A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings

Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals...

Full description

Saved in:
Bibliographic Details
Published inBMC neuroscience Vol. 10; no. 1; p. 81
Main Authors Magri, Cesare, Whittingstall, Kevin, Singh, Vanessa, Logothetis, Nikos K, Panzeri, Stefano
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 16.07.2009
BioMed Central
BMC
Subjects
Online AccessGet full text
ISSN1471-2202
1471-2202
DOI10.1186/1471-2202-10-81

Cover

Loading…
Abstract Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses. Here we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies. The new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code.
AbstractList BACKGROUND: Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses. RESULTS: Here we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies. CONCLUSION: The new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code.
Abstract Background Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses. Results Here we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies. Conclusion The new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code.
Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses. Here we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies. The new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code.
Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses.BACKGROUNDInformation theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses.Here we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies.RESULTSHere we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies.The new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code.CONCLUSIONThe new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code.
Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses. Here we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies. The new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code.
ArticleNumber 81
Audience Academic
Author Whittingstall, Kevin
Logothetis, Nikos K
Singh, Vanessa
Magri, Cesare
Panzeri, Stefano
AuthorAffiliation 3 Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT, UK
1 Italian Institute of Technology, Department of Robotics, Brain and Cognitive Sciences, I-16163 Genoa, Italy
2 Max Planck Institute for Biological Cybernetics, D-72076 Tübingen, Germany
AuthorAffiliation_xml – name: 3 Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT, UK
– name: 1 Italian Institute of Technology, Department of Robotics, Brain and Cognitive Sciences, I-16163 Genoa, Italy
– name: 2 Max Planck Institute for Biological Cybernetics, D-72076 Tübingen, Germany
Author_xml – sequence: 1
  givenname: Cesare
  surname: Magri
  fullname: Magri, Cesare
– sequence: 2
  givenname: Kevin
  surname: Whittingstall
  fullname: Whittingstall, Kevin
– sequence: 3
  givenname: Vanessa
  surname: Singh
  fullname: Singh, Vanessa
– sequence: 4
  givenname: Nikos K
  surname: Logothetis
  fullname: Logothetis, Nikos K
– sequence: 5
  givenname: Stefano
  surname: Panzeri
  fullname: Panzeri, Stefano
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19607698$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv1DAUhSNURB-wZocskLoirV-J4w3SUE1LpZFgAWvjca6nHpJ4sB1E_32dTimdqlUWTq6_e-Ljew6LvcEPUBRvCT4hpKlPCRekpBTTkuCyIS-Kg_vK3oP3_eIwxjXGRDScvir2iayxqGVzUPycoeR9t_R_kfUBpStAVseE3JA_e52cH5AedHcdXUTeon7sktt0UEaXAC3Ov31E8_lFRloUN-4XoBS0G1AA40PrhlV8Xby0uovw5m49Kn6cz7-ffSkXXy8uz2aLclkTnEptW0PByooKqDgIywk1jHFKGLdESs1tVbNaayoFXWKGm8ZiZi20pAamgR0Vl1vd1uu12gTX63CtvHbqtuDDSumQnOlACaptUzWWUdrySmAtWtxyDLIiILmmWevTVmszLntoDQzZVbcjurszuCu18n8UFZQRUmWBz1uBpfPPCOzuGN-raVpqmpYiWDUkixzfnSL43yPEpHoXDXSdHsCPUdWiEtmCzOD7R-DajyEPLSqJKeaSycnThy200vkKpvHmH5tJUc0orhjGguJMnTxB5aeF3pmcPetyfafh3cOrurf4L2EZON0CJvgYA9j_CFZThp_wXT3qMC7dJnHKVvds3w0rKvIM
CitedBy_id crossref_primary_10_1371_journal_pbio_1001752
crossref_primary_10_1088_1741_2552_ab37b4
crossref_primary_10_1016_j_neuron_2018_01_003
crossref_primary_10_1093_cercor_bhw006
crossref_primary_10_1523_JNEUROSCI_2074_11_2011
crossref_primary_10_3389_fncir_2014_00012
crossref_primary_10_3390_a12090190
crossref_primary_10_7554_eLife_22794
crossref_primary_10_1371_journal_pbio_3001530
crossref_primary_10_1371_journal_pcbi_1003723
crossref_primary_10_1186_s10194_022_01495_9
crossref_primary_10_1523_JNEUROSCI_3318_14_2015
crossref_primary_10_1016_j_jphysparis_2011_07_014
crossref_primary_10_1038_s41531_022_00399_4
crossref_primary_10_1523_ENEURO_0410_21_2021
crossref_primary_10_1371_journal_pone_0118277
crossref_primary_10_1016_j_brs_2020_09_006
crossref_primary_10_1016_j_jneumeth_2014_10_011
crossref_primary_10_1073_pnas_1516539112
crossref_primary_10_1038_s41586_024_07088_7
crossref_primary_10_3389_fnbeh_2020_541920
crossref_primary_10_1016_j_bios_2019_04_025
crossref_primary_10_1523_ENEURO_0106_21_2021
crossref_primary_10_1007_s11063_020_10242_7
crossref_primary_10_3389_fnins_2017_00005
crossref_primary_10_1038_s41598_022_08869_8
crossref_primary_10_1093_cercor_bhw196
crossref_primary_10_1152_jn_00404_2011
crossref_primary_10_1016_j_isci_2023_107098
crossref_primary_10_1152_jn_00893_2012
crossref_primary_10_1002_epi4_12743
crossref_primary_10_1007_s10827_010_0236_5
crossref_primary_10_1073_pnas_1103168108
crossref_primary_10_1007_s10548_021_00851_3
crossref_primary_10_1038_s41598_018_26780_z
crossref_primary_10_1111_ejn_13742
crossref_primary_10_1371_journal_pbio_3000831
crossref_primary_10_1111_ejn_13100
crossref_primary_10_1186_s12984_019_0512_1
crossref_primary_10_1007_s00429_020_02188_2
crossref_primary_10_1089_brain_2017_0529
crossref_primary_10_1371_journal_pone_0052173
crossref_primary_10_3390_e21010061
crossref_primary_10_7554_eLife_91475_3
crossref_primary_10_1016_j_cub_2013_11_064
crossref_primary_10_1523_JNEUROSCI_1313_13_2013
crossref_primary_10_1073_pnas_1200155109
crossref_primary_10_1016_j_neuroimage_2018_08_026
crossref_primary_10_1038_s41586_021_04094_x
crossref_primary_10_1093_sleep_zsy167
crossref_primary_10_1162_neco_a_01155
crossref_primary_10_1016_j_mri_2010_03_028
crossref_primary_10_3390_e23030321
crossref_primary_10_3389_fnins_2016_00248
crossref_primary_10_1016_j_cub_2017_12_006
crossref_primary_10_1152_jn_00075_2011
crossref_primary_10_1152_jn_00430_2010
crossref_primary_10_1523_JNEUROSCI_5365_13_2014
crossref_primary_10_1016_j_jneumeth_2014_03_007
crossref_primary_10_7554_eLife_91475
crossref_primary_10_1523_JNEUROSCI_2771_11_2012
crossref_primary_10_3390_e13020485
crossref_primary_10_1007_s10548_017_0599_2
crossref_primary_10_1371_journal_pbio_1001064
crossref_primary_10_1523_JNEUROSCI_5435_11_2012
crossref_primary_10_1016_j_neuroscience_2018_05_006
crossref_primary_10_1016_j_bbe_2024_08_012
crossref_primary_10_1016_j_mri_2011_07_013
crossref_primary_10_1371_journal_pbio_1002257
crossref_primary_10_1371_journal_pcbi_1001035
crossref_primary_10_1016_j_biosystems_2019_103978
crossref_primary_10_1002_hbm_26250
crossref_primary_10_1016_j_cub_2009_10_068
crossref_primary_10_1109_TBME_2014_2360393
crossref_primary_10_1162_NECO_a_00703
crossref_primary_10_1152_jn_00380_2014
crossref_primary_10_3389_fnsys_2020_00014
crossref_primary_10_1038_s41467_024_45376_y
crossref_primary_10_1073_pnas_1212059109
crossref_primary_10_1371_journal_pone_0161934
crossref_primary_10_3389_fninf_2014_00026
crossref_primary_10_1016_j_jneumeth_2011_11_013
crossref_primary_10_1007_s10827_012_0408_6
crossref_primary_10_1167_19_2_8
crossref_primary_10_1016_j_neuroimage_2019_116152
crossref_primary_10_1111_desc_12457
crossref_primary_10_1038_s41598_017_16827_y
crossref_primary_10_1073_pnas_1012656107
crossref_primary_10_1007_s12559_011_9121_4
crossref_primary_10_3389_fninf_2019_00057
crossref_primary_10_1016_j_jneumeth_2011_11_005
crossref_primary_10_1523_JNEUROSCI_2205_13_2013
crossref_primary_10_1111_ejn_13144
crossref_primary_10_1523_JNEUROSCI_4637_10_2011
crossref_primary_10_1038_srep45898
crossref_primary_10_1523_JNEUROSCI_1368_19_2020
crossref_primary_10_1103_PhysRevE_85_051139
crossref_primary_10_1109_ACCESS_2024_3413576
crossref_primary_10_1038_s42003_018_0205_5
crossref_primary_10_1016_j_pneurobio_2011_08_002
crossref_primary_10_1523_ENEURO_0052_18_2018
crossref_primary_10_1016_j_celrep_2024_114412
crossref_primary_10_1002_hbm_23471
crossref_primary_10_1073_pnas_2312831121
crossref_primary_10_3389_fninf_2021_596443
crossref_primary_10_1016_j_neuroimage_2022_119347
crossref_primary_10_1038_srep17681
crossref_primary_10_1523_JNEUROSCI_4738_14_2015
crossref_primary_10_7554_eLife_58882
crossref_primary_10_1016_j_cub_2024_03_023
crossref_primary_10_1523_JNEUROSCI_3711_13_2013
crossref_primary_10_1152_jn_00422_2011
crossref_primary_10_1371_journal_pbio_2000812
crossref_primary_10_1038_s41598_020_57454_4
crossref_primary_10_1016_j_jneumeth_2012_03_009
crossref_primary_10_1016_j_neuron_2019_07_006
crossref_primary_10_1523_JNEUROSCI_2891_17_2018
crossref_primary_10_1016_j_celrep_2019_05_034
crossref_primary_10_1371_journal_pcbi_1004121
crossref_primary_10_1371_journal_pcbi_1005574
crossref_primary_10_1523_ENEURO_0366_17_2017
crossref_primary_10_1371_journal_pone_0057453
crossref_primary_10_1111_1749_4877_12368
crossref_primary_10_3389_fnins_2017_00425
crossref_primary_10_1523_JNEUROSCI_0637_17_2017
crossref_primary_10_1162_NECO_a_00695
crossref_primary_10_1186_s40708_023_00212_9
crossref_primary_10_1007_s10548_020_00757_6
crossref_primary_10_3389_fnins_2024_1371107
crossref_primary_10_1016_j_heares_2010_04_015
crossref_primary_10_1111_epi_16686
crossref_primary_10_1007_s10827_010_0230_y
crossref_primary_10_1088_1741_2552_abef3a
crossref_primary_10_1016_j_jneumeth_2014_06_007
crossref_primary_10_1016_j_neuroimage_2012_12_011
crossref_primary_10_3390_e20040240
crossref_primary_10_1038_s41531_021_00187_6
crossref_primary_10_1111_nyas_14099
crossref_primary_10_1523_JNEUROSCI_3449_12_2013
crossref_primary_10_1111_ejn_16394
crossref_primary_10_1523_JNEUROSCI_2631_13_2013
crossref_primary_10_1016_j_brainres_2015_08_046
crossref_primary_10_1038_s41598_019_39986_6
crossref_primary_10_1016_j_celrep_2022_110878
crossref_primary_10_3390_bioengineering11100990
crossref_primary_10_1016_j_neunet_2010_05_008
Cites_doi 10.1523/JNEUROSCI.0009-08.2008
10.1016/S0006-3495(67)86597-4
10.1523/JNEUROSCI.1389-04.2004
10.1523/JNEUROSCI.13-07-02758.1993
10.1016/S0896-6273(01)00251-3
10.1038/nn1802
10.1152/jn.1987.57.1.162
10.1162/089976601300014312
10.1523/JNEUROSCI.3417-06.2007
10.1152/jn.1996.76.2.1310
10.1038/nn1228
10.1038/35079612
10.1523/JNEUROSCI.5319-04.2005
10.1103/PhysRevE.69.056111
10.1038/nrn2578
10.3389/neuro.11.004.2009
10.1214/aoms/1177704251
10.1152/jn.00116.2003
10.1017/CBO9780511622762
10.1038/35086012
10.1162/neco.2008.08-07-595
10.1152/jn.2001.85.1.305
10.1098/rstb.2002.1113
10.1162/biot.2006.1.3.302
10.1523/JNEUROSCI.2523-04.2004
10.1016/j.jneumeth.2003.10.009
10.1016/j.cub.2008.02.023
10.1162/089976603321780272
10.1152/jn.1983.49.2.303
10.1162/08997660260293238
10.1098/rspb.1999.0736
10.1016/S0896-6273(01)00481-0
10.1016/S0166-2236(97)01216-2
10.1523/JNEUROSCI.4330-05.2006
10.1093/cercor/bhk020
10.1523/JNEUROSCI.19-18-08083.1999
10.1126/science.129.3354.969-a
10.1088/0954-898X/7/1/006
10.1523/JNEUROSCI.5171-07.2008
10.1002/j.1538-7305.1948.tb01338.x
10.1016/j.neuron.2009.01.008
10.1073/pnas.92.1.290
10.1016/j.neuron.2005.12.019
10.1038/nrn1888
10.1016/j.tins.2008.09.012
10.1088/0954-898X/14/1/303
10.1073/pnas.95.26.15706
10.1097/00001756-200305230-00028
10.1016/j.jmva.2003.10.003
10.1523/JNEUROSCI.23-37-11539.2003
10.1007/BF00216963
10.1523/JNEUROSCI.1282-06.2006
10.1038/14731
10.1371/journal.pcbi.1000239
10.1016/j.neuroimage.2006.10.020
10.1016/S0896-6273(03)00680-9
10.1103/PhysRevLett.85.461
10.1016/j.cub.2008.03.054
10.1152/jn.91049.2008
10.1016/j.mri.2008.02.019
10.1038/nature06976
10.1523/JNEUROSCI.3359-07.2008
10.1073/pnas.17.12.684
10.1073/pnas.0701519104
10.1162/neco.2007.19.11.2913
10.1103/PhysRevE.66.051903
10.1038/nature04701
10.1103/PhysRevLett.80.197
10.1073/pnas.1131895100
10.1109/TSP.2003.818153
10.1109/TIT.1978.1055832
10.1162/089976699300016827
10.1162/jocn.2007.19.3.479
10.1152/jn.1993.70.2.640
10.1038/nn1233
10.1152/jn.00559.2007
ContentType Journal Article
Copyright COPYRIGHT 2009 BioMed Central Ltd.
2009 Magri et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2009 Magri et al; licensee BioMed Central Ltd. 2009 Magri et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2009 BioMed Central Ltd.
– notice: 2009 Magri et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2009 Magri et al; licensee BioMed Central Ltd. 2009 Magri et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
DOA
DOI 10.1186/1471-2202-10-81
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2202
EndPage 81
ExternalDocumentID oai_doaj_org_article_72af858f322d4570a7d0d40e951e94a2
PMC2723115
oai_biomedcentral_com_1471_2202_10_81
2502148131
A205300720
19607698
10_1186_1471_2202_10_81
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Italy
United Kingdom
Germany
GeographicLocations_xml – name: United Kingdom
– name: Germany
– name: Italy
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
6PF
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
IPY
ITC
KQ8
LK8
M1P
M2M
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
NXXTH
PMFND
3V.
7TK
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
-A0
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
5PM
PUEGO
ID FETCH-LOGICAL-b610t-afdc2ef9527e54e7f412c3342134f199a4f5636aa2972b03088f03ffed16e3ae3
IEDL.DBID RBZ
ISSN 1471-2202
IngestDate Wed Aug 27 01:29:22 EDT 2025
Thu Aug 21 13:35:49 EDT 2025
Wed May 22 07:11:04 EDT 2024
Fri Jul 11 08:09:59 EDT 2025
Fri Jul 25 09:55:25 EDT 2025
Tue Jun 17 22:07:56 EDT 2025
Tue Jun 10 21:12:57 EDT 2025
Thu Apr 03 07:05:33 EDT 2025
Tue Jul 01 02:25:52 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b610t-afdc2ef9527e54e7f412c3342134f199a4f5636aa2972b03088f03ffed16e3ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1471-2202-10-81
PMID 19607698
PQID 902049392
PQPubID 44779
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_72af858f322d4570a7d0d40e951e94a2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2723115
biomedcentral_primary_oai_biomedcentral_com_1471_2202_10_81
proquest_miscellaneous_67573229
proquest_journals_902049392
gale_infotracmisc_A205300720
gale_infotracacademiconefile_A205300720
pubmed_primary_19607698
crossref_primary_10_1186_1471_2202_10_81
crossref_citationtrail_10_1186_1471_2202_10_81
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-07-16
PublicationDateYYYYMMDD 2009-07-16
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-16
  day: 16
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC neuroscience
PublicationTitleAlternate BMC Neurosci
PublicationYear 2009
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References BB Averbeck (1085_CR16) 2006; 7
G Buzsáki (1085_CR77) 2004; 7
EN Brown (1085_CR76) 2004; 7
S Nakahara (1085_CR49) 2002; 14
EM Maynard (1085_CR55) 1999; 19
NK Logothetis (1085_CR79) 2008; 453
S Panzeri (1085_CR32) 1996; 7
A Belitski (1085_CR29) 2008; 28
HDR Golledge (1085_CR59) 2003; 14
RS Petersen (1085_CR20) 2001; 32
A Mazzoni (1085_CR63) 2008; 4
1085_CR65
A Lazo (1085_CR74) 1978; 24
D Rubino (1085_CR28) 2006; 9
1085_CR66
C Shannon (1085_CR1) 1948; 27
E Wilson (1085_CR62) 1931; 17
DH Goldberg (1085_CR71) 2009
DS Reich (1085_CR6) 2001; 85
LF Abbott (1085_CR46) 1999; 11
DN Mastronarde (1085_CR41) 1983; 49
T Schreiber (1085_CR23) 2000; 85
S Strong (1085_CR33) 1998; 80
A Tang (1085_CR69) 2008; 28
F Montani (1085_CR22) 2007; 27
MW Oram (1085_CR48) 1998; 21
N Misra (1085_CR57) 2005; 92
L Pessoa (1085_CR26) 2007; 17
MW Oram (1085_CR44) 2002; 357
G Kreiman (1085_CR81) 2006; 49
JD Victor (1085_CR73) 1996; 76
MR Jarvis (1085_CR61) 2001; 13
A Borst (1085_CR4) 1999; 2
A Delorme (1085_CR82) 2004; 134
DB Percival (1085_CR60) 1993
R Quian Quiroga (1085_CR38) 2009; 10
E Arabzadeh (1085_CR8) 2004; 24
TM Cover (1085_CR2) 2006
CJ Honey (1085_CR24) 2007; 104
MA Montemurro (1085_CR36) 2007; 19
1085_CR52
C Kayser (1085_CR14) 2009; 61
CE Schroeder (1085_CR64) 2009; 32
S Panzeri (1085_CR31) 2007; 98
TL Adelman (1085_CR7) 2003; 40
A Kraskov (1085_CR80) 2007; 19
G Foffani (1085_CR11) 2004; 24
F Rieke (1085_CR3) 1997
TJ Gawne (1085_CR47) 1993; 13
J Victor (1085_CR72) 2002; 66
JWH Schnupp (1085_CR10) 2006; 26
G Fuhrmann-Alpert (1085_CR25) 2007; 34
L Paninski (1085_CR34) 2003; 15
NR Goodman (1085_CR56) 1963; 34
S Panzeri (1085_CR27) 2008; 26
J Csicsvari (1085_CR78) 2003; 90
MJ Tovee (1085_CR54) 1993; 70
MA Montemurro (1085_CR13) 2008; 18
CL Li (1085_CR39) 1959; 129
S Nirenberg (1085_CR21) 2001; 411
O Oyman (1085_CR58) 2003; 51
E Schneidman (1085_CR18) 2003; 23
S Nirenberg (1085_CR37) 2003; 100
JBM Goense (1085_CR43) 2008; 18
E Schneidman (1085_CR67) 2006; 440
S Panzeri (1085_CR12) 2001; 29
S Waldert (1085_CR30) 2008; 28
I Nemenman (1085_CR35) 2004; 69
JD Victor (1085_CR5) 2006; 1
NG Hatsopoulos (1085_CR51) 1998; 95
J Shlens (1085_CR68) 2006; 26
LM Optican (1085_CR53) 1991; 65
P Koenig (1085_CR42) 1995; 92
LM Optican (1085_CR9) 1987; 57
PE Latham (1085_CR19) 2005; 25
1085_CR70
E Salinas (1085_CR45) 2001; 2
E Rolls (1085_CR75) 2009; 101
G Pola (1085_CR17) 2003; 14
DH Perkel (1085_CR40) 1967; 7
A Scaglione (1085_CR50) 2008; 20
S Panzeri (1085_CR15) 1999; 266
References_xml – volume: 28
  start-page: 5696
  issue: 22
  year: 2008
  ident: 1085_CR29
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0009-08.2008
– volume: 7
  start-page: 419
  year: 1967
  ident: 1085_CR40
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(67)86597-4
– volume: 24
  start-page: 6011
  issue: 26
  year: 2004
  ident: 1085_CR8
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1389-04.2004
– volume: 13
  start-page: 2758
  year: 1993
  ident: 1085_CR47
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.13-07-02758.1993
– volume: 29
  start-page: 769
  year: 2001
  ident: 1085_CR12
  publication-title: Neuron
  doi: 10.1016/S0896-6273(01)00251-3
– volume: 9
  start-page: 1549
  issue: 12
  year: 2006
  ident: 1085_CR28
  publication-title: Nat Neurosci
  doi: 10.1038/nn1802
– volume: 57
  start-page: 162
  year: 1987
  ident: 1085_CR9
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1987.57.1.162
– volume: 13
  start-page: 717
  issue: 4
  year: 2001
  ident: 1085_CR61
  publication-title: Neural Computation
  doi: 10.1162/089976601300014312
– volume: 27
  start-page: 2338
  issue: 9
  year: 2007
  ident: 1085_CR22
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3417-06.2007
– volume: 76
  start-page: 1310
  issue: 2
  year: 1996
  ident: 1085_CR73
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1996.76.2.1310
– volume: 7
  start-page: 456
  issue: 5
  year: 2004
  ident: 1085_CR76
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1228
– volume: 411
  start-page: 698
  issue: 6838
  year: 2001
  ident: 1085_CR21
  publication-title: Nature
  doi: 10.1038/35079612
– volume: 25
  start-page: 5195
  issue: 21
  year: 2005
  ident: 1085_CR19
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5319-04.2005
– volume: 69
  start-page: 056111
  issue: 5 Pt 2
  year: 2004
  ident: 1085_CR35
  publication-title: Physical review E, Statistical, nonlinear, and soft matter physics
  doi: 10.1103/PhysRevE.69.056111
– volume: 10
  start-page: 173
  issue: 3
  year: 2009
  ident: 1085_CR38
  publication-title: Nat Rev Neurosci.
  doi: 10.1038/nrn2578
– ident: 1085_CR65
  doi: 10.3389/neuro.11.004.2009
– volume: 34
  start-page: 178
  year: 1963
  ident: 1085_CR56
  publication-title: Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177704251
– volume: 90
  start-page: 1314
  issue: 2
  year: 2003
  ident: 1085_CR78
  publication-title: Journal of neurophysiology
  doi: 10.1152/jn.00116.2003
– volume-title: Spectral Analysis for Physical Applications: Multitaper and Conventional Univeriate Techniques
  year: 1993
  ident: 1085_CR60
  doi: 10.1017/CBO9780511622762
– volume: 2
  start-page: 539
  issue: 8
  year: 2001
  ident: 1085_CR45
  publication-title: Nat Rev Neurosci
  doi: 10.1038/35086012
– volume: 20
  start-page: 2662
  year: 2008
  ident: 1085_CR50
  publication-title: Neural Computation
  doi: 10.1162/neco.2008.08-07-595
– volume: 85
  start-page: 305
  year: 2001
  ident: 1085_CR6
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.2001.85.1.305
– volume: 357
  start-page: 987
  issue: 1424
  year: 2002
  ident: 1085_CR44
  publication-title: Philos Trans R Soc Lond, B, Biol Sci
  doi: 10.1098/rstb.2002.1113
– volume-title: Spikes: exploring the neural code
  year: 1997
  ident: 1085_CR3
– volume: 1
  start-page: 302
  issue: 3
  year: 2006
  ident: 1085_CR5
  publication-title: Biological Theory
  doi: 10.1162/biot.2006.1.3.302
– volume: 24
  start-page: 7266
  year: 2004
  ident: 1085_CR11
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2523-04.2004
– ident: 1085_CR52
– volume: 134
  start-page: 9
  year: 2004
  ident: 1085_CR82
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 18
  start-page: 375
  year: 2008
  ident: 1085_CR13
  publication-title: Current Biology
  doi: 10.1016/j.cub.2008.02.023
– volume: 15
  start-page: 1191
  year: 2003
  ident: 1085_CR34
  publication-title: Neural Computation
  doi: 10.1162/089976603321780272
– volume: 49
  start-page: 303
  year: 1983
  ident: 1085_CR41
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1983.49.2.303
– volume: 14
  start-page: 2269
  year: 2002
  ident: 1085_CR49
  publication-title: Neural Computation
  doi: 10.1162/08997660260293238
– ident: 1085_CR66
– volume: 266
  start-page: 1001
  issue: 1423
  year: 1999
  ident: 1085_CR15
  publication-title: Proc Biol Sci.
  doi: 10.1098/rspb.1999.0736
– volume: 32
  start-page: 503
  issue: 3
  year: 2001
  ident: 1085_CR20
  publication-title: Neuron
  doi: 10.1016/S0896-6273(01)00481-0
– volume-title: Elements of information theory
  year: 2006
  ident: 1085_CR2
– volume: 21
  start-page: 259
  issue: 6
  year: 1998
  ident: 1085_CR48
  publication-title: Trends Neurosci
  doi: 10.1016/S0166-2236(97)01216-2
– volume: 26
  start-page: 4785
  year: 2006
  ident: 1085_CR10
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4330-05.2006
– volume: 17
  start-page: 691
  issue: 3
  year: 2007
  ident: 1085_CR26
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhk020
– volume: 19
  start-page: 8083
  issue: 18
  year: 1999
  ident: 1085_CR55
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.19-18-08083.1999
– volume: 129
  start-page: 783
  year: 1959
  ident: 1085_CR39
  publication-title: Science
  doi: 10.1126/science.129.3354.969-a
– volume: 7
  start-page: 87
  year: 1996
  ident: 1085_CR32
  publication-title: Network: Computation in Neural Systems
  doi: 10.1088/0954-898X/7/1/006
– volume: 28
  start-page: 1000
  issue: 4
  year: 2008
  ident: 1085_CR30
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5171-07.2008
– volume: 27
  start-page: 379
  year: 1948
  ident: 1085_CR1
  publication-title: Bell Systems Technical Journal
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 61
  start-page: 597
  year: 2009
  ident: 1085_CR14
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.01.008
– volume: 92
  start-page: 290
  year: 1995
  ident: 1085_CR42
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.92.1.290
– volume: 49
  start-page: 433
  issue: 3
  year: 2006
  ident: 1085_CR81
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.12.019
– volume: 7
  start-page: 358
  issue: 5
  year: 2006
  ident: 1085_CR16
  publication-title: Nat Rev Neurosci.
  doi: 10.1038/nrn1888
– volume: 32
  start-page: 9
  year: 2009
  ident: 1085_CR64
  publication-title: Trends in Neurosciences
  doi: 10.1016/j.tins.2008.09.012
– volume: 14
  start-page: 35
  year: 2003
  ident: 1085_CR17
  publication-title: Network
  doi: 10.1088/0954-898X/14/1/303
– volume: 95
  start-page: 15706
  issue: 26
  year: 1998
  ident: 1085_CR51
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.95.26.15706
– volume: 14
  start-page: 1045
  issue: 7
  year: 2003
  ident: 1085_CR59
  publication-title: NeuroReport
  doi: 10.1097/00001756-200305230-00028
– volume: 92
  start-page: 324
  issue: 2
  year: 2005
  ident: 1085_CR57
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2003.10.003
– volume: 23
  start-page: 11539
  issue: 37
  year: 2003
  ident: 1085_CR18
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-37-11539.2003
– volume: 65
  start-page: 305
  issue: 5
  year: 1991
  ident: 1085_CR53
  publication-title: Biological cybernetics
  doi: 10.1007/BF00216963
– volume: 26
  start-page: 8254
  issue: 32
  year: 2006
  ident: 1085_CR68
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1282-06.2006
– volume: 2
  start-page: 947
  year: 1999
  ident: 1085_CR4
  publication-title: Nature Neuroscience
  doi: 10.1038/14731
– volume: 4
  start-page: e1000239
  issue: 12
  year: 2008
  ident: 1085_CR63
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1000239
– volume: 34
  start-page: 1545
  issue: 4
  year: 2007
  ident: 1085_CR25
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.10.020
– volume: 40
  start-page: 823
  year: 2003
  ident: 1085_CR7
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00680-9
– volume: 85
  start-page: 461
  year: 2000
  ident: 1085_CR23
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.85.461
– volume: 18
  start-page: 631
  issue: 9
  year: 2008
  ident: 1085_CR43
  publication-title: Current Biology
  doi: 10.1016/j.cub.2008.03.054
– volume: 101
  start-page: 1294
  year: 2009
  ident: 1085_CR75
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.91049.2008
– volume: 26
  start-page: 1015
  year: 2008
  ident: 1085_CR27
  publication-title: Magnetic Resonance Imaging
  doi: 10.1016/j.mri.2008.02.019
– volume: 453
  start-page: 869
  issue: 7197
  year: 2008
  ident: 1085_CR79
  publication-title: Nature
  doi: 10.1038/nature06976
– volume: 28
  start-page: 505
  issue: 2
  year: 2008
  ident: 1085_CR69
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.3359-07.2008
– volume: 17
  start-page: 684
  issue: 12
  year: 1931
  ident: 1085_CR62
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.17.12.684
– volume: 104
  start-page: 10240
  issue: 24
  year: 2007
  ident: 1085_CR24
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0701519104
– volume: 19
  start-page: 2913
  issue: 11
  year: 2007
  ident: 1085_CR36
  publication-title: Neural Computation
  doi: 10.1162/neco.2007.19.11.2913
– volume-title: Neuroinformatics
  year: 2009
  ident: 1085_CR71
– volume: 66
  start-page: 051903
  issue: 5 Pt 1
  year: 2002
  ident: 1085_CR72
  publication-title: Phys Rev E Stat Nonlin Soft Matter Phys.
  doi: 10.1103/PhysRevE.66.051903
– volume: 440
  start-page: 1007
  issue: 7087
  year: 2006
  ident: 1085_CR67
  publication-title: Nature
  doi: 10.1038/nature04701
– volume: 80
  start-page: 197
  year: 1998
  ident: 1085_CR33
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.80.197
– volume: 100
  start-page: 7348
  issue: 12
  year: 2003
  ident: 1085_CR37
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1131895100
– volume: 51
  start-page: 2784
  issue: 11
  year: 2003
  ident: 1085_CR58
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2003.818153
– ident: 1085_CR70
– volume: 24
  start-page: 120
  year: 1978
  ident: 1085_CR74
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1978.1055832
– volume: 11
  start-page: 91
  year: 1999
  ident: 1085_CR46
  publication-title: Neural Comput
  doi: 10.1162/089976699300016827
– volume: 19
  start-page: 479
  issue: 3
  year: 2007
  ident: 1085_CR80
  publication-title: Journal of cognitive neuroscience
  doi: 10.1162/jocn.2007.19.3.479
– volume: 70
  start-page: 640
  issue: 2
  year: 1993
  ident: 1085_CR54
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1993.70.2.640
– volume: 7
  start-page: 446
  issue: 5
  year: 2004
  ident: 1085_CR77
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1233
– volume: 98
  start-page: 1064
  year: 2007
  ident: 1085_CR31
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00559.2007
SSID ssj0017842
Score 2.3331804
Snippet Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of...
Background Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the...
Abstract Background: Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use...
BACKGROUND: Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the...
Abstract Background Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 81
SubjectTerms Action potentials (Electrophysiology)
Algorithms
Animals
Brain
Brain - physiology
Computer Simulation
Electrodes
Electroencephalography
Electronic Data Processing
Electrophysiology
Information Theory
Macaca
Measurement
Models, Neurological
Neurons - physiology
Neurophysiology
Physiological aspects
Programming languages
Robotics
Signal Processing, Computer-Assisted
Software
Standard deviation
Studies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nj9QgFCdmD8aL8du6q3Iw0YN1C4UC8TSaGTfGNR7cZG8ILcSNk3bjdBP_fN9rmXHIxnjxCrwWeI_3AY8fhLzgnTSyDrwEXedLERtWesabMkrRyiAk9wYvOJ9-bk7OxMdzeb731BfmhM3wwPPEHSvuopY6guB1QqrKqa7qRBXAMwhGuEn7gs3bBlPp_EDp6dkcBqq35BxzeCZQH6ab410ZaiCEs84uuq8z-zTB-F9X1nvWKs-k3DNNqzvkdvIp6WIey11yI_T3yM3TdGp-n3xb0HEY1n74RcFFpeDy0eg2I02gqcga6hI4CR0i3SYZlniyTD-tvrymy-UHaNLRzeXFj0CndyXovL-DO-0PyNlq-fX9SZleVig9uEtj6WLX8hCN5CpIEVQUjLd1LRDeLTJjnIiyqRvnuFHcI6SNjlUdY-hYE2oX6ofkoB_68JhQxkIdatPBBwXQM69VBAvnW18FDQFeQd5m82svZxQNi7jWeQ0sMYvcscgdC9GJZgV5s-WGbRNoOY5xbafgRTfXCV7tCLZ_-mvTd8jerENTAYifTeJn_yV-BXmJwmGRY9Cx1qVbDTA5CKxlFxy0HMKzVwU5ylrCMm6z6sOteNmkRjbW4NVlAy5sQZ7vapEQM-P6MFxtLAR8CjpnCvJoFsU_w4bgVDVGF0RlQpoNOK_pL75PCONccURhevI_ZuiQ3JpP4FTJmiNyMP68Ck_BkRv9s2nN_gYWFUDY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgL4k1oAR-Q4IBp7NhxLA5oQbtUiCIOVNqbcRK7VKySpUklfj4zWe9Sq4JrbCeezHge9vgbQl6IVhlVeMFA19VMhpKzmouSBSUb5aUStcELzsdfyqMT-WmpljE3Z4hplVudOCnqtm9wj_zQ4C1OA9b83foXw6JReLgaK2hcJzcQuQwzuvRyF29xXUkR0Xx4VR5y0MNMCCzmkTPEsU5uuK8SwzTh91_V0pfMVJpCeckmLe6Q29GZpLMN9--Sa767R24ex-Py--T7jI59v6r73xR8Uwq-Hg1uGGlES0WeUBdRSWgf6Da7kCHV9PPi62s6n3-ELi0d1mc_PZ0KStDNxg5usT8gJ4v5tw9HLJZUYDX4SSNzoW2ED0YJ7ZX0OkgumqKQiOsWuDFOBlUWpXPCaFEjlk0V8iIE3_LSF84XD8le13f-MaGc-8IXpoUXShjP60oHMG11U-e-gsguI2-T_2vXG_gMi4DWaQvw2SJ3LHLHQlhS8Yy82XLDNhGtHGlc2SlqqcqrA17tBmy_9M-u75G9yYSmB_35qY0L1mrhQqWqAAqvlUrnTrd5K3MPHqk30omMvEThsMgxmFjj4nUG-DmIqGVnAtQb4rLnGTlIesL6bZLm_a142ag_BruT9ow837XiQEyJ63x_MViI9DRMzmTk0UYU_5INUakuTZURnQhpQnDa0p39mKDFhRYIv_Tkv3PaJ7c2Z2qa8fKA7I3nF_4puGZj_WxagH8A81w2yA
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkRAXxJvQAj4gwQGX2LHjWAihBe1SIRZxYKXejJPYpWKVlN1UKv-emcTbbWi5cI09ie15eCb2fEPIc1ErozIvGNi6ksmQc1ZykbOgZKW8VKI0mOA8_5IfLOSnQ3W4LQcUF3B9ZWiH9aQWq-X-2a_f70Dh3_YKX-SvORhYJgRW6UgZpmFfh21Jo5bO5fZIQRdSRGyfK4h68NAcgnpT_JX6vhztWD2w_2XzfWH_Gt-tvLBZzW6TW9HLpJNBLO6Qa765S27M4zn6PfJ9Qru2XZbtGQWnlYITSINbdzTCqCKzqItwJbQNdHPtkOFZM_08-_qKTqcfoUtN1yfHPz3tK03Q4Y8P_nu_Txaz6bcPByzWWmAlOFAdc6GuhA9GCe2V9DpILqoskwj4FrgxTgaVZ7lzwmhRIshNEdIsBF_z3GfOZw_ITtM2_hGhnPvMZ6aGF0qg52WhA-x5ZVWmvoCQLyFvRutrTwZcDYtI1-MWUDqLjLLIKAvxSsETsr_hhq0ijDnOcWn7cKbILxO8PCfYfOmfXd8je0cD6h-0qyMbNdlq4UKhigCWsJZKp07XaS1TD66qN9KJhLxA4bDIMRhY5WKeAywOQm3ZiQC7h4DtaUL2Rj1BsatR8-5GvOxGL6zBZGYDTm1Cnp23IiHelWt8e7q2EAJqGJxJyMNBFLfTjhKeED0S0tGExy3N8Y8ec1xogbhMj_-bcpfcHA7iNOP5HtnpVqf-CfhzXfm019M__TRGyA
  priority: 102
  providerName: Scholars Portal
Title A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings
URI https://www.ncbi.nlm.nih.gov/pubmed/19607698
https://www.proquest.com/docview/902049392
https://www.proquest.com/docview/67573229
http://dx.doi.org/10.1186/1471-2202-10-81
https://pubmed.ncbi.nlm.nih.gov/PMC2723115
https://doaj.org/article/72af858f322d4570a7d0d40e951e94a2
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdgkxAXND4XNooPSHDAEDt2bItTi1qmik4TMKniYpzEFhNVM62dxJ_Pe0naLRucuCRSbCd23vP78PP7mZBXolJWZUEwkHUFkzHnrOAiZ1HJUgWpRGExwXl2nB-dyulcza_Aom9E8LnJ33MQn0wIPIMjZZhkvSskqEF0zEfftwEDbZpzcraVOxSfv7zgRmb7oqeQGtz-29L5mnrqb528posme-RBZ0TSYUv1h-ROWD4i92ZdmPwx-TGk67peFPVvCjYpBRuPRr9a0w4lFWlBfYdGQutIN7sKGYaS6efJyVs6Hn-CKhVdnZ_9CrQ5SIK2Czq4tP6EnE7G3z4ese4oBVaAfbRmPlalCNEqoYOSQUfJRZllEvHcIrfWy6jyLPdeWC0KxLAxMc1iDBXPQ-ZD9pTsLOtl2CeU85CFzFbwQgnteWF0BJVWlEUaDHh0CfnQ-7_uvIXNcAhk3S-BOeWQOg6p48AdMTwh7zbUcGWHUo5jXLjGWzH57QZvtg02X_pn1RGSt9eh5gGwm-smqtPCR6NMBEFXSaVTr6u0kmkASzRY6UVCXiNzOKQYdKz0XRoD_BxE0nJDAWIN8djThBz2asK8LXvFBxv2cp3cWDmLucoWbNaEvNyWYkPcCrcM9eXKgYenoXM2Ic9aVrwaNnijOrcmIbrHpL0B90uWZz8bSHGhBcIuPf8v2h2Q-22sTTOeH5Kd9cVleAEm27oYkLt6rgdkdzicfp3CfTQ-PvkyaBZA4DqTZtBM5z9ImD96
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuiDehhfoAggOmsWPHsRBCW9hlS3erCrVSb24eNlSsNkt3K-BH8R-ZyWNpVMGt19hObM_kmxk_viHkmSiUUZETDLAuY9LHnGVcxMwrmSsnlcgMXnCe7MejI_npWB2vkd_tXRg8VtliYgXURZnjGvm2wVucBqz5u_l3hkmjcHO1zaBRa8We-_UDIrbF290PIN7nQgwHh-9HrEkqwDLwFJYs9UUunDdKaKek015ykUeRRGYzz41JpVdxFKepMFpkyOaS-DDy3hU8dlHqInjvNbIuI4hkemR9Z7B_8Hm1baETKRr-IJ7E2xyQnwmB6UNChszZnTv1044prDIGXLYLFwxj99DmBSs4vE1uNe4r7df6doesudldcn3SbNDfIyd9uizLaVb-pOANU_AuqU8XS9rws6IW0LThQaGlp-15RobzTMfDg1d0MPgIVQq6mJ9-c7RKYUHrpSRc1L9Pjq5kvh-Q3qycuUeEcu4iF5kCXiihPc8S7cGYZnkWugRiyYC86cyvndeEHRYptLsloFkWpWNROhYCoYQH5HUrDZs3_Og4xqmt4qQkvtzg5apB-6V_Vt1B8XY6VD0oz77YBiKsFqlPVOIBYgupdJjqIixk6MAHdkamIiAvUDksSgw6lqfNBQqYHOTwsn0BgIpM8GFANjs1ATHyTvFGq162QayFXf1fAdlalWJDPIQ3c-X5wkJsqaFzJiAPa1X8O2yIg3VskoDojpJ2BtwtmZ1-rcjMhRZI-PT4v33aIjdGh5OxHe_u722Qm_WOnmY83iS95dm5ewKO4TJ72vyOlJxcNQL8ARzidMM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkSouiDehhfqABAfSxo4dx-K0hV0KtFWFqFRxMXZiQ9Vls-qmEj-fmcS7bCicuEWxndieh2dszzeEPOe11DL3PAVd51IRCpY6xos0SFFJLyR3GgOcj46Lg1Px4UyexXRAGAvjflRrQI5-dz0IfdppbnioLvbmdegFviz2GCjYlHPM0pGlGIZ9U0mpUEo_7X9ZHSmossuks6occX7-8oE_Yt-ngyWrQ_a_rr_XFrDh5cq11Wpyh9yOZiYd9Xxxl9zws3tk8ygepN8nX0e0bZqpa35SsFopWIE02EVLI44qUovaiFdCm0CX9w5TPGymh5OTV3Q8fgdVarqYn1942qWaoP2WD26-PyCnk_HnNwdpTLaQOrCg2tSGuuI-aMmVl8KrIBiv8lwg4ltgWlsRZJEX1nKtuEOUmzJkeQi-ZoXPrc8fko1ZM_OPCWXM5z7XNXxQQHvmShVg0XOVy3wJPl9CXg_m18x7YA2DUNfDEiC4QeoYpI4Bh6VkCdldUsNUEcccxzg1nT9TFtcbvFw1WP7pn1X3kbyDDnUvmstvJoqyUdyGUpYBVGEtpMqsqrNaZB5sVa-F5Ql5gcxhkGLIrDYGOsDkINaWGXFQfIjYniVke1ATJLsaFG8t2ctEzbIwGqOZNVi1CdlZlWJDvCw3883VwoAPqKBzOiGPelb8PWzwV1Why4SoAZMOBjwsmZ1_70DHueIIzPTkv2i3QzZP3k7M4fvjj1vkVn8wp1JWbJON9vLKPwX7rnXPOrn9BUtBSeI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+toolbox+for+the+fast+information+analysis+of+multiple-site+LFP%2C+EEG+and+spike+train+recordings&rft.jtitle=BMC+neuroscience&rft.au=Magri%2C+Cesare&rft.au=Whittingstall%2C+Kevin&rft.au=Singh%2C+Vanessa&rft.au=Logothetis%2C+Nikos+K&rft.date=2009-07-16&rft.pub=BioMed+Central&rft.eissn=1471-2202&rft.volume=10&rft.spage=81&rft.epage=81&rft_id=info:doi/10.1186%2F1471-2202-10-81&rft_id=info%3Apmid%2F19607698&rft.externalDocID=PMC2723115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2202&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2202&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2202&client=summon