Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs

Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs. The genome of L. sanfrancisc...

Full description

Saved in:
Bibliographic Details
Published inMicrobial cell factories Vol. 10; no. S1; p. S6
Main Authors Vogel, Rudi F, Pavlovic, Melanie, Ehrmann, Matthias A, Wiezer, Arnim, Liesegang, Heiko, Offschanka, Stefanie, Voget, Sonja, Angelov, Angel, Böcker, Georg, Liebl, Wolfgang
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 30.08.2011
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs. The genome of L. sanfranciscensis TMW 1.1304 isolated from an industrial sourdough fermentation was sequenced with a combined Sanger/454-pyrosequencing approach followed by gap closing by walking on fosmids. The sequencing data revealed a circular chromosomal sequence of 1,298,316 bp and two additional plasmids, pLS1 and pLS2, with sizes of 58,739 bp and 18,715 bp, which are predicted to encode 1,437, 63 and 19 orfs, respectively. The overall GC content of the chromosome is 34.71%. Several specific features appear to contribute to the ability of L. sanfranciscensis to outcompete other bacteria in the fermentation. L. sanfranciscensis contains the smallest genome within the lactobacilli and the highest density of ribosomal RNA operons per Mbp genome among all known genomes of free-living bacteria, which is important for the rapid growth characteristics of the organism. A high frequency of gene inactivation and elimination indicates a process of reductive evolution. The biosynthetic capacity for amino acids scarcely availably in cereals and exopolysaccharides reveal the molecular basis for an autochtonous sourdough organism with potential for further exploitation in functional foods. The presence of two CRISPR/cas loci versus a high number of transposable elements suggests recalcitrance to gene intrusion and high intrinsic genome plasticity.
AbstractList Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs.The genome of L. sanfranciscensis TMW 1.1304 isolated from an industrial sourdough fermentation was sequenced with a combined Sanger/454-pyrosequencing approach followed by gap closing by walking on fosmids. The sequencing data revealed a circular chromosomal sequence of 1,298,316 bp and two additional plasmids, pLS1 and pLS2, with sizes of 58,739 bp and 18,715 bp, which are predicted to encode 1,437, 63 and 19 orfs, respectively. The overall GC content of the chromosome is 34.71%. Several specific features appear to contribute to the ability of L. sanfranciscensis to outcompete other bacteria in the fermentation. L. sanfranciscensis contains the smallest genome within the lactobacilli and the highest density of ribosomal RNA operons per Mbp genome among all known genomes of free-living bacteria, which is important for the rapid growth characteristics of the organism. A high frequency of gene inactivation and elimination indicates a process of reductive evolution. The biosynthetic capacity for amino acids scarcely availably in cereals and exopolysaccharides reveal the molecular basis for an autochtonous sourdough organism with potential for further exploitation in functional foods. The presence of two CRISPR/cas loci versus a high number of transposable elements suggests recalcitrance to gene intrusion and high intrinsic genome plasticity.
Abstract Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs. The genome of L. sanfranciscensis TMW 1.1304 isolated from an industrial sourdough fermentation was sequenced with a combined Sanger/454-pyrosequencing approach followed by gap closing by walking on fosmids. The sequencing data revealed a circular chromosomal sequence of 1,298,316 bp and two additional plasmids, pLS1 and pLS2, with sizes of 58,739 bp and 18,715 bp, which are predicted to encode 1,437, 63 and 19 orfs, respectively. The overall GC content of the chromosome is 34.71%. Several specific features appear to contribute to the ability of L. sanfranciscensis to outcompete other bacteria in the fermentation. L. sanfranciscensis contains the smallest genome within the lactobacilli and the highest density of ribosomal RNA operons per Mbp genome among all known genomes of free-living bacteria, which is important for the rapid growth characteristics of the organism. A high frequency of gene inactivation and elimination indicates a process of reductive evolution. The biosynthetic capacity for amino acids scarcely availably in cereals and exopolysaccharides reveal the molecular basis for an autochtonous sourdough organism with potential for further exploitation in functional foods. The presence of two CRISPR/cas loci versus a high number of transposable elements suggests recalcitrance to gene intrusion and high intrinsic genome plasticity.
Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs. The genome of L. sanfranciscensis TMW 1.1304 isolated from an industrial sourdough fermentation was sequenced with a combined Sanger/454-pyrosequencing approach followed by gap closing by walking on fosmids. The sequencing data revealed a circular chromosomal sequence of 1,298,316 bp and two additional plasmids, pLS1 and pLS2, with sizes of 58,739 bp and 18,715 bp, which are predicted to encode 1,437, 63 and 19 orfs, respectively. The overall GC content of the chromosome is 34.71%. Several specific features appear to contribute to the ability of L. sanfranciscensis to outcompete other bacteria in the fermentation. L. sanfranciscensis contains the smallest genome within the lactobacilli and the highest density of ribosomal RNA operons per Mbp genome among all known genomes of free-living bacteria, which is important for the rapid growth characteristics of the organism. A high frequency of gene inactivation and elimination indicates a process of reductive evolution. The biosynthetic capacity for amino acids scarcely availably in cereals and exopolysaccharides reveal the molecular basis for an autochtonous sourdough organism with potential for further exploitation in functional foods. The presence of two CRISPR/cas loci versus a high number of transposable elements suggests recalcitrance to gene intrusion and high intrinsic genome plasticity.
Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs.The genome of L. sanfranciscensis TMW 1.1304 isolated from an industrial sourdough fermentation was sequenced with a combined Sanger/454-pyrosequencing approach followed by gap closing by walking on fosmids. The sequencing data revealed a circular chromosomal sequence of 1,298,316 bp and two additional plasmids, pLS1 and pLS2, with sizes of 58,739 bp and 18,715 bp, which are predicted to encode 1,437, 63 and 19 orfs, respectively. The overall GC content of the chromosome is 34.71%. Several specific features appear to contribute to the ability of L. sanfranciscensis to outcompete other bacteria in the fermentation. L. sanfranciscensis contains the smallest genome within the lactobacilli and the highest density of ribosomal RNA operons per Mbp genome among all known genomes of free-living bacteria, which is important for the rapid growth characteristics of the organism. A high frequency of gene inactivation and elimination indicates a process of reductive evolution. The biosynthetic capacity for amino acids scarcely availably in cereals and exopolysaccharides reveal the molecular basis for an autochtonous sourdough organism with potential for further exploitation in functional foods. The presence of two CRISPR/cas loci versus a high number of transposable elements suggests recalcitrance to gene intrusion and high intrinsic genome plasticity.Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs.The genome of L. sanfranciscensis TMW 1.1304 isolated from an industrial sourdough fermentation was sequenced with a combined Sanger/454-pyrosequencing approach followed by gap closing by walking on fosmids. The sequencing data revealed a circular chromosomal sequence of 1,298,316 bp and two additional plasmids, pLS1 and pLS2, with sizes of 58,739 bp and 18,715 bp, which are predicted to encode 1,437, 63 and 19 orfs, respectively. The overall GC content of the chromosome is 34.71%. Several specific features appear to contribute to the ability of L. sanfranciscensis to outcompete other bacteria in the fermentation. L. sanfranciscensis contains the smallest genome within the lactobacilli and the highest density of ribosomal RNA operons per Mbp genome among all known genomes of free-living bacteria, which is important for the rapid growth characteristics of the organism. A high frequency of gene inactivation and elimination indicates a process of reductive evolution. The biosynthetic capacity for amino acids scarcely availably in cereals and exopolysaccharides reveal the molecular basis for an autochtonous sourdough organism with potential for further exploitation in functional foods. The presence of two CRISPR/cas loci versus a high number of transposable elements suggests recalcitrance to gene intrusion and high intrinsic genome plasticity.
ArticleNumber S6
Author Böcker, Georg
Liebl, Wolfgang
Wiezer, Arnim
Liesegang, Heiko
Ehrmann, Matthias A
Voget, Sonja
Pavlovic, Melanie
Vogel, Rudi F
Offschanka, Stefanie
Angelov, Angel
AuthorAffiliation 1 Lehrstuhl für Technische Mikrobiologie, Germany
2 Lehrstuhl für Mikrobiologie, Technische Universität München, 85350 Freising, Germany
3 Laboratorium für Genomanalyse, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Germany
4 Ernst Böcker GmbH & Co KG, Minden, Germany
AuthorAffiliation_xml – name: 1 Lehrstuhl für Technische Mikrobiologie, Germany
– name: 4 Ernst Böcker GmbH & Co KG, Minden, Germany
– name: 2 Lehrstuhl für Mikrobiologie, Technische Universität München, 85350 Freising, Germany
– name: 3 Laboratorium für Genomanalyse, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Germany
Author_xml – sequence: 1
  givenname: Rudi F
  surname: Vogel
  fullname: Vogel, Rudi F
– sequence: 2
  givenname: Melanie
  surname: Pavlovic
  fullname: Pavlovic, Melanie
– sequence: 3
  givenname: Matthias A
  surname: Ehrmann
  fullname: Ehrmann, Matthias A
– sequence: 4
  givenname: Arnim
  surname: Wiezer
  fullname: Wiezer, Arnim
– sequence: 5
  givenname: Heiko
  surname: Liesegang
  fullname: Liesegang, Heiko
– sequence: 6
  givenname: Stefanie
  surname: Offschanka
  fullname: Offschanka, Stefanie
– sequence: 7
  givenname: Sonja
  surname: Voget
  fullname: Voget, Sonja
– sequence: 8
  givenname: Angel
  surname: Angelov
  fullname: Angelov, Angel
– sequence: 9
  givenname: Georg
  surname: Böcker
  fullname: Böcker, Georg
– sequence: 10
  givenname: Wolfgang
  surname: Liebl
  fullname: Liebl, Wolfgang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21995419$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1URNuFP8AB5cYpYCd2bF-QUFVKpZU4LJyt8cduXTl2sZNK_fd12LLqIuBiWzPvPDOj1-foJKboEHpL8AdCxPCRUM7aTjDZEtxuSLsZXqCzQ_Dk2fsUnZdyizHhgvev0GlHpGSUyDNkrlxMozcNRAgPxZcmu3sHoTRrMFPSYHwIc2kKxG2GaHwxLi4yqLEJdHCNC250cWp8bKYM1k8-VVZT0pxtmnc35TV6ua1E9-bpXqEfXy6_X3xt19-uri8-r1vNJJtazgczcMdJPzDoqCCMycEAZto660THiSZWaEMtl1Za18kOSxCU95oySkW_Qtd7rk1wq-6yHyE_qARe_QqkvFOQJ2-CU1sucT9wcFujKQisWU9sD7TjFce0rqxPe9bdrEdn69J1t3AEPc5Ef6N26V71XU9kPVbocg_QPv0DcJwxaVSLYWoxTBGsNkRthsp5_zRITj9nVyY1Lh6EANGluSiJ8UDJIElVvns-8qHVb7OroNsLTE6lZLc9SGq35Uf9vb_4o8j4CRaP69Q-_K_0EXs60y4
CitedBy_id crossref_primary_10_1111_1758_2229_12794
crossref_primary_10_1016_j_ijfoodmicro_2013_11_021
crossref_primary_10_1016_j_copbio_2013_01_001
crossref_primary_10_1186_1475_2859_11_114
crossref_primary_10_3390_ijerph19010037
crossref_primary_10_1007_s00284_018_1581_2
crossref_primary_10_3390_app14052093
crossref_primary_10_3390_microorganisms11040868
crossref_primary_10_1093_gbe_evz136
crossref_primary_10_1099_ijsem_0_004107
crossref_primary_10_1038_srep18234
crossref_primary_10_1186_1756_0500_6_514
crossref_primary_10_1016_j_biopha_2022_113138
crossref_primary_10_1007_s00284_013_0506_3
crossref_primary_10_1371_journal_pone_0036296
crossref_primary_10_1093_femsre_fux030
crossref_primary_10_3389_fmicb_2017_01829
crossref_primary_10_1016_j_lwt_2015_12_025
crossref_primary_10_1128_AEM_02194_16
crossref_primary_10_3390_microorganisms12050845
crossref_primary_10_1016_j_foodchem_2019_125529
crossref_primary_10_1099_mic_0_000053
crossref_primary_10_1128_AEM_00367_14
crossref_primary_10_1128_AEM_01077_19
crossref_primary_10_1007_s00253_013_5484_7
crossref_primary_10_1080_1040841X_2018_1543649
crossref_primary_10_1128_AEM_01783_14
crossref_primary_10_1016_j_micres_2020_126625
crossref_primary_10_3390_nu12082189
crossref_primary_10_1016_j_ijfoodmicro_2016_05_004
crossref_primary_10_1016_j_ijfoodmicro_2013_02_010
crossref_primary_10_1186_s12934_017_0691_z
crossref_primary_10_1080_10408398_2018_1506906
crossref_primary_10_3390_foods11152373
crossref_primary_10_1016_j_fm_2020_103448
crossref_primary_10_1016_j_ijfoodmicro_2019_108475
crossref_primary_10_1016_j_csbj_2022_11_013
crossref_primary_10_1016_j_foodres_2022_112145
crossref_primary_10_1016_j_ijfoodmicro_2015_02_007
crossref_primary_10_55147_efse_1121959
crossref_primary_10_1128_genomeA_00025_12
crossref_primary_10_3389_fmicb_2020_01212
crossref_primary_10_3390_beverages6010013
crossref_primary_10_1111_1541_4337_12459
crossref_primary_10_1007_s10068_022_01142_8
crossref_primary_10_3168_jds_2012_5677
crossref_primary_10_1016_j_ijfoodmicro_2016_03_008
crossref_primary_10_1016_j_ijfoodmicro_2018_10_004
crossref_primary_10_1016_j_fm_2015_06_009
crossref_primary_10_1128_AEM_02116_15
crossref_primary_10_3389_fmicb_2018_02041
crossref_primary_10_1093_gbe_evv079
crossref_primary_10_1128_AEM_03625_12
crossref_primary_10_3390_microorganisms11030803
crossref_primary_10_1038_s41598_018_36786_2
crossref_primary_10_1016_j_ijfoodmicro_2016_05_022
crossref_primary_10_3390_foods14030421
crossref_primary_10_1016_j_fbio_2023_102737
crossref_primary_10_29050_harranziraat_1105873
crossref_primary_10_1007_s00217_019_03413_x
crossref_primary_10_1016_j_ijfoodmicro_2018_07_018
crossref_primary_10_1007_s00217_025_04702_4
crossref_primary_10_1128_AEM_00572_12
crossref_primary_10_1080_10408398_2021_1976100
crossref_primary_10_1128_aem_02216_24
crossref_primary_10_1016_j_lwt_2017_12_022
crossref_primary_10_1016_j_cofs_2015_01_001
crossref_primary_10_1016_j_syapm_2016_09_006
crossref_primary_10_1099_mgen_0_000560
crossref_primary_10_18699_VJGB_22_47
crossref_primary_10_28948_ngumuh_756207
crossref_primary_10_1016_j_ijfoodmicro_2018_05_029
crossref_primary_10_1016_j_fm_2014_11_014
crossref_primary_10_1016_j_lwt_2021_112704
crossref_primary_10_1016_j_fm_2013_04_007
crossref_primary_10_1016_j_copbio_2012_08_004
crossref_primary_10_3136_fstr_24_971
crossref_primary_10_3389_fmicb_2023_1267227
crossref_primary_10_1016_j_foodchem_2020_127316
crossref_primary_10_3389_fmicb_2021_716307
crossref_primary_10_1007_s00253_012_4440_2
crossref_primary_10_1016_j_lwt_2019_108394
crossref_primary_10_1016_j_ijfoodmicro_2018_08_019
crossref_primary_10_1016_j_ijfoodmicro_2015_05_010
crossref_primary_10_1021_acs_jafc_7b00897
crossref_primary_10_1016_j_fm_2024_104474
crossref_primary_10_1016_j_ijfoodmicro_2023_110421
crossref_primary_10_1128_AEM_03691_14
crossref_primary_10_24323_akademik_gida_333670
Cites_doi 10.1007/BF02932186
10.1111/j.1365-2672.1995.tb00954.x
10.1094/CCHEM.2002.79.1.45
10.1016/j.ijfoodmicro.2008.05.030
10.1099/00207713-47-3-908
10.1128/mr.54.2.198-210.1990
10.1007/s10295-008-0319-8
10.1093/bioinformatics/16.10.944
10.1007/s00203-008-0404-4
10.1007/s00284-005-0122-y
10.1006/fmic.1996.0083
10.1128/JB.01415-07
10.1093/gbe/evp019
10.1128/AEM.66.4.1328-1333.2000
10.1128/am.21.3.459-465.1971
10.1186/1471-2164-11-617
10.1073/pnas.0307327101
10.1128/JB.187.22.7727-7737.2005
10.1016/S0723-2020(84)80024-7
10.1128/AEM.68.12.6193-6201.2002
10.1016/j.fm.2009.07.013
10.1128/aem.62.9.3220-3226.1996
10.1093/bioinformatics/btm009
10.1007/s00253-004-1773-5
10.1007/s00239-004-0046-3
10.1128/AEM.02322-06
10.1007/BF01193208
10.1111/j.1365-2672.2010.04753.x
10.1093/nar/gkn749
10.1006/fmic.1996.0051
10.1093/nar/gki242
10.1186/1745-6150-1-7
10.1073/pnas.0337704100
10.1128/AEM.00054-08
10.1046/j.1365-2958.2000.02001.x
10.1128/JB.01295-07
10.1007/BF01041899
10.1021/jf048307v
10.1099/mic.0.28048-0
10.1099/mic.0.022871-0
10.1007/s00253-006-0469-4
10.1146/annurev.biochem.69.1.183
10.1093/nar/gkm360
10.1016/S0168-1605(99)00048-3
10.1186/1471-2148-7-181
10.1128/AEM.71.10.6260-6266.2005
10.1073/pnas.0409188102
10.1111/j.1574-6968.1998.tb13908.x
10.1128/jb.177.14.4152-4156.1995
10.5344/ajev.2006.57.4.519
10.1016/j.foodchem.2004.08.047
10.1016/S0168-1605(01)00611-0
10.1111/j.1365-2672.1993.tb02755.x
10.1023/A:1020530227192
10.1093/dnares/dsn009
ContentType Journal Article
Copyright Copyright ©2011 Vogel et al; licensee BioMed Central Ltd. 2011 Vogel et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Copyright ©2011 Vogel et al; licensee BioMed Central Ltd. 2011 Vogel et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1186/1475-2859-10-S1-S6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1475-2859
EndPage S6
ExternalDocumentID oai_doaj_org_article_f790367aefcb4a80b531d3a4274735bb
PMC3231932
oai_biomedcentral_com_1475_2859_10_S1_S6
21995419
10_1186_1475_2859_10_S1_S6
Genre Journal Article
GroupedDBID ---
0R~
123
29M
2VQ
2WC
4.4
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
RPM
RSV
SCM
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7X8
-58
-5G
-A0
-BR
3V.
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
ESTFP
FRP
5PM
PUEGO
ID FETCH-LOGICAL-b595t-776c67e71365a24815596ca05bdede8271b1d8bc4d79d9de29209a8473b454483
IEDL.DBID RBZ
ISSN 1475-2859
IngestDate Wed Aug 27 01:27:26 EDT 2025
Thu Aug 21 14:06:54 EDT 2025
Wed May 22 07:16:47 EDT 2024
Mon Jul 21 11:28:57 EDT 2025
Mon Jul 21 05:58:45 EDT 2025
Tue Jul 01 02:30:16 EDT 2025
Thu Apr 24 22:59:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue S1
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b595t-776c67e71365a24815596ca05bdede8271b1d8bc4d79d9de29209a8473b454483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1475-2859-10-S1-S6
PMID 21995419
PQID 900641691
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f790367aefcb4a80b531d3a4274735bb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3231932
biomedcentral_primary_oai_biomedcentral_com_1475_2859_10_S1_S6
proquest_miscellaneous_900641691
pubmed_primary_21995419
crossref_primary_10_1186_1475_2859_10_S1_S6
crossref_citationtrail_10_1186_1475_2859_10_S1_S6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-30
PublicationDateYYYYMMDD 2011-08-30
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-30
  day: 30
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Microbial cell factories
PublicationTitleAlternate Microb Cell Fact
PublicationYear 2011
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References M Kleerebezem (561_CR24) 2003; 100
H-G Trüper (561_CR4) 1997; 47
LM De Angelis (561_CR11) 2002; 68
N Weiss (561_CR3) 1984; 5
A Corsetti (561_CR49) 1996; 13
M Korakli (561_CR29) 2006; 71
G Zapparoli (561_CR13) 1998; 166
FW Waldherr (561_CR28) 2008; 190
WH Groeneveld (561_CR7) 2006; 57
AL Delcher (561_CR56) 2007; 23
R Foschino (561_CR42) 1995; 79
P Stolz (561_CR53) 1996; 18
K Rutherford (561_CR57) 2000; 16
P Stolz (561_CR21) 1995; 201
M Gobbetti (561_CR5) 1997; 14
MA Azcarate-Peril (561_CR30) 2008; 74
H Cai (561_CR62) 2009; 1
AG Larsen (561_CR47) 1993; 75
M Borodovsky (561_CR55) 2003
I Pastar (561_CR32) 2007; 52
RF Vogel (561_CR1) 2009; 26
R Foschino (561_CR43) 1996; 14
RD Pridmore (561_CR61) 2004; 101
SA Khan (561_CR52) 2000; 37
N Vermeulen (561_CR33) 2005; 71
R Foschino (561_CR44) 2005; 51
FJ Mojica (561_CR39) 2005; 60
SGaK Andersson (561_CR18) 1990; 54
JA Klappenbach (561_CR17) 2000; 66
RF Vogel (561_CR6) 2002; 81
J Tamames (561_CR15) 2007; 7
A Bolotin (561_CR35) 2005; 151
S Todorov (561_CR48) 1999; 48
P Horvath (561_CR40) 2009; 131
F Radler (561_CR23) 1984; 179
PM Sharp (561_CR19) 2005; 33
C Thiele (561_CR8) 2002; 79
M Gobbetti (561_CR10) 1996; 62
J Rico (561_CR25) 2008; 35
N Saitou (561_CR58) 1987; 4
G Gallo (561_CR9) 2005; 91
C Condon (561_CR16) 1995; 177
MC Walter (561_CR54) 2009; 37
M Tieking (561_CR12) 2005; 66
M Callanan (561_CR60) 2008; 190
KS Makarova (561_CR38) 2006; 1
H Morita (561_CR59) 2008; 15
I Grissa (561_CR36) 2007; 35
A Jaensch (561_CR45) 2007; 73
C Van Mandach (561_CR20) 2010; 11
E Altermann (561_CR31) 2005; 102
T Wada (561_CR50) 2009; 155
JM Macklaim (561_CR14) 2010
W Messens (561_CR46) 2002; 72
C Zhang (561_CR22) 2010; 109
P Horvath (561_CR37) 2008; 190
M Tieking (561_CR27) 2005; 53
H Tomita (561_CR41) 2005; 187
F Waldherr (561_CR26) 2009
SA Khan (561_CR51) 1997; 61
AM Stock (561_CR34) 2000; 69
L Kline (561_CR2) 1971; 21
18450219 - Folia Microbiol (Praha). 2007;52(6):577-84
7608093 - J Bacteriol. 1995 Jul;177(14):4152-6
18487258 - DNA Res. 2008 Jun 30;15(3):151-61
21059957 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4688-95
21050470 - BMC Genomics. 2010;11:617
14983040 - Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2512-7
16267297 - J Bacteriol. 2005 Nov;187(22):7727-37
17908294 - BMC Evol Biol. 2007;7:181
15735966 - Appl Microbiol Biotechnol. 2005 Mar;66(6):655-63
10966457 - Annu Rev Biochem. 2000;69:183-215
18607568 - Arch Microbiol. 2008 Oct;190(4):497-505
3447015 - Mol Biol Evol. 1987 Jul;4(4):406-25
17537822 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W52-7
17993529 - J Bacteriol. 2008 Jan;190(2):727-35
6495871 - Z Lebensm Unters Forsch. 1984 Sep;179(3):228-31
16724190 - Appl Microbiol Biotechnol. 2006 Aug;71(6):790-803
18539810 - Appl Environ Microbiol. 2008 Aug;74(15):4610-25
16235023 - Curr Microbiol. 2005 Dec;51(6):413-8
15796579 - J Agric Food Chem. 2005 Apr 6;53(7):2456-61
10443536 - Int J Food Microbiol. 1999 Jun 1;48(3):167-77
12448759 - Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):631-8
18635282 - Int J Food Microbiol. 2009 Apr 30;131(1):62-70
18940859 - Nucleic Acids Res. 2009 Jan;37(Database issue):D408-11
11843411 - Int J Food Microbiol. 2002 Jan 30;72(1-2):31-43
8795211 - Appl Environ Microbiol. 1996 Sep;62(9):3220-6
10742207 - Appl Environ Microbiol. 2000 Apr;66(4):1328-33
17496130 - Appl Environ Microbiol. 2007 Jul;73(14):4469-76
18065539 - J Bacteriol. 2008 Feb;190(4):1401-12
10931341 - Mol Microbiol. 2000 Aug;37(3):477-84
2194095 - Microbiol Rev. 1990 Jun;54(2):198-210
16545108 - Biol Direct. 2006 Mar 16;1:7
15791728 - J Mol Evol. 2005 Feb;60(2):174-82
17237039 - Bioinformatics. 2007 Mar 15;23(6):673-9
16204547 - Appl Environ Microbiol. 2005 Oct;71(10):6260-6
12566566 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1990-5
18231816 - J Ind Microbiol Biotechnol. 2008 Jun;35(6):579-86
20477886 - J Appl Microbiol. 2010 Oct;109(4):1301-10
18428700 - Curr Protoc Bioinformatics. 2003 May;Chapter 4:Unit4.5
12450844 - Appl Environ Microbiol. 2002 Dec;68(12):6193-201
5553285 - Appl Microbiol. 1971 Mar;21(3):459-65
11120685 - Bioinformatics. 2000 Oct;16(10):944-5
15671160 - Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):3906-12
8407671 - J Appl Bacteriol. 1993 Aug;75(2):113-22
19372160 - Microbiology. 2009 May;155(Pt 5):1726-37
19747598 - Food Microbiol. 2009 Oct;26(7):665
20333194 - Genome Biol Evol. 2009 Jul 14;1:239-57
16079334 - Microbiology. 2005 Aug;151(Pt 8):2551-61
15728743 - Nucleic Acids Res. 2005;33(4):1141-53
9409148 - Microbiol Mol Biol Rev. 1997 Dec;61(4):442-55
References_xml – volume: 52
  start-page: 577
  year: 2007
  ident: 561_CR32
  publication-title: Folia Microbiol (Praha)
  doi: 10.1007/BF02932186
– volume: 18
  start-page: 1
  year: 1996
  ident: 561_CR53
  publication-title: Adv Food Sci
– volume: 79
  start-page: 677
  year: 1995
  ident: 561_CR42
  publication-title: J Appl Bact
  doi: 10.1111/j.1365-2672.1995.tb00954.x
– volume: 79
  start-page: 45
  year: 2002
  ident: 561_CR8
  publication-title: Cereal Chemistry
  doi: 10.1094/CCHEM.2002.79.1.45
– volume: 131
  start-page: 62
  year: 2009
  ident: 561_CR40
  publication-title: Int J Food Microbiol
  doi: 10.1016/j.ijfoodmicro.2008.05.030
– volume: 47
  start-page: 908
  year: 1997
  ident: 561_CR4
  publication-title: Int J Syst Bacteriol
  doi: 10.1099/00207713-47-3-908
– volume: 54
  start-page: 198
  year: 1990
  ident: 561_CR18
  publication-title: Microbiol Rev
  doi: 10.1128/mr.54.2.198-210.1990
– volume: 35
  start-page: 579
  year: 2008
  ident: 561_CR25
  publication-title: J Ind Microbiol Biotechnol
  doi: 10.1007/s10295-008-0319-8
– volume: 16
  start-page: 944
  year: 2000
  ident: 561_CR57
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.10.944
– volume: 190
  start-page: 497
  year: 2008
  ident: 561_CR28
  publication-title: Arch Microbiol
  doi: 10.1007/s00203-008-0404-4
– volume: 51
  start-page: 413
  year: 2005
  ident: 561_CR44
  publication-title: Curr Microbiol
  doi: 10.1007/s00284-005-0122-y
– volume: 4
  start-page: 406
  year: 1987
  ident: 561_CR58
  publication-title: Molecular Biology Evolution
– volume: 14
  start-page: 15
  year: 1996
  ident: 561_CR43
  publication-title: Microbiol Alim Nutr
– volume: 14
  start-page: 175
  year: 1997
  ident: 561_CR5
  publication-title: Food Microbiology
  doi: 10.1006/fmic.1996.0083
– volume-title: Proceedings of the National Academy of Sciences
  year: 2010
  ident: 561_CR14
– volume: 190
  start-page: 1401
  year: 2008
  ident: 561_CR37
  publication-title: J Bacteriol
  doi: 10.1128/JB.01415-07
– volume: 1
  start-page: 239
  year: 2009
  ident: 561_CR62
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evp019
– volume: 66
  start-page: 1328
  year: 2000
  ident: 561_CR17
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.66.4.1328-1333.2000
– volume: 21
  start-page: 459
  year: 1971
  ident: 561_CR2
  publication-title: Appl Microbiol
  doi: 10.1128/am.21.3.459-465.1971
– volume: 11
  start-page: 617
  year: 2010
  ident: 561_CR20
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-617
– volume: 61
  start-page: 442
  year: 1997
  ident: 561_CR51
  publication-title: Microbiol Mol Biol Rev
– volume: 101
  start-page: 2512
  year: 2004
  ident: 561_CR61
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0307327101
– volume: 187
  start-page: 7727
  year: 2005
  ident: 561_CR41
  publication-title: J Bacteriol
  doi: 10.1128/JB.187.22.7727-7737.2005
– volume: 5
  start-page: 230
  year: 1984
  ident: 561_CR3
  publication-title: System Appl Microbiol
  doi: 10.1016/S0723-2020(84)80024-7
– volume: 68
  start-page: 6193
  year: 2002
  ident: 561_CR11
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.68.12.6193-6201.2002
– volume: 26
  start-page: 665
  year: 2009
  ident: 561_CR1
  publication-title: Food Microbiology
  doi: 10.1016/j.fm.2009.07.013
– volume: 62
  start-page: 3220
  year: 1996
  ident: 561_CR10
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.62.9.3220-3226.1996
– volume: 23
  start-page: 673
  year: 2007
  ident: 561_CR56
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm009
– volume: 66
  start-page: 655
  year: 2005
  ident: 561_CR12
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-004-1773-5
– volume: 60
  start-page: 174
  year: 2005
  ident: 561_CR39
  publication-title: J Mol Evol
  doi: 10.1007/s00239-004-0046-3
– volume: 73
  start-page: 4469
  year: 2007
  ident: 561_CR45
  publication-title: Appllied and Environmental Microbiology
  doi: 10.1128/AEM.02322-06
– volume: 201
  start-page: 91
  year: 1995
  ident: 561_CR21
  publication-title: Z Lebensm Unters Forsch
  doi: 10.1007/BF01193208
– volume: 109
  start-page: 1301
  year: 2010
  ident: 561_CR22
  publication-title: Journal of Applied Microbiology
  doi: 10.1111/j.1365-2672.2010.04753.x
– volume: 37
  start-page: D408
  year: 2009
  ident: 561_CR54
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn749
– volume: 13
  start-page: 447
  year: 1996
  ident: 561_CR49
  publication-title: Food microbiology
  doi: 10.1006/fmic.1996.0051
– volume: 33
  start-page: 1141
  year: 2005
  ident: 561_CR19
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki242
– volume: 1
  start-page: 7
  year: 2006
  ident: 561_CR38
  publication-title: Biol Direct
  doi: 10.1186/1745-6150-1-7
– volume: 100
  start-page: 1990
  year: 2003
  ident: 561_CR24
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0337704100
– volume: 74
  start-page: 4610
  year: 2008
  ident: 561_CR30
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00054-08
– volume: 37
  start-page: 477
  year: 2000
  ident: 561_CR52
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2000.02001.x
– volume: 190
  start-page: 727
  year: 2008
  ident: 561_CR60
  publication-title: J Bacteriol
  doi: 10.1128/JB.01295-07
– volume: 179
  start-page: 228
  year: 1984
  ident: 561_CR23
  publication-title: Z Lebensm Unters Forsch
  doi: 10.1007/BF01041899
– volume: 53
  start-page: 2456
  year: 2005
  ident: 561_CR27
  publication-title: J Agric Food Chem
  doi: 10.1021/jf048307v
– start-page: 5
  volume-title: Curr Protoc Bioinformatics
  year: 2003
  ident: 561_CR55
– volume-title: Bacterial Exopolysaccharides - current innovations and future trends
  year: 2009
  ident: 561_CR26
– volume: 151
  start-page: 2551
  year: 2005
  ident: 561_CR35
  publication-title: Microbiology
  doi: 10.1099/mic.0.28048-0
– volume: 155
  start-page: 1726
  year: 2009
  ident: 561_CR50
  publication-title: Microbiology
  doi: 10.1099/mic.0.022871-0
– volume: 71
  start-page: 790
  year: 2006
  ident: 561_CR29
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-006-0469-4
– volume: 69
  start-page: 183
  year: 2000
  ident: 561_CR34
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.69.1.183
– volume: 35
  start-page: 52
  year: 2007
  ident: 561_CR36
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm360
– volume: 48
  start-page: 167
  year: 1999
  ident: 561_CR48
  publication-title: Int J Food Microbiol
  doi: 10.1016/S0168-1605(99)00048-3
– volume: 7
  start-page: 181
  year: 2007
  ident: 561_CR15
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-7-181
– volume: 71
  start-page: 6260
  year: 2005
  ident: 561_CR33
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.10.6260-6266.2005
– volume: 102
  start-page: 3906
  year: 2005
  ident: 561_CR31
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0409188102
– volume: 166
  start-page: 325
  year: 1998
  ident: 561_CR13
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.1998.tb13908.x
– volume: 177
  start-page: 4152
  year: 1995
  ident: 561_CR16
  publication-title: J Bacteriol
  doi: 10.1128/jb.177.14.4152-4156.1995
– volume: 57
  start-page: 519
  year: 2006
  ident: 561_CR7
  publication-title: Am J Enol Vitic
  doi: 10.5344/ajev.2006.57.4.519
– volume: 91
  start-page: 535
  year: 2005
  ident: 561_CR9
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2004.08.047
– volume: 72
  start-page: 31
  year: 2002
  ident: 561_CR46
  publication-title: Int J Food Microbiol
  doi: 10.1016/S0168-1605(01)00611-0
– volume: 75
  start-page: 113
  year: 1993
  ident: 561_CR47
  publication-title: J Appl Bacteriol
  doi: 10.1111/j.1365-2672.1993.tb02755.x
– volume: 81
  start-page: 631
  year: 2002
  ident: 561_CR6
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1023/A:1020530227192
– volume: 15
  start-page: 151
  year: 2008
  ident: 561_CR59
  publication-title: DNA Res
  doi: 10.1093/dnares/dsn009
– reference: 16235023 - Curr Microbiol. 2005 Dec;51(6):413-8
– reference: 8795211 - Appl Environ Microbiol. 1996 Sep;62(9):3220-6
– reference: 2194095 - Microbiol Rev. 1990 Jun;54(2):198-210
– reference: 16079334 - Microbiology. 2005 Aug;151(Pt 8):2551-61
– reference: 18940859 - Nucleic Acids Res. 2009 Jan;37(Database issue):D408-11
– reference: 17237039 - Bioinformatics. 2007 Mar 15;23(6):673-9
– reference: 17537822 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W52-7
– reference: 3447015 - Mol Biol Evol. 1987 Jul;4(4):406-25
– reference: 20333194 - Genome Biol Evol. 2009 Jul 14;1:239-57
– reference: 15728743 - Nucleic Acids Res. 2005;33(4):1141-53
– reference: 18231816 - J Ind Microbiol Biotechnol. 2008 Jun;35(6):579-86
– reference: 18065539 - J Bacteriol. 2008 Feb;190(4):1401-12
– reference: 15671160 - Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):3906-12
– reference: 18428700 - Curr Protoc Bioinformatics. 2003 May;Chapter 4:Unit4.5
– reference: 19372160 - Microbiology. 2009 May;155(Pt 5):1726-37
– reference: 21059957 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4688-95
– reference: 17908294 - BMC Evol Biol. 2007;7:181
– reference: 18539810 - Appl Environ Microbiol. 2008 Aug;74(15):4610-25
– reference: 15791728 - J Mol Evol. 2005 Feb;60(2):174-82
– reference: 19747598 - Food Microbiol. 2009 Oct;26(7):665
– reference: 20477886 - J Appl Microbiol. 2010 Oct;109(4):1301-10
– reference: 9409148 - Microbiol Mol Biol Rev. 1997 Dec;61(4):442-55
– reference: 10443536 - Int J Food Microbiol. 1999 Jun 1;48(3):167-77
– reference: 16267297 - J Bacteriol. 2005 Nov;187(22):7727-37
– reference: 11843411 - Int J Food Microbiol. 2002 Jan 30;72(1-2):31-43
– reference: 16545108 - Biol Direct. 2006 Mar 16;1:7
– reference: 7608093 - J Bacteriol. 1995 Jul;177(14):4152-6
– reference: 10742207 - Appl Environ Microbiol. 2000 Apr;66(4):1328-33
– reference: 16724190 - Appl Microbiol Biotechnol. 2006 Aug;71(6):790-803
– reference: 10931341 - Mol Microbiol. 2000 Aug;37(3):477-84
– reference: 18607568 - Arch Microbiol. 2008 Oct;190(4):497-505
– reference: 21050470 - BMC Genomics. 2010;11:617
– reference: 18635282 - Int J Food Microbiol. 2009 Apr 30;131(1):62-70
– reference: 10966457 - Annu Rev Biochem. 2000;69:183-215
– reference: 15735966 - Appl Microbiol Biotechnol. 2005 Mar;66(6):655-63
– reference: 11120685 - Bioinformatics. 2000 Oct;16(10):944-5
– reference: 12566566 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1990-5
– reference: 18487258 - DNA Res. 2008 Jun 30;15(3):151-61
– reference: 6495871 - Z Lebensm Unters Forsch. 1984 Sep;179(3):228-31
– reference: 17993529 - J Bacteriol. 2008 Jan;190(2):727-35
– reference: 15796579 - J Agric Food Chem. 2005 Apr 6;53(7):2456-61
– reference: 5553285 - Appl Microbiol. 1971 Mar;21(3):459-65
– reference: 16204547 - Appl Environ Microbiol. 2005 Oct;71(10):6260-6
– reference: 12448759 - Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):631-8
– reference: 18450219 - Folia Microbiol (Praha). 2007;52(6):577-84
– reference: 17496130 - Appl Environ Microbiol. 2007 Jul;73(14):4469-76
– reference: 8407671 - J Appl Bacteriol. 1993 Aug;75(2):113-22
– reference: 14983040 - Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2512-7
– reference: 12450844 - Appl Environ Microbiol. 2002 Dec;68(12):6193-201
SSID ssj0017873
Score 2.3096669
Snippet Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery...
Abstract Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and...
SourceID doaj
pubmedcentral
biomedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage S6
SubjectTerms Bread - microbiology
Fermentation
Flour - microbiology
Food Microbiology - methods
Genomics
Lactobacillus - genetics
Lactobacillus - growth & development
Lactobacillus - metabolism
Proceedings
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQb8JLHthQ1KSJHXtBAkRBCFgKEpvlV0WlkCLS_n_u8qgaVMHCaseJ4_ts39l33xFyjjdxjnMRJuNMhqmOLEwpEYUxs5G1mEMuwkDhp2d-_5o-vLG3pVRf6BNW0wPXA9eHV8Aim2k_tibVIjIAGpfoFK2phBmDqy_sea0x1dwfAAwr1_o0YyFStLXhMoL3F2W4Ao3icMR_xLrnnS2qYvJfpX7-9KJc2paGW2Sz0SfpVf0f22TNFztkY4llcJfYO1_FHlPdEJBQpG0C2NFHTLZjtJ3k-bykpS7GdZoNi17tJdVQNsPQKuprJ3M6KSh0wk3qA0SKJ_8O0_yUe-R1ePtycx82uRVCwySbgVLNLc98hl5ueoCMLUxyqyNmnHdeDLLYxE4Ym7pMOuk8JrWSGrayxKQMTLpkn_SKaeEPCQWbhhuvhR475LO3QjpQA7WQPpEgLRuQy87wqs-aR0Mhs3W3BiaZQvkolI8C-2QUqxEPSNzKQ9mGuRwTaOSqsmAEX9nmYtGm_d5vT1-jmDs9qwoAiapBovoLiQGhLUjUB4oqR3fl6bxUEhU_ZCUKyEGNmcWXBhgin8YyIFkHTZ2udGuKyXtFA56Aag7a99F_9P2YrC8Oy6MT0pt9zf0paFszc1ZNrG-IZCdj
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB4tywUOiDdZHvKBGwok6_h1AASIZYVYLqXS3iy_CpVCyjatBP-emTzKBhWuSd24npn6m3jm-wCe0klclFLnfKFMXrkiYEjpIi9FKEIgDbmCGoXPPsvTefXxXJwfwCh3NCxguze1Iz2p-bp-_vPi12sM-JddwGv5oqyUyImIjf5TZmU-k1fgKu5MihQNzqo_pwronHxsnNk7rqMGJoY0It6ZNMDXk32ro_ffh0n_Lq28tFed3IQbA8hkb3qvuAUHqbkN1y9RD96B8CF1DcnMDawkjLiccE3YJ1Lg8S4s63rbstY1i157I1Cpe8scXttQvxVLfeU5WzYMJxGX_VtFRscBkbR_2rswP3n_5d1pPggu5F4YsUGkLYNUSVHpmzsmGhdhZHCF8DHFpI9V6cuofaiiMtHEREpXxuH-xn0lMM_j9-CwWTXpATBMdKRPTrtFJJL7oE1EbOi0Sdx4wUMGrybLa3_05BqW6K6ndzDyLJnKkqksJi2z0s5kBuVoDxsGOnNS1ahtl9ZouXfMs92Y8Xn_-_RbMvNkZt2F1fqrHeLaoocjBlAuLYKvnC7wt5WRu4qSfS68z4CNTmK_k6lqqmFebVtrCA0SVVEG93uf2T1p9MEM1MSbJlOZ3mmW3zpucI54HSH50T-_8yFc270WLx7B4Wa9TY8RV238ky5YfgPrKyAG
  priority: 102
  providerName: Scholars Portal
Title Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs
URI https://www.ncbi.nlm.nih.gov/pubmed/21995419
https://www.proquest.com/docview/900641691
http://dx.doi.org/10.1186/1475-2859-10-S1-S6
https://pubmed.ncbi.nlm.nih.gov/PMC3231932
https://doaj.org/article/f790367aefcb4a80b531d3a4274735bb
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7t4wKHFW_Co_KBG0TEjePHBYmiXVaIXSHKShUXy6-KSiGLNu3_ZyZpqs2q4sIlBz9ixzOOZ8Yz3wC8oZu4KKXOy6UyuXBFwC2li5xXoQiBcsgVFCh8cSnPr8SXRbU4gHf7b_C5lu-5UFVOMGv0x5jzfC4P4XgqUKUj3Xz2c3dngKzXudMP7YcQmb3vuBPfXo-OpQ69f5_Ieddz8tZRdPYATrYyJPvYE_0hHKTmEdy_hSz4GMLn1MUbM7cFHWEE1YSsxr5Sgh3vwqquNy1rXbPsU2sE8mRvmcOyNYVTsdQ7lrNVw3AScdUbDRlZ-yOl9mmfwNXZ6Y9P5_k2n0LuK1OtUZCWQaqkyLPNTQmlpTIyuKLyMcWkp4p7HrUPIioTTUyUyMo4PL5KLypU48qncNRcN-k5MNRjpE9Ou2UkDPugTUTRz2mTSuOrMmTwYbS89k-PnWEJzXpcgxvLEn0s0ceiTjLndi4z4AM9bNiilVPSjNp2WouWe_u83fUZxvtX6xmReTSzrgCZz263rUUGxiNeubQMXjhd4LfxWDpBunxZeZ8BG5jE_iZS1eSifL1prSFhj5CIMnjW88xupCmFxQtuMlAjbhpNZVzTrH510N8liuMocb_43-V9Cfd2xvHiFRytbzbpNUpXaz-BQ7VQEzienV5--z7pbBT4vBB60m23v-_GJdA
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHimdZnj7ACUXkZcc-gESBsqXbXraVKi7Gr4VIaRY1u6r4f_wwZpxktalWXFCveU48M86MPd83hLzCnTjHuYiyWSGjXMcWXErEUcJsbC32kIsRKHx0zMen-dczdrZF_vRYmPMy8A_pCtet25YzmDGuY9GrMIH3dWOt2wv-NskLFiEdG84s0ySa8q7U8tD_voRErnl38Am0_jpN9z-ffBxHXa-ByDDJFhBkcssLX2DVl06RwYRJbnXMjPPOi7RITOKEsbkrpJPOY5MnqWFqz0zOIMXJ4Lk3yM2CsSKgyPa-rfYywCVCmX8vXw_d2SjzFdx9Nfhdhq4Cm0LhqxWda7_I_btkp4tt6Yd2zO6RLV_fJ3fWGA8fEPvFBxw01R0ZCkUKKXABOkEtGG3Lqlo2tNH1rG35YbHCvqEaji0Q5kV9W_BOy5qCEK5sFzMp7kI4bDnUPCSn1zL2j8h2Pa_9Y0Ihv-LGa6FnDrn1rZAOQlItpM-kYZkdkfeD4VW_Wk4PhSzbwzNgZAr1o1A_CnKlaaKmfESSXh_Kdizq2MyjUiGbEnzjPW9W9_Tv-9fVe6jmgWThwPzih-qsXoFjQehRaD-zJtcihm9LXKZzXGPImDEjQnsjUeeoqgpLp-fLRkkMQpEhaUR2W5tZvSlFuH6eyBEpBtY0EGV4pi5_BkryDNIEyASe_O_wviS3xidHEzU5OD58Sm6vFvDjZ2R7cbH0zyECXJgXwcEo-X7dHv0X4B5teQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG_C0wc4oah52bEPIFHK0tJSIZZKFRfXr0BEmq2aXSF-IP-LmTxWm2rFBfUWJZtk1jPjzNgz30fIC9yJc5yLMC1yGWY6suBSIgpjZiNrkUMuwkbhT4d89yj7eMyON8ifoRfmtGzxh3SF69Yd5QxmjKu96FU7gcOB_bl15orO7wXfirOchYjHhlPLNA6nvK-13Pe_f0Em17ze2wG1v0ySyfuv73bDnmwgNEyyOUSZ3PLc51j2pROEMGGSWx0x47zzIsljEzthbOZy6aTzyPIkNcztqckY5DgpPPcKuZozliORwpftb8vNDPCJts5_kG_o3Vkr84XG-2r0vWxpBdbFwhdLOle-kZNb5GYf3NK3nTXeJhu-vkNurEAe3iX2g28boanu0VAoYkiBD9ADVIPRtqyqRUMbXRcd54fFEvuGajg3xz4v6ruKd1rWFIRwZbeaSXEbwiHnUHOPHF3K2N8nm_Ws9g8JhQSLG6-FLhyC61shHcSkWkifSsNSG5A3o-FVZx2oh0KY7fEVsDKF-lGoHwXJ0jRWUx6QeNCHsj2MOrJ5VKpNpwRfe8-r5T3D-_71621U80iy9sTs_Lvq5xMFngWxR659YU2mRQT_LXapznCRIWXGBIQORqJOUVUV1k7PFo2SGIUiRFJAHnQ2s3xTgv36WSwDko-saSTK-Epd_mgxyVPIEyAVePS_w_ucXPu8M1EHe4f7j8n15QJ-9IRszs8X_ilEgHPzrPUvSk4u26H_AjAxbUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+analysis+reveals+Lactobacillus+sanfranciscensis+as+stable+element+in+traditional+sourdoughs&rft.jtitle=Microbial+cell+factories&rft.au=Vogel%2C+Rudi+F&rft.au=Pavlovic%2C+Melanie&rft.au=Ehrmann%2C+Matthias+A&rft.au=Wiezer%2C+Arnim&rft.date=2011-08-30&rft.eissn=1475-2859&rft.volume=10+Suppl+1&rft.spage=S6&rft_id=info:doi/10.1186%2F1475-2859-10-S1-S6&rft_id=info%3Apmid%2F21995419&rft.externalDocID=21995419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2859&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2859&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2859&client=summon