnmwmApx1TpFHR9LEOEh6md70GJhpPm96uJ6ZfJmsOP9tfulY-DEVBit2qkLGH3AxNcCn6X3AN3XaDUfzv4sXTIEM-n7KOx71jUcX38P9nwl9kmlmr9r1v0lS0tD7dc2b-mj8jDEXjSySApj8md0D0hm5MOnO7fC_qWplDQRPkmmRyn3EnaR5pumL5Z2BaTHaltZ572HcXzgkBPwsLPLiie_VOQw0DDzRhW2z0lZ9OP3z8cleNdC6UDjDMvAReIGICjNlrOgq2jBTb62gfuAmtt7byyvEUNZw5r8IHi19I6ITwTCkDdM7LR9V14QaiLFiyBqzSAl0YrCyNbJ8Aza72Oe9oXZD9bTHM11NUwWOk6bwHeGuSEQU4YZQQvyLvblV-OS36MEms9D5Ax2dvTg_76woxqacBhYjzCPFtdNT7AdHVA-sB0BKAR_w7ZalDbUcjsmLQAlGLdLDMBQCphVLVXkK2sJ2hpmzXTW8Ew2IShbV0AZhkJGJYzzkRBng9yspwyA3TKlZQFkZkEZTTlLd3sZ6oRzjRAf1W__J-1fk3ufz2cmpPj08-vyIMhbEKUldoiG_PrP2Eb0Njc7SSV-guxSzS4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+methoxyacetic+acid+on+mouse+Leydig+cell+gene+expression&rft.jtitle=Reproductive+biology+and+endocrinology&rft.au=Bagchi%2C+Gargi&rft.au=Zhang%2C+Yijing&rft.au=Waxman%2C+David+J&rft.date=2010-06-18&rft.pub=BioMed+Central+Ltd&rft.issn=1477-7827&rft.eissn=1477-7827&rft.volume=8&rft.spage=65&rft_id=info:doi/10.1186%2F1477-7827-8-65&rft.externalDocID=A232749810
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-7827&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-7827&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-7827&client=summon