Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs
Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs. The genome of L. sanfrancisc...
Saved in:
Published in | Microbial cell factories Vol. 10; no. S1; p. S6 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
30.08.2011
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry.
Lactobacillus sanfranciscensis
is the predominant key bacterium in traditionally fermented sourdoughs.
The genome of
L. sanfranciscensis
TMW 1.1304 isolated from an industrial sourdough fermentation was sequenced with a combined Sanger/454-pyrosequencing approach followed by gap closing by walking on fosmids. The sequencing data revealed a circular chromosomal sequence of 1,298,316 bp and two additional plasmids, pLS1 and pLS2, with sizes of 58,739 bp and 18,715 bp, which are predicted to encode 1,437, 63 and 19 orfs, respectively. The overall GC content of the chromosome is 34.71%. Several specific features appear to contribute to the ability of
L. sanfranciscensis
to outcompete other bacteria in the fermentation.
L. sanfranciscensis
contains the smallest genome within the lactobacilli and the highest density of ribosomal RNA operons per Mbp genome among all known genomes of free-living bacteria, which is important for the rapid growth characteristics of the organism. A high frequency of gene inactivation and elimination indicates a process of reductive evolution. The biosynthetic capacity for amino acids scarcely availably in cereals and exopolysaccharides reveal the molecular basis for an autochtonous sourdough organism with potential for further exploitation in functional foods. The presence of two CRISPR/cas loci
versus
a high number of transposable elements suggests recalcitrance to gene intrusion and high intrinsic genome plasticity. |
---|---|
AbstractList | Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs.The genome of L. sanfranciscensis TMW 1.1304 isolated from an industrial sourdough fermentation was sequenced with a combined Sanger/454-pyrosequencing approach followed by gap closing by walking on fosmids. The sequencing data revealed a circular chromosomal sequence of 1,298,316 bp and two additional plasmids, pLS1 and pLS2, with sizes of 58,739 bp and 18,715 bp, which are predicted to encode 1,437, 63 and 19 orfs, respectively. The overall GC content of the chromosome is 34.71%. Several specific features appear to contribute to the ability of L. sanfranciscensis to outcompete other bacteria in the fermentation. L. sanfranciscensis contains the smallest genome within the lactobacilli and the highest density of ribosomal RNA operons per Mbp genome among all known genomes of free-living bacteria, which is important for the rapid growth characteristics of the organism. A high frequency of gene inactivation and elimination indicates a process of reductive evolution. The biosynthetic capacity for amino acids scarcely availably in cereals and exopolysaccharides reveal the molecular basis for an autochtonous sourdough organism with potential for further exploitation in functional foods. The presence of two CRISPR/cas loci versus a high number of transposable elements suggests recalcitrance to gene intrusion and high intrinsic genome plasticity. Abstract Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs. The genome of L. sanfranciscensis TMW 1.1304 isolated from an industrial sourdough fermentation was sequenced with a combined Sanger/454-pyrosequencing approach followed by gap closing by walking on fosmids. The sequencing data revealed a circular chromosomal sequence of 1,298,316 bp and two additional plasmids, pLS1 and pLS2, with sizes of 58,739 bp and 18,715 bp, which are predicted to encode 1,437, 63 and 19 orfs, respectively. The overall GC content of the chromosome is 34.71%. Several specific features appear to contribute to the ability of L. sanfranciscensis to outcompete other bacteria in the fermentation. L. sanfranciscensis contains the smallest genome within the lactobacilli and the highest density of ribosomal RNA operons per Mbp genome among all known genomes of free-living bacteria, which is important for the rapid growth characteristics of the organism. A high frequency of gene inactivation and elimination indicates a process of reductive evolution. The biosynthetic capacity for amino acids scarcely availably in cereals and exopolysaccharides reveal the molecular basis for an autochtonous sourdough organism with potential for further exploitation in functional foods. The presence of two CRISPR/cas loci versus a high number of transposable elements suggests recalcitrance to gene intrusion and high intrinsic genome plasticity. Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs. The genome of L. sanfranciscensis TMW 1.1304 isolated from an industrial sourdough fermentation was sequenced with a combined Sanger/454-pyrosequencing approach followed by gap closing by walking on fosmids. The sequencing data revealed a circular chromosomal sequence of 1,298,316 bp and two additional plasmids, pLS1 and pLS2, with sizes of 58,739 bp and 18,715 bp, which are predicted to encode 1,437, 63 and 19 orfs, respectively. The overall GC content of the chromosome is 34.71%. Several specific features appear to contribute to the ability of L. sanfranciscensis to outcompete other bacteria in the fermentation. L. sanfranciscensis contains the smallest genome within the lactobacilli and the highest density of ribosomal RNA operons per Mbp genome among all known genomes of free-living bacteria, which is important for the rapid growth characteristics of the organism. A high frequency of gene inactivation and elimination indicates a process of reductive evolution. The biosynthetic capacity for amino acids scarcely availably in cereals and exopolysaccharides reveal the molecular basis for an autochtonous sourdough organism with potential for further exploitation in functional foods. The presence of two CRISPR/cas loci versus a high number of transposable elements suggests recalcitrance to gene intrusion and high intrinsic genome plasticity. Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs.The genome of L. sanfranciscensis TMW 1.1304 isolated from an industrial sourdough fermentation was sequenced with a combined Sanger/454-pyrosequencing approach followed by gap closing by walking on fosmids. The sequencing data revealed a circular chromosomal sequence of 1,298,316 bp and two additional plasmids, pLS1 and pLS2, with sizes of 58,739 bp and 18,715 bp, which are predicted to encode 1,437, 63 and 19 orfs, respectively. The overall GC content of the chromosome is 34.71%. Several specific features appear to contribute to the ability of L. sanfranciscensis to outcompete other bacteria in the fermentation. L. sanfranciscensis contains the smallest genome within the lactobacilli and the highest density of ribosomal RNA operons per Mbp genome among all known genomes of free-living bacteria, which is important for the rapid growth characteristics of the organism. A high frequency of gene inactivation and elimination indicates a process of reductive evolution. The biosynthetic capacity for amino acids scarcely availably in cereals and exopolysaccharides reveal the molecular basis for an autochtonous sourdough organism with potential for further exploitation in functional foods. The presence of two CRISPR/cas loci versus a high number of transposable elements suggests recalcitrance to gene intrusion and high intrinsic genome plasticity.Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs.The genome of L. sanfranciscensis TMW 1.1304 isolated from an industrial sourdough fermentation was sequenced with a combined Sanger/454-pyrosequencing approach followed by gap closing by walking on fosmids. The sequencing data revealed a circular chromosomal sequence of 1,298,316 bp and two additional plasmids, pLS1 and pLS2, with sizes of 58,739 bp and 18,715 bp, which are predicted to encode 1,437, 63 and 19 orfs, respectively. The overall GC content of the chromosome is 34.71%. Several specific features appear to contribute to the ability of L. sanfranciscensis to outcompete other bacteria in the fermentation. L. sanfranciscensis contains the smallest genome within the lactobacilli and the highest density of ribosomal RNA operons per Mbp genome among all known genomes of free-living bacteria, which is important for the rapid growth characteristics of the organism. A high frequency of gene inactivation and elimination indicates a process of reductive evolution. The biosynthetic capacity for amino acids scarcely availably in cereals and exopolysaccharides reveal the molecular basis for an autochtonous sourdough organism with potential for further exploitation in functional foods. The presence of two CRISPR/cas loci versus a high number of transposable elements suggests recalcitrance to gene intrusion and high intrinsic genome plasticity. |
ArticleNumber | S6 |
Author | Böcker, Georg Liebl, Wolfgang Wiezer, Arnim Liesegang, Heiko Ehrmann, Matthias A Voget, Sonja Pavlovic, Melanie Vogel, Rudi F Offschanka, Stefanie Angelov, Angel |
AuthorAffiliation | 1 Lehrstuhl für Technische Mikrobiologie, Germany 2 Lehrstuhl für Mikrobiologie, Technische Universität München, 85350 Freising, Germany 3 Laboratorium für Genomanalyse, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Germany 4 Ernst Böcker GmbH & Co KG, Minden, Germany |
AuthorAffiliation_xml | – name: 1 Lehrstuhl für Technische Mikrobiologie, Germany – name: 4 Ernst Böcker GmbH & Co KG, Minden, Germany – name: 2 Lehrstuhl für Mikrobiologie, Technische Universität München, 85350 Freising, Germany – name: 3 Laboratorium für Genomanalyse, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Germany |
Author_xml | – sequence: 1 givenname: Rudi F surname: Vogel fullname: Vogel, Rudi F – sequence: 2 givenname: Melanie surname: Pavlovic fullname: Pavlovic, Melanie – sequence: 3 givenname: Matthias A surname: Ehrmann fullname: Ehrmann, Matthias A – sequence: 4 givenname: Arnim surname: Wiezer fullname: Wiezer, Arnim – sequence: 5 givenname: Heiko surname: Liesegang fullname: Liesegang, Heiko – sequence: 6 givenname: Stefanie surname: Offschanka fullname: Offschanka, Stefanie – sequence: 7 givenname: Sonja surname: Voget fullname: Voget, Sonja – sequence: 8 givenname: Angel surname: Angelov fullname: Angelov, Angel – sequence: 9 givenname: Georg surname: Böcker fullname: Böcker, Georg – sequence: 10 givenname: Wolfgang surname: Liebl fullname: Liebl, Wolfgang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21995419$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhi1URNuFP8AB5cYpYCd2bF-QUFVKpZU4LJyt8cduXTl2sZNK_fd12LLqIuBiWzPvPDOj1-foJKboEHpL8AdCxPCRUM7aTjDZEtxuSLsZXqCzQ_Dk2fsUnZdyizHhgvev0GlHpGSUyDNkrlxMozcNRAgPxZcmu3sHoTRrMFPSYHwIc2kKxG2GaHwxLi4yqLEJdHCNC250cWp8bKYM1k8-VVZT0pxtmnc35TV6ua1E9-bpXqEfXy6_X3xt19-uri8-r1vNJJtazgczcMdJPzDoqCCMycEAZto660THiSZWaEMtl1Za18kOSxCU95oySkW_Qtd7rk1wq-6yHyE_qARe_QqkvFOQJ2-CU1sucT9wcFujKQisWU9sD7TjFce0rqxPe9bdrEdn69J1t3AEPc5Ef6N26V71XU9kPVbocg_QPv0DcJwxaVSLYWoxTBGsNkRthsp5_zRITj9nVyY1Lh6EANGluSiJ8UDJIElVvns-8qHVb7OroNsLTE6lZLc9SGq35Uf9vb_4o8j4CRaP69Q-_K_0EXs60y4 |
CitedBy_id | crossref_primary_10_1111_1758_2229_12794 crossref_primary_10_1016_j_ijfoodmicro_2013_11_021 crossref_primary_10_1016_j_copbio_2013_01_001 crossref_primary_10_1186_1475_2859_11_114 crossref_primary_10_3390_ijerph19010037 crossref_primary_10_1007_s00284_018_1581_2 crossref_primary_10_3390_app14052093 crossref_primary_10_3390_microorganisms11040868 crossref_primary_10_1093_gbe_evz136 crossref_primary_10_1099_ijsem_0_004107 crossref_primary_10_1038_srep18234 crossref_primary_10_1186_1756_0500_6_514 crossref_primary_10_1016_j_biopha_2022_113138 crossref_primary_10_1007_s00284_013_0506_3 crossref_primary_10_1371_journal_pone_0036296 crossref_primary_10_1093_femsre_fux030 crossref_primary_10_3389_fmicb_2017_01829 crossref_primary_10_1016_j_lwt_2015_12_025 crossref_primary_10_1128_AEM_02194_16 crossref_primary_10_3390_microorganisms12050845 crossref_primary_10_1016_j_foodchem_2019_125529 crossref_primary_10_1099_mic_0_000053 crossref_primary_10_1128_AEM_00367_14 crossref_primary_10_1128_AEM_01077_19 crossref_primary_10_1007_s00253_013_5484_7 crossref_primary_10_1080_1040841X_2018_1543649 crossref_primary_10_1128_AEM_01783_14 crossref_primary_10_1016_j_micres_2020_126625 crossref_primary_10_3390_nu12082189 crossref_primary_10_1016_j_ijfoodmicro_2016_05_004 crossref_primary_10_1016_j_ijfoodmicro_2013_02_010 crossref_primary_10_1186_s12934_017_0691_z crossref_primary_10_1080_10408398_2018_1506906 crossref_primary_10_3390_foods11152373 crossref_primary_10_1016_j_fm_2020_103448 crossref_primary_10_1016_j_ijfoodmicro_2019_108475 crossref_primary_10_1016_j_csbj_2022_11_013 crossref_primary_10_1016_j_foodres_2022_112145 crossref_primary_10_1016_j_ijfoodmicro_2015_02_007 crossref_primary_10_55147_efse_1121959 crossref_primary_10_1128_genomeA_00025_12 crossref_primary_10_3389_fmicb_2020_01212 crossref_primary_10_3390_beverages6010013 crossref_primary_10_1111_1541_4337_12459 crossref_primary_10_1007_s10068_022_01142_8 crossref_primary_10_3168_jds_2012_5677 crossref_primary_10_1016_j_ijfoodmicro_2016_03_008 crossref_primary_10_1016_j_ijfoodmicro_2018_10_004 crossref_primary_10_1016_j_fm_2015_06_009 crossref_primary_10_1128_AEM_02116_15 crossref_primary_10_3389_fmicb_2018_02041 crossref_primary_10_1093_gbe_evv079 crossref_primary_10_1128_AEM_03625_12 crossref_primary_10_3390_microorganisms11030803 crossref_primary_10_1038_s41598_018_36786_2 crossref_primary_10_1016_j_ijfoodmicro_2016_05_022 crossref_primary_10_3390_foods14030421 crossref_primary_10_1016_j_fbio_2023_102737 crossref_primary_10_29050_harranziraat_1105873 crossref_primary_10_1007_s00217_019_03413_x crossref_primary_10_1016_j_ijfoodmicro_2018_07_018 crossref_primary_10_1007_s00217_025_04702_4 crossref_primary_10_1128_AEM_00572_12 crossref_primary_10_1080_10408398_2021_1976100 crossref_primary_10_1128_aem_02216_24 crossref_primary_10_1016_j_lwt_2017_12_022 crossref_primary_10_1016_j_cofs_2015_01_001 crossref_primary_10_1016_j_syapm_2016_09_006 crossref_primary_10_1099_mgen_0_000560 crossref_primary_10_18699_VJGB_22_47 crossref_primary_10_28948_ngumuh_756207 crossref_primary_10_1016_j_ijfoodmicro_2018_05_029 crossref_primary_10_1016_j_fm_2014_11_014 crossref_primary_10_1016_j_lwt_2021_112704 crossref_primary_10_1016_j_fm_2013_04_007 crossref_primary_10_1016_j_copbio_2012_08_004 crossref_primary_10_3136_fstr_24_971 crossref_primary_10_3389_fmicb_2023_1267227 crossref_primary_10_1016_j_foodchem_2020_127316 crossref_primary_10_3389_fmicb_2021_716307 crossref_primary_10_1007_s00253_012_4440_2 crossref_primary_10_1016_j_lwt_2019_108394 crossref_primary_10_1016_j_ijfoodmicro_2018_08_019 crossref_primary_10_1016_j_ijfoodmicro_2015_05_010 crossref_primary_10_1021_acs_jafc_7b00897 crossref_primary_10_1016_j_fm_2024_104474 crossref_primary_10_1016_j_ijfoodmicro_2023_110421 crossref_primary_10_1128_AEM_03691_14 crossref_primary_10_24323_akademik_gida_333670 |
Cites_doi | 10.1007/BF02932186 10.1111/j.1365-2672.1995.tb00954.x 10.1094/CCHEM.2002.79.1.45 10.1016/j.ijfoodmicro.2008.05.030 10.1099/00207713-47-3-908 10.1128/mr.54.2.198-210.1990 10.1007/s10295-008-0319-8 10.1093/bioinformatics/16.10.944 10.1007/s00203-008-0404-4 10.1007/s00284-005-0122-y 10.1006/fmic.1996.0083 10.1128/JB.01415-07 10.1093/gbe/evp019 10.1128/AEM.66.4.1328-1333.2000 10.1128/am.21.3.459-465.1971 10.1186/1471-2164-11-617 10.1073/pnas.0307327101 10.1128/JB.187.22.7727-7737.2005 10.1016/S0723-2020(84)80024-7 10.1128/AEM.68.12.6193-6201.2002 10.1016/j.fm.2009.07.013 10.1128/aem.62.9.3220-3226.1996 10.1093/bioinformatics/btm009 10.1007/s00253-004-1773-5 10.1007/s00239-004-0046-3 10.1128/AEM.02322-06 10.1007/BF01193208 10.1111/j.1365-2672.2010.04753.x 10.1093/nar/gkn749 10.1006/fmic.1996.0051 10.1093/nar/gki242 10.1186/1745-6150-1-7 10.1073/pnas.0337704100 10.1128/AEM.00054-08 10.1046/j.1365-2958.2000.02001.x 10.1128/JB.01295-07 10.1007/BF01041899 10.1021/jf048307v 10.1099/mic.0.28048-0 10.1099/mic.0.022871-0 10.1007/s00253-006-0469-4 10.1146/annurev.biochem.69.1.183 10.1093/nar/gkm360 10.1016/S0168-1605(99)00048-3 10.1186/1471-2148-7-181 10.1128/AEM.71.10.6260-6266.2005 10.1073/pnas.0409188102 10.1111/j.1574-6968.1998.tb13908.x 10.1128/jb.177.14.4152-4156.1995 10.5344/ajev.2006.57.4.519 10.1016/j.foodchem.2004.08.047 10.1016/S0168-1605(01)00611-0 10.1111/j.1365-2672.1993.tb02755.x 10.1023/A:1020530227192 10.1093/dnares/dsn009 |
ContentType | Journal Article |
Copyright | Copyright ©2011 Vogel et al; licensee BioMed Central Ltd. 2011 Vogel et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Copyright ©2011 Vogel et al; licensee BioMed Central Ltd. 2011 Vogel et al; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1186/1475-2859-10-S1-S6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1475-2859 |
EndPage | S6 |
ExternalDocumentID | oai_doaj_org_article_f790367aefcb4a80b531d3a4274735bb PMC3231932 oai_biomedcentral_com_1475_2859_10_S1_S6 21995419 10_1186_1475_2859_10_S1_S6 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 123 29M 2VQ 2WC 4.4 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 LK8 M1P M48 M7P MM. M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RIG RNS ROL RPM RSV SCM SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7X8 -58 -5G -A0 -BR 3V. ABVAZ ACRMQ ADINQ AFGXO AFNRJ C24 ESTFP FRP 5PM PUEGO |
ID | FETCH-LOGICAL-b595t-776c67e71365a24815596ca05bdede8271b1d8bc4d79d9de29209a8473b454483 |
IEDL.DBID | RBZ |
ISSN | 1475-2859 |
IngestDate | Wed Aug 27 01:27:26 EDT 2025 Thu Aug 21 14:06:54 EDT 2025 Wed May 22 07:16:47 EDT 2024 Mon Jul 21 11:28:57 EDT 2025 Mon Jul 21 05:58:45 EDT 2025 Tue Jul 01 02:30:16 EDT 2025 Thu Apr 24 22:59:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | S1 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b595t-776c67e71365a24815596ca05bdede8271b1d8bc4d79d9de29209a8473b454483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1186/1475-2859-10-S1-S6 |
PMID | 21995419 |
PQID | 900641691 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f790367aefcb4a80b531d3a4274735bb pubmedcentral_primary_oai_pubmedcentral_nih_gov_3231932 biomedcentral_primary_oai_biomedcentral_com_1475_2859_10_S1_S6 proquest_miscellaneous_900641691 pubmed_primary_21995419 crossref_primary_10_1186_1475_2859_10_S1_S6 crossref_citationtrail_10_1186_1475_2859_10_S1_S6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-30 |
PublicationDateYYYYMMDD | 2011-08-30 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Microbial cell factories |
PublicationTitleAlternate | Microb Cell Fact |
PublicationYear | 2011 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | M Kleerebezem (561_CR24) 2003; 100 H-G Trüper (561_CR4) 1997; 47 LM De Angelis (561_CR11) 2002; 68 N Weiss (561_CR3) 1984; 5 A Corsetti (561_CR49) 1996; 13 M Korakli (561_CR29) 2006; 71 G Zapparoli (561_CR13) 1998; 166 FW Waldherr (561_CR28) 2008; 190 WH Groeneveld (561_CR7) 2006; 57 AL Delcher (561_CR56) 2007; 23 R Foschino (561_CR42) 1995; 79 P Stolz (561_CR53) 1996; 18 K Rutherford (561_CR57) 2000; 16 P Stolz (561_CR21) 1995; 201 M Gobbetti (561_CR5) 1997; 14 MA Azcarate-Peril (561_CR30) 2008; 74 H Cai (561_CR62) 2009; 1 AG Larsen (561_CR47) 1993; 75 M Borodovsky (561_CR55) 2003 I Pastar (561_CR32) 2007; 52 RF Vogel (561_CR1) 2009; 26 R Foschino (561_CR43) 1996; 14 RD Pridmore (561_CR61) 2004; 101 SA Khan (561_CR52) 2000; 37 N Vermeulen (561_CR33) 2005; 71 R Foschino (561_CR44) 2005; 51 FJ Mojica (561_CR39) 2005; 60 SGaK Andersson (561_CR18) 1990; 54 JA Klappenbach (561_CR17) 2000; 66 RF Vogel (561_CR6) 2002; 81 J Tamames (561_CR15) 2007; 7 A Bolotin (561_CR35) 2005; 151 S Todorov (561_CR48) 1999; 48 P Horvath (561_CR40) 2009; 131 F Radler (561_CR23) 1984; 179 PM Sharp (561_CR19) 2005; 33 C Thiele (561_CR8) 2002; 79 M Gobbetti (561_CR10) 1996; 62 J Rico (561_CR25) 2008; 35 N Saitou (561_CR58) 1987; 4 G Gallo (561_CR9) 2005; 91 C Condon (561_CR16) 1995; 177 MC Walter (561_CR54) 2009; 37 M Tieking (561_CR12) 2005; 66 M Callanan (561_CR60) 2008; 190 KS Makarova (561_CR38) 2006; 1 H Morita (561_CR59) 2008; 15 I Grissa (561_CR36) 2007; 35 A Jaensch (561_CR45) 2007; 73 C Van Mandach (561_CR20) 2010; 11 E Altermann (561_CR31) 2005; 102 T Wada (561_CR50) 2009; 155 JM Macklaim (561_CR14) 2010 W Messens (561_CR46) 2002; 72 C Zhang (561_CR22) 2010; 109 P Horvath (561_CR37) 2008; 190 M Tieking (561_CR27) 2005; 53 H Tomita (561_CR41) 2005; 187 F Waldherr (561_CR26) 2009 SA Khan (561_CR51) 1997; 61 AM Stock (561_CR34) 2000; 69 L Kline (561_CR2) 1971; 21 18450219 - Folia Microbiol (Praha). 2007;52(6):577-84 7608093 - J Bacteriol. 1995 Jul;177(14):4152-6 18487258 - DNA Res. 2008 Jun 30;15(3):151-61 21059957 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4688-95 21050470 - BMC Genomics. 2010;11:617 14983040 - Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2512-7 16267297 - J Bacteriol. 2005 Nov;187(22):7727-37 17908294 - BMC Evol Biol. 2007;7:181 15735966 - Appl Microbiol Biotechnol. 2005 Mar;66(6):655-63 10966457 - Annu Rev Biochem. 2000;69:183-215 18607568 - Arch Microbiol. 2008 Oct;190(4):497-505 3447015 - Mol Biol Evol. 1987 Jul;4(4):406-25 17537822 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W52-7 17993529 - J Bacteriol. 2008 Jan;190(2):727-35 6495871 - Z Lebensm Unters Forsch. 1984 Sep;179(3):228-31 16724190 - Appl Microbiol Biotechnol. 2006 Aug;71(6):790-803 18539810 - Appl Environ Microbiol. 2008 Aug;74(15):4610-25 16235023 - Curr Microbiol. 2005 Dec;51(6):413-8 15796579 - J Agric Food Chem. 2005 Apr 6;53(7):2456-61 10443536 - Int J Food Microbiol. 1999 Jun 1;48(3):167-77 12448759 - Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):631-8 18635282 - Int J Food Microbiol. 2009 Apr 30;131(1):62-70 18940859 - Nucleic Acids Res. 2009 Jan;37(Database issue):D408-11 11843411 - Int J Food Microbiol. 2002 Jan 30;72(1-2):31-43 8795211 - Appl Environ Microbiol. 1996 Sep;62(9):3220-6 10742207 - Appl Environ Microbiol. 2000 Apr;66(4):1328-33 17496130 - Appl Environ Microbiol. 2007 Jul;73(14):4469-76 18065539 - J Bacteriol. 2008 Feb;190(4):1401-12 10931341 - Mol Microbiol. 2000 Aug;37(3):477-84 2194095 - Microbiol Rev. 1990 Jun;54(2):198-210 16545108 - Biol Direct. 2006 Mar 16;1:7 15791728 - J Mol Evol. 2005 Feb;60(2):174-82 17237039 - Bioinformatics. 2007 Mar 15;23(6):673-9 16204547 - Appl Environ Microbiol. 2005 Oct;71(10):6260-6 12566566 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1990-5 18231816 - J Ind Microbiol Biotechnol. 2008 Jun;35(6):579-86 20477886 - J Appl Microbiol. 2010 Oct;109(4):1301-10 18428700 - Curr Protoc Bioinformatics. 2003 May;Chapter 4:Unit4.5 12450844 - Appl Environ Microbiol. 2002 Dec;68(12):6193-201 5553285 - Appl Microbiol. 1971 Mar;21(3):459-65 11120685 - Bioinformatics. 2000 Oct;16(10):944-5 15671160 - Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):3906-12 8407671 - J Appl Bacteriol. 1993 Aug;75(2):113-22 19372160 - Microbiology. 2009 May;155(Pt 5):1726-37 19747598 - Food Microbiol. 2009 Oct;26(7):665 20333194 - Genome Biol Evol. 2009 Jul 14;1:239-57 16079334 - Microbiology. 2005 Aug;151(Pt 8):2551-61 15728743 - Nucleic Acids Res. 2005;33(4):1141-53 9409148 - Microbiol Mol Biol Rev. 1997 Dec;61(4):442-55 |
References_xml | – volume: 52 start-page: 577 year: 2007 ident: 561_CR32 publication-title: Folia Microbiol (Praha) doi: 10.1007/BF02932186 – volume: 18 start-page: 1 year: 1996 ident: 561_CR53 publication-title: Adv Food Sci – volume: 79 start-page: 677 year: 1995 ident: 561_CR42 publication-title: J Appl Bact doi: 10.1111/j.1365-2672.1995.tb00954.x – volume: 79 start-page: 45 year: 2002 ident: 561_CR8 publication-title: Cereal Chemistry doi: 10.1094/CCHEM.2002.79.1.45 – volume: 131 start-page: 62 year: 2009 ident: 561_CR40 publication-title: Int J Food Microbiol doi: 10.1016/j.ijfoodmicro.2008.05.030 – volume: 47 start-page: 908 year: 1997 ident: 561_CR4 publication-title: Int J Syst Bacteriol doi: 10.1099/00207713-47-3-908 – volume: 54 start-page: 198 year: 1990 ident: 561_CR18 publication-title: Microbiol Rev doi: 10.1128/mr.54.2.198-210.1990 – volume: 35 start-page: 579 year: 2008 ident: 561_CR25 publication-title: J Ind Microbiol Biotechnol doi: 10.1007/s10295-008-0319-8 – volume: 16 start-page: 944 year: 2000 ident: 561_CR57 publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.10.944 – volume: 190 start-page: 497 year: 2008 ident: 561_CR28 publication-title: Arch Microbiol doi: 10.1007/s00203-008-0404-4 – volume: 51 start-page: 413 year: 2005 ident: 561_CR44 publication-title: Curr Microbiol doi: 10.1007/s00284-005-0122-y – volume: 4 start-page: 406 year: 1987 ident: 561_CR58 publication-title: Molecular Biology Evolution – volume: 14 start-page: 15 year: 1996 ident: 561_CR43 publication-title: Microbiol Alim Nutr – volume: 14 start-page: 175 year: 1997 ident: 561_CR5 publication-title: Food Microbiology doi: 10.1006/fmic.1996.0083 – volume-title: Proceedings of the National Academy of Sciences year: 2010 ident: 561_CR14 – volume: 190 start-page: 1401 year: 2008 ident: 561_CR37 publication-title: J Bacteriol doi: 10.1128/JB.01415-07 – volume: 1 start-page: 239 year: 2009 ident: 561_CR62 publication-title: Genome Biol Evol doi: 10.1093/gbe/evp019 – volume: 66 start-page: 1328 year: 2000 ident: 561_CR17 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.66.4.1328-1333.2000 – volume: 21 start-page: 459 year: 1971 ident: 561_CR2 publication-title: Appl Microbiol doi: 10.1128/am.21.3.459-465.1971 – volume: 11 start-page: 617 year: 2010 ident: 561_CR20 publication-title: BMC Genomics doi: 10.1186/1471-2164-11-617 – volume: 61 start-page: 442 year: 1997 ident: 561_CR51 publication-title: Microbiol Mol Biol Rev – volume: 101 start-page: 2512 year: 2004 ident: 561_CR61 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0307327101 – volume: 187 start-page: 7727 year: 2005 ident: 561_CR41 publication-title: J Bacteriol doi: 10.1128/JB.187.22.7727-7737.2005 – volume: 5 start-page: 230 year: 1984 ident: 561_CR3 publication-title: System Appl Microbiol doi: 10.1016/S0723-2020(84)80024-7 – volume: 68 start-page: 6193 year: 2002 ident: 561_CR11 publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.68.12.6193-6201.2002 – volume: 26 start-page: 665 year: 2009 ident: 561_CR1 publication-title: Food Microbiology doi: 10.1016/j.fm.2009.07.013 – volume: 62 start-page: 3220 year: 1996 ident: 561_CR10 publication-title: Appl Environ Microbiol doi: 10.1128/aem.62.9.3220-3226.1996 – volume: 23 start-page: 673 year: 2007 ident: 561_CR56 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm009 – volume: 66 start-page: 655 year: 2005 ident: 561_CR12 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-004-1773-5 – volume: 60 start-page: 174 year: 2005 ident: 561_CR39 publication-title: J Mol Evol doi: 10.1007/s00239-004-0046-3 – volume: 73 start-page: 4469 year: 2007 ident: 561_CR45 publication-title: Appllied and Environmental Microbiology doi: 10.1128/AEM.02322-06 – volume: 201 start-page: 91 year: 1995 ident: 561_CR21 publication-title: Z Lebensm Unters Forsch doi: 10.1007/BF01193208 – volume: 109 start-page: 1301 year: 2010 ident: 561_CR22 publication-title: Journal of Applied Microbiology doi: 10.1111/j.1365-2672.2010.04753.x – volume: 37 start-page: D408 year: 2009 ident: 561_CR54 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn749 – volume: 13 start-page: 447 year: 1996 ident: 561_CR49 publication-title: Food microbiology doi: 10.1006/fmic.1996.0051 – volume: 33 start-page: 1141 year: 2005 ident: 561_CR19 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki242 – volume: 1 start-page: 7 year: 2006 ident: 561_CR38 publication-title: Biol Direct doi: 10.1186/1745-6150-1-7 – volume: 100 start-page: 1990 year: 2003 ident: 561_CR24 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0337704100 – volume: 74 start-page: 4610 year: 2008 ident: 561_CR30 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00054-08 – volume: 37 start-page: 477 year: 2000 ident: 561_CR52 publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2000.02001.x – volume: 190 start-page: 727 year: 2008 ident: 561_CR60 publication-title: J Bacteriol doi: 10.1128/JB.01295-07 – volume: 179 start-page: 228 year: 1984 ident: 561_CR23 publication-title: Z Lebensm Unters Forsch doi: 10.1007/BF01041899 – volume: 53 start-page: 2456 year: 2005 ident: 561_CR27 publication-title: J Agric Food Chem doi: 10.1021/jf048307v – start-page: 5 volume-title: Curr Protoc Bioinformatics year: 2003 ident: 561_CR55 – volume-title: Bacterial Exopolysaccharides - current innovations and future trends year: 2009 ident: 561_CR26 – volume: 151 start-page: 2551 year: 2005 ident: 561_CR35 publication-title: Microbiology doi: 10.1099/mic.0.28048-0 – volume: 155 start-page: 1726 year: 2009 ident: 561_CR50 publication-title: Microbiology doi: 10.1099/mic.0.022871-0 – volume: 71 start-page: 790 year: 2006 ident: 561_CR29 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-006-0469-4 – volume: 69 start-page: 183 year: 2000 ident: 561_CR34 publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.69.1.183 – volume: 35 start-page: 52 year: 2007 ident: 561_CR36 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm360 – volume: 48 start-page: 167 year: 1999 ident: 561_CR48 publication-title: Int J Food Microbiol doi: 10.1016/S0168-1605(99)00048-3 – volume: 7 start-page: 181 year: 2007 ident: 561_CR15 publication-title: BMC Evol Biol doi: 10.1186/1471-2148-7-181 – volume: 71 start-page: 6260 year: 2005 ident: 561_CR33 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.10.6260-6266.2005 – volume: 102 start-page: 3906 year: 2005 ident: 561_CR31 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0409188102 – volume: 166 start-page: 325 year: 1998 ident: 561_CR13 publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.1998.tb13908.x – volume: 177 start-page: 4152 year: 1995 ident: 561_CR16 publication-title: J Bacteriol doi: 10.1128/jb.177.14.4152-4156.1995 – volume: 57 start-page: 519 year: 2006 ident: 561_CR7 publication-title: Am J Enol Vitic doi: 10.5344/ajev.2006.57.4.519 – volume: 91 start-page: 535 year: 2005 ident: 561_CR9 publication-title: Food Chemistry doi: 10.1016/j.foodchem.2004.08.047 – volume: 72 start-page: 31 year: 2002 ident: 561_CR46 publication-title: Int J Food Microbiol doi: 10.1016/S0168-1605(01)00611-0 – volume: 75 start-page: 113 year: 1993 ident: 561_CR47 publication-title: J Appl Bacteriol doi: 10.1111/j.1365-2672.1993.tb02755.x – volume: 81 start-page: 631 year: 2002 ident: 561_CR6 publication-title: Antonie Van Leeuwenhoek doi: 10.1023/A:1020530227192 – volume: 15 start-page: 151 year: 2008 ident: 561_CR59 publication-title: DNA Res doi: 10.1093/dnares/dsn009 – reference: 16235023 - Curr Microbiol. 2005 Dec;51(6):413-8 – reference: 8795211 - Appl Environ Microbiol. 1996 Sep;62(9):3220-6 – reference: 2194095 - Microbiol Rev. 1990 Jun;54(2):198-210 – reference: 16079334 - Microbiology. 2005 Aug;151(Pt 8):2551-61 – reference: 18940859 - Nucleic Acids Res. 2009 Jan;37(Database issue):D408-11 – reference: 17237039 - Bioinformatics. 2007 Mar 15;23(6):673-9 – reference: 17537822 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W52-7 – reference: 3447015 - Mol Biol Evol. 1987 Jul;4(4):406-25 – reference: 20333194 - Genome Biol Evol. 2009 Jul 14;1:239-57 – reference: 15728743 - Nucleic Acids Res. 2005;33(4):1141-53 – reference: 18231816 - J Ind Microbiol Biotechnol. 2008 Jun;35(6):579-86 – reference: 18065539 - J Bacteriol. 2008 Feb;190(4):1401-12 – reference: 15671160 - Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):3906-12 – reference: 18428700 - Curr Protoc Bioinformatics. 2003 May;Chapter 4:Unit4.5 – reference: 19372160 - Microbiology. 2009 May;155(Pt 5):1726-37 – reference: 21059957 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4688-95 – reference: 17908294 - BMC Evol Biol. 2007;7:181 – reference: 18539810 - Appl Environ Microbiol. 2008 Aug;74(15):4610-25 – reference: 15791728 - J Mol Evol. 2005 Feb;60(2):174-82 – reference: 19747598 - Food Microbiol. 2009 Oct;26(7):665 – reference: 20477886 - J Appl Microbiol. 2010 Oct;109(4):1301-10 – reference: 9409148 - Microbiol Mol Biol Rev. 1997 Dec;61(4):442-55 – reference: 10443536 - Int J Food Microbiol. 1999 Jun 1;48(3):167-77 – reference: 16267297 - J Bacteriol. 2005 Nov;187(22):7727-37 – reference: 11843411 - Int J Food Microbiol. 2002 Jan 30;72(1-2):31-43 – reference: 16545108 - Biol Direct. 2006 Mar 16;1:7 – reference: 7608093 - J Bacteriol. 1995 Jul;177(14):4152-6 – reference: 10742207 - Appl Environ Microbiol. 2000 Apr;66(4):1328-33 – reference: 16724190 - Appl Microbiol Biotechnol. 2006 Aug;71(6):790-803 – reference: 10931341 - Mol Microbiol. 2000 Aug;37(3):477-84 – reference: 18607568 - Arch Microbiol. 2008 Oct;190(4):497-505 – reference: 21050470 - BMC Genomics. 2010;11:617 – reference: 18635282 - Int J Food Microbiol. 2009 Apr 30;131(1):62-70 – reference: 10966457 - Annu Rev Biochem. 2000;69:183-215 – reference: 15735966 - Appl Microbiol Biotechnol. 2005 Mar;66(6):655-63 – reference: 11120685 - Bioinformatics. 2000 Oct;16(10):944-5 – reference: 12566566 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1990-5 – reference: 18487258 - DNA Res. 2008 Jun 30;15(3):151-61 – reference: 6495871 - Z Lebensm Unters Forsch. 1984 Sep;179(3):228-31 – reference: 17993529 - J Bacteriol. 2008 Jan;190(2):727-35 – reference: 15796579 - J Agric Food Chem. 2005 Apr 6;53(7):2456-61 – reference: 5553285 - Appl Microbiol. 1971 Mar;21(3):459-65 – reference: 16204547 - Appl Environ Microbiol. 2005 Oct;71(10):6260-6 – reference: 12448759 - Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):631-8 – reference: 18450219 - Folia Microbiol (Praha). 2007;52(6):577-84 – reference: 17496130 - Appl Environ Microbiol. 2007 Jul;73(14):4469-76 – reference: 8407671 - J Appl Bacteriol. 1993 Aug;75(2):113-22 – reference: 14983040 - Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2512-7 – reference: 12450844 - Appl Environ Microbiol. 2002 Dec;68(12):6193-201 |
SSID | ssj0017873 |
Score | 2.3096669 |
Snippet | Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery... Abstract Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and... |
SourceID | doaj pubmedcentral biomedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | S6 |
SubjectTerms | Bread - microbiology Fermentation Flour - microbiology Food Microbiology - methods Genomics Lactobacillus - genetics Lactobacillus - growth & development Lactobacillus - metabolism Proceedings |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQb8JLHthQ1KSJHXtBAkRBCFgKEpvlV0WlkCLS_n_u8qgaVMHCaseJ4_ts39l33xFyjjdxjnMRJuNMhqmOLEwpEYUxs5G1mEMuwkDhp2d-_5o-vLG3pVRf6BNW0wPXA9eHV8Aim2k_tibVIjIAGpfoFK2phBmDqy_sea0x1dwfAAwr1_o0YyFStLXhMoL3F2W4Ao3icMR_xLrnnS2qYvJfpX7-9KJc2paGW2Sz0SfpVf0f22TNFztkY4llcJfYO1_FHlPdEJBQpG0C2NFHTLZjtJ3k-bykpS7GdZoNi17tJdVQNsPQKuprJ3M6KSh0wk3qA0SKJ_8O0_yUe-R1ePtycx82uRVCwySbgVLNLc98hl5ueoCMLUxyqyNmnHdeDLLYxE4Ym7pMOuk8JrWSGrayxKQMTLpkn_SKaeEPCQWbhhuvhR475LO3QjpQA7WQPpEgLRuQy87wqs-aR0Mhs3W3BiaZQvkolI8C-2QUqxEPSNzKQ9mGuRwTaOSqsmAEX9nmYtGm_d5vT1-jmDs9qwoAiapBovoLiQGhLUjUB4oqR3fl6bxUEhU_ZCUKyEGNmcWXBhgin8YyIFkHTZ2udGuKyXtFA56Aag7a99F_9P2YrC8Oy6MT0pt9zf0paFszc1ZNrG-IZCdj priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB4tywUOiDdZHvKBGwok6_h1AASIZYVYLqXS3iy_CpVCyjatBP-emTzKBhWuSd24npn6m3jm-wCe0klclFLnfKFMXrkiYEjpIi9FKEIgDbmCGoXPPsvTefXxXJwfwCh3NCxguze1Iz2p-bp-_vPi12sM-JddwGv5oqyUyImIjf5TZmU-k1fgKu5MihQNzqo_pwronHxsnNk7rqMGJoY0It6ZNMDXk32ro_ffh0n_Lq28tFed3IQbA8hkb3qvuAUHqbkN1y9RD96B8CF1DcnMDawkjLiccE3YJ1Lg8S4s63rbstY1i157I1Cpe8scXttQvxVLfeU5WzYMJxGX_VtFRscBkbR_2rswP3n_5d1pPggu5F4YsUGkLYNUSVHpmzsmGhdhZHCF8DHFpI9V6cuofaiiMtHEREpXxuH-xn0lMM_j9-CwWTXpATBMdKRPTrtFJJL7oE1EbOi0Sdx4wUMGrybLa3_05BqW6K6ndzDyLJnKkqksJi2z0s5kBuVoDxsGOnNS1ahtl9ZouXfMs92Y8Xn_-_RbMvNkZt2F1fqrHeLaoocjBlAuLYKvnC7wt5WRu4qSfS68z4CNTmK_k6lqqmFebVtrCA0SVVEG93uf2T1p9MEM1MSbJlOZ3mmW3zpucI54HSH50T-_8yFc270WLx7B4Wa9TY8RV238ky5YfgPrKyAG priority: 102 providerName: Scholars Portal |
Title | Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21995419 https://www.proquest.com/docview/900641691 http://dx.doi.org/10.1186/1475-2859-10-S1-S6 https://pubmed.ncbi.nlm.nih.gov/PMC3231932 https://doaj.org/article/f790367aefcb4a80b531d3a4274735bb |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7t4wKHFW_Co_KBG0TEjePHBYmiXVaIXSHKShUXy6-KSiGLNu3_ZyZpqs2q4sIlBz9ixzOOZ8Yz3wC8oZu4KKXOy6UyuXBFwC2li5xXoQiBcsgVFCh8cSnPr8SXRbU4gHf7b_C5lu-5UFVOMGv0x5jzfC4P4XgqUKUj3Xz2c3dngKzXudMP7YcQmb3vuBPfXo-OpQ69f5_Ieddz8tZRdPYATrYyJPvYE_0hHKTmEdy_hSz4GMLn1MUbM7cFHWEE1YSsxr5Sgh3vwqquNy1rXbPsU2sE8mRvmcOyNYVTsdQ7lrNVw3AScdUbDRlZ-yOl9mmfwNXZ6Y9P5_k2n0LuK1OtUZCWQaqkyLPNTQmlpTIyuKLyMcWkp4p7HrUPIioTTUyUyMo4PL5KLypU48qncNRcN-k5MNRjpE9Ou2UkDPugTUTRz2mTSuOrMmTwYbS89k-PnWEJzXpcgxvLEn0s0ceiTjLndi4z4AM9bNiilVPSjNp2WouWe_u83fUZxvtX6xmReTSzrgCZz263rUUGxiNeubQMXjhd4LfxWDpBunxZeZ8BG5jE_iZS1eSifL1prSFhj5CIMnjW88xupCmFxQtuMlAjbhpNZVzTrH510N8liuMocb_43-V9Cfd2xvHiFRytbzbpNUpXaz-BQ7VQEzienV5--z7pbBT4vBB60m23v-_GJdA |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHimdZnj7ACUXkZcc-gESBsqXbXraVKi7Gr4VIaRY1u6r4f_wwZpxktalWXFCveU48M86MPd83hLzCnTjHuYiyWSGjXMcWXErEUcJsbC32kIsRKHx0zMen-dczdrZF_vRYmPMy8A_pCtet25YzmDGuY9GrMIH3dWOt2wv-NskLFiEdG84s0ySa8q7U8tD_voRErnl38Am0_jpN9z-ffBxHXa-ByDDJFhBkcssLX2DVl06RwYRJbnXMjPPOi7RITOKEsbkrpJPOY5MnqWFqz0zOIMXJ4Lk3yM2CsSKgyPa-rfYywCVCmX8vXw_d2SjzFdx9Nfhdhq4Cm0LhqxWda7_I_btkp4tt6Yd2zO6RLV_fJ3fWGA8fEPvFBxw01R0ZCkUKKXABOkEtGG3Lqlo2tNH1rG35YbHCvqEaji0Q5kV9W_BOy5qCEK5sFzMp7kI4bDnUPCSn1zL2j8h2Pa_9Y0Ihv-LGa6FnDrn1rZAOQlItpM-kYZkdkfeD4VW_Wk4PhSzbwzNgZAr1o1A_CnKlaaKmfESSXh_Kdizq2MyjUiGbEnzjPW9W9_Tv-9fVe6jmgWThwPzih-qsXoFjQehRaD-zJtcihm9LXKZzXGPImDEjQnsjUeeoqgpLp-fLRkkMQpEhaUR2W5tZvSlFuH6eyBEpBtY0EGV4pi5_BkryDNIEyASe_O_wviS3xidHEzU5OD58Sm6vFvDjZ2R7cbH0zyECXJgXwcEo-X7dHv0X4B5teQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG_C0wc4oah52bEPIFHK0tJSIZZKFRfXr0BEmq2aXSF-IP-LmTxWm2rFBfUWJZtk1jPjzNgz30fIC9yJc5yLMC1yGWY6suBSIgpjZiNrkUMuwkbhT4d89yj7eMyON8ifoRfmtGzxh3SF69Yd5QxmjKu96FU7gcOB_bl15orO7wXfirOchYjHhlPLNA6nvK-13Pe_f0Em17ze2wG1v0ySyfuv73bDnmwgNEyyOUSZ3PLc51j2pROEMGGSWx0x47zzIsljEzthbOZy6aTzyPIkNcztqckY5DgpPPcKuZozliORwpftb8vNDPCJts5_kG_o3Vkr84XG-2r0vWxpBdbFwhdLOle-kZNb5GYf3NK3nTXeJhu-vkNurEAe3iX2g28boanu0VAoYkiBD9ADVIPRtqyqRUMbXRcd54fFEvuGajg3xz4v6ruKd1rWFIRwZbeaSXEbwiHnUHOPHF3K2N8nm_Ws9g8JhQSLG6-FLhyC61shHcSkWkifSsNSG5A3o-FVZx2oh0KY7fEVsDKF-lGoHwXJ0jRWUx6QeNCHsj2MOrJ5VKpNpwRfe8-r5T3D-_71621U80iy9sTs_Lvq5xMFngWxR659YU2mRQT_LXapznCRIWXGBIQORqJOUVUV1k7PFo2SGIUiRFJAHnQ2s3xTgv36WSwDko-saSTK-Epd_mgxyVPIEyAVePS_w_ucXPu8M1EHe4f7j8n15QJ-9IRszs8X_ilEgHPzrPUvSk4u26H_AjAxbUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+analysis+reveals+Lactobacillus+sanfranciscensis+as+stable+element+in+traditional+sourdoughs&rft.jtitle=Microbial+cell+factories&rft.au=Vogel%2C+Rudi+F&rft.au=Pavlovic%2C+Melanie&rft.au=Ehrmann%2C+Matthias+A&rft.au=Wiezer%2C+Arnim&rft.date=2011-08-30&rft.eissn=1475-2859&rft.volume=10+Suppl+1&rft.spage=S6&rft_id=info:doi/10.1186%2F1475-2859-10-S1-S6&rft_id=info%3Apmid%2F21995419&rft.externalDocID=21995419 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2859&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2859&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2859&client=summon |