A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings
Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals...
Saved in:
Published in | BMC neuroscience Vol. 10; no. 1; p. 81 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
16.07.2009
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2202 1471-2202 |
DOI | 10.1186/1471-2202-10-81 |
Cover
Loading…
Abstract | Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses.
Here we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies.
The new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code. |
---|---|
AbstractList | BACKGROUND: Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses. RESULTS: Here we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies. CONCLUSION: The new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code. Abstract Background Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses. Results Here we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies. Conclusion The new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code. Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses. Here we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies. The new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code. Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses.BACKGROUNDInformation theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses.Here we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies.RESULTSHere we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies.The new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code.CONCLUSIONThe new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code. Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses. Here we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies. The new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code. |
ArticleNumber | 81 |
Audience | Academic |
Author | Whittingstall, Kevin Logothetis, Nikos K Singh, Vanessa Magri, Cesare Panzeri, Stefano |
AuthorAffiliation | 3 Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT, UK 1 Italian Institute of Technology, Department of Robotics, Brain and Cognitive Sciences, I-16163 Genoa, Italy 2 Max Planck Institute for Biological Cybernetics, D-72076 Tübingen, Germany |
AuthorAffiliation_xml | – name: 3 Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT, UK – name: 1 Italian Institute of Technology, Department of Robotics, Brain and Cognitive Sciences, I-16163 Genoa, Italy – name: 2 Max Planck Institute for Biological Cybernetics, D-72076 Tübingen, Germany |
Author_xml | – sequence: 1 givenname: Cesare surname: Magri fullname: Magri, Cesare – sequence: 2 givenname: Kevin surname: Whittingstall fullname: Whittingstall, Kevin – sequence: 3 givenname: Vanessa surname: Singh fullname: Singh, Vanessa – sequence: 4 givenname: Nikos K surname: Logothetis fullname: Logothetis, Nikos K – sequence: 5 givenname: Stefano surname: Panzeri fullname: Panzeri, Stefano |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19607698$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktv1DAUhSNURB-wZocskLoirV-J4w3SUE1LpZFgAWvjca6nHpJ4sB1E_32dTimdqlUWTq6_e-Ljew6LvcEPUBRvCT4hpKlPCRekpBTTkuCyIS-Kg_vK3oP3_eIwxjXGRDScvir2iayxqGVzUPycoeR9t_R_kfUBpStAVseE3JA_e52cH5AedHcdXUTeon7sktt0UEaXAC3Ov31E8_lFRloUN-4XoBS0G1AA40PrhlV8Xby0uovw5m49Kn6cz7-ffSkXXy8uz2aLclkTnEptW0PByooKqDgIywk1jHFKGLdESs1tVbNaayoFXWKGm8ZiZi20pAamgR0Vl1vd1uu12gTX63CtvHbqtuDDSumQnOlACaptUzWWUdrySmAtWtxyDLIiILmmWevTVmszLntoDQzZVbcjurszuCu18n8UFZQRUmWBz1uBpfPPCOzuGN-raVpqmpYiWDUkixzfnSL43yPEpHoXDXSdHsCPUdWiEtmCzOD7R-DajyEPLSqJKeaSycnThy200vkKpvHmH5tJUc0orhjGguJMnTxB5aeF3pmcPetyfafh3cOrurf4L2EZON0CJvgYA9j_CFZThp_wXT3qMC7dJnHKVvds3w0rKvIM |
CitedBy_id | crossref_primary_10_1371_journal_pbio_1001752 crossref_primary_10_1088_1741_2552_ab37b4 crossref_primary_10_1016_j_neuron_2018_01_003 crossref_primary_10_1093_cercor_bhw006 crossref_primary_10_1523_JNEUROSCI_2074_11_2011 crossref_primary_10_3389_fncir_2014_00012 crossref_primary_10_3390_a12090190 crossref_primary_10_7554_eLife_22794 crossref_primary_10_1371_journal_pbio_3001530 crossref_primary_10_1371_journal_pcbi_1003723 crossref_primary_10_1186_s10194_022_01495_9 crossref_primary_10_1523_JNEUROSCI_3318_14_2015 crossref_primary_10_1016_j_jphysparis_2011_07_014 crossref_primary_10_1038_s41531_022_00399_4 crossref_primary_10_1523_ENEURO_0410_21_2021 crossref_primary_10_1371_journal_pone_0118277 crossref_primary_10_1016_j_brs_2020_09_006 crossref_primary_10_1016_j_jneumeth_2014_10_011 crossref_primary_10_1073_pnas_1516539112 crossref_primary_10_1038_s41586_024_07088_7 crossref_primary_10_3389_fnbeh_2020_541920 crossref_primary_10_1016_j_bios_2019_04_025 crossref_primary_10_1523_ENEURO_0106_21_2021 crossref_primary_10_1007_s11063_020_10242_7 crossref_primary_10_3389_fnins_2017_00005 crossref_primary_10_1038_s41598_022_08869_8 crossref_primary_10_1093_cercor_bhw196 crossref_primary_10_1152_jn_00404_2011 crossref_primary_10_1016_j_isci_2023_107098 crossref_primary_10_1152_jn_00893_2012 crossref_primary_10_1002_epi4_12743 crossref_primary_10_1007_s10827_010_0236_5 crossref_primary_10_1073_pnas_1103168108 crossref_primary_10_1007_s10548_021_00851_3 crossref_primary_10_1038_s41598_018_26780_z crossref_primary_10_1111_ejn_13742 crossref_primary_10_1371_journal_pbio_3000831 crossref_primary_10_1111_ejn_13100 crossref_primary_10_1186_s12984_019_0512_1 crossref_primary_10_1007_s00429_020_02188_2 crossref_primary_10_1089_brain_2017_0529 crossref_primary_10_1371_journal_pone_0052173 crossref_primary_10_3390_e21010061 crossref_primary_10_7554_eLife_91475_3 crossref_primary_10_1016_j_cub_2013_11_064 crossref_primary_10_1523_JNEUROSCI_1313_13_2013 crossref_primary_10_1073_pnas_1200155109 crossref_primary_10_1016_j_neuroimage_2018_08_026 crossref_primary_10_1038_s41586_021_04094_x crossref_primary_10_1093_sleep_zsy167 crossref_primary_10_1162_neco_a_01155 crossref_primary_10_1016_j_mri_2010_03_028 crossref_primary_10_3390_e23030321 crossref_primary_10_3389_fnins_2016_00248 crossref_primary_10_1016_j_cub_2017_12_006 crossref_primary_10_1152_jn_00075_2011 crossref_primary_10_1152_jn_00430_2010 crossref_primary_10_1523_JNEUROSCI_5365_13_2014 crossref_primary_10_1016_j_jneumeth_2014_03_007 crossref_primary_10_7554_eLife_91475 crossref_primary_10_1523_JNEUROSCI_2771_11_2012 crossref_primary_10_3390_e13020485 crossref_primary_10_1007_s10548_017_0599_2 crossref_primary_10_1371_journal_pbio_1001064 crossref_primary_10_1523_JNEUROSCI_5435_11_2012 crossref_primary_10_1016_j_neuroscience_2018_05_006 crossref_primary_10_1016_j_bbe_2024_08_012 crossref_primary_10_1016_j_mri_2011_07_013 crossref_primary_10_1371_journal_pbio_1002257 crossref_primary_10_1371_journal_pcbi_1001035 crossref_primary_10_1016_j_biosystems_2019_103978 crossref_primary_10_1002_hbm_26250 crossref_primary_10_1016_j_cub_2009_10_068 crossref_primary_10_1109_TBME_2014_2360393 crossref_primary_10_1162_NECO_a_00703 crossref_primary_10_1152_jn_00380_2014 crossref_primary_10_3389_fnsys_2020_00014 crossref_primary_10_1038_s41467_024_45376_y crossref_primary_10_1073_pnas_1212059109 crossref_primary_10_1371_journal_pone_0161934 crossref_primary_10_3389_fninf_2014_00026 crossref_primary_10_1016_j_jneumeth_2011_11_013 crossref_primary_10_1007_s10827_012_0408_6 crossref_primary_10_1167_19_2_8 crossref_primary_10_1016_j_neuroimage_2019_116152 crossref_primary_10_1111_desc_12457 crossref_primary_10_1038_s41598_017_16827_y crossref_primary_10_1073_pnas_1012656107 crossref_primary_10_1007_s12559_011_9121_4 crossref_primary_10_3389_fninf_2019_00057 crossref_primary_10_1016_j_jneumeth_2011_11_005 crossref_primary_10_1523_JNEUROSCI_2205_13_2013 crossref_primary_10_1111_ejn_13144 crossref_primary_10_1523_JNEUROSCI_4637_10_2011 crossref_primary_10_1038_srep45898 crossref_primary_10_1523_JNEUROSCI_1368_19_2020 crossref_primary_10_1103_PhysRevE_85_051139 crossref_primary_10_1109_ACCESS_2024_3413576 crossref_primary_10_1038_s42003_018_0205_5 crossref_primary_10_1016_j_pneurobio_2011_08_002 crossref_primary_10_1523_ENEURO_0052_18_2018 crossref_primary_10_1016_j_celrep_2024_114412 crossref_primary_10_1002_hbm_23471 crossref_primary_10_1073_pnas_2312831121 crossref_primary_10_3389_fninf_2021_596443 crossref_primary_10_1016_j_neuroimage_2022_119347 crossref_primary_10_1038_srep17681 crossref_primary_10_1523_JNEUROSCI_4738_14_2015 crossref_primary_10_7554_eLife_58882 crossref_primary_10_1016_j_cub_2024_03_023 crossref_primary_10_1523_JNEUROSCI_3711_13_2013 crossref_primary_10_1152_jn_00422_2011 crossref_primary_10_1371_journal_pbio_2000812 crossref_primary_10_1038_s41598_020_57454_4 crossref_primary_10_1016_j_jneumeth_2012_03_009 crossref_primary_10_1016_j_neuron_2019_07_006 crossref_primary_10_1523_JNEUROSCI_2891_17_2018 crossref_primary_10_1016_j_celrep_2019_05_034 crossref_primary_10_1371_journal_pcbi_1004121 crossref_primary_10_1371_journal_pcbi_1005574 crossref_primary_10_1523_ENEURO_0366_17_2017 crossref_primary_10_1371_journal_pone_0057453 crossref_primary_10_1111_1749_4877_12368 crossref_primary_10_3389_fnins_2017_00425 crossref_primary_10_1523_JNEUROSCI_0637_17_2017 crossref_primary_10_1162_NECO_a_00695 crossref_primary_10_1186_s40708_023_00212_9 crossref_primary_10_1007_s10548_020_00757_6 crossref_primary_10_3389_fnins_2024_1371107 crossref_primary_10_1016_j_heares_2010_04_015 crossref_primary_10_1111_epi_16686 crossref_primary_10_1007_s10827_010_0230_y crossref_primary_10_1088_1741_2552_abef3a crossref_primary_10_1016_j_jneumeth_2014_06_007 crossref_primary_10_1016_j_neuroimage_2012_12_011 crossref_primary_10_3390_e20040240 crossref_primary_10_1038_s41531_021_00187_6 crossref_primary_10_1111_nyas_14099 crossref_primary_10_1523_JNEUROSCI_3449_12_2013 crossref_primary_10_1111_ejn_16394 crossref_primary_10_1523_JNEUROSCI_2631_13_2013 crossref_primary_10_1016_j_brainres_2015_08_046 crossref_primary_10_1038_s41598_019_39986_6 crossref_primary_10_1016_j_celrep_2022_110878 crossref_primary_10_3390_bioengineering11100990 crossref_primary_10_1016_j_neunet_2010_05_008 |
Cites_doi | 10.1523/JNEUROSCI.0009-08.2008 10.1016/S0006-3495(67)86597-4 10.1523/JNEUROSCI.1389-04.2004 10.1523/JNEUROSCI.13-07-02758.1993 10.1016/S0896-6273(01)00251-3 10.1038/nn1802 10.1152/jn.1987.57.1.162 10.1162/089976601300014312 10.1523/JNEUROSCI.3417-06.2007 10.1152/jn.1996.76.2.1310 10.1038/nn1228 10.1038/35079612 10.1523/JNEUROSCI.5319-04.2005 10.1103/PhysRevE.69.056111 10.1038/nrn2578 10.3389/neuro.11.004.2009 10.1214/aoms/1177704251 10.1152/jn.00116.2003 10.1017/CBO9780511622762 10.1038/35086012 10.1162/neco.2008.08-07-595 10.1152/jn.2001.85.1.305 10.1098/rstb.2002.1113 10.1162/biot.2006.1.3.302 10.1523/JNEUROSCI.2523-04.2004 10.1016/j.jneumeth.2003.10.009 10.1016/j.cub.2008.02.023 10.1162/089976603321780272 10.1152/jn.1983.49.2.303 10.1162/08997660260293238 10.1098/rspb.1999.0736 10.1016/S0896-6273(01)00481-0 10.1016/S0166-2236(97)01216-2 10.1523/JNEUROSCI.4330-05.2006 10.1093/cercor/bhk020 10.1523/JNEUROSCI.19-18-08083.1999 10.1126/science.129.3354.969-a 10.1088/0954-898X/7/1/006 10.1523/JNEUROSCI.5171-07.2008 10.1002/j.1538-7305.1948.tb01338.x 10.1016/j.neuron.2009.01.008 10.1073/pnas.92.1.290 10.1016/j.neuron.2005.12.019 10.1038/nrn1888 10.1016/j.tins.2008.09.012 10.1088/0954-898X/14/1/303 10.1073/pnas.95.26.15706 10.1097/00001756-200305230-00028 10.1016/j.jmva.2003.10.003 10.1523/JNEUROSCI.23-37-11539.2003 10.1007/BF00216963 10.1523/JNEUROSCI.1282-06.2006 10.1038/14731 10.1371/journal.pcbi.1000239 10.1016/j.neuroimage.2006.10.020 10.1016/S0896-6273(03)00680-9 10.1103/PhysRevLett.85.461 10.1016/j.cub.2008.03.054 10.1152/jn.91049.2008 10.1016/j.mri.2008.02.019 10.1038/nature06976 10.1523/JNEUROSCI.3359-07.2008 10.1073/pnas.17.12.684 10.1073/pnas.0701519104 10.1162/neco.2007.19.11.2913 10.1103/PhysRevE.66.051903 10.1038/nature04701 10.1103/PhysRevLett.80.197 10.1073/pnas.1131895100 10.1109/TSP.2003.818153 10.1109/TIT.1978.1055832 10.1162/089976699300016827 10.1162/jocn.2007.19.3.479 10.1152/jn.1993.70.2.640 10.1038/nn1233 10.1152/jn.00559.2007 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2009 BioMed Central Ltd. 2009 Magri et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2009 Magri et al; licensee BioMed Central Ltd. 2009 Magri et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2009 BioMed Central Ltd. – notice: 2009 Magri et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright © 2009 Magri et al; licensee BioMed Central Ltd. 2009 Magri et al; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM DOA |
DOI | 10.1186/1471-2202-10-81 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1471-2202 |
EndPage | 81 |
ExternalDocumentID | oai_doaj_org_article_72af858f322d4570a7d0d40e951e94a2 PMC2723115 oai_biomedcentral_com_1471_2202_10_81 2502148131 A205300720 19607698 10_1186_1471_2202_10_81 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Italy United Kingdom Germany |
GeographicLocations_xml | – name: United Kingdom – name: Germany – name: Italy |
GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5VS 6J9 6PF 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABIVO ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR IPNFZ IPY ITC KQ8 LK8 M1P M2M M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PSYQQ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM NXXTH PMFND 3V. 7TK 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 -A0 ABVAZ ACRMQ ADINQ AFGXO AFNRJ C24 5PM PUEGO |
ID | FETCH-LOGICAL-b610t-afdc2ef9527e54e7f412c3342134f199a4f5636aa2972b03088f03ffed16e3ae3 |
IEDL.DBID | RBZ |
ISSN | 1471-2202 |
IngestDate | Wed Aug 27 01:29:22 EDT 2025 Thu Aug 21 13:35:49 EDT 2025 Wed May 22 07:11:04 EDT 2024 Fri Jul 11 08:09:59 EDT 2025 Fri Jul 25 09:55:25 EDT 2025 Tue Jun 17 22:07:56 EDT 2025 Tue Jun 10 21:12:57 EDT 2025 Thu Apr 03 07:05:33 EDT 2025 Tue Jul 01 02:25:52 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b610t-afdc2ef9527e54e7f412c3342134f199a4f5636aa2972b03088f03ffed16e3ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1186/1471-2202-10-81 |
PMID | 19607698 |
PQID | 902049392 |
PQPubID | 44779 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_72af858f322d4570a7d0d40e951e94a2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2723115 biomedcentral_primary_oai_biomedcentral_com_1471_2202_10_81 proquest_miscellaneous_67573229 proquest_journals_902049392 gale_infotracmisc_A205300720 gale_infotracacademiconefile_A205300720 pubmed_primary_19607698 crossref_primary_10_1186_1471_2202_10_81 crossref_citationtrail_10_1186_1471_2202_10_81 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-07-16 |
PublicationDateYYYYMMDD | 2009-07-16 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-07-16 day: 16 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC neuroscience |
PublicationTitleAlternate | BMC Neurosci |
PublicationYear | 2009 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | BB Averbeck (1085_CR16) 2006; 7 G Buzsáki (1085_CR77) 2004; 7 EN Brown (1085_CR76) 2004; 7 S Nakahara (1085_CR49) 2002; 14 EM Maynard (1085_CR55) 1999; 19 NK Logothetis (1085_CR79) 2008; 453 S Panzeri (1085_CR32) 1996; 7 A Belitski (1085_CR29) 2008; 28 HDR Golledge (1085_CR59) 2003; 14 RS Petersen (1085_CR20) 2001; 32 A Mazzoni (1085_CR63) 2008; 4 1085_CR65 A Lazo (1085_CR74) 1978; 24 D Rubino (1085_CR28) 2006; 9 1085_CR66 C Shannon (1085_CR1) 1948; 27 E Wilson (1085_CR62) 1931; 17 DH Goldberg (1085_CR71) 2009 DS Reich (1085_CR6) 2001; 85 LF Abbott (1085_CR46) 1999; 11 DN Mastronarde (1085_CR41) 1983; 49 T Schreiber (1085_CR23) 2000; 85 S Strong (1085_CR33) 1998; 80 A Tang (1085_CR69) 2008; 28 F Montani (1085_CR22) 2007; 27 MW Oram (1085_CR48) 1998; 21 N Misra (1085_CR57) 2005; 92 L Pessoa (1085_CR26) 2007; 17 MW Oram (1085_CR44) 2002; 357 G Kreiman (1085_CR81) 2006; 49 JD Victor (1085_CR73) 1996; 76 MR Jarvis (1085_CR61) 2001; 13 A Borst (1085_CR4) 1999; 2 A Delorme (1085_CR82) 2004; 134 DB Percival (1085_CR60) 1993 R Quian Quiroga (1085_CR38) 2009; 10 E Arabzadeh (1085_CR8) 2004; 24 TM Cover (1085_CR2) 2006 CJ Honey (1085_CR24) 2007; 104 MA Montemurro (1085_CR36) 2007; 19 1085_CR52 C Kayser (1085_CR14) 2009; 61 CE Schroeder (1085_CR64) 2009; 32 S Panzeri (1085_CR31) 2007; 98 TL Adelman (1085_CR7) 2003; 40 A Kraskov (1085_CR80) 2007; 19 G Foffani (1085_CR11) 2004; 24 F Rieke (1085_CR3) 1997 TJ Gawne (1085_CR47) 1993; 13 J Victor (1085_CR72) 2002; 66 JWH Schnupp (1085_CR10) 2006; 26 G Fuhrmann-Alpert (1085_CR25) 2007; 34 L Paninski (1085_CR34) 2003; 15 NR Goodman (1085_CR56) 1963; 34 S Panzeri (1085_CR27) 2008; 26 J Csicsvari (1085_CR78) 2003; 90 MJ Tovee (1085_CR54) 1993; 70 MA Montemurro (1085_CR13) 2008; 18 CL Li (1085_CR39) 1959; 129 S Nirenberg (1085_CR21) 2001; 411 O Oyman (1085_CR58) 2003; 51 E Schneidman (1085_CR18) 2003; 23 S Nirenberg (1085_CR37) 2003; 100 JBM Goense (1085_CR43) 2008; 18 E Schneidman (1085_CR67) 2006; 440 S Panzeri (1085_CR12) 2001; 29 S Waldert (1085_CR30) 2008; 28 I Nemenman (1085_CR35) 2004; 69 JD Victor (1085_CR5) 2006; 1 NG Hatsopoulos (1085_CR51) 1998; 95 J Shlens (1085_CR68) 2006; 26 LM Optican (1085_CR53) 1991; 65 P Koenig (1085_CR42) 1995; 92 LM Optican (1085_CR9) 1987; 57 PE Latham (1085_CR19) 2005; 25 1085_CR70 E Salinas (1085_CR45) 2001; 2 E Rolls (1085_CR75) 2009; 101 G Pola (1085_CR17) 2003; 14 DH Perkel (1085_CR40) 1967; 7 A Scaglione (1085_CR50) 2008; 20 S Panzeri (1085_CR15) 1999; 266 |
References_xml | – volume: 28 start-page: 5696 issue: 22 year: 2008 ident: 1085_CR29 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0009-08.2008 – volume: 7 start-page: 419 year: 1967 ident: 1085_CR40 publication-title: Biophys J doi: 10.1016/S0006-3495(67)86597-4 – volume: 24 start-page: 6011 issue: 26 year: 2004 ident: 1085_CR8 publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.1389-04.2004 – volume: 13 start-page: 2758 year: 1993 ident: 1085_CR47 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.13-07-02758.1993 – volume: 29 start-page: 769 year: 2001 ident: 1085_CR12 publication-title: Neuron doi: 10.1016/S0896-6273(01)00251-3 – volume: 9 start-page: 1549 issue: 12 year: 2006 ident: 1085_CR28 publication-title: Nat Neurosci doi: 10.1038/nn1802 – volume: 57 start-page: 162 year: 1987 ident: 1085_CR9 publication-title: J Neurophysiol doi: 10.1152/jn.1987.57.1.162 – volume: 13 start-page: 717 issue: 4 year: 2001 ident: 1085_CR61 publication-title: Neural Computation doi: 10.1162/089976601300014312 – volume: 27 start-page: 2338 issue: 9 year: 2007 ident: 1085_CR22 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3417-06.2007 – volume: 76 start-page: 1310 issue: 2 year: 1996 ident: 1085_CR73 publication-title: Journal of Neurophysiology doi: 10.1152/jn.1996.76.2.1310 – volume: 7 start-page: 456 issue: 5 year: 2004 ident: 1085_CR76 publication-title: Nature Neuroscience doi: 10.1038/nn1228 – volume: 411 start-page: 698 issue: 6838 year: 2001 ident: 1085_CR21 publication-title: Nature doi: 10.1038/35079612 – volume: 25 start-page: 5195 issue: 21 year: 2005 ident: 1085_CR19 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5319-04.2005 – volume: 69 start-page: 056111 issue: 5 Pt 2 year: 2004 ident: 1085_CR35 publication-title: Physical review E, Statistical, nonlinear, and soft matter physics doi: 10.1103/PhysRevE.69.056111 – volume: 10 start-page: 173 issue: 3 year: 2009 ident: 1085_CR38 publication-title: Nat Rev Neurosci. doi: 10.1038/nrn2578 – ident: 1085_CR65 doi: 10.3389/neuro.11.004.2009 – volume: 34 start-page: 178 year: 1963 ident: 1085_CR56 publication-title: Annals of Mathematical Statistics doi: 10.1214/aoms/1177704251 – volume: 90 start-page: 1314 issue: 2 year: 2003 ident: 1085_CR78 publication-title: Journal of neurophysiology doi: 10.1152/jn.00116.2003 – volume-title: Spectral Analysis for Physical Applications: Multitaper and Conventional Univeriate Techniques year: 1993 ident: 1085_CR60 doi: 10.1017/CBO9780511622762 – volume: 2 start-page: 539 issue: 8 year: 2001 ident: 1085_CR45 publication-title: Nat Rev Neurosci doi: 10.1038/35086012 – volume: 20 start-page: 2662 year: 2008 ident: 1085_CR50 publication-title: Neural Computation doi: 10.1162/neco.2008.08-07-595 – volume: 85 start-page: 305 year: 2001 ident: 1085_CR6 publication-title: Journal of Neurophysiology doi: 10.1152/jn.2001.85.1.305 – volume: 357 start-page: 987 issue: 1424 year: 2002 ident: 1085_CR44 publication-title: Philos Trans R Soc Lond, B, Biol Sci doi: 10.1098/rstb.2002.1113 – volume-title: Spikes: exploring the neural code year: 1997 ident: 1085_CR3 – volume: 1 start-page: 302 issue: 3 year: 2006 ident: 1085_CR5 publication-title: Biological Theory doi: 10.1162/biot.2006.1.3.302 – volume: 24 start-page: 7266 year: 2004 ident: 1085_CR11 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2523-04.2004 – ident: 1085_CR52 – volume: 134 start-page: 9 year: 2004 ident: 1085_CR82 publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 18 start-page: 375 year: 2008 ident: 1085_CR13 publication-title: Current Biology doi: 10.1016/j.cub.2008.02.023 – volume: 15 start-page: 1191 year: 2003 ident: 1085_CR34 publication-title: Neural Computation doi: 10.1162/089976603321780272 – volume: 49 start-page: 303 year: 1983 ident: 1085_CR41 publication-title: J Neurophysiol doi: 10.1152/jn.1983.49.2.303 – volume: 14 start-page: 2269 year: 2002 ident: 1085_CR49 publication-title: Neural Computation doi: 10.1162/08997660260293238 – ident: 1085_CR66 – volume: 266 start-page: 1001 issue: 1423 year: 1999 ident: 1085_CR15 publication-title: Proc Biol Sci. doi: 10.1098/rspb.1999.0736 – volume: 32 start-page: 503 issue: 3 year: 2001 ident: 1085_CR20 publication-title: Neuron doi: 10.1016/S0896-6273(01)00481-0 – volume-title: Elements of information theory year: 2006 ident: 1085_CR2 – volume: 21 start-page: 259 issue: 6 year: 1998 ident: 1085_CR48 publication-title: Trends Neurosci doi: 10.1016/S0166-2236(97)01216-2 – volume: 26 start-page: 4785 year: 2006 ident: 1085_CR10 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4330-05.2006 – volume: 17 start-page: 691 issue: 3 year: 2007 ident: 1085_CR26 publication-title: Cereb Cortex doi: 10.1093/cercor/bhk020 – volume: 19 start-page: 8083 issue: 18 year: 1999 ident: 1085_CR55 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-18-08083.1999 – volume: 129 start-page: 783 year: 1959 ident: 1085_CR39 publication-title: Science doi: 10.1126/science.129.3354.969-a – volume: 7 start-page: 87 year: 1996 ident: 1085_CR32 publication-title: Network: Computation in Neural Systems doi: 10.1088/0954-898X/7/1/006 – volume: 28 start-page: 1000 issue: 4 year: 2008 ident: 1085_CR30 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5171-07.2008 – volume: 27 start-page: 379 year: 1948 ident: 1085_CR1 publication-title: Bell Systems Technical Journal doi: 10.1002/j.1538-7305.1948.tb01338.x – volume: 61 start-page: 597 year: 2009 ident: 1085_CR14 publication-title: Neuron doi: 10.1016/j.neuron.2009.01.008 – volume: 92 start-page: 290 year: 1995 ident: 1085_CR42 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.92.1.290 – volume: 49 start-page: 433 issue: 3 year: 2006 ident: 1085_CR81 publication-title: Neuron doi: 10.1016/j.neuron.2005.12.019 – volume: 7 start-page: 358 issue: 5 year: 2006 ident: 1085_CR16 publication-title: Nat Rev Neurosci. doi: 10.1038/nrn1888 – volume: 32 start-page: 9 year: 2009 ident: 1085_CR64 publication-title: Trends in Neurosciences doi: 10.1016/j.tins.2008.09.012 – volume: 14 start-page: 35 year: 2003 ident: 1085_CR17 publication-title: Network doi: 10.1088/0954-898X/14/1/303 – volume: 95 start-page: 15706 issue: 26 year: 1998 ident: 1085_CR51 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.95.26.15706 – volume: 14 start-page: 1045 issue: 7 year: 2003 ident: 1085_CR59 publication-title: NeuroReport doi: 10.1097/00001756-200305230-00028 – volume: 92 start-page: 324 issue: 2 year: 2005 ident: 1085_CR57 publication-title: Journal of Multivariate Analysis doi: 10.1016/j.jmva.2003.10.003 – volume: 23 start-page: 11539 issue: 37 year: 2003 ident: 1085_CR18 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-37-11539.2003 – volume: 65 start-page: 305 issue: 5 year: 1991 ident: 1085_CR53 publication-title: Biological cybernetics doi: 10.1007/BF00216963 – volume: 26 start-page: 8254 issue: 32 year: 2006 ident: 1085_CR68 publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.1282-06.2006 – volume: 2 start-page: 947 year: 1999 ident: 1085_CR4 publication-title: Nature Neuroscience doi: 10.1038/14731 – volume: 4 start-page: e1000239 issue: 12 year: 2008 ident: 1085_CR63 publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1000239 – volume: 34 start-page: 1545 issue: 4 year: 2007 ident: 1085_CR25 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.10.020 – volume: 40 start-page: 823 year: 2003 ident: 1085_CR7 publication-title: Neuron doi: 10.1016/S0896-6273(03)00680-9 – volume: 85 start-page: 461 year: 2000 ident: 1085_CR23 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.85.461 – volume: 18 start-page: 631 issue: 9 year: 2008 ident: 1085_CR43 publication-title: Current Biology doi: 10.1016/j.cub.2008.03.054 – volume: 101 start-page: 1294 year: 2009 ident: 1085_CR75 publication-title: Journal of Neurophysiology doi: 10.1152/jn.91049.2008 – volume: 26 start-page: 1015 year: 2008 ident: 1085_CR27 publication-title: Magnetic Resonance Imaging doi: 10.1016/j.mri.2008.02.019 – volume: 453 start-page: 869 issue: 7197 year: 2008 ident: 1085_CR79 publication-title: Nature doi: 10.1038/nature06976 – volume: 28 start-page: 505 issue: 2 year: 2008 ident: 1085_CR69 publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.3359-07.2008 – volume: 17 start-page: 684 issue: 12 year: 1931 ident: 1085_CR62 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.17.12.684 – volume: 104 start-page: 10240 issue: 24 year: 2007 ident: 1085_CR24 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0701519104 – volume: 19 start-page: 2913 issue: 11 year: 2007 ident: 1085_CR36 publication-title: Neural Computation doi: 10.1162/neco.2007.19.11.2913 – volume-title: Neuroinformatics year: 2009 ident: 1085_CR71 – volume: 66 start-page: 051903 issue: 5 Pt 1 year: 2002 ident: 1085_CR72 publication-title: Phys Rev E Stat Nonlin Soft Matter Phys. doi: 10.1103/PhysRevE.66.051903 – volume: 440 start-page: 1007 issue: 7087 year: 2006 ident: 1085_CR67 publication-title: Nature doi: 10.1038/nature04701 – volume: 80 start-page: 197 year: 1998 ident: 1085_CR33 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.80.197 – volume: 100 start-page: 7348 issue: 12 year: 2003 ident: 1085_CR37 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1131895100 – volume: 51 start-page: 2784 issue: 11 year: 2003 ident: 1085_CR58 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2003.818153 – ident: 1085_CR70 – volume: 24 start-page: 120 year: 1978 ident: 1085_CR74 publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1978.1055832 – volume: 11 start-page: 91 year: 1999 ident: 1085_CR46 publication-title: Neural Comput doi: 10.1162/089976699300016827 – volume: 19 start-page: 479 issue: 3 year: 2007 ident: 1085_CR80 publication-title: Journal of cognitive neuroscience doi: 10.1162/jocn.2007.19.3.479 – volume: 70 start-page: 640 issue: 2 year: 1993 ident: 1085_CR54 publication-title: Journal of Neurophysiology doi: 10.1152/jn.1993.70.2.640 – volume: 7 start-page: 446 issue: 5 year: 2004 ident: 1085_CR77 publication-title: Nature Neuroscience doi: 10.1038/nn1233 – volume: 98 start-page: 1064 year: 2007 ident: 1085_CR31 publication-title: J Neurophysiol doi: 10.1152/jn.00559.2007 |
SSID | ssj0017842 |
Score | 2.3331804 |
Snippet | Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of... Background Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the... Abstract Background: Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use... BACKGROUND: Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the... Abstract Background Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use... |
SourceID | doaj pubmedcentral biomedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 81 |
SubjectTerms | Action potentials (Electrophysiology) Algorithms Animals Brain Brain - physiology Computer Simulation Electrodes Electroencephalography Electronic Data Processing Electrophysiology Information Theory Macaca Measurement Models, Neurological Neurons - physiology Neurophysiology Physiological aspects Programming languages Robotics Signal Processing, Computer-Assisted Software Standard deviation Studies |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nj9QgFCdmD8aL8du6q3Iw0YN1C4UC8TSaGTfGNR7cZG8ILcSNk3bjdBP_fN9rmXHIxnjxCrwWeI_3AY8fhLzgnTSyDrwEXedLERtWesabMkrRyiAk9wYvOJ9-bk7OxMdzeb731BfmhM3wwPPEHSvuopY6guB1QqrKqa7qRBXAMwhGuEn7gs3bBlPp_EDp6dkcBqq35BxzeCZQH6ab410ZaiCEs84uuq8z-zTB-F9X1nvWKs-k3DNNqzvkdvIp6WIey11yI_T3yM3TdGp-n3xb0HEY1n74RcFFpeDy0eg2I02gqcga6hI4CR0i3SYZlniyTD-tvrymy-UHaNLRzeXFj0CndyXovL-DO-0PyNlq-fX9SZleVig9uEtj6WLX8hCN5CpIEVQUjLd1LRDeLTJjnIiyqRvnuFHcI6SNjlUdY-hYE2oX6ofkoB_68JhQxkIdatPBBwXQM69VBAvnW18FDQFeQd5m82svZxQNi7jWeQ0sMYvcscgdC9GJZgV5s-WGbRNoOY5xbafgRTfXCV7tCLZ_-mvTd8jerENTAYifTeJn_yV-BXmJwmGRY9Cx1qVbDTA5CKxlFxy0HMKzVwU5ylrCMm6z6sOteNmkRjbW4NVlAy5sQZ7vapEQM-P6MFxtLAR8CjpnCvJoFsU_w4bgVDVGF0RlQpoNOK_pL75PCONccURhevI_ZuiQ3JpP4FTJmiNyMP68Ck_BkRv9s2nN_gYWFUDY priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgL4k1oAR-Q4IBp7NhxLA5oQbtUiCIOVNqbcRK7VKySpUklfj4zWe9Sq4JrbCeezHge9vgbQl6IVhlVeMFA19VMhpKzmouSBSUb5aUStcELzsdfyqMT-WmpljE3Z4hplVudOCnqtm9wj_zQ4C1OA9b83foXw6JReLgaK2hcJzcQuQwzuvRyF29xXUkR0Xx4VR5y0MNMCCzmkTPEsU5uuK8SwzTh91_V0pfMVJpCeckmLe6Q29GZpLMN9--Sa767R24ex-Py--T7jI59v6r73xR8Uwq-Hg1uGGlES0WeUBdRSWgf6Da7kCHV9PPi62s6n3-ELi0d1mc_PZ0KStDNxg5usT8gJ4v5tw9HLJZUYDX4SSNzoW2ED0YJ7ZX0OkgumqKQiOsWuDFOBlUWpXPCaFEjlk0V8iIE3_LSF84XD8le13f-MaGc-8IXpoUXShjP60oHMG11U-e-gsguI2-T_2vXG_gMi4DWaQvw2SJ3LHLHQlhS8Yy82XLDNhGtHGlc2SlqqcqrA17tBmy_9M-u75G9yYSmB_35qY0L1mrhQqWqAAqvlUrnTrd5K3MPHqk30omMvEThsMgxmFjj4nUG-DmIqGVnAtQb4rLnGTlIesL6bZLm_a142ag_BruT9ow837XiQEyJ63x_MViI9DRMzmTk0UYU_5INUakuTZURnQhpQnDa0p39mKDFhRYIv_Tkv3PaJ7c2Z2qa8fKA7I3nF_4puGZj_WxagH8A81w2yA priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkRAXxJvQAj4gwQGX2LHjWAihBe1SIRZxYKXejJPYpWKVlN1UKv-emcTbbWi5cI09ie15eCb2fEPIc1ErozIvGNi6ksmQc1ZykbOgZKW8VKI0mOA8_5IfLOSnQ3W4LQcUF3B9ZWiH9aQWq-X-2a_f70Dh3_YKX-SvORhYJgRW6UgZpmFfh21Jo5bO5fZIQRdSRGyfK4h68NAcgnpT_JX6vhztWD2w_2XzfWH_Gt-tvLBZzW6TW9HLpJNBLO6Qa765S27M4zn6PfJ9Qru2XZbtGQWnlYITSINbdzTCqCKzqItwJbQNdHPtkOFZM_08-_qKTqcfoUtN1yfHPz3tK03Q4Y8P_nu_Txaz6bcPByzWWmAlOFAdc6GuhA9GCe2V9DpILqoskwj4FrgxTgaVZ7lzwmhRIshNEdIsBF_z3GfOZw_ITtM2_hGhnPvMZ6aGF0qg52WhA-x5ZVWmvoCQLyFvRutrTwZcDYtI1-MWUDqLjLLIKAvxSsETsr_hhq0ijDnOcWn7cKbILxO8PCfYfOmfXd8je0cD6h-0qyMbNdlq4UKhigCWsJZKp07XaS1TD66qN9KJhLxA4bDIMRhY5WKeAywOQm3ZiQC7h4DtaUL2Rj1BsatR8-5GvOxGL6zBZGYDTm1Cnp23IiHelWt8e7q2EAJqGJxJyMNBFLfTjhKeED0S0tGExy3N8Y8ec1xogbhMj_-bcpfcHA7iNOP5HtnpVqf-CfhzXfm019M__TRGyA priority: 102 providerName: Scholars Portal |
Title | A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19607698 https://www.proquest.com/docview/902049392 https://www.proquest.com/docview/67573229 http://dx.doi.org/10.1186/1471-2202-10-81 https://pubmed.ncbi.nlm.nih.gov/PMC2723115 https://doaj.org/article/72af858f322d4570a7d0d40e951e94a2 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdgkxAXND4XNooPSHDAEDt2bItTi1qmik4TMKniYpzEFhNVM62dxJ_Pe0naLRucuCRSbCd23vP78PP7mZBXolJWZUEwkHUFkzHnrOAiZ1HJUgWpRGExwXl2nB-dyulcza_Aom9E8LnJ33MQn0wIPIMjZZhkvSskqEF0zEfftwEDbZpzcraVOxSfv7zgRmb7oqeQGtz-29L5mnrqb528posme-RBZ0TSYUv1h-ROWD4i92ZdmPwx-TGk67peFPVvCjYpBRuPRr9a0w4lFWlBfYdGQutIN7sKGYaS6efJyVs6Hn-CKhVdnZ_9CrQ5SIK2Czq4tP6EnE7G3z4ese4oBVaAfbRmPlalCNEqoYOSQUfJRZllEvHcIrfWy6jyLPdeWC0KxLAxMc1iDBXPQ-ZD9pTsLOtl2CeU85CFzFbwQgnteWF0BJVWlEUaDHh0CfnQ-7_uvIXNcAhk3S-BOeWQOg6p48AdMTwh7zbUcGWHUo5jXLjGWzH57QZvtg02X_pn1RGSt9eh5gGwm-smqtPCR6NMBEFXSaVTr6u0kmkASzRY6UVCXiNzOKQYdKz0XRoD_BxE0nJDAWIN8djThBz2asK8LXvFBxv2cp3cWDmLucoWbNaEvNyWYkPcCrcM9eXKgYenoXM2Ic9aVrwaNnijOrcmIbrHpL0B90uWZz8bSHGhBcIuPf8v2h2Q-22sTTOeH5Kd9cVleAEm27oYkLt6rgdkdzicfp3CfTQ-PvkyaBZA4DqTZtBM5z9ImD96 |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuiDehhfoAggOmsWPHsRBCW9hlS3erCrVSb24eNlSsNkt3K-BH8R-ZyWNpVMGt19hObM_kmxk_viHkmSiUUZETDLAuY9LHnGVcxMwrmSsnlcgMXnCe7MejI_npWB2vkd_tXRg8VtliYgXURZnjGvm2wVucBqz5u_l3hkmjcHO1zaBRa8We-_UDIrbF290PIN7nQgwHh-9HrEkqwDLwFJYs9UUunDdKaKek015ykUeRRGYzz41JpVdxFKepMFpkyOaS-DDy3hU8dlHqInjvNbIuI4hkemR9Z7B_8Hm1baETKRr-IJ7E2xyQnwmB6UNChszZnTv1044prDIGXLYLFwxj99DmBSs4vE1uNe4r7df6doesudldcn3SbNDfIyd9uizLaVb-pOANU_AuqU8XS9rws6IW0LThQaGlp-15RobzTMfDg1d0MPgIVQq6mJ9-c7RKYUHrpSRc1L9Pjq5kvh-Q3qycuUeEcu4iF5kCXiihPc8S7cGYZnkWugRiyYC86cyvndeEHRYptLsloFkWpWNROhYCoYQH5HUrDZs3_Og4xqmt4qQkvtzg5apB-6V_Vt1B8XY6VD0oz77YBiKsFqlPVOIBYgupdJjqIixk6MAHdkamIiAvUDksSgw6lqfNBQqYHOTwsn0BgIpM8GFANjs1ATHyTvFGq162QayFXf1fAdlalWJDPIQ3c-X5wkJsqaFzJiAPa1X8O2yIg3VskoDojpJ2BtwtmZ1-rcjMhRZI-PT4v33aIjdGh5OxHe_u722Qm_WOnmY83iS95dm5ewKO4TJ72vyOlJxcNQL8ARzidMM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkSouiDehhfqABAfSxo4dx-K0hV0KtFWFqFRxMXZiQ9Vls-qmEj-fmcS7bCicuEWxndieh2dszzeEPOe11DL3PAVd51IRCpY6xos0SFFJLyR3GgOcj46Lg1Px4UyexXRAGAvjflRrQI5-dz0IfdppbnioLvbmdegFviz2GCjYlHPM0pGlGIZ9U0mpUEo_7X9ZHSmossuks6occX7-8oE_Yt-ngyWrQ_a_rr_XFrDh5cq11Wpyh9yOZiYd9Xxxl9zws3tk8ygepN8nX0e0bZqpa35SsFopWIE02EVLI44qUovaiFdCm0CX9w5TPGymh5OTV3Q8fgdVarqYn1942qWaoP2WD26-PyCnk_HnNwdpTLaQOrCg2tSGuuI-aMmVl8KrIBiv8lwg4ltgWlsRZJEX1nKtuEOUmzJkeQi-ZoXPrc8fko1ZM_OPCWXM5z7XNXxQQHvmShVg0XOVy3wJPl9CXg_m18x7YA2DUNfDEiC4QeoYpI4Bh6VkCdldUsNUEcccxzg1nT9TFtcbvFw1WP7pn1X3kbyDDnUvmstvJoqyUdyGUpYBVGEtpMqsqrNaZB5sVa-F5Ql5gcxhkGLIrDYGOsDkINaWGXFQfIjYniVke1ATJLsaFG8t2ctEzbIwGqOZNVi1CdlZlWJDvCw3883VwoAPqKBzOiGPelb8PWzwV1Why4SoAZMOBjwsmZ1_70DHueIIzPTkv2i3QzZP3k7M4fvjj1vkVn8wp1JWbJON9vLKPwX7rnXPOrn9BUtBSeI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+toolbox+for+the+fast+information+analysis+of+multiple-site+LFP%2C+EEG+and+spike+train+recordings&rft.jtitle=BMC+neuroscience&rft.au=Magri%2C+Cesare&rft.au=Whittingstall%2C+Kevin&rft.au=Singh%2C+Vanessa&rft.au=Logothetis%2C+Nikos+K&rft.date=2009-07-16&rft.pub=BioMed+Central&rft.eissn=1471-2202&rft.volume=10&rft.spage=81&rft.epage=81&rft_id=info:doi/10.1186%2F1471-2202-10-81&rft_id=info%3Apmid%2F19607698&rft.externalDocID=PMC2723115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2202&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2202&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2202&client=summon |