CUDASW++: optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units
Background The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases....
Saved in:
Published in | BMC research notes Vol. 2; no. 1; p. 73 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
06.05.2009
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1756-0500 1756-0500 |
DOI | 10.1186/1756-0500-2-73 |
Cover
Loading…
Abstract | Background
The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases. The recent emergence of many-core architectures, and their associated programming interfaces, provides an opportunity to accelerate sequence database searches using commonly available and inexpensive hardware.
Findings
Our CUDASW++ implementation (benchmarked on a single-GPU NVIDIA GeForce GTX 280 graphics card and a dual-GPU GeForce GTX 295 graphics card) provides a significant performance improvement compared to other publicly available implementations, such as SWPS3, CBESW, SW-CUDA, and NCBI-BLAST. CUDASW++ supports query sequences of length up to 59K and for query sequences ranging in length from 144 to 5,478 in Swiss-Prot release 56.6, the single-GPU version achieves an average performance of 9.509 GCUPS with a lowest performance of 9.039 GCUPS and a highest performance of 9.660 GCUPS, and the dual-GPU version achieves an average performance of 14.484 GCUPS with a lowest performance of 10.660 GCUPS and a highest performance of 16.087 GCUPS.
Conclusion
CUDASW++ is publicly available open-source software. It provides a significant performance improvement for Smith-Waterman-based protein sequence database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs. |
---|---|
AbstractList | The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases. The recent emergence of many-core architectures, and their associated programming interfaces, provides an opportunity to accelerate sequence database searches using commonly available and inexpensive hardware.BACKGROUNDThe Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases. The recent emergence of many-core architectures, and their associated programming interfaces, provides an opportunity to accelerate sequence database searches using commonly available and inexpensive hardware.Our CUDASW++ implementation (benchmarked on a single-GPU NVIDIA GeForce GTX 280 graphics card and a dual-GPU GeForce GTX 295 graphics card) provides a significant performance improvement compared to other publicly available implementations, such as SWPS3, CBESW, SW-CUDA, and NCBI-BLAST. CUDASW++ supports query sequences of length up to 59K and for query sequences ranging in length from 144 to 5,478 in Swiss-Prot release 56.6, the single-GPU version achieves an average performance of 9.509 GCUPS with a lowest performance of 9.039 GCUPS and a highest performance of 9.660 GCUPS, and the dual-GPU version achieves an average performance of 14.484 GCUPS with a lowest performance of 10.660 GCUPS and a highest performance of 16.087 GCUPS.FINDINGSOur CUDASW++ implementation (benchmarked on a single-GPU NVIDIA GeForce GTX 280 graphics card and a dual-GPU GeForce GTX 295 graphics card) provides a significant performance improvement compared to other publicly available implementations, such as SWPS3, CBESW, SW-CUDA, and NCBI-BLAST. CUDASW++ supports query sequences of length up to 59K and for query sequences ranging in length from 144 to 5,478 in Swiss-Prot release 56.6, the single-GPU version achieves an average performance of 9.509 GCUPS with a lowest performance of 9.039 GCUPS and a highest performance of 9.660 GCUPS, and the dual-GPU version achieves an average performance of 14.484 GCUPS with a lowest performance of 10.660 GCUPS and a highest performance of 16.087 GCUPS.CUDASW++ is publicly available open-source software. It provides a significant performance improvement for Smith-Waterman-based protein sequence database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs.CONCLUSIONCUDASW++ is publicly available open-source software. It provides a significant performance improvement for Smith-Waterman-based protein sequence database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs. Abstract Background The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases. The recent emergence of many-core architectures, and their associated programming interfaces, provides an opportunity to accelerate sequence database searches using commonly available and inexpensive hardware. Findings Our CUDASW++ implementation (benchmarked on a single-GPU NVIDIA GeForce GTX 280 graphics card and a dual-GPU GeForce GTX 295 graphics card) provides a significant performance improvement compared to other publicly available implementations, such as SWPS3, CBESW, SW-CUDA, and NCBI-BLAST. CUDASW++ supports query sequences of length up to 59K and for query sequences ranging in length from 144 to 5,478 in Swiss-Prot release 56.6, the single-GPU version achieves an average performance of 9.509 GCUPS with a lowest performance of 9.039 GCUPS and a highest performance of 9.660 GCUPS, and the dual-GPU version achieves an average performance of 14.484 GCUPS with a lowest performance of 10.660 GCUPS and a highest performance of 16.087 GCUPS. Conclusion CUDASW++ is publicly available open-source software. It provides a significant performance improvement for Smith-Waterman-based protein sequence database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs. The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases. The recent emergence of many-core architectures, and their associated programming interfaces, provides an opportunity to accelerate sequence database searches using commonly available and inexpensive hardware. Our CUDASW++ implementation (benchmarked on a single-GPU NVIDIA GeForce GTX 280 graphics card and a dual-GPU GeForce GTX 295 graphics card) provides a significant performance improvement compared to other publicly available implementations, such as SWPS3, CBESW, SW-CUDA, and NCBI-BLAST. CUDASW++ supports query sequences of length up to 59K and for query sequences ranging in length from 144 to 5,478 in Swiss-Prot release 56.6, the single-GPU version achieves an average performance of 9.509 GCUPS with a lowest performance of 9.039 GCUPS and a highest performance of 9.660 GCUPS, and the dual-GPU version achieves an average performance of 14.484 GCUPS with a lowest performance of 10.660 GCUPS and a highest performance of 16.087 GCUPS. CUDASW++ is publicly available open-source software. It provides a significant performance improvement for Smith-Waterman-based protein sequence database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs. Background The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases. The recent emergence of many-core architectures, and their associated programming interfaces, provides an opportunity to accelerate sequence database searches using commonly available and inexpensive hardware. Findings Our CUDASW++ implementation (benchmarked on a single-GPU NVIDIA GeForce GTX 280 graphics card and a dual-GPU GeForce GTX 295 graphics card) provides a significant performance improvement compared to other publicly available implementations, such as SWPS3, CBESW, SW-CUDA, and NCBI-BLAST. CUDASW++ supports query sequences of length up to 59K and for query sequences ranging in length from 144 to 5,478 in Swiss-Prot release 56.6, the single-GPU version achieves an average performance of 9.509 GCUPS with a lowest performance of 9.039 GCUPS and a highest performance of 9.660 GCUPS, and the dual-GPU version achieves an average performance of 14.484 GCUPS with a lowest performance of 10.660 GCUPS and a highest performance of 16.087 GCUPS. Conclusion CUDASW++ is publicly available open-source software. It provides a significant performance improvement for Smith-Waterman-based protein sequence database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs. BACKGROUND: The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases. The recent emergence of many-core architectures, and their associated programming interfaces, provides an opportunity to accelerate sequence database searches using commonly available and inexpensive hardware. FINDINGS: Our CUDASW++ implementation (benchmarked on a single-GPU NVIDIA GeForce GTX 280 graphics card and a dual-GPU GeForce GTX 295 graphics card) provides a significant performance improvement compared to other publicly available implementations, such as SWPS3, CBESW, SW-CUDA, and NCBI-BLAST. CUDASW++ supports query sequences of length up to 59K and for query sequences ranging in length from 144 to 5,478 in Swiss-Prot release 56.6, the single-GPU version achieves an average performance of 9.509 GCUPS with a lowest performance of 9.039 GCUPS and a highest performance of 9.660 GCUPS, and the dual-GPU version achieves an average performance of 14.484 GCUPS with a lowest performance of 10.660 GCUPS and a highest performance of 16.087 GCUPS. CONCLUSION: CUDASW++ is publicly available open-source software. It provides a significant performance improvement for Smith-Waterman-based protein sequence database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs. |
Audience | Academic |
Author | Maskell, Douglas L Schmidt, Bertil Liu, Yongchao |
AuthorAffiliation | 1 School of Computer Engineering, Nanyang Technological University, Singapore |
AuthorAffiliation_xml | – name: 1 School of Computer Engineering, Nanyang Technological University, Singapore |
Author_xml | – sequence: 1 givenname: Yongchao surname: Liu fullname: Liu, Yongchao email: liuy0039@ntu.edu.sg organization: School of Computer Engineering, Nanyang Technological University – sequence: 2 givenname: Douglas L surname: Maskell fullname: Maskell, Douglas L organization: School of Computer Engineering, Nanyang Technological University – sequence: 3 givenname: Bertil surname: Schmidt fullname: Schmidt, Bertil organization: School of Computer Engineering, Nanyang Technological University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19416548$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktv1DAUhSNURB-wZYmyQ6hKa8fOY1ggjaY8RqrURSldWjfOdcajxB5sB0F_PQ5T2g5o5IWt63M--z6OkwNjDSbJa0rOKK3Lc1oVZUYKQrI8q9iz5OghcPDkfJgce78mpKR1TV8kh3TGaVnw-ijRi5uL-fXt6en71G6CHvSdNl16Peiwym4hoBvApB6_j2gkpi0EaMBjjICTK_Spsi6dEBkaaHps087BZqWlTzfOSvR-wo1GB_8yea6g9_jqfj9Jbj59_Lr4kl1efV4u5pdZU5KKZRKlBKIUMs65xBmtVd1WqqBFwQuGZCYpq_I2ZlDLSrYUcpZLzlXNc6UapdhJstxyWwtrsXF6APdLWNDiT8C6ToALWvYogCoqCakwHnilGFBgClULEVuzAiLrw5a1GZsBW4kmOOh3oLs3Rq9EZ3-IvJzxnPAImG8BjbZ7ALs30g5iapuY2iZyUbHIeHv_CWdjH3wQg_YS-x4M2tFPkjwWoSyi8myr7CBmp42ykSnjanHQMg6O0jE-zwktYq05jYZ3O4aoCfgzdDB6L5ZX33a1b57W4iGHv7P0-Lp01nuH6lFCxDSs_yfG_zFIHSBoO5VC9_tt51ubj3zToRNrOzoTZ2qf4zegm_xK |
CitedBy_id | crossref_primary_10_1016_j_jpdc_2014_01_005 crossref_primary_10_3103_S0095452712030048 crossref_primary_10_1007_s00778_015_0409_y crossref_primary_10_1007_s00894_014_2067_1 crossref_primary_10_1186_1755_8794_7_S1_S9 crossref_primary_10_17776_csj_1511642 crossref_primary_10_4018_ijsbbt_2013100103 crossref_primary_10_1186_s40709_017_0064_0 crossref_primary_10_1002_cpe_2970 crossref_primary_10_1145_1837853_1693473 crossref_primary_10_1186_s12859_016_1128_0 crossref_primary_10_1007_s10766_013_0284_3 crossref_primary_10_2478_v10178_012_0004_0 crossref_primary_10_1371_journal_pone_0122524 crossref_primary_10_1109_TCBB_2014_2351801 crossref_primary_10_1186_1471_2164_15_969 crossref_primary_10_4137_CIN_S16349 crossref_primary_10_1109_JPROC_2015_2455551 crossref_primary_10_1177_1094342016654215 crossref_primary_10_1002_wcms_1101 crossref_primary_10_1016_j_parco_2015_11_001 crossref_primary_10_1152_jn_00360_2016 crossref_primary_10_1186_s12864_019_5468_9 crossref_primary_10_1155_2015_761063 crossref_primary_10_1186_1471_2105_12_466 crossref_primary_10_1002_cpe_5039 crossref_primary_10_1186_s12859_020_03697_x crossref_primary_10_1371_journal_pone_0254736 crossref_primary_10_1109_TCBB_2011_33 crossref_primary_10_1371_journal_pone_0145857 crossref_primary_10_1186_1471_2105_12_221 crossref_primary_10_1155_2015_185179 crossref_primary_10_1109_MDAT_2013_2290116 crossref_primary_10_1371_journal_pone_0065632 crossref_primary_10_1002_cpe_1913 crossref_primary_10_1109_TVLSI_2011_2157541 crossref_primary_10_1155_2013_939460 crossref_primary_10_1186_1756_0500_3_93 crossref_primary_10_1371_journal_pone_0036060 crossref_primary_10_4028_www_scientific_net_AMM_490_491_757 crossref_primary_10_4018_jghpc_2013070105 crossref_primary_10_1002_cpe_1798 crossref_primary_10_1186_1471_2105_15_96 crossref_primary_10_1109_TIFS_2015_2503271 crossref_primary_10_1186_1756_0500_5_116 crossref_primary_10_1093_bioinformatics_btr151 crossref_primary_10_1016_j_procs_2018_11_005 crossref_primary_10_4018_jmdem_2012070102 crossref_primary_10_1155_2013_721738 crossref_primary_10_1371_journal_pone_0190279 crossref_primary_10_1109_TCBB_2021_3066591 crossref_primary_10_1021_pr200074h crossref_primary_10_1093_bioinformatics_btu020 crossref_primary_10_1587_transinf_E93_D_1479 crossref_primary_10_1016_j_csbj_2017_07_004 crossref_primary_10_1186_s12859_019_3019_7 crossref_primary_10_1016_j_jbi_2015_01_008 crossref_primary_10_1088_1742_6596_2161_1_012028 crossref_primary_10_1177_1176934317724764 crossref_primary_10_1007_s12539_017_0225_8 crossref_primary_10_1093_bib_bbw058 crossref_primary_10_4137_EBO_S40877 crossref_primary_10_1186_1471_2105_13_S17_S23 crossref_primary_10_1016_j_csbj_2017_07_002 crossref_primary_10_1186_1471_2105_13_S5_S3 crossref_primary_10_1145_3570638 crossref_primary_10_1093_bioinformatics_bts276 crossref_primary_10_1109_TPDS_2011_239 crossref_primary_10_1002_cpe_4522 crossref_primary_10_1002_cpe_3598 crossref_primary_10_1002_cpe_3355 crossref_primary_10_1002_pmic_201100425 crossref_primary_10_1016_j_procs_2010_04_053 crossref_primary_10_1186_1756_0500_4_261 crossref_primary_10_1186_1471_2105_14_117 crossref_primary_10_1016_j_parco_2011_03_003 crossref_primary_10_1186_1756_0500_4_189 crossref_primary_10_1371_journal_pcbi_1000589 crossref_primary_10_1145_2893488 crossref_primary_10_1186_1471_2105_12_85 crossref_primary_10_1016_j_compbiolchem_2015_05_004 crossref_primary_10_1016_j_compmedimag_2016_11_001 crossref_primary_10_1038_nrg2857 crossref_primary_10_1186_1471_2105_11_446 crossref_primary_10_2478_v10177_011_0069_9 crossref_primary_10_15207_JKCS_2016_7_5_015 crossref_primary_10_1016_j_jneumeth_2012_02_024 crossref_primary_10_1109_TPDS_2012_194 crossref_primary_10_1186_1471_2105_13_196 |
ContentType | Journal Article |
Copyright | Liu et al; licensee BioMed Central Ltd. 2009 COPYRIGHT 2009 BioMed Central Ltd. Copyright © 2009 Liu et al; licensee BioMed Central Ltd. 2009 Liu et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Liu et al; licensee BioMed Central Ltd. 2009 – notice: COPYRIGHT 2009 BioMed Central Ltd. – notice: Copyright © 2009 Liu et al; licensee BioMed Central Ltd. 2009 Liu et al; licensee BioMed Central Ltd. |
DBID | C6C AAYXX CITATION NPM IOV 7X8 5PM DOA |
DOI | 10.1186/1756-0500-2-73 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale In Context: Opposing Viewpoints MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1756-0500 |
EndPage | 73 |
ExternalDocumentID | oai_doaj_org_article_a1f1c007ea1f47f3a1a3fefdad1a835a PMC2694204 oai_biomedcentral_com_1756_0500_2_73 A201560741 19416548 10_1186_1756_0500_2_73 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5GY 5VS 6J9 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CS3 DIK E3Z EBLON EBS EJD EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR IOV IPNFZ ITC KQ8 LK8 M1P M48 M7P MK0 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP ~8M AAYXX ALIPV CITATION EBD H13 LGEZI LOTEE NADUK NXXTH NPM PMFND 7X8 -A0 3V. ABVAZ ACRMQ ADINQ AFGXO AFNRJ C24 5PM |
ID | FETCH-LOGICAL-b6073-cecca0ffe3444ce918f8d7f5155453e09c1372d1948c7cd1a232c44f842ffbff3 |
IEDL.DBID | RBZ |
ISSN | 1756-0500 |
IngestDate | Wed Aug 27 01:32:52 EDT 2025 Thu Aug 21 14:10:53 EDT 2025 Wed May 22 07:12:33 EDT 2024 Fri Sep 05 05:11:40 EDT 2025 Tue Jun 10 21:29:36 EDT 2025 Fri Jun 27 03:50:39 EDT 2025 Thu Apr 03 07:06:08 EDT 2025 Thu Apr 24 23:03:28 EDT 2025 Tue Jul 01 03:33:16 EDT 2025 Sat Sep 06 07:29:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Constant Memory Query Sequence Subject Sequence Global Memory Thread Block |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b6073-cecca0ffe3444ce918f8d7f5155453e09c1372d1948c7cd1a232c44f842ffbff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1186/1756-0500-2-73 |
PMID | 19416548 |
PQID | 733223265 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a1f1c007ea1f47f3a1a3fefdad1a835a pubmedcentral_primary_oai_pubmedcentral_nih_gov_2694204 biomedcentral_primary_oai_biomedcentral_com_1756_0500_2_73 proquest_miscellaneous_733223265 gale_infotracacademiconefile_A201560741 gale_incontextgauss_IOV_A201560741 pubmed_primary_19416548 crossref_primary_10_1186_1756_0500_2_73 crossref_citationtrail_10_1186_1756_0500_2_73 springer_journals_10_1186_1756_0500_2_73 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20090506 |
PublicationDateYYYYMMDD | 2009-05-06 |
PublicationDate_xml | – month: 5 year: 2009 text: 20090506 day: 06 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | BMC research notes |
PublicationTitleAbbrev | BMC Res Notes |
PublicationTitleAlternate | BMC Res Notes |
PublicationYear | 2009 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | 18959793 - BMC Res Notes. 2008;1:107 17110365 - Bioinformatics. 2007 Jan 15;23(2):156-61 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 7265238 - J Mol Biol. 1981 Mar 25;147(1):195-7 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 11099256 - Bioinformatics. 2000 Aug;16(8):699-706 18798993 - BMC Bioinformatics. 2008;9:377 15919726 - Bioinformatics. 2005 Aug 15;21(16):3431-2 18387198 - BMC Bioinformatics. 2008;9 Suppl 2:S10 17555593 - BMC Bioinformatics. 2007 Jun 07;8:185 7166760 - J Mol Biol. 1982 Dec 15;162(3):705-8 3162770 - Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444-8 9146961 - Comput Appl Biosci. 1997 Apr;13(2):145-50 |
References_xml | – reference: 17555593 - BMC Bioinformatics. 2007 Jun 07;8:185 – reference: 15919726 - Bioinformatics. 2005 Aug 15;21(16):3431-2 – reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 – reference: 9146961 - Comput Appl Biosci. 1997 Apr;13(2):145-50 – reference: 7265238 - J Mol Biol. 1981 Mar 25;147(1):195-7 – reference: 11099256 - Bioinformatics. 2000 Aug;16(8):699-706 – reference: 7166760 - J Mol Biol. 1982 Dec 15;162(3):705-8 – reference: 18387198 - BMC Bioinformatics. 2008;9 Suppl 2:S10 – reference: 18798993 - BMC Bioinformatics. 2008;9:377 – reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 – reference: 18959793 - BMC Res Notes. 2008;1:107 – reference: 17110365 - Bioinformatics. 2007 Jan 15;23(2):156-61 – reference: 3162770 - Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444-8 |
SSID | ssj0061881 |
Score | 2.3012078 |
Snippet | Background
The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity.... The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the... BACKGROUND: The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity.... Abstract Background The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity.... |
SourceID | doaj pubmedcentral biomedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 73 |
SubjectTerms | Algorithms Analysis Biomedical and Life Sciences Biomedicine Life Sciences Medical research Medicine, Experimental Medicine/Public Health Nucleotide sequence Technical Note Technology application |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPJcXrIQEkiVVTt2Eqe3pVAVDnCApb1ZjuMpK5Vs1XQP8OuZcZLSbFVx4bZKRl57PJ75HHu-Yex1LuumNuBFlFELUystKihAFFpCxPjfGEhsn5-Lw4X5dJwfXyn1RXfCenrgXnG7XoEKGMgi_jAlaK-8hgiNb5RH9JCgEca8cTPV--BC2VSeFGMj7pdzKQe6RmWL3ctnAqGl3shzP52Ep8Tif91XXwlWmxcpN05TU5A6uMfuDuiSz_tRbbNbsb3Pbvf1Jn89YMv9xfv516OdnT2-Qlfxc_kbW-Hp44o48slJt3y8XM3p8igFOT4wfnQcAS6nJkRMGVcNT3TXy9Dxsz7fgJpbo5PoHrLFwYdv-4diqLUg6gJXuQg0lRIgamNMiJWyYJsSqACMyXWUVVC6zBpVGRvKgLpHJBaMAWsygBpAP2Jb7aqNTxiPwVcy2KYm2uE6LzyYiLK2QSSG8CKfsb2Jyt1Zz6vhiOl6-gYXnaP5cjRfLnOlnjExzo8LA4s5FdM4dWk3Y4tr8m8u5cf_uUnyHU33pDfpAVqjG6zR_csaZ-wVGYsjZo2Wru6c-HXXuY9fvrt5lrLWEcFhnwYhWGHfgx8yIVB9RMY1keSj0Tlc9nSW49u4WnfYX_TECL1Rm497G_w7vMpQipqdsXJinZORTd-0yx-JWZzSmjNpZuztaMducGndDVp7-j-09ozd6Q_pciGL52zr4nwdXyDWu6hfpmX9B6YeUak priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3_a9QwFA86EfxF_L46lSCCwog2TdqmA5FzOqag_qDn9ltI02QenO123YHzr_e9tN3snQN_O9rXXPryXt4nzXufEPIsjcuqlN4wFzvBZMkFK3zmWSZi7yD-V9IHts_P2f5UfjxMDy_yn3oFtv9c2uF5UtPF_OWvk7M34PCvg8Or7BVEQFgVp3HMACyKq-QaRKUMLfyTPN9RyLhSvCdtXH9mpdp9PgpSgct_fcb-K2StplOu7KmGULV3i9zsMSaddEZxm1xx9R1yvTt18uwume1O302-Hmxv79AGJoyfs9_QCg2fWNiBCVN1TYcUa4oppBjqaM_70VKAuRSbYC7UXVU0kF7PbEuPu6oDbG4JU0V7j0z33n_b3Wf9iQuszMDXmcUBjb13QkppXcGVV1Xu8RgYmQoXF5aLPKl4IZXNbcUN4DErpVcy8b70XtwnG3VTu01CnTVFbFVVIvlwmWbGSweyqgI8BiAjjcjOSOX6uGPX0Mh3Pb4DrqdxvDSOl050LiLChvHRtucyxyM15jqsaVS2Jv_8XH74n8sk3-Jwj3oTLjSLI907szbccwvgysEPmXthuBHe-cqARgDRmog8RWPRyK9RYwLPkVm2rf7w5bueJKF2HXAc9KkX8g303Zq-HgLUh5RcI0k6GJ0G58cdHVO7ZtlCf2E-BgAO2nzQ2eDF6xUSC9VURPKRdY7ebHynnv0I_OJY3JzEMiIvBjvWg19eorWH_y-6RW50G3Ipi7NHZON0sXSPAdedlk-Cw_4BRphK3Q priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgERIXxJvykoWQQFpZ2LHjOHsrhdXCAQ5Qdm-W49hQaUlXZHuAX8-M48Cm1UrcqmbqOp7Xl3jmMyEvSt60jYqOBR4kU42QrI46Mi15DJD_WxUT2-dHfbRUH07Kk1wgi70wF_fvhdGvIbvBE2_JOQMgKK-SayVyjOGmrF6MEVcLY0QmZNz9zVYn--kkASWe_t1ofCEdbZdKbu2XpjR0eIvczPiRzgeF3yZXQneHXB9OlPx1l6wWy7fzz8f7-wd0DcHgx-o3jELT6xN27FIY7uhYPk2xPBTTGM2cHj0FCEtxCBZST1VLE6H1yvf0bOgowOE2EAb6e2R5-O7L4ojl0xRYo8GPmUdl8RiDVEr5UAsTTVtFPOJFlTLw2gtZFa2olfGVb4UDrOWVikYVMTYxyvtkr1t34SGhwbuae9M2SCzclNpFFUDWtIC1AECUM3IwWXJ7NjBnWOSynl4Bt7KoL4v6soWt5IywUT_WZ55yPC7j1KbnFaN35F_-lR__5zLJN6juyWzSF2BwNjuqdSIKD8ApwAdVRemEkzHE1sGKAFp1M_IcjcUid0aHxTnf3Kbv7ftPX-28SH3pgNFgTlkormHu3uVeB1g-pNuaSNLR6Cw4Nu7WuC6sNz3MF2ItgGtYzQeDDf67vVphE5qZkWpinZM7m17pVt8Tdzg2Lhdczcir0Y5tDlr9Jav26P9FH5Mbw2Zbybh-QvbOf27CU8Bs582z5LB_ALZXPFA priority: 102 providerName: Springer Nature |
Title | CUDASW++: optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units |
URI | https://link.springer.com/article/10.1186/1756-0500-2-73 https://www.ncbi.nlm.nih.gov/pubmed/19416548 https://www.proquest.com/docview/733223265 http://dx.doi.org/10.1186/1756-0500-2-73 https://pubmed.ncbi.nlm.nih.gov/PMC2694204 https://doaj.org/article/a1f1c007ea1f47f3a1a3fefdad1a835a |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbYJiReEL_JgMpCSCBNFnHsOM7e0rJpVGKgjbKKF8txbKi0pRNZH-Cv5-wkG2m1J16aKrk4ju9898X2fUboTRqXVcmdJja2jPCSMpI74YhgsbMQ_yvuAtvnsTia8ek8nd-Md6zN4FMp3kN8g2_eNI4JQEG2hXYSnjFvvyfj773PFVSG7UivZTt6xs371_LazwfhKLD2b_rmf4LT-sLJtdnTEJQOH6D7HZrERav-h-iOrR-hu-3-kr8fo8Vk9qE4Pdvb28dLcA0Xiz9QCg6DKeRMB6dc434xNfaLRX1Qwx3DR4MB0GJfBLEhw6rCgd56YRp82eYX-OJW4BSaJ2h2ePB1ckS6vRVIKaBXE-NVFztnGefc2JxKJ6vM-Q1feMpsnBvKsqSiOZcmMxXVgLwM507yxLnSOfYUbdfL2j5H2Bqdx0ZWpacZLlOhHbcgKytAXgAn0gjtD5pcXbY8GsozWw-vQCdTXl_K60slKmMRIr1-lOlYy_3mGecqfL1IsSH_9lq-f85tkmOv7kFtwgkwPtV1W6WpowZglIU_PHNMU82cdZWGFgHsqiP02huL8kwatV-q80OvmkZ9_PxNFUnIUgfEBnXqhNwS6m50l_kAzefJtwaSuDc6Bd3cz93o2i5XDdQXPC9AbWjNZ60N3rxezn1KmoxQNrDOwZsNr9SLn4FJ3KcxJzGP0LvejlXnwppbWm33f5T5At1rJ-NSEouXaPvq18q-Akx3VY7QVjbPRminKKanUziOD46_nMDZiZiMwjgJ_H7ichS6_V9YWE5z |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCMEF8SY8LYQEUmXVjh3H6W1ZqLZQyoEu7c1yHBtWKtmKdA_w6xk7DjS7qsRtlUy8jmc88zme-YzQq4LWTS28IY46TkTNOKm89ERy6h3E_0b4yPZ5KGdz8eGkOEkJsqEW5uL-PVNyB6IbrHgLSgkAQX4VXROwSo6bsnI6eFzJlGKJkHHzmbVK9tNRAIo8_Zve-EI4Wk-VXNsvjWFo7za6lfAjnvQKv4OuuPYuut6fKPnrHlpM5-8mX463t3fxEpzBj8VvaAXHzyfk2EQ33OIhfRqH9NAQxnDi9OgwQFgcmiAu1lQ1OBJaL2yHz_qKgtDcCtxAdx_N994fTWcknaZAagnzmNigLOq940II6yqmvGpKH454EQV3tLKMl3nDKqFsaRtmAGtZIbwSufe19_wB2mqXrXuEsLOmolY1dSAWrgtpvHAgqxrAWgAgigztjoZcn_XMGTpwWY_vwLTSQV866EvnuuQZIoN-tE085eG4jFMd1ytKbsi__is__M9lkm-Duke9iRfA4HSaqNowzywAJwc_ROm5YYZ75xsDIwJo1WToZTAWHbgz2pCc882suk7vf_6qJ3msSweMBn1KQn4Jfbcm1TrA8AW6rZEkHoxOw8QOuzWmdctVB_0FXwvgGkbzYW-D_16vEqEITWWoHFnn6M3Gd9rF98gdHgqXcyoy9GawY52cVnfJqD3-f9EX6Mbs6NOBPtg__PgE3ew33gpC5VO0df5z5Z4Bfjuvn8fJ-we3pD89 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJxAviM9RPi2EBNJkLYmdxJl4CRvVVtBAGmV7sxzHNyqNpFraB_jrOTsJkFaTeKuaq-vcne9-ie9-JuR1HBRlIUAzG1jORBFylkECLOEBWMz_pQDP9nmSHM3E9Dw-3yLv-l4YX-3eb0m2PQ2Opala7i1KaJe4TPYw5-FzcBwEDOEhv0G2ZYLQYUS283x6Ou0jcRJKGXZEjZu_WutwvxwkJs_fvxml_0lT6yWUa_uoPj1N7pI7Ha6keesI98iWre6Tm-1Jkz8fkPnB7DA_Pdvd3ac1Bokf8184CvWvVdiZ9uG5on1ZNXVloy690Y7ro6EIbakbglnfa1VST3Q9Nw1dtJ0GbrgVhofmIZlNPnw9OGLdKQusSHB9M-OMGABYLoQwNgslyDIFd_SLiLkNMhPyNCrDTEiTmjLUiMGMECBFBFAA8EdkVNWVfUyoNToLjCwLRzhcxIkGYVFWlojBEFjEY7I_ULlatIwaynFcD6-g5ZWzl3L2UpFK-Ziw3j7KdPzl7hiNS-WfY2SyIf_mj3z_P9dJvnfmHszGf1FfXahuASsdQmgQUFn8IFLgOtQcLJQaNYIoVo_JK-csynFqVK5o50KvmkYdf_6m8sj3qyN2wzl1QlDj3I3ueiBQfY6GayBJe6dTuODdLo6ubL1qcL4YgxF0ozZ3Wh_8e3uZcM1pckzSgXcO7mx4pZp_95zirqE5CsSYvO39WHXBrLlGa0_-X_QlufXlcKI-HZ98fEput_txMQuSZ2S0vFrZ5wjrlsWLbvX-Bnj9SOs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CUDASW%2B%2B%3A+optimizing+Smith-Waterman+sequence+database+searches+for+CUDA-enabled+graphics+processing+units&rft.jtitle=BMC+research+notes&rft.au=Liu%2C+Yongchao&rft.au=Maskell%2C+Douglas+L&rft.au=Schmidt%2C+Bertil&rft.date=2009-05-06&rft.pub=BioMed+Central&rft.eissn=1756-0500&rft.volume=2&rft.issue=1&rft_id=info:doi/10.1186%2F1756-0500-2-73&rft.externalDocID=10_1186_1756_0500_2_73 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-0500&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-0500&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-0500&client=summon |