CUDASW++: optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units

Background The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases....

Full description

Saved in:
Bibliographic Details
Published inBMC research notes Vol. 2; no. 1; p. 73
Main Authors Liu, Yongchao, Maskell, Douglas L, Schmidt, Bertil
Format Journal Article
LanguageEnglish
Published London BioMed Central 06.05.2009
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1756-0500
1756-0500
DOI10.1186/1756-0500-2-73

Cover

Loading…
Abstract Background The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases. The recent emergence of many-core architectures, and their associated programming interfaces, provides an opportunity to accelerate sequence database searches using commonly available and inexpensive hardware. Findings Our CUDASW++ implementation (benchmarked on a single-GPU NVIDIA GeForce GTX 280 graphics card and a dual-GPU GeForce GTX 295 graphics card) provides a significant performance improvement compared to other publicly available implementations, such as SWPS3, CBESW, SW-CUDA, and NCBI-BLAST. CUDASW++ supports query sequences of length up to 59K and for query sequences ranging in length from 144 to 5,478 in Swiss-Prot release 56.6, the single-GPU version achieves an average performance of 9.509 GCUPS with a lowest performance of 9.039 GCUPS and a highest performance of 9.660 GCUPS, and the dual-GPU version achieves an average performance of 14.484 GCUPS with a lowest performance of 10.660 GCUPS and a highest performance of 16.087 GCUPS. Conclusion CUDASW++ is publicly available open-source software. It provides a significant performance improvement for Smith-Waterman-based protein sequence database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs.
AbstractList The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases. The recent emergence of many-core architectures, and their associated programming interfaces, provides an opportunity to accelerate sequence database searches using commonly available and inexpensive hardware.BACKGROUNDThe Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases. The recent emergence of many-core architectures, and their associated programming interfaces, provides an opportunity to accelerate sequence database searches using commonly available and inexpensive hardware.Our CUDASW++ implementation (benchmarked on a single-GPU NVIDIA GeForce GTX 280 graphics card and a dual-GPU GeForce GTX 295 graphics card) provides a significant performance improvement compared to other publicly available implementations, such as SWPS3, CBESW, SW-CUDA, and NCBI-BLAST. CUDASW++ supports query sequences of length up to 59K and for query sequences ranging in length from 144 to 5,478 in Swiss-Prot release 56.6, the single-GPU version achieves an average performance of 9.509 GCUPS with a lowest performance of 9.039 GCUPS and a highest performance of 9.660 GCUPS, and the dual-GPU version achieves an average performance of 14.484 GCUPS with a lowest performance of 10.660 GCUPS and a highest performance of 16.087 GCUPS.FINDINGSOur CUDASW++ implementation (benchmarked on a single-GPU NVIDIA GeForce GTX 280 graphics card and a dual-GPU GeForce GTX 295 graphics card) provides a significant performance improvement compared to other publicly available implementations, such as SWPS3, CBESW, SW-CUDA, and NCBI-BLAST. CUDASW++ supports query sequences of length up to 59K and for query sequences ranging in length from 144 to 5,478 in Swiss-Prot release 56.6, the single-GPU version achieves an average performance of 9.509 GCUPS with a lowest performance of 9.039 GCUPS and a highest performance of 9.660 GCUPS, and the dual-GPU version achieves an average performance of 14.484 GCUPS with a lowest performance of 10.660 GCUPS and a highest performance of 16.087 GCUPS.CUDASW++ is publicly available open-source software. It provides a significant performance improvement for Smith-Waterman-based protein sequence database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs.CONCLUSIONCUDASW++ is publicly available open-source software. It provides a significant performance improvement for Smith-Waterman-based protein sequence database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs.
Abstract Background The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases. The recent emergence of many-core architectures, and their associated programming interfaces, provides an opportunity to accelerate sequence database searches using commonly available and inexpensive hardware. Findings Our CUDASW++ implementation (benchmarked on a single-GPU NVIDIA GeForce GTX 280 graphics card and a dual-GPU GeForce GTX 295 graphics card) provides a significant performance improvement compared to other publicly available implementations, such as SWPS3, CBESW, SW-CUDA, and NCBI-BLAST. CUDASW++ supports query sequences of length up to 59K and for query sequences ranging in length from 144 to 5,478 in Swiss-Prot release 56.6, the single-GPU version achieves an average performance of 9.509 GCUPS with a lowest performance of 9.039 GCUPS and a highest performance of 9.660 GCUPS, and the dual-GPU version achieves an average performance of 14.484 GCUPS with a lowest performance of 10.660 GCUPS and a highest performance of 16.087 GCUPS. Conclusion CUDASW++ is publicly available open-source software. It provides a significant performance improvement for Smith-Waterman-based protein sequence database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs.
The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases. The recent emergence of many-core architectures, and their associated programming interfaces, provides an opportunity to accelerate sequence database searches using commonly available and inexpensive hardware. Our CUDASW++ implementation (benchmarked on a single-GPU NVIDIA GeForce GTX 280 graphics card and a dual-GPU GeForce GTX 295 graphics card) provides a significant performance improvement compared to other publicly available implementations, such as SWPS3, CBESW, SW-CUDA, and NCBI-BLAST. CUDASW++ supports query sequences of length up to 59K and for query sequences ranging in length from 144 to 5,478 in Swiss-Prot release 56.6, the single-GPU version achieves an average performance of 9.509 GCUPS with a lowest performance of 9.039 GCUPS and a highest performance of 9.660 GCUPS, and the dual-GPU version achieves an average performance of 14.484 GCUPS with a lowest performance of 10.660 GCUPS and a highest performance of 16.087 GCUPS. CUDASW++ is publicly available open-source software. It provides a significant performance improvement for Smith-Waterman-based protein sequence database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs.
Background The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases. The recent emergence of many-core architectures, and their associated programming interfaces, provides an opportunity to accelerate sequence database searches using commonly available and inexpensive hardware. Findings Our CUDASW++ implementation (benchmarked on a single-GPU NVIDIA GeForce GTX 280 graphics card and a dual-GPU GeForce GTX 295 graphics card) provides a significant performance improvement compared to other publicly available implementations, such as SWPS3, CBESW, SW-CUDA, and NCBI-BLAST. CUDASW++ supports query sequences of length up to 59K and for query sequences ranging in length from 144 to 5,478 in Swiss-Prot release 56.6, the single-GPU version achieves an average performance of 9.509 GCUPS with a lowest performance of 9.039 GCUPS and a highest performance of 9.660 GCUPS, and the dual-GPU version achieves an average performance of 14.484 GCUPS with a lowest performance of 10.660 GCUPS and a highest performance of 16.087 GCUPS. Conclusion CUDASW++ is publicly available open-source software. It provides a significant performance improvement for Smith-Waterman-based protein sequence database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs.
BACKGROUND: The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases. The recent emergence of many-core architectures, and their associated programming interfaces, provides an opportunity to accelerate sequence database searches using commonly available and inexpensive hardware. FINDINGS: Our CUDASW++ implementation (benchmarked on a single-GPU NVIDIA GeForce GTX 280 graphics card and a dual-GPU GeForce GTX 295 graphics card) provides a significant performance improvement compared to other publicly available implementations, such as SWPS3, CBESW, SW-CUDA, and NCBI-BLAST. CUDASW++ supports query sequences of length up to 59K and for query sequences ranging in length from 144 to 5,478 in Swiss-Prot release 56.6, the single-GPU version achieves an average performance of 9.509 GCUPS with a lowest performance of 9.039 GCUPS and a highest performance of 9.660 GCUPS, and the dual-GPU version achieves an average performance of 14.484 GCUPS with a lowest performance of 10.660 GCUPS and a highest performance of 16.087 GCUPS. CONCLUSION: CUDASW++ is publicly available open-source software. It provides a significant performance improvement for Smith-Waterman-based protein sequence database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs.
Audience Academic
Author Maskell, Douglas L
Schmidt, Bertil
Liu, Yongchao
AuthorAffiliation 1 School of Computer Engineering, Nanyang Technological University, Singapore
AuthorAffiliation_xml – name: 1 School of Computer Engineering, Nanyang Technological University, Singapore
Author_xml – sequence: 1
  givenname: Yongchao
  surname: Liu
  fullname: Liu, Yongchao
  email: liuy0039@ntu.edu.sg
  organization: School of Computer Engineering, Nanyang Technological University
– sequence: 2
  givenname: Douglas L
  surname: Maskell
  fullname: Maskell, Douglas L
  organization: School of Computer Engineering, Nanyang Technological University
– sequence: 3
  givenname: Bertil
  surname: Schmidt
  fullname: Schmidt, Bertil
  organization: School of Computer Engineering, Nanyang Technological University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19416548$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv1DAUhSNURB-wZYmyQ6hKa8fOY1ggjaY8RqrURSldWjfOdcajxB5sB0F_PQ5T2g5o5IWt63M--z6OkwNjDSbJa0rOKK3Lc1oVZUYKQrI8q9iz5OghcPDkfJgce78mpKR1TV8kh3TGaVnw-ijRi5uL-fXt6en71G6CHvSdNl16Peiwym4hoBvApB6_j2gkpi0EaMBjjICTK_Spsi6dEBkaaHps087BZqWlTzfOSvR-wo1GB_8yea6g9_jqfj9Jbj59_Lr4kl1efV4u5pdZU5KKZRKlBKIUMs65xBmtVd1WqqBFwQuGZCYpq_I2ZlDLSrYUcpZLzlXNc6UapdhJstxyWwtrsXF6APdLWNDiT8C6ToALWvYogCoqCakwHnilGFBgClULEVuzAiLrw5a1GZsBW4kmOOh3oLs3Rq9EZ3-IvJzxnPAImG8BjbZ7ALs30g5iapuY2iZyUbHIeHv_CWdjH3wQg_YS-x4M2tFPkjwWoSyi8myr7CBmp42ykSnjanHQMg6O0jE-zwktYq05jYZ3O4aoCfgzdDB6L5ZX33a1b57W4iGHv7P0-Lp01nuH6lFCxDSs_yfG_zFIHSBoO5VC9_tt51ubj3zToRNrOzoTZ2qf4zegm_xK
CitedBy_id crossref_primary_10_1016_j_jpdc_2014_01_005
crossref_primary_10_3103_S0095452712030048
crossref_primary_10_1007_s00778_015_0409_y
crossref_primary_10_1007_s00894_014_2067_1
crossref_primary_10_1186_1755_8794_7_S1_S9
crossref_primary_10_17776_csj_1511642
crossref_primary_10_4018_ijsbbt_2013100103
crossref_primary_10_1186_s40709_017_0064_0
crossref_primary_10_1002_cpe_2970
crossref_primary_10_1145_1837853_1693473
crossref_primary_10_1186_s12859_016_1128_0
crossref_primary_10_1007_s10766_013_0284_3
crossref_primary_10_2478_v10178_012_0004_0
crossref_primary_10_1371_journal_pone_0122524
crossref_primary_10_1109_TCBB_2014_2351801
crossref_primary_10_1186_1471_2164_15_969
crossref_primary_10_4137_CIN_S16349
crossref_primary_10_1109_JPROC_2015_2455551
crossref_primary_10_1177_1094342016654215
crossref_primary_10_1002_wcms_1101
crossref_primary_10_1016_j_parco_2015_11_001
crossref_primary_10_1152_jn_00360_2016
crossref_primary_10_1186_s12864_019_5468_9
crossref_primary_10_1155_2015_761063
crossref_primary_10_1186_1471_2105_12_466
crossref_primary_10_1002_cpe_5039
crossref_primary_10_1186_s12859_020_03697_x
crossref_primary_10_1371_journal_pone_0254736
crossref_primary_10_1109_TCBB_2011_33
crossref_primary_10_1371_journal_pone_0145857
crossref_primary_10_1186_1471_2105_12_221
crossref_primary_10_1155_2015_185179
crossref_primary_10_1109_MDAT_2013_2290116
crossref_primary_10_1371_journal_pone_0065632
crossref_primary_10_1002_cpe_1913
crossref_primary_10_1109_TVLSI_2011_2157541
crossref_primary_10_1155_2013_939460
crossref_primary_10_1186_1756_0500_3_93
crossref_primary_10_1371_journal_pone_0036060
crossref_primary_10_4028_www_scientific_net_AMM_490_491_757
crossref_primary_10_4018_jghpc_2013070105
crossref_primary_10_1002_cpe_1798
crossref_primary_10_1186_1471_2105_15_96
crossref_primary_10_1109_TIFS_2015_2503271
crossref_primary_10_1186_1756_0500_5_116
crossref_primary_10_1093_bioinformatics_btr151
crossref_primary_10_1016_j_procs_2018_11_005
crossref_primary_10_4018_jmdem_2012070102
crossref_primary_10_1155_2013_721738
crossref_primary_10_1371_journal_pone_0190279
crossref_primary_10_1109_TCBB_2021_3066591
crossref_primary_10_1021_pr200074h
crossref_primary_10_1093_bioinformatics_btu020
crossref_primary_10_1587_transinf_E93_D_1479
crossref_primary_10_1016_j_csbj_2017_07_004
crossref_primary_10_1186_s12859_019_3019_7
crossref_primary_10_1016_j_jbi_2015_01_008
crossref_primary_10_1088_1742_6596_2161_1_012028
crossref_primary_10_1177_1176934317724764
crossref_primary_10_1007_s12539_017_0225_8
crossref_primary_10_1093_bib_bbw058
crossref_primary_10_4137_EBO_S40877
crossref_primary_10_1186_1471_2105_13_S17_S23
crossref_primary_10_1016_j_csbj_2017_07_002
crossref_primary_10_1186_1471_2105_13_S5_S3
crossref_primary_10_1145_3570638
crossref_primary_10_1093_bioinformatics_bts276
crossref_primary_10_1109_TPDS_2011_239
crossref_primary_10_1002_cpe_4522
crossref_primary_10_1002_cpe_3598
crossref_primary_10_1002_cpe_3355
crossref_primary_10_1002_pmic_201100425
crossref_primary_10_1016_j_procs_2010_04_053
crossref_primary_10_1186_1756_0500_4_261
crossref_primary_10_1186_1471_2105_14_117
crossref_primary_10_1016_j_parco_2011_03_003
crossref_primary_10_1186_1756_0500_4_189
crossref_primary_10_1371_journal_pcbi_1000589
crossref_primary_10_1145_2893488
crossref_primary_10_1186_1471_2105_12_85
crossref_primary_10_1016_j_compbiolchem_2015_05_004
crossref_primary_10_1016_j_compmedimag_2016_11_001
crossref_primary_10_1038_nrg2857
crossref_primary_10_1186_1471_2105_11_446
crossref_primary_10_2478_v10177_011_0069_9
crossref_primary_10_15207_JKCS_2016_7_5_015
crossref_primary_10_1016_j_jneumeth_2012_02_024
crossref_primary_10_1109_TPDS_2012_194
crossref_primary_10_1186_1471_2105_13_196
ContentType Journal Article
Copyright Liu et al; licensee BioMed Central Ltd. 2009
COPYRIGHT 2009 BioMed Central Ltd.
Copyright © 2009 Liu et al; licensee BioMed Central Ltd. 2009 Liu et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Liu et al; licensee BioMed Central Ltd. 2009
– notice: COPYRIGHT 2009 BioMed Central Ltd.
– notice: Copyright © 2009 Liu et al; licensee BioMed Central Ltd. 2009 Liu et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
NPM
IOV
7X8
5PM
DOA
DOI 10.1186/1756-0500-2-73
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Opposing Viewpoints
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1756-0500
EndPage 73
ExternalDocumentID oai_doaj_org_article_a1f1c007ea1f47f3a1a3fefdad1a835a
PMC2694204
oai_biomedcentral_com_1756_0500_2_73
A201560741
19416548
10_1186_1756_0500_2_73
Genre Journal Article
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5GY
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
E3Z
EBLON
EBS
EJD
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
IOV
IPNFZ
ITC
KQ8
LK8
M1P
M48
M7P
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
~8M
AAYXX
ALIPV
CITATION
EBD
H13
LGEZI
LOTEE
NADUK
NXXTH
NPM
PMFND
7X8
-A0
3V.
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
5PM
ID FETCH-LOGICAL-b6073-cecca0ffe3444ce918f8d7f5155453e09c1372d1948c7cd1a232c44f842ffbff3
IEDL.DBID RBZ
ISSN 1756-0500
IngestDate Wed Aug 27 01:32:52 EDT 2025
Thu Aug 21 14:10:53 EDT 2025
Wed May 22 07:12:33 EDT 2024
Fri Sep 05 05:11:40 EDT 2025
Tue Jun 10 21:29:36 EDT 2025
Fri Jun 27 03:50:39 EDT 2025
Thu Apr 03 07:06:08 EDT 2025
Thu Apr 24 23:03:28 EDT 2025
Tue Jul 01 03:33:16 EDT 2025
Sat Sep 06 07:29:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Constant Memory
Query Sequence
Subject Sequence
Global Memory
Thread Block
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b6073-cecca0ffe3444ce918f8d7f5155453e09c1372d1948c7cd1a232c44f842ffbff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1756-0500-2-73
PMID 19416548
PQID 733223265
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_a1f1c007ea1f47f3a1a3fefdad1a835a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2694204
biomedcentral_primary_oai_biomedcentral_com_1756_0500_2_73
proquest_miscellaneous_733223265
gale_infotracacademiconefile_A201560741
gale_incontextgauss_IOV_A201560741
pubmed_primary_19416548
crossref_primary_10_1186_1756_0500_2_73
crossref_citationtrail_10_1186_1756_0500_2_73
springer_journals_10_1186_1756_0500_2_73
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20090506
PublicationDateYYYYMMDD 2009-05-06
PublicationDate_xml – month: 5
  year: 2009
  text: 20090506
  day: 06
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC research notes
PublicationTitleAbbrev BMC Res Notes
PublicationTitleAlternate BMC Res Notes
PublicationYear 2009
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References 18959793 - BMC Res Notes. 2008;1:107
17110365 - Bioinformatics. 2007 Jan 15;23(2):156-61
2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
7265238 - J Mol Biol. 1981 Mar 25;147(1):195-7
9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
11099256 - Bioinformatics. 2000 Aug;16(8):699-706
18798993 - BMC Bioinformatics. 2008;9:377
15919726 - Bioinformatics. 2005 Aug 15;21(16):3431-2
18387198 - BMC Bioinformatics. 2008;9 Suppl 2:S10
17555593 - BMC Bioinformatics. 2007 Jun 07;8:185
7166760 - J Mol Biol. 1982 Dec 15;162(3):705-8
3162770 - Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444-8
9146961 - Comput Appl Biosci. 1997 Apr;13(2):145-50
References_xml – reference: 17555593 - BMC Bioinformatics. 2007 Jun 07;8:185
– reference: 15919726 - Bioinformatics. 2005 Aug 15;21(16):3431-2
– reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
– reference: 9146961 - Comput Appl Biosci. 1997 Apr;13(2):145-50
– reference: 7265238 - J Mol Biol. 1981 Mar 25;147(1):195-7
– reference: 11099256 - Bioinformatics. 2000 Aug;16(8):699-706
– reference: 7166760 - J Mol Biol. 1982 Dec 15;162(3):705-8
– reference: 18387198 - BMC Bioinformatics. 2008;9 Suppl 2:S10
– reference: 18798993 - BMC Bioinformatics. 2008;9:377
– reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
– reference: 18959793 - BMC Res Notes. 2008;1:107
– reference: 17110365 - Bioinformatics. 2007 Jan 15;23(2):156-61
– reference: 3162770 - Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444-8
SSID ssj0061881
Score 2.3012078
Snippet Background The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity....
The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the...
BACKGROUND: The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity....
Abstract Background The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity....
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 73
SubjectTerms Algorithms
Analysis
Biomedical and Life Sciences
Biomedicine
Life Sciences
Medical research
Medicine, Experimental
Medicine/Public Health
Nucleotide sequence
Technical Note
Technology application
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPJcXrIQEkiVVTt2Eqe3pVAVDnCApb1ZjuMpK5Vs1XQP8OuZcZLSbFVx4bZKRl57PJ75HHu-Yex1LuumNuBFlFELUystKihAFFpCxPjfGEhsn5-Lw4X5dJwfXyn1RXfCenrgXnG7XoEKGMgi_jAlaK-8hgiNb5RH9JCgEca8cTPV--BC2VSeFGMj7pdzKQe6RmWL3ctnAqGl3shzP52Ep8Tif91XXwlWmxcpN05TU5A6uMfuDuiSz_tRbbNbsb3Pbvf1Jn89YMv9xfv516OdnT2-Qlfxc_kbW-Hp44o48slJt3y8XM3p8igFOT4wfnQcAS6nJkRMGVcNT3TXy9Dxsz7fgJpbo5PoHrLFwYdv-4diqLUg6gJXuQg0lRIgamNMiJWyYJsSqACMyXWUVVC6zBpVGRvKgLpHJBaMAWsygBpAP2Jb7aqNTxiPwVcy2KYm2uE6LzyYiLK2QSSG8CKfsb2Jyt1Zz6vhiOl6-gYXnaP5cjRfLnOlnjExzo8LA4s5FdM4dWk3Y4tr8m8u5cf_uUnyHU33pDfpAVqjG6zR_csaZ-wVGYsjZo2Wru6c-HXXuY9fvrt5lrLWEcFhnwYhWGHfgx8yIVB9RMY1keSj0Tlc9nSW49u4WnfYX_TECL1Rm497G_w7vMpQipqdsXJinZORTd-0yx-JWZzSmjNpZuztaMducGndDVp7-j-09ozd6Q_pciGL52zr4nwdXyDWu6hfpmX9B6YeUak
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3_a9QwFA86EfxF_L46lSCCwog2TdqmA5FzOqag_qDn9ltI02QenO123YHzr_e9tN3snQN_O9rXXPryXt4nzXufEPIsjcuqlN4wFzvBZMkFK3zmWSZi7yD-V9IHts_P2f5UfjxMDy_yn3oFtv9c2uF5UtPF_OWvk7M34PCvg8Or7BVEQFgVp3HMACyKq-QaRKUMLfyTPN9RyLhSvCdtXH9mpdp9PgpSgct_fcb-K2StplOu7KmGULV3i9zsMSaddEZxm1xx9R1yvTt18uwume1O302-Hmxv79AGJoyfs9_QCg2fWNiBCVN1TYcUa4oppBjqaM_70VKAuRSbYC7UXVU0kF7PbEuPu6oDbG4JU0V7j0z33n_b3Wf9iQuszMDXmcUBjb13QkppXcGVV1Xu8RgYmQoXF5aLPKl4IZXNbcUN4DErpVcy8b70XtwnG3VTu01CnTVFbFVVIvlwmWbGSweyqgI8BiAjjcjOSOX6uGPX0Mh3Pb4DrqdxvDSOl050LiLChvHRtucyxyM15jqsaVS2Jv_8XH74n8sk3-Jwj3oTLjSLI907szbccwvgysEPmXthuBHe-cqARgDRmog8RWPRyK9RYwLPkVm2rf7w5bueJKF2HXAc9KkX8g303Zq-HgLUh5RcI0k6GJ0G58cdHVO7ZtlCf2E-BgAO2nzQ2eDF6xUSC9VURPKRdY7ebHynnv0I_OJY3JzEMiIvBjvWg19eorWH_y-6RW50G3Ipi7NHZON0sXSPAdedlk-Cw_4BRphK3Q
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgERIXxJvykoWQQFpZ2LHjOHsrhdXCAQ5Qdm-W49hQaUlXZHuAX8-M48Cm1UrcqmbqOp7Xl3jmMyEvSt60jYqOBR4kU42QrI46Mi15DJD_WxUT2-dHfbRUH07Kk1wgi70wF_fvhdGvIbvBE2_JOQMgKK-SayVyjOGmrF6MEVcLY0QmZNz9zVYn--kkASWe_t1ofCEdbZdKbu2XpjR0eIvczPiRzgeF3yZXQneHXB9OlPx1l6wWy7fzz8f7-wd0DcHgx-o3jELT6xN27FIY7uhYPk2xPBTTGM2cHj0FCEtxCBZST1VLE6H1yvf0bOgowOE2EAb6e2R5-O7L4ojl0xRYo8GPmUdl8RiDVEr5UAsTTVtFPOJFlTLw2gtZFa2olfGVb4UDrOWVikYVMTYxyvtkr1t34SGhwbuae9M2SCzclNpFFUDWtIC1AECUM3IwWXJ7NjBnWOSynl4Bt7KoL4v6soWt5IywUT_WZ55yPC7j1KbnFaN35F_-lR__5zLJN6juyWzSF2BwNjuqdSIKD8ApwAdVRemEkzHE1sGKAFp1M_IcjcUid0aHxTnf3Kbv7ftPX-28SH3pgNFgTlkormHu3uVeB1g-pNuaSNLR6Cw4Nu7WuC6sNz3MF2ItgGtYzQeDDf67vVphE5qZkWpinZM7m17pVt8Tdzg2Lhdczcir0Y5tDlr9Jav26P9FH5Mbw2Zbybh-QvbOf27CU8Bs582z5LB_ALZXPFA
  priority: 102
  providerName: Springer Nature
Title CUDASW++: optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units
URI https://link.springer.com/article/10.1186/1756-0500-2-73
https://www.ncbi.nlm.nih.gov/pubmed/19416548
https://www.proquest.com/docview/733223265
http://dx.doi.org/10.1186/1756-0500-2-73
https://pubmed.ncbi.nlm.nih.gov/PMC2694204
https://doaj.org/article/a1f1c007ea1f47f3a1a3fefdad1a835a
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbYJiReEL_JgMpCSCBNFnHsOM7e0rJpVGKgjbKKF8txbKi0pRNZH-Cv5-wkG2m1J16aKrk4ju9898X2fUboTRqXVcmdJja2jPCSMpI74YhgsbMQ_yvuAtvnsTia8ek8nd-Md6zN4FMp3kN8g2_eNI4JQEG2hXYSnjFvvyfj773PFVSG7UivZTt6xs371_LazwfhKLD2b_rmf4LT-sLJtdnTEJQOH6D7HZrERav-h-iOrR-hu-3-kr8fo8Vk9qE4Pdvb28dLcA0Xiz9QCg6DKeRMB6dc434xNfaLRX1Qwx3DR4MB0GJfBLEhw6rCgd56YRp82eYX-OJW4BSaJ2h2ePB1ckS6vRVIKaBXE-NVFztnGefc2JxKJ6vM-Q1feMpsnBvKsqSiOZcmMxXVgLwM507yxLnSOfYUbdfL2j5H2Bqdx0ZWpacZLlOhHbcgKytAXgAn0gjtD5pcXbY8GsozWw-vQCdTXl_K60slKmMRIr1-lOlYy_3mGecqfL1IsSH_9lq-f85tkmOv7kFtwgkwPtV1W6WpowZglIU_PHNMU82cdZWGFgHsqiP02huL8kwatV-q80OvmkZ9_PxNFUnIUgfEBnXqhNwS6m50l_kAzefJtwaSuDc6Bd3cz93o2i5XDdQXPC9AbWjNZ60N3rxezn1KmoxQNrDOwZsNr9SLn4FJ3KcxJzGP0LvejlXnwppbWm33f5T5At1rJ-NSEouXaPvq18q-Akx3VY7QVjbPRminKKanUziOD46_nMDZiZiMwjgJ_H7ichS6_V9YWE5z
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCMEF8SY8LYQEUmXVjh3H6W1ZqLZQyoEu7c1yHBtWKtmKdA_w6xk7DjS7qsRtlUy8jmc88zme-YzQq4LWTS28IY46TkTNOKm89ERy6h3E_0b4yPZ5KGdz8eGkOEkJsqEW5uL-PVNyB6IbrHgLSgkAQX4VXROwSo6bsnI6eFzJlGKJkHHzmbVK9tNRAIo8_Zve-EI4Wk-VXNsvjWFo7za6lfAjnvQKv4OuuPYuut6fKPnrHlpM5-8mX463t3fxEpzBj8VvaAXHzyfk2EQ33OIhfRqH9NAQxnDi9OgwQFgcmiAu1lQ1OBJaL2yHz_qKgtDcCtxAdx_N994fTWcknaZAagnzmNigLOq940II6yqmvGpKH454EQV3tLKMl3nDKqFsaRtmAGtZIbwSufe19_wB2mqXrXuEsLOmolY1dSAWrgtpvHAgqxrAWgAgigztjoZcn_XMGTpwWY_vwLTSQV866EvnuuQZIoN-tE085eG4jFMd1ytKbsi__is__M9lkm-Duke9iRfA4HSaqNowzywAJwc_ROm5YYZ75xsDIwJo1WToZTAWHbgz2pCc882suk7vf_6qJ3msSweMBn1KQn4Jfbcm1TrA8AW6rZEkHoxOw8QOuzWmdctVB_0FXwvgGkbzYW-D_16vEqEITWWoHFnn6M3Gd9rF98gdHgqXcyoy9GawY52cVnfJqD3-f9EX6Mbs6NOBPtg__PgE3ew33gpC5VO0df5z5Z4Bfjuvn8fJ-we3pD89
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJxAviM9RPi2EBNJkLYmdxJl4CRvVVtBAGmV7sxzHNyqNpFraB_jrOTsJkFaTeKuaq-vcne9-ie9-JuR1HBRlIUAzG1jORBFylkECLOEBWMz_pQDP9nmSHM3E9Dw-3yLv-l4YX-3eb0m2PQ2Opala7i1KaJe4TPYw5-FzcBwEDOEhv0G2ZYLQYUS283x6Ou0jcRJKGXZEjZu_WutwvxwkJs_fvxml_0lT6yWUa_uoPj1N7pI7Ha6keesI98iWre6Tm-1Jkz8fkPnB7DA_Pdvd3ac1Bokf8184CvWvVdiZ9uG5on1ZNXVloy690Y7ro6EIbakbglnfa1VST3Q9Nw1dtJ0GbrgVhofmIZlNPnw9OGLdKQusSHB9M-OMGABYLoQwNgslyDIFd_SLiLkNMhPyNCrDTEiTmjLUiMGMECBFBFAA8EdkVNWVfUyoNToLjCwLRzhcxIkGYVFWlojBEFjEY7I_ULlatIwaynFcD6-g5ZWzl3L2UpFK-Ziw3j7KdPzl7hiNS-WfY2SyIf_mj3z_P9dJvnfmHszGf1FfXahuASsdQmgQUFn8IFLgOtQcLJQaNYIoVo_JK-csynFqVK5o50KvmkYdf_6m8sj3qyN2wzl1QlDj3I3ueiBQfY6GayBJe6dTuODdLo6ubL1qcL4YgxF0ozZ3Wh_8e3uZcM1pckzSgXcO7mx4pZp_95zirqE5CsSYvO39WHXBrLlGa0_-X_QlufXlcKI-HZ98fEput_txMQuSZ2S0vFrZ5wjrlsWLbvX-Bnj9SOs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CUDASW%2B%2B%3A+optimizing+Smith-Waterman+sequence+database+searches+for+CUDA-enabled+graphics+processing+units&rft.jtitle=BMC+research+notes&rft.au=Liu%2C+Yongchao&rft.au=Maskell%2C+Douglas+L&rft.au=Schmidt%2C+Bertil&rft.date=2009-05-06&rft.pub=BioMed+Central&rft.eissn=1756-0500&rft.volume=2&rft.issue=1&rft_id=info:doi/10.1186%2F1756-0500-2-73&rft.externalDocID=10_1186_1756_0500_2_73
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-0500&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-0500&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-0500&client=summon