Validation of prediction models based on lasso regression with multiply imputed data

Background In prognostic studies, the lasso technique is attractive since it improves the quality of predictions by shrinking regression coefficients, compared to predictions based on a model fitted via unpenalized maximum likelihood. Since some coefficients are set to zero, parsimony is achieved as...

Full description

Saved in:
Bibliographic Details
Published inBMC medical research methodology Vol. 14; no. 1; p. 116
Main Authors Musoro, Jammbe Z, Zwinderman, Aeilko H, Puhan, Milo A, ter Riet, Gerben, Geskus, Ronald B
Format Journal Article
LanguageEnglish
Published London BioMed Central 16.10.2014
BioMed Central Ltd
Subjects
Online AccessGet full text
ISSN1471-2288
1471-2288
DOI10.1186/1471-2288-14-116

Cover

Abstract Background In prognostic studies, the lasso technique is attractive since it improves the quality of predictions by shrinking regression coefficients, compared to predictions based on a model fitted via unpenalized maximum likelihood. Since some coefficients are set to zero, parsimony is achieved as well. It is unclear whether the performance of a model fitted using the lasso still shows some optimism. Bootstrap methods have been advocated to quantify optimism and generalize model performance to new subjects. It is unclear how resampling should be performed in the presence of multiply imputed data. Method The data were based on a cohort of Chronic Obstructive Pulmonary Disease patients. We constructed models to predict Chronic Respiratory Questionnaire dyspnea 6 months ahead. Optimism of the lasso model was investigated by comparing 4 approaches of handling multiply imputed data in the bootstrap procedure, using the study data and simulated data sets. In the first 3 approaches, data sets that had been completed via multiple imputation (MI) were resampled, while the fourth approach resampled the incomplete data set and then performed MI. Results The discriminative model performance of the lasso was optimistic. There was suboptimal calibration due to over-shrinkage. The estimate of optimism was sensitive to the choice of handling imputed data in the bootstrap resampling procedure. Resampling the completed data sets underestimates optimism, especially if, within a bootstrap step, selected individuals differ over the imputed data sets. Incorporating the MI procedure in the validation yields estimates of optimism that are closer to the true value, albeit slightly too larger. Conclusion Performance of prognostic models constructed using the lasso technique can be optimistic as well. Results of the internal validation are sensitive to how bootstrap resampling is performed.
AbstractList Background In prognostic studies, the lasso technique is attractive since it improves the quality of predictions by shrinking regression coefficients, compared to predictions based on a model fitted via unpenalized maximum likelihood. Since some coefficients are set to zero, parsimony is achieved as well. It is unclear whether the performance of a model fitted using the lasso still shows some optimism. Bootstrap methods have been advocated to quantify optimism and generalize model performance to new subjects. It is unclear how resampling should be performed in the presence of multiply imputed data. Method The data were based on a cohort of Chronic Obstructive Pulmonary Disease patients. We constructed models to predict Chronic Respiratory Questionnaire dyspnea 6 months ahead. Optimism of the lasso model was investigated by comparing 4 approaches of handling multiply imputed data in the bootstrap procedure, using the study data and simulated data sets. In the first 3 approaches, data sets that had been completed via multiple imputation (MI) were resampled, while the fourth approach resampled the incomplete data set and then performed MI. Results The discriminative model performance of the lasso was optimistic. There was suboptimal calibration due to over-shrinkage. The estimate of optimism was sensitive to the choice of handling imputed data in the bootstrap resampling procedure. Resampling the completed data sets underestimates optimism, especially if, within a bootstrap step, selected individuals differ over the imputed data sets. Incorporating the MI procedure in the validation yields estimates of optimism that are closer to the true value, albeit slightly too larger. Conclusion Performance of prognostic models constructed using the lasso technique can be optimistic as well. Results of the internal validation are sensitive to how bootstrap resampling is performed.
In prognostic studies, the lasso technique is attractive since it improves the quality of predictions by shrinking regression coefficients, compared to predictions based on a model fitted via unpenalized maximum likelihood. Since some coefficients are set to zero, parsimony is achieved as well. It is unclear whether the performance of a model fitted using the lasso still shows some optimism. Bootstrap methods have been advocated to quantify optimism and generalize model performance to new subjects. It is unclear how resampling should be performed in the presence of multiply imputed data. The data were based on a cohort of Chronic Obstructive Pulmonary Disease patients. We constructed models to predict Chronic Respiratory Questionnaire dyspnea 6 months ahead. Optimism of the lasso model was investigated by comparing 4 approaches of handling multiply imputed data in the bootstrap procedure, using the study data and simulated data sets. In the first 3 approaches, data sets that had been completed via multiple imputation (MI) were resampled, while the fourth approach resampled the incomplete data set and then performed MI. The discriminative model performance of the lasso was optimistic. There was suboptimal calibration due to over-shrinkage. The estimate of optimism was sensitive to the choice of handling imputed data in the bootstrap resampling procedure. Resampling the completed data sets underestimates optimism, especially if, within a bootstrap step, selected individuals differ over the imputed data sets. Incorporating the MI procedure in the validation yields estimates of optimism that are closer to the true value, albeit slightly too larger. Performance of prognostic models constructed using the lasso technique can be optimistic as well. Results of the internal validation are sensitive to how bootstrap resampling is performed.
Doc number: 116 Abstract Background: In prognostic studies, the lasso technique is attractive since it improves the quality of predictions by shrinking regression coefficients, compared to predictions based on a model fitted via unpenalized maximum likelihood. Since some coefficients are set to zero, parsimony is achieved as well. It is unclear whether the performance of a model fitted using the lasso still shows some optimism. Bootstrap methods have been advocated to quantify optimism and generalize model performance to new subjects. It is unclear how resampling should be performed in the presence of multiply imputed data. Method: The data were based on a cohort of Chronic Obstructive Pulmonary Disease patients. We constructed models to predict Chronic Respiratory Questionnaire dyspnea 6 months ahead. Optimism of the lasso model was investigated by comparing 4 approaches of handling multiply imputed data in the bootstrap procedure, using the study data and simulated data sets. In the first 3 approaches, data sets that had been completed via multiple imputation (MI) were resampled, while the fourth approach resampled the incomplete data set and then performed MI. Results: The discriminative model performance of the lasso was optimistic. There was suboptimal calibration due to over-shrinkage. The estimate of optimism was sensitive to the choice of handling imputed data in the bootstrap resampling procedure. Resampling the completed data sets underestimates optimism, especially if, within a bootstrap step, selected individuals differ over the imputed data sets. Incorporating the MI procedure in the validation yields estimates of optimism that are closer to the true value, albeit slightly too larger. Conclusion: Performance of prognostic models constructed using the lasso technique can be optimistic as well. Results of the internal validation are sensitive to how bootstrap resampling is performed.
In prognostic studies, the lasso technique is attractive since it improves the quality of predictions by shrinking regression coefficients, compared to predictions based on a model fitted via unpenalized maximum likelihood. Since some coefficients are set to zero, parsimony is achieved as well. It is unclear whether the performance of a model fitted using the lasso still shows some optimism. Bootstrap methods have been advocated to quantify optimism and generalize model performance to new subjects. It is unclear how resampling should be performed in the presence of multiply imputed data. The data were based on a cohort of Chronic Obstructive Pulmonary Disease patients. We constructed models to predict Chronic Respiratory Questionnaire dyspnea 6 months ahead. Optimism of the lasso model was investigated by comparing 4 approaches of handling multiply imputed data in the bootstrap procedure, using the study data and simulated data sets. In the first 3 approaches, data sets that had been completed via multiple imputation (MI) were resampled, while the fourth approach resampled the incomplete data set and then performed MI. The discriminative model performance of the lasso was optimistic. There was suboptimal calibration due to over-shrinkage. The estimate of optimism was sensitive to the choice of handling imputed data in the bootstrap resampling procedure. Resampling the completed data sets underestimates optimism, especially if, within a bootstrap step, selected individuals differ over the imputed data sets. Incorporating the MI procedure in the validation yields estimates of optimism that are closer to the true value, albeit slightly too larger. Performance of prognostic models constructed using the lasso technique can be optimistic as well. Results of the internal validation are sensitive to how bootstrap resampling is performed.
BACKGROUND: In prognostic studies, the lasso technique is attractive since it improves the quality of predictions by shrinking regression coefficients, compared to predictions based on a model fitted via unpenalized maximum likelihood. Since some coefficients are set to zero, parsimony is achieved as well. It is unclear whether the performance of a model fitted using the lasso still shows some optimism. Bootstrap methods have been advocated to quantify optimism and generalize model performance to new subjects. It is unclear how resampling should be performed in the presence of multiply imputed data. METHOD: The data were based on a cohort of Chronic Obstructive Pulmonary Disease patients. We constructed models to predict Chronic Respiratory Questionnaire dyspnea 6 months ahead. Optimism of the lasso model was investigated by comparing 4 approaches of handling multiply imputed data in the bootstrap procedure, using the study data and simulated data sets. In the first 3 approaches, data sets that had been completed via multiple imputation (MI) were resampled, while the fourth approach resampled the incomplete data set and then performed MI. RESULTS: The discriminative model performance of the lasso was optimistic. There was suboptimal calibration due to over-shrinkage. The estimate of optimism was sensitive to the choice of handling imputed data in the bootstrap resampling procedure. Resampling the completed data sets underestimates optimism, especially if, within a bootstrap step, selected individuals differ over the imputed data sets. Incorporating the MI procedure in the validation yields estimates of optimism that are closer to the true value, albeit slightly too larger. CONCLUSION: Performance of prognostic models constructed using the lasso technique can be optimistic as well. Results of the internal validation are sensitive to how bootstrap resampling is performed.
In prognostic studies, the lasso technique is attractive since it improves the quality of predictions by shrinking regression coefficients, compared to predictions based on a model fitted via unpenalized maximum likelihood. Since some coefficients are set to zero, parsimony is achieved as well. It is unclear whether the performance of a model fitted using the lasso still shows some optimism. Bootstrap methods have been advocated to quantify optimism and generalize model performance to new subjects. It is unclear how resampling should be performed in the presence of multiply imputed data.BACKGROUNDIn prognostic studies, the lasso technique is attractive since it improves the quality of predictions by shrinking regression coefficients, compared to predictions based on a model fitted via unpenalized maximum likelihood. Since some coefficients are set to zero, parsimony is achieved as well. It is unclear whether the performance of a model fitted using the lasso still shows some optimism. Bootstrap methods have been advocated to quantify optimism and generalize model performance to new subjects. It is unclear how resampling should be performed in the presence of multiply imputed data.The data were based on a cohort of Chronic Obstructive Pulmonary Disease patients. We constructed models to predict Chronic Respiratory Questionnaire dyspnea 6 months ahead. Optimism of the lasso model was investigated by comparing 4 approaches of handling multiply imputed data in the bootstrap procedure, using the study data and simulated data sets. In the first 3 approaches, data sets that had been completed via multiple imputation (MI) were resampled, while the fourth approach resampled the incomplete data set and then performed MI.METHODThe data were based on a cohort of Chronic Obstructive Pulmonary Disease patients. We constructed models to predict Chronic Respiratory Questionnaire dyspnea 6 months ahead. Optimism of the lasso model was investigated by comparing 4 approaches of handling multiply imputed data in the bootstrap procedure, using the study data and simulated data sets. In the first 3 approaches, data sets that had been completed via multiple imputation (MI) were resampled, while the fourth approach resampled the incomplete data set and then performed MI.The discriminative model performance of the lasso was optimistic. There was suboptimal calibration due to over-shrinkage. The estimate of optimism was sensitive to the choice of handling imputed data in the bootstrap resampling procedure. Resampling the completed data sets underestimates optimism, especially if, within a bootstrap step, selected individuals differ over the imputed data sets. Incorporating the MI procedure in the validation yields estimates of optimism that are closer to the true value, albeit slightly too larger.RESULTSThe discriminative model performance of the lasso was optimistic. There was suboptimal calibration due to over-shrinkage. The estimate of optimism was sensitive to the choice of handling imputed data in the bootstrap resampling procedure. Resampling the completed data sets underestimates optimism, especially if, within a bootstrap step, selected individuals differ over the imputed data sets. Incorporating the MI procedure in the validation yields estimates of optimism that are closer to the true value, albeit slightly too larger.Performance of prognostic models constructed using the lasso technique can be optimistic as well. Results of the internal validation are sensitive to how bootstrap resampling is performed.CONCLUSIONPerformance of prognostic models constructed using the lasso technique can be optimistic as well. Results of the internal validation are sensitive to how bootstrap resampling is performed.
Background In prognostic studies, the lasso technique is attractive since it improves the quality of predictions by shrinking regression coefficients, compared to predictions based on a model fitted via unpenalized maximum likelihood. Since some coefficients are set to zero, parsimony is achieved as well. It is unclear whether the performance of a model fitted using the lasso still shows some optimism. Bootstrap methods have been advocated to quantify optimism and generalize model performance to new subjects. It is unclear how resampling should be performed in the presence of multiply imputed data. Method The data were based on a cohort of Chronic Obstructive Pulmonary Disease patients. We constructed models to predict Chronic Respiratory Questionnaire dyspnea 6 months ahead. Optimism of the lasso model was investigated by comparing 4 approaches of handling multiply imputed data in the bootstrap procedure, using the study data and simulated data sets. In the first 3 approaches, data sets that had been completed via multiple imputation (MI) were resampled, while the fourth approach resampled the incomplete data set and then performed MI. Results The discriminative model performance of the lasso was optimistic. There was suboptimal calibration due to over-shrinkage. The estimate of optimism was sensitive to the choice of handling imputed data in the bootstrap resampling procedure. Resampling the completed data sets underestimates optimism, especially if, within a bootstrap step, selected individuals differ over the imputed data sets. Incorporating the MI procedure in the validation yields estimates of optimism that are closer to the true value, albeit slightly too larger. Conclusion Performance of prognostic models constructed using the lasso technique can be optimistic as well. Results of the internal validation are sensitive to how bootstrap resampling is performed. Keywords: Clinical prediction models, Model validation, Multiple imputation, Quality of life, Shrinkage
ArticleNumber 116
Audience Academic
Author Zwinderman, Aeilko H
Musoro, Jammbe Z
Puhan, Milo A
Geskus, Ronald B
ter Riet, Gerben
Author_xml – sequence: 1
  givenname: Jammbe Z
  surname: Musoro
  fullname: Musoro, Jammbe Z
  email: z.j.musoro@amc.nl
  organization: Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam
– sequence: 2
  givenname: Aeilko H
  surname: Zwinderman
  fullname: Zwinderman, Aeilko H
  organization: Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam
– sequence: 3
  givenname: Milo A
  surname: Puhan
  fullname: Puhan, Milo A
  organization: Institute for Social and Preventive Medicine, University of Zurich
– sequence: 4
  givenname: Gerben
  surname: ter Riet
  fullname: ter Riet, Gerben
  organization: Department of General Practice, Academic Medical Center, University of Amsterdam
– sequence: 5
  givenname: Ronald B
  surname: Geskus
  fullname: Geskus, Ronald B
  organization: Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25323009$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv3CAUha0qVfNo911Vlrrpxilv402laNSXFKmbtFsE-DIhwmYKdqr8--JMOpqJkooFXPjOAY7uaXU0xhGq6i1G5xhL8RGzFjeESNlg1mAsXlQnu62jvfVxdZrzDUK4lVS8qo4Jp4Qi1J1UV7908L2efBzr6OpNgt7b-2qIPYRcG52hr0sddM6xTrBOkPMC_PHTdT3MYfKbcFf7YTNPhSxe-nX10umQ4c3DfFb9_PL5avWtufzx9fvq4rIxvKNT42RrmHVSG-askazVDoEByriwrDWcSiEwpsz2hMoeGQvWYWsQ4dYRAEfPqk9b381sBugtjFPSQW2SH3S6U1F7dXgy-mu1jreKEdQhRorBamtgfHzG4PDExkEtqaol1bJSJfTi8uHhGSn-niFPavDZQgh6hDhnhQXmRJAOtQV9_wi9iXMaS0gLxTjnaJ9a6wDKjy6Wy-1iqi447UTXCYkKdf4EVUYPg7elUZwv-weCd_tx7b75rxsKgLaATTHnBG6HYKSWhnvq7-KRxPrpvp3KY3z4nxBvhbncMa4h7SXxnOYvVVnpIw
CitedBy_id crossref_primary_10_1002_cam4_4806
crossref_primary_10_1080_10439463_2020_1749274
crossref_primary_10_1080_10428194_2021_2018584
crossref_primary_10_3390_diagnostics14060620
crossref_primary_10_1002_ejhf_785
crossref_primary_10_1002_jum_15920
crossref_primary_10_1007_s43545_021_00076_y
crossref_primary_10_1016_j_heha_2024_100094
crossref_primary_10_3389_fpubh_2022_810488
crossref_primary_10_1016_j_psychres_2020_112960
crossref_primary_10_3389_fpsyt_2021_707707
crossref_primary_10_1007_s11845_021_02876_w
crossref_primary_10_2166_wst_2021_238
crossref_primary_10_1016_j_wneu_2019_06_170
crossref_primary_10_1111_cdoe_12807
crossref_primary_10_3389_fimmu_2023_1174020
crossref_primary_10_4236_ojmi_2022_123009
crossref_primary_10_1080_02688697_2025_2471931
crossref_primary_10_1186_s12859_015_0537_9
crossref_primary_10_1177_00368504241293008
crossref_primary_10_2196_16084
crossref_primary_10_1016_j_envpol_2021_116791
crossref_primary_10_1007_s10620_024_08410_z
crossref_primary_10_1016_j_neuropsychologia_2015_12_010
crossref_primary_10_1245_s10434_020_09479_2
crossref_primary_10_1080_01635581_2023_2197687
crossref_primary_10_2196_22835
crossref_primary_10_1016_j_jacep_2021_08_009
crossref_primary_10_1186_s12874_020_01204_7
crossref_primary_10_1002_wics_1402
crossref_primary_10_1093_schbul_sbw098
crossref_primary_10_1089_neu_2018_6276
crossref_primary_10_2967_jnumed_120_244640
crossref_primary_10_1007_s11357_022_00547_x
crossref_primary_10_1016_j_neuroscience_2024_02_018
crossref_primary_10_1177_2325967117716381
crossref_primary_10_1016_j_heliyon_2023_e19494
crossref_primary_10_1007_s00068_023_02351_4
crossref_primary_10_1007_s00383_024_05735_8
crossref_primary_10_28979_jarnas_981202
crossref_primary_10_1186_s12916_020_01819_z
crossref_primary_10_3390_nu15051198
crossref_primary_10_1016_j_envpol_2024_125037
crossref_primary_10_3390_ijms20194938
crossref_primary_10_1016_j_acra_2023_01_024
crossref_primary_10_3390_healthcare12161639
crossref_primary_10_1007_s12178_022_09738_7
crossref_primary_10_3389_fped_2020_585868
crossref_primary_10_1016_j_rmed_2021_106598
crossref_primary_10_1096_fj_202401986R
crossref_primary_10_1002_jcla_24465
crossref_primary_10_1016_S2352_3026_18_30220_5
crossref_primary_10_1038_s41598_024_52614_2
crossref_primary_10_1177_0962280220921415
crossref_primary_10_1186_s41512_021_00103_9
crossref_primary_10_1177_03611981221141435
crossref_primary_10_1186_s12890_021_01624_1
crossref_primary_10_1186_s12859_018_2500_z
crossref_primary_10_1007_s00330_023_09475_6
crossref_primary_10_1161_JAHA_124_037256
crossref_primary_10_1186_s41512_021_00096_5
crossref_primary_10_3389_fpsyg_2024_1410396
crossref_primary_10_1007_s00395_023_00982_7
crossref_primary_10_1186_s12874_016_0239_7
crossref_primary_10_1007_s00405_021_06778_6
crossref_primary_10_1016_j_anl_2024_04_003
crossref_primary_10_1016_j_jclinepi_2022_09_002
crossref_primary_10_1038_bjc_2016_227
crossref_primary_10_18632_aging_205965
crossref_primary_10_1109_ACCESS_2021_3092221
crossref_primary_10_1080_09540121_2018_1476657
crossref_primary_10_2196_43633
crossref_primary_10_3389_fpsyt_2020_00223
crossref_primary_10_1371_journal_pmed_1003420
crossref_primary_10_1016_j_soncn_2020_151089
crossref_primary_10_1097_HEP_0000000000000364
crossref_primary_10_1249_MSS_0000000000002908
crossref_primary_10_1080_02664763_2022_2068514
crossref_primary_10_1016_j_jacc_2017_11_041
crossref_primary_10_1007_s00134_018_5228_3
crossref_primary_10_1016_j_genhosppsych_2022_01_002
crossref_primary_10_1007_s40291_024_00740_y
crossref_primary_10_1177_1471082X20949710
crossref_primary_10_1002_bimj_201700232
crossref_primary_10_1016_j_dss_2021_113624
crossref_primary_10_1161_JAHA_120_018565
crossref_primary_10_1088_1674_4527_17_10_106
crossref_primary_10_1007_s12520_024_02078_2
crossref_primary_10_1038_s41598_020_62971_3
crossref_primary_10_1093_schizbullopen_sgad008
crossref_primary_10_1002_sim_8682
crossref_primary_10_1186_s41512_022_00120_2
crossref_primary_10_37489_2588_0519_2022_2_13_20
crossref_primary_10_1177_0962280219842890
crossref_primary_10_1016_j_braindev_2020_10_014
Cites_doi 10.1016/j.rmed.2003.10.013
10.1002/sim.5783
10.1186/1471-2466-9-15
10.1002/9780470316696
10.1111/j.1467-9531.2007.00180.x
10.1002/sim.4780091109
10.1186/1471-2288-7-33
10.1111/j.1541-0420.2005.00317.x
10.1016/j.jclinepi.2006.01.009
10.18637/jss.v033.i01
10.1186/1471-2288-10-81
10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
10.1002/sim.4067
10.1186/1477-7525-2-1
10.1002/sim.3177
10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
10.1093/biomet/45.3-4.562
10.1016/S0895-4356(01)00341-9
10.1081/COPD-200050651
10.1007/978-1-4757-3462-1
10.1111/j.2517-6161.1983.tb01258.x
10.2147/CLEP.S24818
10.7326/0003-4819-130-6-199903160-00016
10.4236/ojs.2013.32011
10.1111/j.2517-6161.1996.tb02080.x
10.1080/01621459.1992.10475276
10.1016/j.jclinepi.2009.03.017
ContentType Journal Article
Copyright Musoro et al.; licensee BioMed Central Ltd. 2014
COPYRIGHT 2014 BioMed Central Ltd.
2014 Musoro et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Copyright_xml – notice: Musoro et al.; licensee BioMed Central Ltd. 2014
– notice: COPYRIGHT 2014 BioMed Central Ltd.
– notice: 2014 Musoro et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1186/1471-2288-14-116
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2288
EndPage 116
ExternalDocumentID PMC4209042
oai_biomedcentral_com_1471_2288_14_116
3467073351
A539699680
25323009
10_1186_1471_2288_14_116
Genre Validation Studies
Journal Article
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
-A0
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
5PM
ID FETCH-LOGICAL-b593t-f87b4cf8ab4fcb847af0ebe3456c47b538661134cd238d0bcecf1cb025cf2eef3
IEDL.DBID M48
ISSN 1471-2288
IngestDate Thu Aug 21 18:11:09 EDT 2025
Wed May 22 07:12:10 EDT 2024
Fri Sep 05 03:01:01 EDT 2025
Fri Jul 25 07:07:21 EDT 2025
Tue Jun 17 22:05:36 EDT 2025
Tue Jun 10 21:11:17 EDT 2025
Mon Jul 21 06:06:51 EDT 2025
Tue Jul 01 04:30:51 EDT 2025
Thu Apr 24 22:57:28 EDT 2025
Sat Sep 06 07:35:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Clinical prediction models
Shrinkage
Multiple imputation
Model validation
Quality of life
Language English
License This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b593t-f87b4cf8ab4fcb847af0ebe3456c47b538661134cd238d0bcecf1cb025cf2eef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.proquest.com/docview/1614555007?pq-origsite=%requestingapplication%
PMID 25323009
PQID 1614555007
PQPubID 42579
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4209042
biomedcentral_primary_oai_biomedcentral_com_1471_2288_14_116
proquest_miscellaneous_1615262907
proquest_journals_1614555007
gale_infotracmisc_A539699680
gale_infotracacademiconefile_A539699680
pubmed_primary_25323009
crossref_primary_10_1186_1471_2288_14_116
crossref_citationtrail_10_1186_1471_2288_14_116
springer_journals_10_1186_1471_2288_14_116
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-16
PublicationDateYYYYMMDD 2014-10-16
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-16
  day: 16
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical research methodology
PublicationTitleAbbrev BMC Med Res Methodol
PublicationTitleAlternate BMC Med Res Methodol
PublicationYear 2014
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References BreimanLThe little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction errorJ Am Stat Assoc19928773875410.1080/01621459.1992.10475276
HeymansMWvan BuurenSKnolDLvan MechelenWde VetHCWVariable selection under multiple imputation using the bootstrap in a prognostic studyBMC Med Res Methodol200773310.1186/1471-2288-7-33176299121945032
van BuurenSKarinGMice: multivariate imputation by chained equations in RJ Stat Software201145167
VergouweYRoystonPMoonsKGAltmanDGDevelopment and validation of a prediction model with missing predictor data: a practical approachJ Clin Epidemiol20106320521410.1016/j.jclinepi.2009.03.01719596181
ChenQWangSVariable selection for multiply-imputed data with application to dioxin exposure studyStat Med2013323646365910.1002/sim.578323526243
YangXBelinTRBoscardinWImputation and variable selection in linear regression models with missing covariatesBiometrics20056149850610.1111/j.1541-0420.2005.00317.x16011697
WoodAMWhiteIRRoystonPHow should variable selection be performed with multiply imputed data?Stat Med2008273227324610.1002/sim.317718203127
TibshiraniRRegression shrinkage and selection via lassoJ Roy Stat Soc B199658267288
SiebelingLPuhanMAMuggensturmPZollerMter RietGCharacteristics of Dutch and Swiss primary care COPD patients - baseline data of the ICE COLD ERIC studyClin Epidemiol2011327328310.2147/CLEP.S24818221355023224633
FriedmanJHastieTTibshiraniRRegularization paths for generalized linear models via coordinate descentJ Stat Software20103312210.18637/jss.v033.i01
RubinDBMultiple Imputation for Nonresponse in Surveys1987New YorkJohn Wiley & Sons10.1002/9780470316696
EfronBTibshiraniRJAn Introduction to the Bootstrap1986New YorkChapman & Hall
SteyerbergEWHarrellFEBorsboomGJEijkemansMJVergouweYHabbemaJDInternal validation of predictive models: efficiency of some procedures for logistic regression analysisJ Clin Epidemiol2001877478110.1016/S0895-4356(01)00341-9
R Core TeamR: A Language and Environment for Statistical Computing2012ViennaR foundation for statistical computinghttp://www.R-project.org/ R foundation for statistical computing. ISBN 3-900051-07-0. []
PuhanMABehnkeMFreyMGrueterTBrandliOLichtenschopAGuyattGHSchunemannHJSelf-administration and interviewer-administration of the German chronic respiratory questionnaire: instrument development and assessment of validity and reliability in two randomised studiesHealth Qual Life Outcomes20042110.1186/1477-7525-2-114713317333432
MoonsKGMDondersRARTStijnenTHarrellFEUsing the outcome for imputation of missing predictor values was preferredJ Clin Epidemiol2006591092110110.1016/j.jclinepi.2006.01.00916980150
PuhanMABehnkeMLaschkeMLichtenschopfABrändliOGuyattGHSchünemannHJSelf-administration and standardisation of the chronic respiratory questionnaire: a randomised trial in three German-speaking countriesRespir Med20049834235010.1016/j.rmed.2003.10.01315072175
Van HouwelingenJCSauerbrei WCross-validation, shrinkage and variable selection in linear regression revisitedOpen J Stat201337910.4236/ojs.2013.32011
TibshiraniRThe lasso method for variable selection in the Cox modelStat Med1997163853951:STN:280:DyaK2s7pslClug%3D%3D10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-39044528
CopasJBRegression, prediction and shrinkageJ Roy Stat Soc B198345311354
CoxDRTwo further applications of a model for binary regressionBiometrika19584556256510.1093/biomet/45.3-4.562
SteyerbergEWClinical Prediction Models: A Practical Approach to Development, Validation, and Updating2010New YorkSpringer
HarrellFERegression Modeling Strategies: with Applications to Linear Models, Logistic Regression, and Survival Analysis2001New YorkSpringer10.1007/978-1-4757-3462-1
HarrellFELeeKLMarkDBMultivariate prognostic models: issues in developing models, evaluating assumptions and accuracy, and measuring and reducing errorsStat Med19961536138710.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-48668867
VergouwDHeymansMWPeatGMKuijpersTCroftPRde VetHCWvan der HorstHEvan der WindtDAWMThe search for stable prognostic models in multiple imputed data setsBMC Med Res Methodol2010108110.1186/1471-2288-10-81208464602954918
SchunemannHJPuhanMGoldsteinRJaeschkeRGuyattGHMeasurement properties and interpretability of the chronic respiratory disease questionnaire (crq)COPD20052818910.1081/COPD-20005065117136967
vonHippelPTRegression with missing Ys: an improved strategy for analyzing multiply imputed dataSocio Meth2007378311710.1111/j.1467-9531.2007.00180.x
WanYDattaSConklinDJKongMVariable selection models based on multiple imputation with an application for predicting median effective dose and maximum effectJ Stat Comput Simulat2014115[doi:10.1080/00949655.2014.907801]
KuhnMContributions from WingJWestonSWilliamsAKeeferCEngelhardtACaret: Classification and Regression Training2012http://CRAN.R-project.org/package=caret R package version 5.15-023. []
SiebelingLter RietGvan der WalWMGeskusRBZollerMMuggensturmPJoleskaIPuhanMAIce cold eric–international collaborative effort on chronic obstructive lung disease: exacerbation risk index cohorts–study protocol for an international copd cohort studyBMC Pulm Med200991610.1186/1471-2466-9-15
JusticeACCovinskyKEBerlinJAAssessing the generalizability of prognostic informationAnn Intern Med19991305155241:STN:280:DyaK1M7msFCjsg%3D%3D10.7326/0003-4819-130-6-199903160-0001610075620
Van HouwelingenJCLe CessieSPredictive value of statistical modelsStat Med19909130313251:STN:280:DyaK3M7hslymug%3D%3D10.1002/sim.47800911092277880
WhiteIRRoystonPWoodAMMultiple imputation using chained equations: issues and guidance for practiceStat Med20113037739910.1002/sim.406721225900
Y Vergouwe (1128_CR15) 2010; 63
D Vergouw (1128_CR16) 2010; 10
DR Cox (1128_CR24) 1958; 45
MA Puhan (1128_CR19) 2004; 2
X Yang (1128_CR33) 2005; 61
L Siebeling (1128_CR18) 2009; 9
R Tibshirani (1128_CR2) 1997; 16
IR White (1128_CR14) 2011; 30
R Core Team (1128_CR26) 2012
AM Wood (1128_CR32) 2008; 27
M Kuhn (1128_CR28) 2012
L Breiman (1128_CR7) 1992; 87
HJ Schunemann (1128_CR25) 2005; 2
JC Van Houwelingen (1128_CR10) 1990; 9
PT vonHippel (1128_CR23) 2007; 37
J Friedman (1128_CR27) 2010; 33
FE Harrell (1128_CR6) 1996; 15
MW Heymans (1128_CR12) 2007; 7
Q Chen (1128_CR31) 2013; 32
KGM Moons (1128_CR22) 2006; 59
MA Puhan (1128_CR20) 2004; 98
EW Steyerberg (1128_CR5) 2001; 8
L Siebeling (1128_CR17) 2011; 3
R Tibshirani (1128_CR1) 1996; 58
JC Van Houwelingen (1128_CR29) 2013; 3
AC Justice (1128_CR4) 1999; 130
JB Copas (1128_CR11) 1983; 45
B Efron (1128_CR8) 1986
DB Rubin (1128_CR13) 1987
S van Buuren (1128_CR21) 2011; 45
FE Harrell (1128_CR9) 2001
EW Steyerberg (1128_CR3) 2010
Y Wan (1128_CR30) 2014
20846460 - BMC Med Res Methodol. 2010;10:81
15072175 - Respir Med. 2004 Apr;98(4):342-50
20808728 - J Stat Softw. 2010;33(1):1-22
11470385 - J Clin Epidemiol. 2001 Aug;54(8):774-81
23526243 - Stat Med. 2013 Sep 20;32(21):3646-59
17629912 - BMC Med Res Methodol. 2007;7:33
17136967 - COPD. 2005 Mar;2(1):81-9
19419546 - BMC Pulm Med. 2009;9:15
19596181 - J Clin Epidemiol. 2010 Feb;63(2):205-14
14713317 - Health Qual Life Outcomes. 2004;2:1
22135502 - Clin Epidemiol. 2011;3:273-83
8668867 - Stat Med. 1996 Feb 28;15(4):361-87
16980150 - J Clin Epidemiol. 2006 Oct;59(10):1092-101
10075620 - Ann Intern Med. 1999 Mar 16;130(6):515-24
18203127 - Stat Med. 2008 Jul 30;27(17):3227-46
21225900 - Stat Med. 2011 Feb 20;30(4):377-99
26412909 - J Stat Comput Simul. 2015;85(9):1902-1916
2277880 - Stat Med. 1990 Nov;9(11):1303-25
9044528 - Stat Med. 1997 Feb 28;16(4):385-95
16011697 - Biometrics. 2005 Jun;61(2):498-506
References_xml – reference: Van HouwelingenJCLe CessieSPredictive value of statistical modelsStat Med19909130313251:STN:280:DyaK3M7hslymug%3D%3D10.1002/sim.47800911092277880
– reference: CopasJBRegression, prediction and shrinkageJ Roy Stat Soc B198345311354
– reference: ChenQWangSVariable selection for multiply-imputed data with application to dioxin exposure studyStat Med2013323646365910.1002/sim.578323526243
– reference: VergouweYRoystonPMoonsKGAltmanDGDevelopment and validation of a prediction model with missing predictor data: a practical approachJ Clin Epidemiol20106320521410.1016/j.jclinepi.2009.03.01719596181
– reference: vonHippelPTRegression with missing Ys: an improved strategy for analyzing multiply imputed dataSocio Meth2007378311710.1111/j.1467-9531.2007.00180.x
– reference: RubinDBMultiple Imputation for Nonresponse in Surveys1987New YorkJohn Wiley & Sons10.1002/9780470316696
– reference: BreimanLThe little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction errorJ Am Stat Assoc19928773875410.1080/01621459.1992.10475276
– reference: SiebelingLPuhanMAMuggensturmPZollerMter RietGCharacteristics of Dutch and Swiss primary care COPD patients - baseline data of the ICE COLD ERIC studyClin Epidemiol2011327328310.2147/CLEP.S24818221355023224633
– reference: PuhanMABehnkeMFreyMGrueterTBrandliOLichtenschopAGuyattGHSchunemannHJSelf-administration and interviewer-administration of the German chronic respiratory questionnaire: instrument development and assessment of validity and reliability in two randomised studiesHealth Qual Life Outcomes20042110.1186/1477-7525-2-114713317333432
– reference: FriedmanJHastieTTibshiraniRRegularization paths for generalized linear models via coordinate descentJ Stat Software20103312210.18637/jss.v033.i01
– reference: HeymansMWvan BuurenSKnolDLvan MechelenWde VetHCWVariable selection under multiple imputation using the bootstrap in a prognostic studyBMC Med Res Methodol200773310.1186/1471-2288-7-33176299121945032
– reference: HarrellFERegression Modeling Strategies: with Applications to Linear Models, Logistic Regression, and Survival Analysis2001New YorkSpringer10.1007/978-1-4757-3462-1
– reference: KuhnMContributions from WingJWestonSWilliamsAKeeferCEngelhardtACaret: Classification and Regression Training2012http://CRAN.R-project.org/package=caret R package version 5.15-023. []
– reference: TibshiraniRThe lasso method for variable selection in the Cox modelStat Med1997163853951:STN:280:DyaK2s7pslClug%3D%3D10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-39044528
– reference: YangXBelinTRBoscardinWImputation and variable selection in linear regression models with missing covariatesBiometrics20056149850610.1111/j.1541-0420.2005.00317.x16011697
– reference: SiebelingLter RietGvan der WalWMGeskusRBZollerMMuggensturmPJoleskaIPuhanMAIce cold eric–international collaborative effort on chronic obstructive lung disease: exacerbation risk index cohorts–study protocol for an international copd cohort studyBMC Pulm Med200991610.1186/1471-2466-9-15
– reference: SteyerbergEWHarrellFEBorsboomGJEijkemansMJVergouweYHabbemaJDInternal validation of predictive models: efficiency of some procedures for logistic regression analysisJ Clin Epidemiol2001877478110.1016/S0895-4356(01)00341-9
– reference: JusticeACCovinskyKEBerlinJAAssessing the generalizability of prognostic informationAnn Intern Med19991305155241:STN:280:DyaK1M7msFCjsg%3D%3D10.7326/0003-4819-130-6-199903160-0001610075620
– reference: Van HouwelingenJCSauerbrei WCross-validation, shrinkage and variable selection in linear regression revisitedOpen J Stat201337910.4236/ojs.2013.32011
– reference: SteyerbergEWClinical Prediction Models: A Practical Approach to Development, Validation, and Updating2010New YorkSpringer
– reference: CoxDRTwo further applications of a model for binary regressionBiometrika19584556256510.1093/biomet/45.3-4.562
– reference: R Core TeamR: A Language and Environment for Statistical Computing2012ViennaR foundation for statistical computinghttp://www.R-project.org/ R foundation for statistical computing. ISBN 3-900051-07-0. []
– reference: PuhanMABehnkeMLaschkeMLichtenschopfABrändliOGuyattGHSchünemannHJSelf-administration and standardisation of the chronic respiratory questionnaire: a randomised trial in three German-speaking countriesRespir Med20049834235010.1016/j.rmed.2003.10.01315072175
– reference: SchunemannHJPuhanMGoldsteinRJaeschkeRGuyattGHMeasurement properties and interpretability of the chronic respiratory disease questionnaire (crq)COPD20052818910.1081/COPD-20005065117136967
– reference: WhiteIRRoystonPWoodAMMultiple imputation using chained equations: issues and guidance for practiceStat Med20113037739910.1002/sim.406721225900
– reference: EfronBTibshiraniRJAn Introduction to the Bootstrap1986New YorkChapman & Hall
– reference: VergouwDHeymansMWPeatGMKuijpersTCroftPRde VetHCWvan der HorstHEvan der WindtDAWMThe search for stable prognostic models in multiple imputed data setsBMC Med Res Methodol2010108110.1186/1471-2288-10-81208464602954918
– reference: WoodAMWhiteIRRoystonPHow should variable selection be performed with multiply imputed data?Stat Med2008273227324610.1002/sim.317718203127
– reference: WanYDattaSConklinDJKongMVariable selection models based on multiple imputation with an application for predicting median effective dose and maximum effectJ Stat Comput Simulat2014115[doi:10.1080/00949655.2014.907801]
– reference: MoonsKGMDondersRARTStijnenTHarrellFEUsing the outcome for imputation of missing predictor values was preferredJ Clin Epidemiol2006591092110110.1016/j.jclinepi.2006.01.00916980150
– reference: HarrellFELeeKLMarkDBMultivariate prognostic models: issues in developing models, evaluating assumptions and accuracy, and measuring and reducing errorsStat Med19961536138710.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-48668867
– reference: van BuurenSKarinGMice: multivariate imputation by chained equations in RJ Stat Software201145167
– reference: TibshiraniRRegression shrinkage and selection via lassoJ Roy Stat Soc B199658267288
– volume: 98
  start-page: 342
  year: 2004
  ident: 1128_CR20
  publication-title: Respir Med
  doi: 10.1016/j.rmed.2003.10.013
– volume: 32
  start-page: 3646
  year: 2013
  ident: 1128_CR31
  publication-title: Stat Med
  doi: 10.1002/sim.5783
– volume: 9
  start-page: 16
  year: 2009
  ident: 1128_CR18
  publication-title: BMC Pulm Med
  doi: 10.1186/1471-2466-9-15
– start-page: 1
  volume-title: J Stat Comput Simulat
  year: 2014
  ident: 1128_CR30
– volume-title: Multiple Imputation for Nonresponse in Surveys
  year: 1987
  ident: 1128_CR13
  doi: 10.1002/9780470316696
– volume: 37
  start-page: 83
  year: 2007
  ident: 1128_CR23
  publication-title: Socio Meth
  doi: 10.1111/j.1467-9531.2007.00180.x
– volume: 9
  start-page: 1303
  year: 1990
  ident: 1128_CR10
  publication-title: Stat Med
  doi: 10.1002/sim.4780091109
– volume: 7
  start-page: 33
  year: 2007
  ident: 1128_CR12
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-7-33
– volume: 61
  start-page: 498
  year: 2005
  ident: 1128_CR33
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00317.x
– volume: 59
  start-page: 1092
  year: 2006
  ident: 1128_CR22
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2006.01.009
– volume: 45
  start-page: 1
  year: 2011
  ident: 1128_CR21
  publication-title: J Stat Software
– volume: 33
  start-page: 1
  year: 2010
  ident: 1128_CR27
  publication-title: J Stat Software
  doi: 10.18637/jss.v033.i01
– volume-title: An Introduction to the Bootstrap
  year: 1986
  ident: 1128_CR8
– volume: 10
  start-page: 81
  year: 2010
  ident: 1128_CR16
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-10-81
– volume: 16
  start-page: 385
  year: 1997
  ident: 1128_CR2
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
– volume: 30
  start-page: 377
  year: 2011
  ident: 1128_CR14
  publication-title: Stat Med
  doi: 10.1002/sim.4067
– volume: 2
  start-page: 1
  year: 2004
  ident: 1128_CR19
  publication-title: Health Qual Life Outcomes
  doi: 10.1186/1477-7525-2-1
– volume: 27
  start-page: 3227
  year: 2008
  ident: 1128_CR32
  publication-title: Stat Med
  doi: 10.1002/sim.3177
– volume: 15
  start-page: 361
  year: 1996
  ident: 1128_CR6
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
– volume: 45
  start-page: 562
  year: 1958
  ident: 1128_CR24
  publication-title: Biometrika
  doi: 10.1093/biomet/45.3-4.562
– volume: 8
  start-page: 774
  year: 2001
  ident: 1128_CR5
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(01)00341-9
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2012
  ident: 1128_CR26
– volume: 2
  start-page: 81
  year: 2005
  ident: 1128_CR25
  publication-title: COPD
  doi: 10.1081/COPD-200050651
– volume-title: Regression Modeling Strategies: with Applications to Linear Models, Logistic Regression, and Survival Analysis
  year: 2001
  ident: 1128_CR9
  doi: 10.1007/978-1-4757-3462-1
– volume: 45
  start-page: 311
  year: 1983
  ident: 1128_CR11
  publication-title: J Roy Stat Soc B
  doi: 10.1111/j.2517-6161.1983.tb01258.x
– volume-title: Caret: Classification and Regression Training
  year: 2012
  ident: 1128_CR28
– volume: 3
  start-page: 273
  year: 2011
  ident: 1128_CR17
  publication-title: Clin Epidemiol
  doi: 10.2147/CLEP.S24818
– volume: 130
  start-page: 515
  year: 1999
  ident: 1128_CR4
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-130-6-199903160-00016
– volume: 3
  start-page: 79
  year: 2013
  ident: 1128_CR29
  publication-title: Open J Stat
  doi: 10.4236/ojs.2013.32011
– volume-title: Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating
  year: 2010
  ident: 1128_CR3
– volume: 58
  start-page: 267
  year: 1996
  ident: 1128_CR1
  publication-title: J Roy Stat Soc B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 87
  start-page: 738
  year: 1992
  ident: 1128_CR7
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1992.10475276
– volume: 63
  start-page: 205
  year: 2010
  ident: 1128_CR15
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2009.03.017
– reference: 15072175 - Respir Med. 2004 Apr;98(4):342-50
– reference: 11470385 - J Clin Epidemiol. 2001 Aug;54(8):774-81
– reference: 16980150 - J Clin Epidemiol. 2006 Oct;59(10):1092-101
– reference: 8668867 - Stat Med. 1996 Feb 28;15(4):361-87
– reference: 2277880 - Stat Med. 1990 Nov;9(11):1303-25
– reference: 19419546 - BMC Pulm Med. 2009;9:15
– reference: 19596181 - J Clin Epidemiol. 2010 Feb;63(2):205-14
– reference: 14713317 - Health Qual Life Outcomes. 2004;2:1
– reference: 17629912 - BMC Med Res Methodol. 2007;7:33
– reference: 17136967 - COPD. 2005 Mar;2(1):81-9
– reference: 9044528 - Stat Med. 1997 Feb 28;16(4):385-95
– reference: 21225900 - Stat Med. 2011 Feb 20;30(4):377-99
– reference: 20846460 - BMC Med Res Methodol. 2010;10:81
– reference: 22135502 - Clin Epidemiol. 2011;3:273-83
– reference: 10075620 - Ann Intern Med. 1999 Mar 16;130(6):515-24
– reference: 16011697 - Biometrics. 2005 Jun;61(2):498-506
– reference: 18203127 - Stat Med. 2008 Jul 30;27(17):3227-46
– reference: 23526243 - Stat Med. 2013 Sep 20;32(21):3646-59
– reference: 20808728 - J Stat Softw. 2010;33(1):1-22
– reference: 26412909 - J Stat Comput Simul. 2015;85(9):1902-1916
SSID ssj0017836
Score 2.4144874
Snippet Background In prognostic studies, the lasso technique is attractive since it improves the quality of predictions by shrinking regression coefficients, compared...
In prognostic studies, the lasso technique is attractive since it improves the quality of predictions by shrinking regression coefficients, compared to...
Background In prognostic studies, the lasso technique is attractive since it improves the quality of predictions by shrinking regression coefficients, compared...
Doc number: 116 Abstract Background: In prognostic studies, the lasso technique is attractive since it improves the quality of predictions by shrinking...
BACKGROUND: In prognostic studies, the lasso technique is attractive since it improves the quality of predictions by shrinking regression coefficients,...
SourceID pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 116
SubjectTerms Chronic obstructive pulmonary disease
Comparative analysis
Data analysis
Dyspnea - diagnosis
Expected values
Forecasting
Health Sciences
Humans
Lung diseases, Obstructive
Medical research
Medicine
Medicine & Public Health
Medicine, Experimental
Models, Statistical
Primary care
Prognosis
Pulmonary Disease, Chronic Obstructive - diagnosis
Quality of Life
Regression Analysis
Research Article
Statistical Theory and Methods
statistics and modelling
Statistics for Life Sciences
Studies
Surveys and Questionnaires
Theory of Medicine/Bioethics
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1di9QwMOgJ4ov4bfWUCIIohG3StE1AkEM8DuF8upN9C0na6MHRrrt7D_57Z9J0vSyeby2TtEnmO5nMEPK2q20TlA3M1rpiEpMNWR1qpkMoW29Fb2OViNNvzcm5_Lqsl2nDbZPCKmeZGAV1N3rcI1-AZSJrMKfL9tPqF8OqUXi6mkpo3CZ3YuoyoOd2uXO4ON5QmI8mVbPgIIiZEEAaXDKOFc6zO-6XmWraF9DXNNR-9OTeEWrUTMcPyP1kUtKjiQYeklv98IjcPU2H5o_J2XewtafSSXQMdLVGSHyLZXA2FDVZR-EdLemRrvsfU3DsQHGXlqaYw9_0IhaA6ChGlT4h58dfzj6fsFRMgTnAwpYF1TrpAS1OBu9AJ9lQAgIrMKC8bB3IPdDUvJK-AyXelc73PnDvwCTyQfR9qJ6Sg2Ec-ueEVhr41vHKKWtBBHRaSa-d4qENQjurCvIxW1ezmhJnGExlnUMAwwbRYhAt8AQOSVOQxYwG41OicqyXcWmiw6Kaf_R4v-sx_-vmtu8Qswb5F77qbbqGAFPDTFjmqK50A06gKgtymLUEvvM5eKYNk_h-Y_5SaUHe7MDYE2PZhn68im1q0QiNbZ5NpLQbtagr8AlLXZA2I7JsCXPIcPEzZgWXotQggQvyYSbHa8O6YTFe_H8OL8k9sA8lqmreHJKD7fqqfwU22Na9joz2B9vzMM8
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1Na90wzGwdjF3GvpuuGx4Mxgah8Wds2KWUlTLoTu3ozdiOvRVKXnl9PezfV3KSx8ujPewWIzlxLMuSLFki5HOnvM7G59orK2qJyYa8zaq2OTdt9Dz5UiXi9Jc-OZc_L9TFeN6Bd2E2_ffM6AMGm2fNOZCTyZox_Zg8UUzo4pbVR2t_Ad5FmJyQ9_Taus1-NRNC21vxhizajpPccpYWGXT8gjwflUd6OFD7JXmU-lfk6enoHn9Nzn6DVj0USaKLTK-XCCmtUvDmhqLM6ii0UWde0GX6M4TB9hTPY-kYXfiPXpZSDx3F-NE35Pz4x9nRST2WTagDzPeqzqYNMgIBgswxgPTxuQFSCVCVomwD7HAgk5mQsQNx3TUhpphZDKD8xMxTyuIt2ekXfdolVFjg0MBEMN4Ds3fWyGiDYbnN3AZvKvJ9Nq_uekiR4TBp9RwC_OOQLA7JAk9geuiKHExkcHFMSY6VMa5cMU2MvqfH13WP6VsP435ByjrkVHhr9OOFA_g1zHnlDpWwGsw901Rkf4YJHBbn4GltuJHDbxxoylKBede0Ffm0BmNPjFrr0-K24CiuuUWcd8NSWo-aKwHWX2Mr0s4W2WwK55D-8m_J_y15Y2Gvrci3aTluDOuBydj7H-T35BnohRJFNNP7ZGe1vE0fQPdahY-F7e4AyP0ocQ
  priority: 102
  providerName: Springer Nature
Title Validation of prediction models based on lasso regression with multiply imputed data
URI https://link.springer.com/article/10.1186/1471-2288-14-116
https://www.ncbi.nlm.nih.gov/pubmed/25323009
https://www.proquest.com/docview/1614555007
https://www.proquest.com/docview/1615262907
http://dx.doi.org/10.1186/1471-2288-14-116
https://pubmed.ncbi.nlm.nih.gov/PMC4209042
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1ra9sw8OgDxr6MdU9vbdBgMDbw6ocsW7Ax2tBSBimjNCPsi5BkaysEp0tTWP_97mQ7rUPaLyHiTn7o7nR31j0A3peZFq7QLtSZTENOxYa0dFkonYtyq5NK-y4Ro1NxMubfJ9nkNj26XcCrta4d9ZMaz6ef__29-YYC_9ULfCH2Y9xgwyRBksc8jGOxCduolwS5YiN-e6ZA-Qo-16jF7g4t11xhJft92lNaq1v3Hd21Gle5crjqddbxU3jSGpvsoOGOHdio6mfwaNQepz-H859ohTdNldjMscs5QfzIN8i5YqTjSoZjsrFnbF79bsJma0bfb1kbjXjDLnxriJJRvOkLGB8fnQ9PwrbNQmiQPovQFbnhFglmuLMGtZV2EZI2RdPK8tzgjog6PE65LVG9l5GxlXWxNWgsWZdUlUtfwlY9q6vXwFKJEm3i1BRa4-ZQyoJbaYrY5S6RRhcBfOmtq7psSmooKnLdh6C8KSKLIrLgP3RVRAD7HRmUbUuYUyeNqfKuTCHWzPi4nNHd637cD0RZRbyGV7W6TVDAV6MaWeogS6VA97CIAtjtYaJE2j644w3VMbRCy5pn6A5GeQDvlmCaSVFudTW79jhZIhJJOK8aVlo-dZKl6C1GMoC8x2S9JexD6os_vl44TyKJe3MAnzp2vPNY9yzGm4df8S08RsuRkxKPxS5sLebX1R5aZwszgM18kg9g-_Do9McZjoZiOPBfOgZeHPH37PDXf2HwOnI
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1rb9Mw8DQ6CfiCeBMYYCQQAilq4jgPSyA0YFPH1gqhDu2bsZ0YJk1JaTuh_Sl-I3d5lKVifNu3Rmentu98j9wL4Hke68Rl2vk6lpEvqNiQli72pXNBajUvdN0lYjxJRofi01F8tAG_u1wYCqvseGLNqPPK0jfyIWomIkZ1OkjfzX761DWKvKtdC42GLPaLs19osi3e7n1E_L7gfHdn-mHkt10FfIPLWfouS42wuD4jnDXInLULcCcRahJWpAYZAIqsMBI2R2mWB8YW1oXWoG5gHS8KF-F7r8CmoIzWAWy-35l8_rLyW1BOROcMzZJhiKzf5xyJMRR-SD3Ve1n1Jz1huC4SzsnE9XjNNadtLQt3b8KNVoll2w3V3YKNorwNV8etm_4OTL-idt80a2KVY7M5QeqnuvHOgpHszBk-k-5esXnxvQnHLRl9F2ZtlOMZO65bTuSM4ljvwuGlHPQ9GJRVWTwAFknkFCaMTKY1Mp1cZsJKk4UudVwanXnwpneuataU6lBUPLsPQZpShBZFaMFfaAIlHgw7NCjblkanDh0nqjaRsuQfM16tZnT_dfHYl4RZRRwD32p1m_iAW6PaW2o7jmSCZmcWeLDVG4k33fbBHW2oltMs1N974cGzFZhmUvRcWVSn9ZiYJ1zSmPsNKa1WzeMIrdBAepD2iKx3hH1IefyjrkMueCCR53vwuiPHc8u64DAe_n8PT-HaaDo-UAd7k_1HcB21U0GKQphswWA5Py0eowa4NE_aa8fg22Xf9D-IH3F-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LatwwcGhTCL2UvuM2TVUolBbMWrIsW9BLSLOkj4QekpKbkGQpCQTvsrs59O8748cSL8mhtzUz8tqat2c0A_CxLqyKlY2pLXSeSmo2ZHUsUh1jVnorgm2nRByfqKMz-eO8OO8_uC2HavchJdmdaaAuTc1qMq9jJ-KVmnBUqakQSGQuU87VQ3gkyfBRslYdrLMIdEJhSE3esWrjjPv1yDRtKuhbFmqzenIjhdpapulTeNK7lGy_44Fn8CA0z2H7uE-av4DTP-hrd6OT2Cyy-YIg7VU7BmfJyJLVDK_Jk56xRbjoimMbRl9pWV9z-JddtQMgakZVpS_hbHp4enCU9sMUUodUWKWxKp30SBYno3dok2zMkIA5OlBelg71HlpqnktfoxGvM-eDj9w7dIl8FCHE_BVsNbMm7ADLNcqt47mrrEUVUOtKeu0qHssotLNVAl9H-2rmXeMMQ62sxxAksCGyGCIL_sKARCUwGchgfN-onOZlXJs2YKnUHSs-r1cM_3U_7ieirCH5xbt62x9DwFejTlhmv8i1wiCwyhLYHWGi3PkxeOAN08v90qD_LAsM-rIygQ9rMK2kWrYmzG5anEIooQnndcdK66cWRY4xYaYTKEdMNtrCMaS5umy7gkuRadTACXwZ2PHWY92zGW_-B_k9bP_-NjW_vp_8fAuP0XGUZMO52oWt1eImvEPnbOX2Wgn8B0mvM6U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+prediction+models+based+on+lasso+regression+with+multiply+imputed+data&rft.jtitle=BMC+medical+research+methodology&rft.au=Musoro%2C+Jammbe+Z&rft.au=Zwinderman%2C+Aeilko+H&rft.au=Puhan%2C+Milo+A&rft.au=ter+Riet%2C+Gerben&rft.date=2014-10-16&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2288&rft.eissn=1471-2288&rft.volume=14&rft_id=info:doi/10.1186%2F1471-2288-14-116&rft.externalDocID=A539699680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon