Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

Background: Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of c...

Full description

Saved in:
Bibliographic Details
Published inAnnals of clinical microbiology and antimicrobials Vol. 10; no. 1; p. 23
Main Authors Kim, Jong H, Chan, Kathleen L, Mahoney, Noreen, Campbell, Bruce C
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 31.05.2011
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods: Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI). Results: Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1(delta), sod2(delta), glr1(delta)) and two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus (sakA(delta), mpkC(delta)), indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations. Effective inhibition of fungal growth can also be achieved using combinations of these benzaldehydes. Conclusions: Natural benzaldehydes targeting cellular antioxidation components of fungi, such as superoxide dismutases, glutathione reductase, etc., effectively inhibit fungal growth. They possess antifungal or chemosensitizing capacity to enhance efficacy of conventional antifungal agents. Chemosensitization can reduce costs, abate resistance, and alleviate negative side effects associated with current antifungal treatments.
AbstractList Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI). Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ) and two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus (sakAΔ, mpkCΔ), indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations. Effective inhibition of fungal growth can also be achieved using combinations of these benzaldehydes. Natural benzaldehydes targeting cellular antioxidation components of fungi, such as superoxide dismutases, glutathione reductase, etc., effectively inhibit fungal growth. They possess antifungal or chemosensitizing capacity to enhance efficacy of conventional antifungal agents. Chemosensitization can reduce costs, abate resistance, and alleviate negative side effects associated with current antifungal treatments.
Background: Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods: Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI). Results: Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1(delta), sod2(delta), glr1(delta)) and two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus (sakA(delta), mpkC(delta)), indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations. Effective inhibition of fungal growth can also be achieved using combinations of these benzaldehydes. Conclusions: Natural benzaldehydes targeting cellular antioxidation components of fungi, such as superoxide dismutases, glutathione reductase, etc., effectively inhibit fungal growth. They possess antifungal or chemosensitizing capacity to enhance efficacy of conventional antifungal agents. Chemosensitization can reduce costs, abate resistance, and alleviate negative side effects associated with current antifungal treatments.
BACKGROUND: Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. METHODS: Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI). RESULTS: Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ) and two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus (sakAΔ, mpkCΔ), indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations. Effective inhibition of fungal growth can also be achieved using combinations of these benzaldehydes. CONCLUSIONS: Natural benzaldehydes targeting cellular antioxidation components of fungi, such as superoxide dismutases, glutathione reductase, etc., effectively inhibit fungal growth. They possess antifungal or chemosensitizing capacity to enhance efficacy of conventional antifungal agents. Chemosensitization can reduce costs, abate resistance, and alleviate negative side effects associated with current antifungal treatments.
BACKGROUNDDisruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. METHODSBenzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI). RESULTSSeveral benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ) and two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus (sakAΔ, mpkCΔ), indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations. Effective inhibition of fungal growth can also be achieved using combinations of these benzaldehydes. CONCLUSIONSNatural benzaldehydes targeting cellular antioxidation components of fungi, such as superoxide dismutases, glutathione reductase, etc., effectively inhibit fungal growth. They possess antifungal or chemosensitizing capacity to enhance efficacy of conventional antifungal agents. Chemosensitization can reduce costs, abate resistance, and alleviate negative side effects associated with current antifungal treatments.
Abstract Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI). Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ) and two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus (sakAΔ, mpkCΔ), indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations. Effective inhibition of fungal growth can also be achieved using combinations of these benzaldehydes. Conclusions Natural benzaldehydes targeting cellular antioxidation components of fungi, such as superoxide dismutases, glutathione reductase, etc., effectively inhibit fungal growth. They possess antifungal or chemosensitizing capacity to enhance efficacy of conventional antifungal agents. Chemosensitization can reduce costs, abate resistance, and alleviate negative side effects associated with current antifungal treatments.
Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI). Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1[DELTA], sod2[DELTA], glr1[DELTA]) and two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus (sakA[DELTA], mpkC[DELTA]), indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations. Effective inhibition of fungal growth can also be achieved using combinations of these benzaldehydes. Natural benzaldehydes targeting cellular antioxidation components of fungi, such as superoxide dismutases, glutathione reductase, etc., effectively inhibit fungal growth. They possess antifungal or chemosensitizing capacity to enhance efficacy of conventional antifungal agents. Chemosensitization can reduce costs, abate resistance, and alleviate negative side effects associated with current antifungal treatments.
Abstract Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus , A. flavus , A. terreus and Penicillium expansum , fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI). Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho -hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae ( sod1 Δ, sod2 Δ, glr1 Δ) and two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus ( sakA Δ, mpkC Δ), indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations. Effective inhibition of fungal growth can also be achieved using combinations of these benzaldehydes. Conclusions Natural benzaldehydes targeting cellular antioxidation components of fungi, such as superoxide dismutases, glutathione reductase, etc ., effectively inhibit fungal growth. They possess antifungal or chemosensitizing capacity to enhance efficacy of conventional antifungal agents. Chemosensitization can reduce costs, abate resistance, and alleviate negative side effects associated with current antifungal treatments.
ArticleNumber 23
Audience Academic
Author Campbell, Bruce C
Kim, Jong H
Chan, Kathleen L
Mahoney, Noreen
AuthorAffiliation 1 Plant Mycotoxin Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan St., Albany, CA 94710, USA
AuthorAffiliation_xml – name: 1 Plant Mycotoxin Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan St., Albany, CA 94710, USA
Author_xml – sequence: 1
  fullname: Kim, Jong H
– sequence: 2
  fullname: Chan, Kathleen L
– sequence: 3
  fullname: Mahoney, Noreen
– sequence: 4
  fullname: Campbell, Bruce C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21627838$$D View this record in MEDLINE/PubMed
BookMark eNp1kstr3DAQh01JaR7tubfW0ENPTjSyLWkvhU3oIxDooclZjOXRroLXSmU5ZPvXV47TJQspOoyY-enTvI6zg973lGXvgZ0CKHEGlRQFkwAFsIKXr7Kjnefg2f0wOx6GW8Y4Y0K-yQ45CC5VqY6y62UfnR37FXY5mujuXdzm3uaBWv9QPHoob6j_g11L621LQx7XGPOIYUUxN9R1Y4chx4TxD67FZPq32WuL3UDvnuxJdvPt6_XFj-Lq5_fLi-VV0QimYlFzRAsVE0hK1oAEloAIGlgYtIoBs7KWvGqoYTVryBhOzYIZgYqL2ojyJLucua3HW30X3AbDVnt0-tHhw0pjiM50pAURB2aoatqmAs7Sz7ZExkhVQoKUifVlZt2NzYZaQ30M2O1B9yO9W-uVv9clcCmrCXA-Axrn_wPYjxi_0dOE9DQhDUzzMkE-P2UR_O-Rhqg3bpiajD35cdBKVpXiC5hq_zQr0-RIu976BDWTWi-5YKCqBUy80xdU6bS0cSbtknXJv_fgbH5ggh-GQHZXQEpwWrkXUv7wvHE7_b8dS4KPs8Ci17gKbtA3vziDksGiTr2vy7-let2h
CitedBy_id crossref_primary_10_1007_s00253_017_8434_y
crossref_primary_10_1038_s41598_020_74574_z
crossref_primary_10_1016_j_micpath_2011_11_005
crossref_primary_10_3390_molecules18088873
crossref_primary_10_2520_myco_65_131
crossref_primary_10_1080_10408398_2017_1371112
crossref_primary_10_3390_mps2020031
crossref_primary_10_1155_2013_704654
crossref_primary_10_3390_app12094591
crossref_primary_10_3390_ijms22094520
crossref_primary_10_3390_molecules191118448
crossref_primary_10_1016_j_bbagen_2012_10_012
crossref_primary_10_1016_j_jhazmat_2023_131555
crossref_primary_10_1039_D1NP00022E
crossref_primary_10_3390_app12083749
crossref_primary_10_1038_s41598_019_54679_w
crossref_primary_10_1099_jmm_0_036145_0
crossref_primary_10_3390_foods10122993
crossref_primary_10_1007_s00253_021_11371_2
crossref_primary_10_1002_jccs_201200295
crossref_primary_10_1016_j_lwt_2022_113635
crossref_primary_10_1080_14786419_2017_1419228
crossref_primary_10_3389_fmicb_2024_1359947
crossref_primary_10_5012_bkcs_2012_33_8_2627
crossref_primary_10_2174_1570178616666181116100232
crossref_primary_10_3390_molecules24162971
crossref_primary_10_1016_j_ijbiomac_2022_02_077
crossref_primary_10_1155_2013_760754
crossref_primary_10_3390_microorganisms10020218
crossref_primary_10_1021_acs_chemrev_0c00586
crossref_primary_10_1016_j_pestbp_2019_06_015
crossref_primary_10_3390_plants9111416
crossref_primary_10_3390_molecules18021564
crossref_primary_10_1016_j_buildenv_2014_05_025
crossref_primary_10_3390_jof9111103
crossref_primary_10_1155_2020_6345429
crossref_primary_10_3390_mps7010001
crossref_primary_10_3390_foods10092073
crossref_primary_10_1021_acs_joc_9b01759
crossref_primary_10_3390_ijms13067375
crossref_primary_10_1080_01480545_2016_1188302
crossref_primary_10_1016_j_gaost_2021_03_002
crossref_primary_10_1111_jop_12735
crossref_primary_10_1007_s00294_014_0458_6
crossref_primary_10_1016_j_jprot_2018_09_016
crossref_primary_10_1021_acssuschemeng_7b00374
crossref_primary_10_1111_ijfs_15647
crossref_primary_10_1039_D3DT03229A
Cites_doi 10.1079/9781845930820.0000
10.1128/EC.00274-06
10.1128/AAC.50.3.949-954.2006
10.1128/MMBR.69.2.262-291.2005
10.1093/jac/dki473
10.1093/genetics/136.4.1261
10.1002/jps.10408
10.1002/yea.1636
10.1007/s10863-006-9012-7
10.1074/jbc.271.21.12275
10.1038/nrd3074
10.1073/pnas.011569399
10.1006/taap.2002.9417
10.1016/j.fgb.2004.11.002
10.1126/science.1118370
10.1177/153537020322800201
10.1023/B:MYCO.0000038430.20669.80
10.1016/0009-2797(85)90015-8
10.1046/j.1365-2958.2001.02384.x
10.1111/j.1365-2958.2004.04244.x
10.1104/pp.105.3.781
10.1053/jinf.2000.0747
10.1038/nbt919
10.1271/bbb.70051
10.1007/s11046-005-2877-x
10.1002/jcb.21741
10.1016/S0021-9258(18)32837-0
10.1039/b609523m
10.1016/j.bbrc.2008.05.030
10.1016/S0009-2797(99)00123-4
10.1093/jac/dkp273
10.1046/j.1365-2958.2001.02283.x
10.1128/AAC.00463-08
10.1128/EC.00178-06
10.1086/513943
10.1128/AAC.44.2.418-420.2000
10.1038/159850b0
10.1016/S1359-6446(99)01430-0
10.1093/jac/dkq031
10.1271/bbb.60.909
10.1128/iai.64.8.3326-3332.1996
10.1046/j.1365-280X.1999.00208.x
10.1002/ps.302
10.1128/aem.60.8.2811-2817.1994
10.1039/b914961a
10.1007/PL00012491
10.1016/S0006-291X(02)02290-8
10.1094/PHYTO-98-2-0205
10.1016/j.ijantimicag.2010.06.003
10.1128/iai.55.9.2088-2092.1987
10.1111/j.1472-765X.2011.03032.x
10.1128/AAC.00345-07
10.1128/AAC.50.2.744-747.2006
10.1128/EC.3.2.557-560.2004
10.1146/annurev.genet.39.073003.112634
10.7164/antibiotics.52.480
10.7164/antibiotics.57.511
10.1086/507891
10.1093/infdis/154.1.76
10.1016/S0925-4439(02)00085-6
10.1083/jcb.200104079
10.1016/S0891-5849(03)00210-7
10.1007/s00253-004-1821-1
10.1128/aem.63.7.2857-2862.1997
10.1007/s11046-010-9356-8
10.1128/AAC.48.4.1256-1271.2004
10.1105/tpc.12.2.237
10.1074/jbc.275.12.8290
10.4315/0362-028X-65.12.1937
10.1002/ps.263
10.1007/BF01575120
10.1002/bies.20020
ContentType Journal Article
Copyright COPYRIGHT 2011 BioMed Central Ltd.
Copyright ©2011 Kim et al; licensee BioMed Central Ltd. 2011 Kim et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2011 BioMed Central Ltd.
– notice: Copyright ©2011 Kim et al; licensee BioMed Central Ltd. 2011 Kim et al; licensee BioMed Central Ltd.
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1186/1476-0711-10-23
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic



CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1476-0711
EndPage 23
ExternalDocumentID oai_doaj_org_article_6ee210ce4bdb4120aaff3a00e8467177
oai_biomedcentral_com_1476_0711_10_23
A260184913
10_1186_1476_0711_10_23
21627838
US201301957175
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
-A0
23M
2VQ
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
88E
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
AAFWJ
AAJSJ
ABUWG
ABVAZ
ACGFO
ACGFS
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
AENEX
AFGXO
AFKRA
AFNRJ
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C24
C6C
CCPQU
CS3
D1J
DIK
DWQXO
E3Z
EBD
EBS
ECGQY
EJD
EMB
EMOBN
F5P
FBQ
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ITC
KQ8
LK8
M1P
M2O
M48
M7P
MM.
M~E
O5R
O5S
OK1
P2P
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
UKHRP
W2D
WOQ
WOW
XSB
0R~
ADUKV
ALIPV
CGR
CUY
CVF
EBLON
ECM
EIF
H13
NPM
PGMZT
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-b608t-52aaf1406ae8751ae1fe1ee1b19caf8010f75724beb050becc2eb90c6a8265c63
IEDL.DBID RPM
ISSN 1476-0711
IngestDate Tue Oct 22 15:10:29 EDT 2024
Tue Sep 17 21:19:05 EDT 2024
Wed May 22 07:16:57 EDT 2024
Thu Aug 15 23:29:55 EDT 2024
Thu Feb 22 23:53:15 EST 2024
Wed Jan 10 04:07:43 EST 2024
Thu Sep 12 19:30:14 EDT 2024
Sat Sep 28 07:48:57 EDT 2024
Wed Dec 27 19:20:22 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b608t-52aaf1406ae8751ae1fe1ee1b19caf8010f75724beb050becc2eb90c6a8265c63
Notes http://handle.nal.usda.gov/10113/53773
http://dx.doi.org/10.1186/1476-0711-10-23
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127747/
PMID 21627838
PQID 874482916
PQPubID 23479
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_6ee210ce4bdb4120aaff3a00e8467177
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3127747
biomedcentral_primary_oai_biomedcentral_com_1476_0711_10_23
proquest_miscellaneous_874482916
gale_infotracmisc_A260184913
gale_infotracacademiconefile_A260184913
crossref_primary_10_1186_1476_0711_10_23
pubmed_primary_21627838
fao_agris_US201301957175
PublicationCentury 2000
PublicationDate 2011-05-31
PublicationDateYYYYMMDD 2011-05-31
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-05-31
  day: 31
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Annals of clinical microbiology and antimicrobials
PublicationTitleAlternate Ann Clin Microbiol Antimicrob
PublicationYear 2011
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 11169096 - Mol Microbiol. 2001 Feb;39(3):533-41
3907866 - Chem Biol Interact. 1985 Dec 31;56(2-3):333-49
15075285 - Eukaryot Cell. 2004 Apr;3(2):557-60
20343980 - Nature. 1947 Jun 21;159(4051):850
10639374 - Antimicrob Agents Chemother. 2000 Feb;44(2):418-20
16983621 - Clin Infect Dis. 2006 Oct 15;43(8):1060-8
21332761 - Lett Appl Microbiol. 2011 May;52(5):506-13
8704323 - Biosci Biotechnol Biochem. 1996 May;60(5):909-10
11401713 - Mol Microbiol. 2001 Jun;40(5):1067-83
15888937 - Methods Mol Med. 2005;118:83-109
10722658 - J Biol Chem. 2000 Mar 24;275(12):8290-300
16349349 - Appl Environ Microbiol. 1994 Aug;60(8):2811-7
15702266 - Mycopathologia. 2004 Nov;158(4):419-26
20725094 - Nat Rev Drug Discov. 2010 Sep;9(9):719-27
15944456 - Microbiol Mol Biol Rev. 2005 Jun;69(2):262-91
10637546 - Drug Discov Today. 2000 Jan;5(1):25-32
12084464 - Biochim Biophys Acta. 2002 Jul 18;1587(2-3):224-33
3040589 - Infect Immun. 1987 Sep;55(9):2088-92
17341812 - Biosci Biotechnol Biochem. 2007 Mar;71(3):844-7
17119635 - Nat Prod Rep. 2006 Dec;23(6):851-63
16436735 - Antimicrob Agents Chemother. 2006 Feb;50(2):744-7
16449304 - J Antimicrob Chemother. 2006 Mar;57(3):384-410
20147322 - J Antimicrob Chemother. 2010 Apr;65(4):799-801
20485730 - Nat Prod Rep. 2010 Jul;27(7):1084-98
8013903 - Genetics. 1994 Apr;136(4):1261-9
17056742 - Eukaryot Cell. 2006 Dec;5(12):2184-8
18486603 - Biochem Biophys Res Commun. 2008 Jul 18;372(1):266-71
15057933 - Bioessays. 2004 Apr;26(4):348-62
11470816 - J Cell Biol. 2001 Jul 23;154(2):267-73
16195452 - Science. 2005 Sep 30;309(5744):2185-9
15341655 - Mol Microbiol. 2004 Sep;53(6):1785-96
15707841 - Fungal Genet Biol. 2005 Mar;42(3):200-12
14661025 - Nat Biotechnol. 2004 Jan;22(1):62-9
3519792 - J Infect Dis. 1986 Jul;154(1):76-83
20803256 - Mycopathologia. 2011 Apr;171(4):291-8
7749655 - Res Commun Mol Pathol Pharmacol. 1995 Feb;87(2):177-86
18395845 - J Cell Biochem. 2008 Aug 1;104(5):1747-59
15515888 - J Antibiot (Tokyo). 2004 Aug;57(8):511-7
18710914 - Antimicrob Agents Chemother. 2008 Nov;52(11):3851-62
12563018 - Exp Biol Med (Maywood). 2003 Feb;228(2):111-33
10480572 - J Antibiot (Tokyo). 1999 May;52(5):480-4
17053999 - J Bioenerg Biomembr. 2006 Apr;38(2):129-35
8647826 - J Biol Chem. 1996 May 24;271(21):12275-80
16495256 - Antimicrob Agents Chemother. 2006 Mar;50(3):949-54
20674282 - Int J Antimicrob Agents. 2010 Oct;36(4):324-31
9564455 - Clin Infect Dis. 1998 Apr;26(4):781-803; quiz 804-5
10647118 - Med Mycol. 1999 Dec;37(6):375-89
9212433 - Appl Environ Microbiol. 1997 Jul;63(7):2857-62
9735057 - Acta Microbiol Pol. 1998;47(1):45-53
11455660 - Pest Manag Sci. 2001 Mar;57(3):289-300
9063673 - Eur J Clin Microbiol Infect Dis. 1997 Jan;16(1):42-50
15614562 - Appl Microbiol Biotechnol. 2005 Jun;67(6):807-15
12884242 - J Pharm Sci. 2003 Aug;92(8):1545-58
12359231 - Biochem Biophys Res Commun. 2002 Oct 4;297(4):854-62
11120607 - J Infect. 2000 Nov;41(3):203-20
19656781 - J Antimicrob Chemother. 2009 Oct;64(4):764-73
11773615 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):144-9
8757871 - Infect Immun. 1996 Aug;64(8):3326-32
11374161 - Pest Manag Sci. 2001 May;57(5):437-42
6298224 - J Biol Chem. 1983 Mar 10;258(5):3107-13
12475174 - Cell Mol Life Sci. 2002 Oct;59(10):1640-8
16998074 - Eukaryot Cell. 2006 Nov;5(11):1934-40
12495013 - J Food Prot. 2002 Dec;65(12):1937-42
12788479 - Free Radic Biol Med. 2003 Jun 15;34(12):1599-606
10662860 - Plant Cell. 2000 Feb;12(2):237-48
15487314 - Mycopathologia. 2004 Jul;158(1):9-15
15568991 - Annu Rev Genet. 2004;38:725-48
18943197 - Phytopathology. 2008 Feb;98(2):205-14
12079430 - Toxicol Appl Pharmacol. 2002 Jun 15;181(3):209-18
10597903 - Chem Biol Interact. 1999 Nov 30;123(2):85-103
17576838 - Antimicrob Agents Chemother. 2007 Sep;51(9):3329-37
15047528 - Antimicrob Agents Chemother. 2004 Apr;48(4):1256-71
19061190 - Yeast. 2008 Nov;25(11):849-59
8058835 - Plant Physiol. 1994 Jul;105(3):781-6
CB Moore (227_CR4) 2000; 41
DE Levin (227_CR61) 2005; 69
CM Grant (227_CR24) 2001; 39
W Arafat (227_CR36) 1995; 87
K Fujita (227_CR21) 2004; 57
F Guillen (227_CR13) 1994; 60
PD Senter (227_CR52) 2002; 99
NJ Tonukari (227_CR41) 2000; 12
L Yan (227_CR76) 2009; 64
K Niimi (227_CR29) 2004; 48
DW Denning (227_CR31) 1998; 26
FM Ingels (227_CR50) 2003; 92
T Xue (227_CR43) 2004; 3
T Yamazaki (227_CR57) 2010; 36
T Florianowicz (227_CR11) 1998; 47
G Reyes (227_CR44) 2006; 5
JH McCusker (227_CR58) 1994; 136
S Tawata (227_CR10) 1996; 60
N Harris (227_CR19) 2003; 34
JH Kim (227_CR42) 2005; 67
T Motoyama (227_CR62) 2005; 42
M Sabater-Vilar (227_CR38) 2004; 158
W Arafat (227_CR35) 1985; 56
AR Holmes (227_CR7) 2008; 52
RG Washburn (227_CR17) 1987; 55
R Di Santo (227_CR3) 2010; 27
F Ruy (227_CR22) 2006; 38
AJ Hamilton (227_CR16) 1999; 37
N Ochiai (227_CR64) 2001; 57
J Lee (227_CR18) 2002; 297
M Goswami (227_CR25) 2006; 50
LE Cowen (227_CR68) 2006; 5
C Jacob (227_CR14) 2006; 23
MD Holdom (227_CR15) 1996; 64
R Fliege (227_CR33) 1999; 123
L Kanetis (227_CR65) 2008; 98
L Ostrosky-Zeichner (227_CR1) 2010; 9
JF Leslie (227_CR32) 2008
JH Kim (227_CR46) 2008; 372
J Meletiadis (227_CR49) 2007; 51
H Takimoto (227_CR2) 1999; 52
M Agarwal (227_CR12) 2001; 57
AB Parsons (227_CR40) 2004; 22
L McIntosh (227_CR78) 1994; 105
D Barrett (227_CR8) 2002; 1587
M Rep (227_CR53) 2000; 275
K Kojima (227_CR55) 2004; 53
D Michalkova-Papajova (227_CR20) 2000; 44
NCG Faria (227_CR77) 2011; 52
HD Isenberg (227_CR47) 1992
WB Pratt (227_CR71) 2003; 228
ML Sokol-Anderson (227_CR27) 1986; 154
JM Vincent (227_CR45) 1947; 159
TA Sangster (227_CR72) 2004; 26
MT Elskens (227_CR59) 1997; 63
JM Fostel (227_CR74) 2000; 5
R Mahfoud (227_CR34) 2002; 181
LE Cowen (227_CR67) 2005; 309
JC Young (227_CR69) 2001; 154
VD Longo (227_CR23) 1996; 271
I Maridonneau (227_CR54) 1983; 258
MA Schwartz (227_CR60) 2004; 38
EK Spanakis (227_CR6) 2006; 43
S Boisnard (227_CR66) 2008; 25
JR Graybill (227_CR26) 1997; 16
HO Byun (227_CR73) 2008; 104
M Rep (227_CR56) 2001; 40
JP Lavigne (227_CR30) 2010; 65
Y Okamoto (227_CR28) 2004; 158
MR Jacob (227_CR9) 2005; 118
JH Kim (227_CR51) 2011; 171
C Charlier (227_CR5) 2006; 57
JL McCallum (227_CR37) 2002; 65
227_CR39
D Picard (227_CR70) 2002; 59
G Chamilos (227_CR75) 2006; 50
Clinical and Laboratory Standards Institute (CLSI) (227_CR48) 2008
D Hagiwara (227_CR63) 2007; 71
References_xml – volume-title: Mycotoxins: Detection Methods, Management, Public Health and Agricultural Trade
  year: 2008
  ident: 227_CR32
  doi: 10.1079/9781845930820.0000
  contributor:
    fullname: JF Leslie
– volume: 5
  start-page: 2184
  year: 2006
  ident: 227_CR68
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.00274-06
  contributor:
    fullname: LE Cowen
– volume: 50
  start-page: 949
  year: 2006
  ident: 227_CR25
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.50.3.949-954.2006
  contributor:
    fullname: M Goswami
– volume: 69
  start-page: 262
  year: 2005
  ident: 227_CR61
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.69.2.262-291.2005
  contributor:
    fullname: DE Levin
– volume: 57
  start-page: 384
  year: 2006
  ident: 227_CR5
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dki473
  contributor:
    fullname: C Charlier
– volume: 47
  start-page: 45
  year: 1998
  ident: 227_CR11
  publication-title: Acta Microbiol Pol
  contributor:
    fullname: T Florianowicz
– volume: 136
  start-page: 1261
  year: 1994
  ident: 227_CR58
  publication-title: Genetics
  doi: 10.1093/genetics/136.4.1261
  contributor:
    fullname: JH McCusker
– volume: 92
  start-page: 1545
  year: 2003
  ident: 227_CR50
  publication-title: J Pharm Sci
  doi: 10.1002/jps.10408
  contributor:
    fullname: FM Ingels
– volume: 25
  start-page: 849
  year: 2008
  ident: 227_CR66
  publication-title: Yeast
  doi: 10.1002/yea.1636
  contributor:
    fullname: S Boisnard
– volume: 38
  start-page: 129
  year: 2006
  ident: 227_CR22
  publication-title: J Bioenerg Biomembr
  doi: 10.1007/s10863-006-9012-7
  contributor:
    fullname: F Ruy
– volume: 271
  start-page: 12275
  year: 1996
  ident: 227_CR23
  publication-title: J Biol Chem
  doi: 10.1074/jbc.271.21.12275
  contributor:
    fullname: VD Longo
– volume: 9
  start-page: 719
  year: 2010
  ident: 227_CR1
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3074
  contributor:
    fullname: L Ostrosky-Zeichner
– volume: 99
  start-page: 144
  year: 2002
  ident: 227_CR52
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.011569399
  contributor:
    fullname: PD Senter
– volume: 181
  start-page: 209
  year: 2002
  ident: 227_CR34
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1006/taap.2002.9417
  contributor:
    fullname: R Mahfoud
– volume: 42
  start-page: 200
  year: 2005
  ident: 227_CR62
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2004.11.002
  contributor:
    fullname: T Motoyama
– volume: 309
  start-page: 2185
  year: 2005
  ident: 227_CR67
  publication-title: Science
  doi: 10.1126/science.1118370
  contributor:
    fullname: LE Cowen
– volume: 228
  start-page: 111
  year: 2003
  ident: 227_CR71
  publication-title: Exp Biol Med (Maywood)
  doi: 10.1177/153537020322800201
  contributor:
    fullname: WB Pratt
– volume: 158
  start-page: 9
  year: 2004
  ident: 227_CR28
  publication-title: Mycopathologia
  doi: 10.1023/B:MYCO.0000038430.20669.80
  contributor:
    fullname: Y Okamoto
– volume: 56
  start-page: 333
  year: 1985
  ident: 227_CR35
  publication-title: Chem Biol Interact
  doi: 10.1016/0009-2797(85)90015-8
  contributor:
    fullname: W Arafat
– ident: 227_CR39
– volume: 40
  start-page: 1067
  year: 2001
  ident: 227_CR56
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2001.02384.x
  contributor:
    fullname: M Rep
– volume: 53
  start-page: 1785
  year: 2004
  ident: 227_CR55
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2004.04244.x
  contributor:
    fullname: K Kojima
– volume: 105
  start-page: 781
  year: 1994
  ident: 227_CR78
  publication-title: Plant Physiol
  doi: 10.1104/pp.105.3.781
  contributor:
    fullname: L McIntosh
– volume: 41
  start-page: 203
  year: 2000
  ident: 227_CR4
  publication-title: J Infect
  doi: 10.1053/jinf.2000.0747
  contributor:
    fullname: CB Moore
– volume: 22
  start-page: 62
  year: 2004
  ident: 227_CR40
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt919
  contributor:
    fullname: AB Parsons
– volume: 71
  start-page: 844
  year: 2007
  ident: 227_CR63
  publication-title: Biosci Biotechnol Biochem
  doi: 10.1271/bbb.70051
  contributor:
    fullname: D Hagiwara
– volume: 158
  start-page: 419
  year: 2004
  ident: 227_CR38
  publication-title: Mycopathologia
  doi: 10.1007/s11046-005-2877-x
  contributor:
    fullname: M Sabater-Vilar
– volume: 104
  start-page: 1747
  year: 2008
  ident: 227_CR73
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.21741
  contributor:
    fullname: HO Byun
– volume: 258
  start-page: 3107
  year: 1983
  ident: 227_CR54
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)32837-0
  contributor:
    fullname: I Maridonneau
– volume: 23
  start-page: 851
  year: 2006
  ident: 227_CR14
  publication-title: Natural Product Reports
  doi: 10.1039/b609523m
  contributor:
    fullname: C Jacob
– volume: 372
  start-page: 266
  year: 2008
  ident: 227_CR46
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2008.05.030
  contributor:
    fullname: JH Kim
– volume: 123
  start-page: 85
  year: 1999
  ident: 227_CR33
  publication-title: Chem Biol Interact
  doi: 10.1016/S0009-2797(99)00123-4
  contributor:
    fullname: R Fliege
– volume: 64
  start-page: 764
  year: 2009
  ident: 227_CR76
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkp273
  contributor:
    fullname: L Yan
– volume: 39
  start-page: 533
  year: 2001
  ident: 227_CR24
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2001.02283.x
  contributor:
    fullname: CM Grant
– volume: 52
  start-page: 3851
  year: 2008
  ident: 227_CR7
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00463-08
  contributor:
    fullname: AR Holmes
– volume: 5
  start-page: 1934
  year: 2006
  ident: 227_CR44
  publication-title: Eukaryotic Cell
  doi: 10.1128/EC.00178-06
  contributor:
    fullname: G Reyes
– volume: 26
  start-page: 781
  year: 1998
  ident: 227_CR31
  publication-title: Clin Infect Dis
  doi: 10.1086/513943
  contributor:
    fullname: DW Denning
– volume: 44
  start-page: 418
  year: 2000
  ident: 227_CR20
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.44.2.418-420.2000
  contributor:
    fullname: D Michalkova-Papajova
– volume: 159
  start-page: 850
  year: 1947
  ident: 227_CR45
  publication-title: Nature
  doi: 10.1038/159850b0
  contributor:
    fullname: JM Vincent
– volume: 5
  start-page: 25
  year: 2000
  ident: 227_CR74
  publication-title: Drug Discov Today
  doi: 10.1016/S1359-6446(99)01430-0
  contributor:
    fullname: JM Fostel
– volume: 65
  start-page: 799
  year: 2010
  ident: 227_CR30
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkq031
  contributor:
    fullname: JP Lavigne
– volume: 60
  start-page: 909
  year: 1996
  ident: 227_CR10
  publication-title: Biosci Biotechnol Biochem
  doi: 10.1271/bbb.60.909
  contributor:
    fullname: S Tawata
– volume: 64
  start-page: 3326
  year: 1996
  ident: 227_CR15
  publication-title: Infect Immun
  doi: 10.1128/iai.64.8.3326-3332.1996
  contributor:
    fullname: MD Holdom
– volume: 37
  start-page: 375
  year: 1999
  ident: 227_CR16
  publication-title: Med Mycol
  doi: 10.1046/j.1365-280X.1999.00208.x
  contributor:
    fullname: AJ Hamilton
– volume: 57
  start-page: 437
  year: 2001
  ident: 227_CR64
  publication-title: Pest Manag Sci
  doi: 10.1002/ps.302
  contributor:
    fullname: N Ochiai
– volume: 60
  start-page: 2811
  year: 1994
  ident: 227_CR13
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.60.8.2811-2817.1994
  contributor:
    fullname: F Guillen
– volume-title: Clinical Microbiology Procedures Handbook
  year: 1992
  ident: 227_CR47
  contributor:
    fullname: HD Isenberg
– volume: 27
  start-page: 1084
  year: 2010
  ident: 227_CR3
  publication-title: Nat Prod Rep
  doi: 10.1039/b914961a
  contributor:
    fullname: R Di Santo
– volume: 118
  start-page: 83
  year: 2005
  ident: 227_CR9
  publication-title: Methods Mol Med
  contributor:
    fullname: MR Jacob
– volume: 59
  start-page: 1640
  year: 2002
  ident: 227_CR70
  publication-title: Cell Mol Life Sci
  doi: 10.1007/PL00012491
  contributor:
    fullname: D Picard
– volume: 297
  start-page: 854
  year: 2002
  ident: 227_CR18
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/S0006-291X(02)02290-8
  contributor:
    fullname: J Lee
– volume: 98
  start-page: 205
  year: 2008
  ident: 227_CR65
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-98-2-0205
  contributor:
    fullname: L Kanetis
– volume: 36
  start-page: 324
  year: 2010
  ident: 227_CR57
  publication-title: Int J Antimicrob Agents
  doi: 10.1016/j.ijantimicag.2010.06.003
  contributor:
    fullname: T Yamazaki
– volume: 55
  start-page: 2088
  year: 1987
  ident: 227_CR17
  publication-title: Infect Immun
  doi: 10.1128/iai.55.9.2088-2092.1987
  contributor:
    fullname: RG Washburn
– volume: 52
  start-page: 506
  year: 2011
  ident: 227_CR77
  publication-title: Lett Appl Microbiol
  doi: 10.1111/j.1472-765X.2011.03032.x
  contributor:
    fullname: NCG Faria
– volume: 51
  start-page: 3329
  year: 2007
  ident: 227_CR49
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00345-07
  contributor:
    fullname: J Meletiadis
– volume: 50
  start-page: 744
  year: 2006
  ident: 227_CR75
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.50.2.744-747.2006
  contributor:
    fullname: G Chamilos
– volume: 3
  start-page: 557
  year: 2004
  ident: 227_CR43
  publication-title: Eukaryotic Cell
  doi: 10.1128/EC.3.2.557-560.2004
  contributor:
    fullname: T Xue
– volume: 38
  start-page: 725
  year: 2004
  ident: 227_CR60
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.39.073003.112634
  contributor:
    fullname: MA Schwartz
– volume: 52
  start-page: 480
  year: 1999
  ident: 227_CR2
  publication-title: J Antibiot (Tokyo)
  doi: 10.7164/antibiotics.52.480
  contributor:
    fullname: H Takimoto
– volume: 57
  start-page: 511
  year: 2004
  ident: 227_CR21
  publication-title: J Antibiot (Tokyo)
  doi: 10.7164/antibiotics.57.511
  contributor:
    fullname: K Fujita
– volume: 43
  start-page: 1060
  year: 2006
  ident: 227_CR6
  publication-title: Clin Infect Dis
  doi: 10.1086/507891
  contributor:
    fullname: EK Spanakis
– volume: 154
  start-page: 76
  year: 1986
  ident: 227_CR27
  publication-title: J Infect Dis
  doi: 10.1093/infdis/154.1.76
  contributor:
    fullname: ML Sokol-Anderson
– volume: 87
  start-page: 177
  year: 1995
  ident: 227_CR36
  publication-title: Res Commun Mol Pathol Pharmacol
  contributor:
    fullname: W Arafat
– volume-title: Reference method for broth dilution antifungal susceptibility testing of filamentous fungi: Approved standard-Second edition. CLSI document M38-A2
  year: 2008
  ident: 227_CR48
  contributor:
    fullname: Clinical and Laboratory Standards Institute (CLSI)
– volume: 1587
  start-page: 224
  year: 2002
  ident: 227_CR8
  publication-title: Biochim Biophys Acta
  doi: 10.1016/S0925-4439(02)00085-6
  contributor:
    fullname: D Barrett
– volume: 154
  start-page: 267
  year: 2001
  ident: 227_CR69
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200104079
  contributor:
    fullname: JC Young
– volume: 34
  start-page: 1599
  year: 2003
  ident: 227_CR19
  publication-title: Free Radic Biol Med
  doi: 10.1016/S0891-5849(03)00210-7
  contributor:
    fullname: N Harris
– volume: 67
  start-page: 807
  year: 2005
  ident: 227_CR42
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-004-1821-1
  contributor:
    fullname: JH Kim
– volume: 63
  start-page: 2857
  year: 1997
  ident: 227_CR59
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.63.7.2857-2862.1997
  contributor:
    fullname: MT Elskens
– volume: 171
  start-page: 291
  year: 2011
  ident: 227_CR51
  publication-title: Mycopathologia
  doi: 10.1007/s11046-010-9356-8
  contributor:
    fullname: JH Kim
– volume: 48
  start-page: 1256
  year: 2004
  ident: 227_CR29
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.48.4.1256-1271.2004
  contributor:
    fullname: K Niimi
– volume: 12
  start-page: 237
  year: 2000
  ident: 227_CR41
  publication-title: Plant Cell
  doi: 10.1105/tpc.12.2.237
  contributor:
    fullname: NJ Tonukari
– volume: 275
  start-page: 8290
  year: 2000
  ident: 227_CR53
  publication-title: J Biol Chem
  doi: 10.1074/jbc.275.12.8290
  contributor:
    fullname: M Rep
– volume: 65
  start-page: 1937
  year: 2002
  ident: 227_CR37
  publication-title: J Food Prot
  doi: 10.4315/0362-028X-65.12.1937
  contributor:
    fullname: JL McCallum
– volume: 57
  start-page: 289
  year: 2001
  ident: 227_CR12
  publication-title: Pest Manag Sci
  doi: 10.1002/ps.263
  contributor:
    fullname: M Agarwal
– volume: 16
  start-page: 42
  year: 1997
  ident: 227_CR26
  publication-title: Eur J Clin Microbiol Infect Dis
  doi: 10.1007/BF01575120
  contributor:
    fullname: JR Graybill
– volume: 26
  start-page: 348
  year: 2004
  ident: 227_CR72
  publication-title: Bioessays
  doi: 10.1002/bies.20020
  contributor:
    fullname: TA Sangster
SSID ssj0020067
Score 2.1889064
Snippet Background: Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with...
Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active...
Abstract Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved...
Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with...
BACKGROUNDDisruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with...
BACKGROUND: Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with...
Abstract Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
crossref
pubmed
fao
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 23
SubjectTerms Aldehydes
animal pathogenic fungi
antifungal agents
Antifungal Agents - chemistry
Antifungal Agents - pharmacology
antifungal properties
Antioxidants - chemistry
Antioxidants - pharmacology
Aspergillus flavus
Aspergillus fumigatus
Aspergillus terreus
Benzaldehydes - chemistry
Benzaldehydes - pharmacology
Fungal Proteins - genetics
Fungal Proteins - metabolism
Fungi - drug effects
Fungi - genetics
Fungi - isolation & purification
Fungi - metabolism
Fungicides
glutathione-disulfide reductase
Health aspects
Humans
microbial growth
mitogen-activated protein kinase
mutants
Mycoses - microbiology
Oxidation-Reduction - drug effects
Penicillium expansum
phenolic compounds
Saccharomyces cerevisiae
Structure-Activity Relationship
structure-activity relationships
superoxide dismutase
Superoxide Dismutase - genetics
Superoxide Dismutase - metabolism
yeasts
SummonAdditionalLinks – databaseName: BioMedCentral
  dbid: RBZ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT90wDI4YaNIu08Z-0A2mHCZtl2pJ2iapdnpMIDQJLvAktEuUtM4eEupDo0jAX4_dljcCu03qqU6rNl8c2639mbHPorGtR1cCg5zoc_SI6zzE1uSh0LGOgFajouLkwyN9MC9_nlanf8miH_3Bl1Z_k6XRVGYzZF6p4hnbUMRxToH57q9VbEW77lBINA2eWHz-cYNHle3niUEaePvRzES_fLpHPzBSaQLlA4u0_4q9nFxJPhuxf83WoNtkz8fmkjdv2MmM8oBQl3EMVS9Qkwi-jJwYQq_z4QzwAN2tP29hcdPCJe8XvudjbjinL_qUoso95UNen429l96y-f7eyY-DfOqhkActbI8QeB8xiNIeMDKRHmQECSCDrBsf0TyJaCqjygBBVIIAVRBq0WiPcUfV6OIdW--WHWwxLoP1eJioNJS68FZ408pom0IZCSpm7Hsyse5i5MtwxGCdSlCZHMHiCBaHcYgqMvb1HobVhUOAYvXTobsEU3L_4QQuGzcpnNMAGM02UIY2lFIJnIZYeCGAHC5pTMa2EGTnf-Ne6ubHiv7gyrpCUZWxL4S8IxXHx238VKmA00BkWW5GNGy2rCU-yXYyElWzScT8fu04ElE-WwfLq0tHTQesQtc8Y-_HpbR6GyU1dT-xGTPJIkteN5V0Z4uBGLyQCr158-G_gPjIXozfzSlDYput93-uYAcdrz58GlTuDi0LKOg
  priority: 500
  providerName: BioMedCentral
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9B23adCh0F5MJNmWZHraloQQSC_NQm5CskfdQPCGxoGkv74zlndZkUMvhT1ptIs1D8183nkw9kl0tvcYSiDIib7EiLgtQ-xNGSod2wjoNRoqTj7_oU-X9dllc7kz6otywlJ74MS4Iw2AqKSDOvShlkp4H2PlhQBynNKkOnLZbMDUDLXoEp7qioymEh05N_WRVh9t1-gGoilFWaH7deafpjb-6HWiXz--snd8Vp5PueOgTl6w53NkyRfpRC_ZExhesadp1uTDa3axoLQgNG3cQ8UMNDOCryOnhqH35bQCPMDwx1_3sHro4ZaPKz_ylCrO6QU_ZaxyT-mR91dpFNMbtjw5vvh-Ws4jFcqghR1RIsg_xFTaAwIV6UFGkAAyyLbzEb2ViKYxqg4QRCNIvgpCKzrtEYY0na7esr1hPcA-4zJYjx8TlYZaV94Kb3oZbVcpI0HFgn3NGOtuUvsMRw2tcwraliOxOBKLQ1iiqoJ92Yhh-8UJr1j9eOs3ElP2-9MCqpGb1cj9S40Kto9Cdv4XXq1u-VPRH7qybZDUFOwzSd6RxePjdn4uXEA2UO8st6CubLZuJT7JQbYTLbXLyHyjO45IlN42wPru1tEMAqswUi_Yu6RK29MoqWkYii2YyZQsO25OGa5WU5_wSioM7s37_8GfD-xZeptOeRMHbG_8fQcfMRwbw-FkeX8BwGoxAw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9QwEA96Ivgifl_1lDwI-lJN0jZpEZFVPA7hfPEW7i0k7eT2YGl1twe7_vXOtL314h0IfeqkH8nMdObXzAdjr0VdNg5dCQQ5waXoEVepD41JfaZDFQCtRkHJycff9dE8_3ZanP5tBzQt4PpGaEf9pOar5bvNr-0nVPiPg8KX-r3MjaZEnCE2S2W32R2VZzmJ-3G-21Ig6Gym2j43XPRPvvsyMlNDNX80PsF117_cV0xXHFZ5xU4dPmD3JweTz0aJeMhuQfuI3R1bTm4fs5MZRQehhuMYymmg1hG8C5zqhm7S4QxwD-1vt2xgsW1gzfuF6_kYMc7pPz8FrnJHUZKb87Ej0xM2P_x68uUonTorpF6LskfGOBcQWmkHiFekAxlAAkgvq9oFNFoimMKo3IMXhSA2K_CVqLVDNFLUOnvK9tquhX3GpS8dHiYoDbnOXCmcaWQo60wZCSok7EO0sPbnWEXDUl3rmIIqZoktlthiEZ2oLGFvL9mwu3CALaW-PvQzsSm6_3CiW53ZSQ2tBkCMW0PuG59LJXAZQuaEAHLDpDEJ20cmW3eGX1g7_6FoX1dWBZKKhL0hzlsSRXzd2k35C7gMVELLzqg4W5lXEt_kIBqJCltHZH4pO5ZIFOXWQnexttSKoFTosCfs2ShKu9koqaknSpkwEwlZNN2Y0p4vhnLhmVTo45vn_3_sC3Zv_GVOwREHbK9fXcBL9Ll6_2rQpT8ymCqO
  priority: 102
  providerName: Scholars Portal
Title Antifungal activity of redox-active benzaldehydes that target cellular antioxidation
URI https://www.ncbi.nlm.nih.gov/pubmed/21627838
https://search.proquest.com/docview/874482916
http://dx.doi.org/10.1186/1476-0711-10-23
https://pubmed.ncbi.nlm.nih.gov/PMC3127747
https://doaj.org/article/6ee210ce4bdb4120aaff3a00e8467177
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdtx2AvZd_12gU_DLYXN5ZsSzJ7SkJLGaSUroGwFyHZpyaQOqVNod1f3zt_lHp9Gxg9-GQj63S6O_l3d4x9iwtdWjQl0MnxNkKLOI-cL1XkEulzD6g1MgpOnp7Kk1n6a57Nt1jWxcLUoP3CLQ-r1dVhtVzU2Mrrq2LY4cSGZ9NJwgVaLWq4zbZVknQueutl0f7b5vDhWg55qiRF6dTALZHUyX8llZfQ_4S4r3qaqU7gj_rG2_XLzfqZtuojKZ-ppuO3bLe1KcNRM_Z3bAuq9-x1U2Xy4QO7GBEgCIUa-1AYA1WLCNc-pFSh91F9B0IH1V-7KmHxUMJtuFnYTdiAxEM62iesamgJGHm_bIowfWSz46OLyUnUFlOInIz1BnlhrUdvSlpAF4Vb4B44AHc8L6xHPRV7lSmROnBxFhNnBbg8LqRFByQrZPKJ7VTrCvZYyJ22eCkvJKQysTq2quReF4lQHIQP2M_exJrrJnGGoVTWfQpKlSEOGeKQQYdEJAH70bHh6cHaU9HyZdcxsan3_vrG-ubStAvGSAB0awtIXelSLmKcBp_YOAayvLhSAdtDJht7iZuqmf0W9CuX5xmSsoB9J84bknUcbmHbkAWcBsqaZUaUj02nOceRHPR6oowWPXLYrR1DJAK2VbC-uzVUfUALtNED9rlZSk9f063TgKneIut9bp-CAlNnCG8F5Mt_P7nP3jSH5wSTOGA7m5s7-IrW18YNUObmCls94QP2anx0enY-qE8ysJ2mGtvz8Z9BLZOP5sQ1hA
link.rule.ids 108,230,315,733,786,790,870,891,2115,2236,24346,24965,27955,27956,31753,33300,33778,53825,53827,76167,76168
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VIgQX3qUuBXxAgosT79pe2-IUKqoATYVEgnpb7a5nm4jUqVpHavvrO-NHVbcnkHzyrC2v521_M8PYx9BmhcZQApMcpwOMiPPAuCINTCRd7gC9RkLFyZNDOZ7FP46Sow2WdLUwNWjfmsWgXJ4MysW8xlaenthhhxMb_prsRVxg1JIOH7CHqK8i6ZL0Ns8iC9x28eGZHPI4lVSnU0O3RFS3_5U0YCK7U-S-7PmmuoU_ehynV_fN9S1_1cdS3nJO-8_Yn25bDSbl72BdmYG9utPx8Z_3_Zw9bcNVf9SQX7ANKF-yR80Ay8tXbDoirBHaC1xDFRI0iMJfOZ-6kF4E9RnwDZRXelnA_LKAc7-a68pv8Oc-_TUgGKyvCXN5sWjmO71ms_1v071x0M5pCIwMswrZrLXDRE1qwOyHa-AOOAA3PLfaoQsMXZqkIjZgwiQkoRFg8tBKjblNYmW0xTbLVQnbzOcm03ikTkiIZaSzUKcFd5mNRMpBOI996XFMnTY9ORR1ye5TUGEVsV4R6xXmOiLy2OeOvzcX1klQJu8v_Ur8792_PrE6O1YtT5QEwIzZQmwKE3MR4mtwkQ5DoKCOp6nHtlF6lD5Ge61mvwX9JeZ5gqTEY59IpBSZEXxcq9tqCHwN1JBLjajVWxbnHJ9kt7cS1d_2yH4nlIpIhJkrYbU-VzTYIBMY_nvsTSOjN7vpFMBjaU96e9vtU1Am6-bjrQzu_PeVH9jj8XRyoA6-H_58y5403-gJjbHLNquzNbzDIK8y72uVvgbGBFFN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZaqla99E0JpW0OldpLdmMnsRP1tKVd0QcIqayEerHsZMyuumRXkJWAX89MHmgDN6ScYieKM-OZ-ZJvZhj7FOZpYTCUQJDjTIARcRZYV6jARtJlDtBrJJScvH8g9ybxr-PkeK3VV03az-1sUM5PB-VsWnMrl6f5sOOJDQ_3dyMuMGpRw2Xhhg_ZI9yzQnVAvcVaZIXbSj48lUMeK0m5OjV9S0R1CWBJTSbSW4nu855_qsv4o9dxZnHXZK_5rD6fcs1BjZ-zf93SGl7K_8GqsoP86lbVx3ut_QV71oat_qiZ8pI9gPIVe9w0srx8zY5GxDlCu4FzKFOCGlL4C-dTNdKLoD4DvoXyyswLmF4WcO5XU1P5DQ_dp78HRIf1DXEvL2ZNn6c3bDL-cbS7F7T9GgIrw7RCcRvjELBJA4iCuAHugANwy7PcOHSFoVOJErEFGyYhKY8Am4W5NIhxklxGm2yjXJSwxXxuU4OHckJCLCOThkYV3KV5JBQH4Tz2tSc1vWxqc2iqlt0fwY2rSfyaxK8R84jIY186Gd9cWIOhVN6d-o10oHf_-sTi7ES3ctESAJFzDrEtbMxFiK_BRSYMgYI7rpTHtlCDtDlBu60nfwX9LeZZgkOJxz6TWmkyJ_i4uWmzIvA1UGEuPaKSb2mccXySnd5MNAN5b9jvFFPTEHHnSliszjU1OEgFwgCPvW309GY13SbwmOppcG-5_RHUy7oIeauH2_e-8iN7cvh9rP_8PPj9jj1tPtUTKWOHbVRnK3iPsV5lP9S7-ho4HFPN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antifungal+activity+of+redox-active+benzaldehydes+that+target+cellular+antioxidation&rft.jtitle=Annals+of+clinical+microbiology+and+antimicrobials&rft.au=Kim%2C+Jong+H&rft.au=Chan%2C+Kathleen+L&rft.au=Mahoney%2C+Noreen&rft.au=Campbell%2C+Bruce+C&rft.date=2011-05-31&rft.eissn=1476-0711&rft.volume=10&rft.spage=23&rft.epage=23&rft_id=info:doi/10.1186%2F1476-0711-10-23&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-0711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-0711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-0711&client=summon