Applying Pollen DNA Metabarcoding to the Study of Plant–Pollinator Interactions
Premise of the study: To study pollination networks in a changing environment, we need accurate, high-throughput methods. Previous studies have shown that more highly resolved networks can be constructed by studying pollen loads taken from bees, relative to field observations. DNA metabarcoding pote...
Saved in:
Published in | Applications in plant sciences Vol. 5; no. 6 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Botanical Society of America
01.06.2017
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Premise of the study: To study pollination networks in a changing environment, we need accurate, high-throughput methods. Previous studies have shown that more highly resolved networks can be constructed by studying pollen loads taken from bees, relative to field observations. DNA metabarcoding potentially allows for faster and finer-scale taxonomic resolution of pollen compared to traditional approaches (e.g., light microscopy), but has not been applied to pollination networks. Methods: We sampled pollen from 38 bee species collected in Florida from sites differing in forest management. We isolated DNA from pollen mixtures and sequenced rbcL and ITS2 gene regions from all mixtures in a single run on the Illumina MiSeq platform. We identified species from sequence data using comprehensive rbcL and ITS2 databases. Results: We successfully built a proof-of-concept quantitative pollination network using pollen metabarcoding. Discussion: Our work underscores that pollen metabarcoding is not quantitative but that quantitative networks can be constructed based on the number of interacting individuals. Due to the frequency of contamination and false positive reads, isolation and PCR negative controls should be used in every reaction. DNA metabarcoding has advantages in efficiency and resolution over microscopic identification of pollen, and we expect that it will have broad utility for future studies of plant–pollinator interactions. |
---|---|
AbstractList | Premise of the study: To study pollination networks in a changing environment, we need accurate, high-throughput methods. Previous studies have shown that more highly resolved networks can be constructed by studying pollen loads taken from bees, relative to field observations. DNA metabarcoding potentially allows for faster and finer-scale taxonomic resolution of pollen compared to traditional approaches (e.g., light microscopy), but has not been applied to pollination networks. Methods: We sampled pollen from 38 bee species collected in Florida from sites differing in forest management. We isolated DNA from pollen mixtures and sequenced rbcL and ITS2 gene regions from all mixtures in a single run on the Illumina MiSeq platform. We identified species from sequence data using comprehensive rbcL and ITS2 databases. Results: We successfully built a proof-of-concept quantitative pollination network using pollen metabarcoding. Discussion: Our work underscores that pollen metabarcoding is not quantitative but that quantitative networks can be constructed based on the number of interacting individuals. Due to the frequency of contamination and false positive reads, isolation and PCR negative controls should be used in every reaction. DNA metabarcoding has advantages in efficiency and resolution over microscopic identification of pollen, and we expect that it will have broad utility for future studies of plant–pollinator interactions. To study pollination networks in a changing environment, we need accurate, high-throughput methods. Previous studies have shown that more highly resolved networks can be constructed by studying pollen loads taken from bees, relative to field observations. DNA metabarcoding potentially allows for faster and finer-scale taxonomic resolution of pollen compared to traditional approaches (e.g., light microscopy), but has not been applied to pollination networks.PREMISE OF THE STUDYTo study pollination networks in a changing environment, we need accurate, high-throughput methods. Previous studies have shown that more highly resolved networks can be constructed by studying pollen loads taken from bees, relative to field observations. DNA metabarcoding potentially allows for faster and finer-scale taxonomic resolution of pollen compared to traditional approaches (e.g., light microscopy), but has not been applied to pollination networks.We sampled pollen from 38 bee species collected in Florida from sites differing in forest management. We isolated DNA from pollen mixtures and sequenced rbcL and ITS2 gene regions from all mixtures in a single run on the Illumina MiSeq platform. We identified species from sequence data using comprehensive rbcL and ITS2 databases.METHODSWe sampled pollen from 38 bee species collected in Florida from sites differing in forest management. We isolated DNA from pollen mixtures and sequenced rbcL and ITS2 gene regions from all mixtures in a single run on the Illumina MiSeq platform. We identified species from sequence data using comprehensive rbcL and ITS2 databases.We successfully built a proof-of-concept quantitative pollination network using pollen metabarcoding.RESULTSWe successfully built a proof-of-concept quantitative pollination network using pollen metabarcoding.Our work underscores that pollen metabarcoding is not quantitative but that quantitative networks can be constructed based on the number of interacting individuals. Due to the frequency of contamination and false positive reads, isolation and PCR negative controls should be used in every reaction. DNA metabarcoding has advantages in efficiency and resolution over microscopic identification of pollen, and we expect that it will have broad utility for future studies of plant-pollinator interactions.DISCUSSIONOur work underscores that pollen metabarcoding is not quantitative but that quantitative networks can be constructed based on the number of interacting individuals. Due to the frequency of contamination and false positive reads, isolation and PCR negative controls should be used in every reaction. DNA metabarcoding has advantages in efficiency and resolution over microscopic identification of pollen, and we expect that it will have broad utility for future studies of plant-pollinator interactions. To study pollination networks in a changing environment, we need accurate, high-throughput methods. Previous studies have shown that more highly resolved networks can be constructed by studying pollen loads taken from bees, relative to field observations. DNA metabarcoding potentially allows for faster and finer-scale taxonomic resolution of pollen compared to traditional approaches (e.g., light microscopy), but has not been applied to pollination networks. We sampled pollen from 38 bee species collected in Florida from sites differing in forest management. We isolated DNA from pollen mixtures and sequenced and ITS2 gene regions from all mixtures in a single run on the Illumina MiSeq platform. We identified species from sequence data using comprehensive and ITS2 databases. We successfully built a proof-of-concept quantitative pollination network using pollen metabarcoding. Our work underscores that pollen metabarcoding is not quantitative but that quantitative networks can be constructed based on the number of interacting individuals. Due to the frequency of contamination and false positive reads, isolation and PCR negative controls should be used in every reaction. DNA metabarcoding has advantages in efficiency and resolution over microscopic identification of pollen, and we expect that it will have broad utility for future studies of plant-pollinator interactions. Premise of the study: To study pollination networks in a changing environment, we need accurate, high‐throughput methods. Previous studies have shown that more highly resolved networks can be constructed by studying pollen loads taken from bees, relative to field observations. DNA metabarcoding potentially allows for faster and finer‐scale taxonomic resolution of pollen compared to traditional approaches (e.g., light microscopy), but has not been applied to pollination networks. Methods: We sampled pollen from 38 bee species collected in Florida from sites differing in forest management. We isolated DNA from pollen mixtures and sequenced rbcL and ITS2 gene regions from all mixtures in a single run on the Illumina MiSeq platform. We identified species from sequence data using comprehensive rbcL and ITS2 databases. Results: We successfully built a proof‐of‐concept quantitative pollination network using pollen metabarcoding. Discussion: Our work underscores that pollen metabarcoding is not quantitative but that quantitative networks can be constructed based on the number of interacting individuals. Due to the frequency of contamination and false positive reads, isolation and PCR negative controls should be used in every reaction. DNA metabarcoding has advantages in efficiency and resolution over microscopic identification of pollen, and we expect that it will have broad utility for future studies of plant–pollinator interactions. |
Author | Gruenewald, David Morozumi, Connor Brosi, Berry J Bell, Karen L Burgess, Kevin S Lawley, Brice Dobbs, Emily K Fowler, Julie |
Author_xml | – sequence: 1 givenname: Karen L surname: Bell fullname: Bell, Karen L organization: CSIRO Land and Water and CSIRO Health and Biosecurity, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia – sequence: 2 givenname: Julie surname: Fowler fullname: Fowler, Julie organization: Department of Environmental Sciences, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322 USA – sequence: 3 givenname: Kevin S surname: Burgess fullname: Burgess, Kevin S organization: Department of Biology, Columbus State University, Columbus, Georgia 31907-5645 USA – sequence: 4 givenname: Emily K surname: Dobbs fullname: Dobbs, Emily K organization: Department of Environmental Sciences, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322 USA – sequence: 5 givenname: David surname: Gruenewald fullname: Gruenewald, David organization: Department of Environmental Sciences, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322 USA – sequence: 6 givenname: Brice surname: Lawley fullname: Lawley, Brice organization: Department of Environmental Sciences, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322 USA – sequence: 7 givenname: Connor surname: Morozumi fullname: Morozumi, Connor organization: Department of Environmental Sciences, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322 USA – sequence: 8 givenname: Berry J surname: Brosi fullname: Brosi, Berry J organization: Department of Environmental Sciences, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322 USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28690929$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu1DAUhi3Uil7ojjWKxAYhpthO4ssGaVSgrVRgUGFt2clJ6ypjB9uhmh3vwBvyJHU0QymVKN4cy_7-c_HvPbTlvAOEnhJ8WPKSvtbDEA8Jw5jQ6hHapYSJGa5qvHVnv4MOYrzCeYl8JKvHaIcKJrGkchd9ng9Dv7Luolj4vgdXvP04Lz5A0kaHxrfTRfJFuoTiPI3tqvBdsei1S79-_JwE1unkQ3HqEgTdJOtdfIK2O91HONjEffT1_bsvRyezs0_Hp0fzs5mpJa1mUhrWGgGcMMaBkIbUlWgpl2A4AwymazrcaMNLIUvTdbwWBnfAOWlL0RJR7qM367zDaJbQNuBS0L0agl3qsFJeW_X3jbOX6sJ_V3UlZYlpTvBikyD4byPEpJY2NtDn8cCPUVGeq2S4JP9FiSScsSqHjD6_h175Mbj8EopSiZnAUk61n91t_rbr38Zk4NUaaIKPMUB3ixCsJuvVZL3aWJ9xeg9vbNKTH3l02_9LVK9F17aH1YMF1HxxXv7RvVzrjPX5Oz7c2Q2VENBa |
CitedBy_id | crossref_primary_10_1371_journal_pone_0300875 crossref_primary_10_1093_zoolinnean_zlac052 crossref_primary_10_1002_ece3_4234 crossref_primary_10_5141_jee_22_003 crossref_primary_10_1016_j_agee_2020_107296 crossref_primary_10_3389_fpls_2024_1472066 crossref_primary_10_1038_s41576_019_0152_0 crossref_primary_10_1111_mec_16682 crossref_primary_10_3390_insects14010095 crossref_primary_10_1007_s00442_022_05254_0 crossref_primary_10_3390_plants13243467 crossref_primary_10_1371_journal_pone_0282715 crossref_primary_10_1038_s41598_023_44822_z crossref_primary_10_1016_j_actao_2020_103551 crossref_primary_10_1111_nph_16882 crossref_primary_10_3390_d13090437 crossref_primary_10_1111_1442_1984_12424 crossref_primary_10_1111_1755_0998_13937 crossref_primary_10_3390_d14110958 crossref_primary_10_1002_ece3_4809 crossref_primary_10_3897_mbmg_6_85213 crossref_primary_10_7717_peerj_5999 crossref_primary_10_1111_1365_2435_14465 crossref_primary_10_1038_s41598_022_04808_9 crossref_primary_10_1111_mec_15734 crossref_primary_10_1111_1755_0998_13061 crossref_primary_10_1002_edn3_407 crossref_primary_10_1002_edn3_527 crossref_primary_10_1111_een_12823 crossref_primary_10_1093_database_baz155 crossref_primary_10_52825_ocp_v2i_166 crossref_primary_10_7717_peerj_13671 crossref_primary_10_1111_mec_16943 crossref_primary_10_1111_1755_0998_13468 crossref_primary_10_1111_een_12782 crossref_primary_10_1111_1755_0998_13746 crossref_primary_10_1186_s13007_023_01097_9 crossref_primary_10_1002_2688_8319_12120 crossref_primary_10_1111_icad_12622 crossref_primary_10_3389_fevo_2023_1112929 crossref_primary_10_1111_1365_2435_14353 crossref_primary_10_1007_s13592_019_00662_3 crossref_primary_10_1016_j_scitotenv_2024_171810 crossref_primary_10_1016_j_envres_2023_117808 crossref_primary_10_1111_mec_16537 crossref_primary_10_1007_s11252_023_01458_1 crossref_primary_10_1002_ece3_10879 crossref_primary_10_1111_ele_13623 crossref_primary_10_1111_mec_16375 crossref_primary_10_1038_s41598_021_97619_3 crossref_primary_10_3389_fevo_2022_924941 crossref_primary_10_1002_ece3_10475 crossref_primary_10_1016_j_agee_2021_107560 crossref_primary_10_3390_d14040236 crossref_primary_10_1111_1755_0998_12948 crossref_primary_10_15673_fst_v14i4_1895 crossref_primary_10_1038_s41597_024_02962_5 crossref_primary_10_3389_fevo_2018_00134 crossref_primary_10_1111_1365_2664_13586 crossref_primary_10_1111_eva_12707 crossref_primary_10_1016_j_scitotenv_2022_157617 crossref_primary_10_1016_j_foodres_2021_110438 crossref_primary_10_3390_insects13080744 crossref_primary_10_1186_s12862_022_02004_x crossref_primary_10_3897_rio_10_e120483 crossref_primary_10_1111_jse_12933 crossref_primary_10_1111_mec_15675 crossref_primary_10_1016_j_tree_2023_09_017 crossref_primary_10_1016_j_baae_2020_11_007 crossref_primary_10_1071_ZO20085 crossref_primary_10_1002_aps3_11601 crossref_primary_10_1038_s41598_021_95702_3 crossref_primary_10_1111_mec_14975 crossref_primary_10_1111_een_12674 crossref_primary_10_3389_fevo_2022_735588 crossref_primary_10_1111_mec_16112 crossref_primary_10_1038_s41598_020_61198_6 crossref_primary_10_1007_s10661_021_09563_4 crossref_primary_10_1016_j_foodcont_2018_04_040 crossref_primary_10_1146_annurev_ecolsys_102722_021904 crossref_primary_10_1093_gigascience_giac040 crossref_primary_10_1002_edn3_540 crossref_primary_10_1111_1365_2656_12828 crossref_primary_10_3732_apps_1700012 crossref_primary_10_3390_plants12193406 crossref_primary_10_1002_edn3_421 crossref_primary_10_1098_rsos_190279 crossref_primary_10_3897_mbmg_8_128689 crossref_primary_10_3732_apps_1700052 crossref_primary_10_1111_oik_10301 crossref_primary_10_3390_d14030191 crossref_primary_10_1111_mec_14840 crossref_primary_10_1080_17429145_2021_2015466 crossref_primary_10_1002_aps3_1020 crossref_primary_10_1038_s41598_018_23103_0 crossref_primary_10_1111_1755_0998_13703 crossref_primary_10_1016_j_ufug_2022_127794 crossref_primary_10_3120_0024_9637_69_1_42 crossref_primary_10_1007_s13592_019_00646_3 crossref_primary_10_3390_foods14030419 crossref_primary_10_1093_pnasnexus_pgae440 crossref_primary_10_47612_1999_9127_2021_31_134_146 crossref_primary_10_1016_j_gecco_2019_e00547 crossref_primary_10_1111_1744_7917_12785 crossref_primary_10_35535_acpa_2023_0007 crossref_primary_10_1371_journal_pone_0225262 crossref_primary_10_3897_mbmg_6_89753 crossref_primary_10_1111_2041_210X_13265 |
Cites_doi | 10.1890/02-0587 10.1073/pnas.0905845106 10.3390/nu1020316 10.1046/j.1420-9101.2001.00348.x 10.1016/j.flora.2012.01.006 10.1111/j.1461-0248.2009.01296.x 10.1038/srep27282 10.2174/1874213000902010007 10.1111/1755-0998.12288 10.1038/ncomms2422 10.3732/apps.1600110 10.1371/journal.pone.0145365 10.1098/rspb.2002.2218 10.1371/journal.pone.0002802 10.56021/9780801885730 10.1111/plb.12251 10.1111/j.1755-0998.2008.02352.x 10.1126/science.1232728 10.1111/j.1755-0998.2008.02439.x 10.1371/journal.pone.0134735 10.1371/journal.pone.0000508 10.1111/ele.12236 10.1038/nature11214 10.1128/AEM.01043-13 10.1016/j.ecolind.2012.07.025 10.1186/s12898-015-0051-y 10.1371/journal.pone.0043093 10.1371/journal.pone.0019254 10.1128/AEM.00062-07 10.1890/07-2121.1 10.1016/j.flora.2007.10.005 10.1016/j.baae.2010.01.001 10.1139/gen-2015-0200 10.1007/978-1-59745-366-0_22 10.1098/rspb.2004.2909 10.1371/journal.pone.0008613 10.1038/nature10832 10.1111/j.2041-210X.2011.00092.x 10.1111/j.1095-8339.2008.00938.x 10.1093/bioinformatics/btq461 10.1111/j.1365-294X.2012.05542.x 10.1016/j.tree.2010.01.007 10.1073/pnas.1633576100 10.1186/1471-2180-10-206 10.1038/nmeth.f.303 10.3732/apps.1500043 10.1111/j.1365-294X.2012.05538.x |
ContentType | Journal Article |
Copyright | 2017 The Author(s) 2017. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2017 Bell et al. Published by the Botanical Society of America 2017 |
Copyright_xml | – notice: 2017 The Author(s) – notice: 2017. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2017 Bell et al. Published by the Botanical Society of America 2017 |
DBID | 24P AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM |
DOI | 10.3732/apps.1600124 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2168-0450 |
EndPage | n/a |
ExternalDocumentID | PMC5499302 28690929 10_3732_apps_1600124 APS31600124 10.3732/apps.1600124 |
Genre | article Journal Article |
GeographicLocations | Florida United States--US |
GeographicLocations_xml | – name: Florida – name: United States--US |
GroupedDBID | 0R 1OC 24P 5VS 8FE 8FH AACFU AAPSS ABDBF ACGFS ACXQS ADACO ADBBV ADEHT ADKYN ADOYD ADRAZ ADRYA ADZMN AEDJY AENEX AFKRA AKPMI ALMA_UNASSIGNED_HOLDINGS AVUZU BBNVY BCNDV BENPR BHPHI EBS EJD GROUPED_DOAJ GX1 H13 HCIFZ HYE IPNFZ KQ8 LK8 M48 M7P O9- OK1 PIMPY PQ0 PROAC RBO RIG RNS ROL RPM RZN TBO WIN 0R~ AAEFD AAHBH AAHHS ACCFJ ACCMX ACGFO ACUHS ADHSS ADZOD AEEZP AEGXH AEPYG AEQDE AFNWH AIAGR AIWBW AJBDE ALUQN AOIJS CCPQU IAO IGS ITC M~E AAYXX CITATION PHGZM PHGZT NPM AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-b5924-99b6db8e71667e11c1548d279eb76e0ebfcf0cab73893bff758b0fe771d38d183 |
IEDL.DBID | M48 |
ISSN | 2168-0450 |
IngestDate | Thu Aug 21 13:54:12 EDT 2025 Fri Jul 11 18:37:39 EDT 2025 Fri Jul 11 16:53:15 EDT 2025 Wed Aug 13 04:59:50 EDT 2025 Wed Feb 19 02:01:48 EST 2025 Tue Jul 01 00:20:09 EDT 2025 Thu Apr 24 23:00:00 EDT 2025 Wed Jan 22 07:40:11 EST 2025 Thu Nov 04 13:51:07 EDT 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | palynology ITS plant–pollinator interactions rbcL DNA metabarcoding pollination networks |
Language | English |
License | Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/4.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (CC-BY-NC-SA 4.0), which permits unrestricted noncommercial use and redistribution provided that the original author and source are credited and the new work is distributed under the same license as the original. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b5924-99b6db8e71667e11c1548d279eb76e0ebfcf0cab73893bff758b0fe771d38d183 |
Notes | The authors thank the U.S. Army Research Office (grants W911NF‐13‐1‐0247 and W911NF‐13‐1‐0100) and the U.S. Department of Agriculture (USDA‐NIFA‐2012‐67009‐20090) for funding. The authors thank Rachel Gardner for fieldwork assistance and Isabel Gottleib and Robert Fletcher for assistance with site selection and project logistics. Sam Droege provided extensive assistance with identification of difficult bee specimens. The authors thank Alexander Keller and Markus Ankenbrand (University of Würzburg) for providing advice on adapting their bioinformatics pipeline to our rbcL reference library. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors thank the U.S. Army Research Office (grants W911NF-13-1-0247 and W911NF-13-1-0100) and the U.S. Department of Agriculture (USDA-NIFA-2012-67009-20090) for funding. The authors thank Rachel Gardner for fieldwork assistance and Isabel Gottleib and Robert Fletcher for assistance with site selection and project logistics. Sam Droege provided extensive assistance with identification of difficult bee specimens. The authors thank Alexander Keller and Markus Ankenbrand (University of Würzburg) for providing advice on adapting their bioinformatics pipeline to our rbcL reference library. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3732/apps.1600124 |
PMID | 28690929 |
PQID | 2290680992 |
PQPubID | 4368373 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5499302 proquest_miscellaneous_2718354931 proquest_miscellaneous_1917664191 proquest_journals_2290680992 pubmed_primary_28690929 crossref_primary_10_3732_apps_1600124 crossref_citationtrail_10_3732_apps_1600124 wiley_primary_10_3732_apps_1600124_APS31600124 bioone_primary_10_3732_apps_1600124 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2017 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: June 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Applications in plant sciences |
PublicationTitleAlternate | Appl Plant Sci |
PublicationYear | 2017 |
Publisher | Botanical Society of America John Wiley & Sons, Inc |
Publisher_xml | – name: Botanical Society of America – name: John Wiley & Sons, Inc |
References | 2017; 5 2010; 11 2015; 15 2010; 10 2012; 483 2015; 17 2013; 4 2011; 2 2012; 487 2015; 3 2015; 10 2003; 270 2007 1994 1993 2008; 203 2008; 3 2007; 73 2011; 6 2016; 59 2009; 159 2012; 207 2009; 12 2016; 6 2010; 26 2010; 25 2013; 339 2013; 79 2013; 31 2004; 271 2008; 89 2009; 9 2016 2008; 138 2007; 2 2014; 17 2009; 2 2012; 7 2010; 5 2009; 1 2003; 84 2003; 100 2010; 7 2012; 21 2009; 106 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 R Core Team (e_1_2_5_38_1) 2016 e_1_2_5_31_1 e_1_2_5_50_1 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1 15615687 - Proc Biol Sci. 2004 Dec 22;271(1557):2605-11 28337390 - Appl Plant Sci. 2017 Mar 10;5(3):null 20673359 - BMC Microbiol. 2010 Jul 30;10:206 21637336 - PLoS One. 2011;6(5):e19254 12881488 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9383-7 20383131 - Nat Methods. 2010 May;7(5):335-6 19666622 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12794-7 26308362 - PLoS One. 2015 Aug 26;10(8):e0134735 23340431 - Nat Commun. 2013;4:1391 24893805 - Mol Ecol Resour. 2015 Jan;15(1):8-16 12614582 - Proc Biol Sci. 2003 Feb 7;270(1512):313-21 22486820 - Mol Ecol. 2012 Apr;21(8):1794-805 18665273 - PLoS One. 2008 Jul 30;3(7):e2802 19137945 - Ecology. 2008 Dec;89(12):3387-99 20188434 - Trends Ecol Evol. 2010 Jun;25(6):345-53 17586664 - Appl Environ Microbiol. 2007 Aug;73(16):5261-7 26194794 - BMC Ecol. 2015 Jul 22;15:20 21564673 - Mol Ecol Resour. 2009 Mar;9(2):439-57 21564566 - Mol Ecol Resour. 2009 Jan;9(1):51-60 22905208 - PLoS One. 2012;7(8):e43093 17551588 - PLoS One. 2007 Jun 06;2(6):e508 20062805 - PLoS One. 2010 Jan 07;5(1):e8613 19379135 - Ecol Lett. 2009 May;12(5):409-19 22343894 - Nature. 2012 Feb 19;483(7388):205-8 23793624 - Appl Environ Microbiol. 2013 Sep;79(17):5112-20 24386999 - Ecol Lett. 2014 Mar;17(3):350-9 22253987 - Nutrients. 2009 Feb;1(2):316-28 25270225 - Plant Biol (Stuttg). 2015 Mar;17(2):558-66 27255732 - Sci Rep. 2016 Jun 03;6:27282 23449999 - Science. 2013 Mar 29;339(6127):1611-5 22486819 - Mol Ecol. 2012 Apr;21(8):1789-93 18612615 - Methods Mol Med. 2008;138:263-9 22722863 - Nature. 2012 Jul 12;487(7406):227-30 26700168 - PLoS One. 2015 Dec 23;10(12):e0145365 27322652 - Genome. 2016 Sep;59(9):629-40 26649264 - Appl Plant Sci. 2015 Oct 30;3(11):null |
References_xml | – volume: 5 start-page: 1600110 year: 2017 article-title: An rbcL reference library to aid in the identification of plant species mixtures by DNA metabarcoding publication-title: Applications in Plant Sciences – volume: 3 start-page: 1500043 year: 2015 article-title: Rank‐based characterization of pollen assemblages collected by honey bees using a multi‐locus metabarcoding approach publication-title: Applications in Plant Sciences – volume: 2 start-page: 333 year: 2011 end-page: 340 article-title: Discriminating plant species in a local temperate flora using the rbcL + matK DNA barcode publication-title: Methods in Ecology and Evolution – volume: 17 start-page: 350 year: 2014 end-page: 359 article-title: The sudden collapse of pollinator communities publication-title: Ecology Letters – volume: 84 start-page: 2493 year: 2003 end-page: 2501 article-title: Null model analyses of specialization in plant–pollinator interactions publication-title: Ecology – volume: 159 start-page: 1 year: 2009 end-page: 11 article-title: Selection of candidate coding DNA barcoding regions for use on land plants publication-title: Botanical Journal of the Linnean Society – volume: 10 start-page: 206 year: 2010 article-title: Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags publication-title: BMC Microbiology – year: 1994 – volume: 11 start-page: 185 year: 2010 end-page: 195 article-title: Why network analysis is often disconnected from community ecology: A critique and an ecologist's guide publication-title: Basic and Applied Ecology – volume: 79 start-page: 5112 year: 2013 end-page: 5120 article-title: Development of a dual‐index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina Sequencing Platform publication-title: Applied and Environmental Microbiology – volume: 3 start-page: e2802 year: 2008 article-title: Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well? publication-title: PLoS ONE – volume: 7 start-page: e43093 year: 2012 article-title: PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets publication-title: PLoS ONE – volume: 339 start-page: 1611 year: 2013 end-page: 1615 article-title: Plant‐pollinator interactions over 120 years: Loss of species, co‐occurrence, and function publication-title: Science – volume: 2 start-page: 7 year: 2009 end-page: 24 article-title: Indices, graphs and null models: Analyzing bipartite ecological networks publication-title: Open Ecology Journal – volume: 6 start-page: 27282 year: 2016 article-title: Using metabarcoding to reveal and quantify plant–pollinator interactions publication-title: Scientific Reports – volume: 487 start-page: 227 year: 2012 end-page: 230 article-title: Disentangling nestedness from models of ecological complexity publication-title: Nature – volume: 203 start-page: 627 year: 2008 end-page: 639 article-title: Pollen morphology of Stachys (Lamiaceae) in Iran and its systematic implication publication-title: Flora—Morphology, Distribution, Functional Ecology of Plants – volume: 7 start-page: 335 year: 2010 end-page: 336 article-title: QIIME allows analysis of highthroughput community sequencing data publication-title: Nature Methods – volume: 73 start-page: 5261 year: 2007 end-page: 5267 article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy publication-title: Applied and Environmental Microbiology – year: 1993 – volume: 483 start-page: 205 year: 2012 end-page: 208 article-title: Stability criteria for complex ecosystems publication-title: Nature – volume: 5 start-page: e8613 year: 2010 article-title: Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species publication-title: PLoS ONE – volume: 10 start-page: e0134735 year: 2015 article-title: Using DNA metabarcoding to identify the floral composition of honey: A new tool for investigating honey bee foraging preferences publication-title: PLoS ONE – volume: 4 start-page: 1391 year: 2013 end-page: 1396 article-title: The ghost of nestedness in ecological networks publication-title: Nature Communications – volume: 271 start-page: 2605 year: 2004 end-page: 2611 article-title: Tolerance of pollination networks to species extinctions publication-title: Proceedings of the Royal Society of London. Series B, Biological Sciences – volume: 100 start-page: 9383 year: 2003 end-page: 9387 article-title: The nested assembly of plant‐animal mutualistic networks publication-title: Proceedings of the National Academy of Sciences, USA – year: 2007 – volume: 21 start-page: 1794 year: 2012 end-page: 1805 article-title: Nextgeneration sequencing technologies for environmental DNA research publication-title: Molecular Ecology – volume: 17 start-page: 558 year: 2015 end-page: 566 article-title: Evaluating multiplexed next‐generation sequencing as a method in palynology for mixed pollen samples publication-title: Plant Biology – volume: 21 start-page: 1789 year: 2012 end-page: 1793 article-title: Environmental DNA publication-title: Molecular Ecology – volume: 6 start-page: e19254 year: 2011 article-title: Choosing and using a plant DNA barcode publication-title: PLoS ONE – year: 2016 – volume: 106 start-page: 12794 year: 2009 end-page: 12797 article-title: A DNA barcode for land plants publication-title: Proceedings of the National Academy of Sciences, USA – volume: 31 start-page: 35 year: 2013 end-page: 40 article-title: What do we know about the effects of landscape changes on plant–pollinator interaction networks publication-title: Ecological Indicators – volume: 1 start-page: 316 year: 2009 end-page: 328 article-title: Soft fruit traceability in food matrices using real‐time PCR publication-title: Nutrients – volume: 138 start-page: 263 year: 2008 end-page: 269 article-title: Microscopic identification and purity determination of pollen grains publication-title: Methods in Molecular Medicine – volume: 10 start-page: e0145365 year: 2015 article-title: Taxonomic characterization of honey bee (Apis mellifera) pollen foraging based on non‐overlapping paired‐end sequencing of nuclear ribosomal loci publication-title: PLoS ONE – volume: 9 start-page: 439 year: 2009 end-page: 457 article-title: Selecting barcoding loci for plants: Evaluation of seven candidate loci with species‐level sampling in three divergent groups of land plants publication-title: Molecular Ecology Resources – volume: 12 start-page: 409 year: 2009 end-page: 419 article-title: Plant‐pollinator networks: Adding the pollinator's perspective publication-title: Ecology Letters – volume: 270 start-page: 313 year: 2003 end-page: 321 article-title: Biological identifications through DNA barcodes publication-title: Proceedings of the Royal Society of London. Series B, Biological Sciences – volume: 2 start-page: e508 year: 2007 article-title: A two‐locus global DNA barcode for land plants: The coding rbcL gene complements the non‐coding trnH‐psbA spacer region publication-title: PLoS ONE – volume: 15 start-page: 8 year: 2015 end-page: 16 article-title: Efficient and sensitive identification and quantification of airborne pollen using next‐generation DNA sequencing publication-title: Molecular Ecology Resources – volume: 15 start-page: 20 year: 2015 article-title: Increased efficiency in identifying mixed pollen samples by meta‐barcoding with a dual‐indexing approach publication-title: BMC Ecology – volume: 26 start-page: 2460 year: 2010 end-page: 2461 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics (Oxford, England) – volume: 25 start-page: 345 year: 2010 end-page: 353 article-title: Global pollinator declines: Trends, impacts and drivers publication-title: Trends in Ecology & Evolution – volume: 9 start-page: 51 year: 2009 end-page: 60 article-title: New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: The trnL approach publication-title: Molecular Ecology Resources – volume: 207 start-page: 203 year: 2012 end-page: 211 article-title: Pollen morphology of Campanula (Campanulaceae) and allied genera in Iran with special focus on its systematic implication publication-title: Flora— Morphology, Distribution, Functional Ecology of Plants – volume: 59 start-page: 629 year: 2016 end-page: 640 article-title: Pollen DNA barcoding: Current applications and future prospects publication-title: Genome – volume: 89 start-page: 3387 year: 2008 end-page: 3399 article-title: What do interaction network metrics tell us about specialization and biological traits? publication-title: Ecology – ident: e_1_2_5_48_1 doi: 10.1890/02-0587 – ident: e_1_2_5_12_1 doi: 10.1073/pnas.0905845106 – ident: e_1_2_5_34_1 doi: 10.3390/nu1020316 – ident: e_1_2_5_46_1 doi: 10.1046/j.1420-9101.2001.00348.x – volume-title: R: A language and environment for statistical computing year: 2016 ident: e_1_2_5_38_1 – ident: e_1_2_5_27_1 doi: 10.1016/j.flora.2012.01.006 – ident: e_1_2_5_8_1 doi: 10.1111/j.1461-0248.2009.01296.x – ident: e_1_2_5_36_1 doi: 10.1038/srep27282 – ident: e_1_2_5_15_1 doi: 10.2174/1874213000902010007 – ident: e_1_2_5_29_1 doi: 10.1111/1755-0998.12288 – ident: e_1_2_5_44_1 doi: 10.1038/ncomms2422 – ident: e_1_2_5_5_1 doi: 10.3732/apps.1600110 – ident: e_1_2_5_14_1 doi: 10.1371/journal.pone.0145365 – ident: e_1_2_5_22_1 doi: 10.1098/rspb.2002.2218 – ident: e_1_2_5_17_1 doi: 10.1371/journal.pone.0002802 – ident: e_1_2_5_33_1 doi: 10.56021/9780801885730 – ident: e_1_2_5_26_1 doi: 10.1111/plb.12251 – ident: e_1_2_5_47_1 doi: 10.1111/j.1755-0998.2008.02352.x – ident: e_1_2_5_10_1 doi: 10.1126/science.1232728 – ident: e_1_2_5_23_1 doi: 10.1111/j.1755-0998.2008.02439.x – ident: e_1_2_5_21_1 doi: 10.1371/journal.pone.0134735 – ident: e_1_2_5_19_1 – ident: e_1_2_5_30_1 doi: 10.1371/journal.pone.0000508 – ident: e_1_2_5_31_1 doi: 10.1111/ele.12236 – ident: e_1_2_5_25_1 doi: 10.1038/nature11214 – ident: e_1_2_5_28_1 doi: 10.1128/AEM.01043-13 – ident: e_1_2_5_18_1 doi: 10.1016/j.ecolind.2012.07.025 – ident: e_1_2_5_43_1 doi: 10.1186/s12898-015-0051-y – ident: e_1_2_5_35_1 doi: 10.1371/journal.pone.0043093 – ident: e_1_2_5_24_1 doi: 10.1371/journal.pone.0019254 – ident: e_1_2_5_49_1 doi: 10.1128/AEM.00062-07 – ident: e_1_2_5_7_1 doi: 10.1890/07-2121.1 – ident: e_1_2_5_41_1 doi: 10.1016/j.flora.2007.10.005 – ident: e_1_2_5_6_1 doi: 10.1016/j.baae.2010.01.001 – ident: e_1_2_5_4_1 doi: 10.1139/gen-2015-0200 – ident: e_1_2_5_39_1 doi: 10.1007/978-1-59745-366-0_22 – ident: e_1_2_5_32_1 doi: 10.1098/rspb.2004.2909 – ident: e_1_2_5_13_1 doi: 10.1371/journal.pone.0008613 – ident: e_1_2_5_2_1 doi: 10.1038/nature10832 – ident: e_1_2_5_9_1 doi: 10.1111/j.2041-210X.2011.00092.x – ident: e_1_2_5_20_1 doi: 10.1111/j.1095-8339.2008.00938.x – ident: e_1_2_5_16_1 doi: 10.1093/bioinformatics/btq461 – ident: e_1_2_5_45_1 doi: 10.1111/j.1365-294X.2012.05542.x – ident: e_1_2_5_37_1 doi: 10.1016/j.tree.2010.01.007 – ident: e_1_2_5_3_1 doi: 10.1073/pnas.1633576100 – ident: e_1_2_5_50_1 doi: 10.1186/1471-2180-10-206 – ident: e_1_2_5_11_1 doi: 10.1038/nmeth.f.303 – ident: e_1_2_5_40_1 doi: 10.3732/apps.1500043 – ident: e_1_2_5_42_1 doi: 10.1111/j.1365-294X.2012.05538.x – reference: 20188434 - Trends Ecol Evol. 2010 Jun;25(6):345-53 – reference: 22722863 - Nature. 2012 Jul 12;487(7406):227-30 – reference: 18612615 - Methods Mol Med. 2008;138:263-9 – reference: 12614582 - Proc Biol Sci. 2003 Feb 7;270(1512):313-21 – reference: 17551588 - PLoS One. 2007 Jun 06;2(6):e508 – reference: 22486820 - Mol Ecol. 2012 Apr;21(8):1794-805 – reference: 26649264 - Appl Plant Sci. 2015 Oct 30;3(11):null – reference: 21564673 - Mol Ecol Resour. 2009 Mar;9(2):439-57 – reference: 19137945 - Ecology. 2008 Dec;89(12):3387-99 – reference: 24386999 - Ecol Lett. 2014 Mar;17(3):350-9 – reference: 26308362 - PLoS One. 2015 Aug 26;10(8):e0134735 – reference: 22253987 - Nutrients. 2009 Feb;1(2):316-28 – reference: 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1 – reference: 26194794 - BMC Ecol. 2015 Jul 22;15:20 – reference: 20383131 - Nat Methods. 2010 May;7(5):335-6 – reference: 28337390 - Appl Plant Sci. 2017 Mar 10;5(3):null – reference: 15615687 - Proc Biol Sci. 2004 Dec 22;271(1557):2605-11 – reference: 22905208 - PLoS One. 2012;7(8):e43093 – reference: 24893805 - Mol Ecol Resour. 2015 Jan;15(1):8-16 – reference: 25270225 - Plant Biol (Stuttg). 2015 Mar;17(2):558-66 – reference: 27255732 - Sci Rep. 2016 Jun 03;6:27282 – reference: 27322652 - Genome. 2016 Sep;59(9):629-40 – reference: 23449999 - Science. 2013 Mar 29;339(6127):1611-5 – reference: 26700168 - PLoS One. 2015 Dec 23;10(12):e0145365 – reference: 22343894 - Nature. 2012 Feb 19;483(7388):205-8 – reference: 19666622 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12794-7 – reference: 17586664 - Appl Environ Microbiol. 2007 Aug;73(16):5261-7 – reference: 18665273 - PLoS One. 2008 Jul 30;3(7):e2802 – reference: 23340431 - Nat Commun. 2013;4:1391 – reference: 12881488 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9383-7 – reference: 23793624 - Appl Environ Microbiol. 2013 Sep;79(17):5112-20 – reference: 19379135 - Ecol Lett. 2009 May;12(5):409-19 – reference: 22486819 - Mol Ecol. 2012 Apr;21(8):1789-93 – reference: 21564566 - Mol Ecol Resour. 2009 Jan;9(1):51-60 – reference: 20673359 - BMC Microbiol. 2010 Jul 30;10:206 – reference: 20062805 - PLoS One. 2010 Jan 07;5(1):e8613 – reference: 21637336 - PLoS One. 2011;6(5):e19254 |
SSID | ssj0000816894 |
Score | 2.4203367 |
Snippet | Premise of the study: To study pollination networks in a changing environment, we need accurate, high-throughput methods. Previous studies have shown that more... Premise of the study: To study pollination networks in a changing environment, we need accurate, high‐throughput methods. Previous studies have shown that more... To study pollination networks in a changing environment, we need accurate, high-throughput methods. Previous studies have shown that more highly resolved... Premise of the study:To study pollination networks in a changing environment, we need accurate, high‐throughput methods. Previous studies have shown that more... PREMISE OF THE STUDY: To study pollination networks in a changing environment, we need accurate, high‐throughput methods. Previous studies have shown that more... |
SourceID | pubmedcentral proquest pubmed crossref wiley bioone |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Application APPLICATION ARTICLES bees Contamination Deoxyribonucleic acid DNA DNA barcoding DNA metabarcoding Florida Forest management genes Identification ITS light microscopy Methods Nucleotide sequence palynology Plant reproduction Plant sciences plant–pollinator interactions Pollen Pollination pollination networks rbcL Studies Taxonomy |
SummonAdditionalLinks | – databaseName: BioOne Free dbid: TBO link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fS8MwEA86fPBF_G91SkR9kkrbdE37uKlDBHXiBN9Kk15xIK24-uCb38Fv6CfxLu2KY0x8aqGXkF5yud_dJXeMHbsKcD-EwJaJDGw_1GBHSaRtrVDdAq0Sc0Pu5ja4evSvnzpPC2xS-I9OVapRUeRgovgk1okytUeEFB4FdcfkD8Fd1V9EMOTQOh727hqviikjEfnVCfeZJqhlqs6nldAMspw9IPkbuBrN019lKzVk5N1qjtfYAuTrbKlXIKz72GD3hCPprhIfkA8g5xe3XX4DJYXqdUGaiZcFR5jH6cjgBy8yToWKyu_Pr4FJyE1WNzeOweqOw3iTPfYvh-dXdl0nwVYdNJ_sKFJBqkJA0yeQ4LqazJDUkxEoGYADKtOZoxMlCZyoLEMTQTkZSOmmIkxRprdYK0eu7DAOykGElXUcEOB7mRumytFu0hEeBNgULHZUcTB-rZJhxGhEEJ9j4nNc89lipxP2xrpONU4VL17mUJ801H_32p7MVFwL2jg26epDhLmexQ6bzygiFPdIcijesX1EWTB9fMyn8VBHC7SVBdJsV5PfDMajql0IIy0mp5ZFQ0Apuqe_5KNnk6qbrG_h4NjOzAL68__i7uBB1O-7_-LzHlv2CGUYp1Cbtcq3d9hHjFSqAyMWP8ckDlE priority: 102 providerName: BioOne – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTtwwEB21C4deELSULtDKVekJpSRxNk5O1UJBCIkVFJC4RbEzEUg0Cexy4MY_8If9ks443tAVYk-JlEkUj-2ZN2P7DcBWoJHsIcaeylXsRYlBL81T4xlN7hZ5lNgTcsej-PAiOrocXLqE29htq5zaRGuoi9pwjnzH8pInhGfCn82tx1WjeHXVldB4CwtkgpOkBwu7-6OT312WxZaVSKN2x7tUMuR14TGnVMgwR-R19HVdVzjrlF4gzZcbJv8HstYTHSzDkoOQYtj2-Qq8weo9LO7WBPMePsAp40o-uyQazglU4tdoKP7ghJfuTc2eSkxqQbBPWGZZUZeiuSH1_n18aixBN0fhglkk7tozD-NVuDjYP9879FzdBE8PKJzy0lTHhU6QQqFYYRAYDkuKUKWoVYw-6tKUvsm1YrCiy5JCBu2XqFRQyKSgOf4RehVp5RMI1D4hrnLgo8QoLIOk0L4J8oEMMaZXsQ_fWg1mTUuOkVFQwXrOWM-Z03MftqfqzYyjHucKGDevSH_vpOd_dXPaU5mbeOPseZj04Wv3mKYMr4PkFdb39H7KrJgRXV6XCclnS4qdJcmstZ3f_UzIVbwIVvZBzQyLToApu2efVNdXlrqbo3Hp07_9sANobvuy4cmZdPfr89u6Ae9Chhs2O7QJvcndPX4msDTRX9yM-Aci-BVe priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsQwEA66evAi_ru6SkQ9SbFNuk17XP8QwWVFF_ZWmnSKgrbFXQ_efAff0CdxJq3FRRQ8tdBJaCeZzDfT5BvGDjwNuB5C4KhEBY4fGnCiJDKO0ehugWaJPSF33Q8uh_7VqDuqE250Fqbih2gSbmQZdr0mA0-0rUIilSTS0KQsx5QbwRXWn2VzdLqWtvQJf9DkWGxRCVsLUeCNg-jFrfa-UxfH3ztA_6MfiiKHaff0A3P-3Dr5HdJan3SxxBZrMMl71egvsxnIV9j8SYGA73WV3RDCpFNMvKTsQM7P-j3-BBP6iW8K8ll8UnAEgNxyzPIi4-UjKvrj7b20VN0Uj3Pik3iuTj-M19jw4vzu9NKpKyg4uouBlRNFOkh1CBgUBQo8z1CAkgoVgVYBuKAzk7km0Ypgi84yDB60m4FSXirDFK19nbVy1Mom46BdxF5Z1wUJvsi8MNWu8ZKuFBBgU2iz_UqDcVnRZMQYXpCeY9JzXOu5zY6-1BubmoScamE8_iJ92Ej_3Wvna6Ti2gTHsSWyDxEAizbbax6j8dAfkSSH4gXbR8SP6ePldxmB3ltiFC1RZqMa_OZlBNXzQoDZZmpqWjQCRN49_SR_uLck3hSXSxffrZrkf35f3Bvcyvp-678NttmCIChiM0cd1po8v8AOAqmJ3rXW8gkryRgm priority: 102 providerName: Wiley-Blackwell |
Title | Applying Pollen DNA Metabarcoding to the Study of Plant–Pollinator Interactions |
URI | http://www.bioone.org/doi/abs/10.3732/apps.1600124 https://onlinelibrary.wiley.com/doi/abs/10.3732%2Fapps.1600124 https://www.ncbi.nlm.nih.gov/pubmed/28690929 https://www.proquest.com/docview/2290680992 https://www.proquest.com/docview/1917664191 https://www.proquest.com/docview/2718354931 https://pubmed.ncbi.nlm.nih.gov/PMC5499302 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9tAEB3ydeglNG3aOh9mS5tT2SCtZK10KMVOE0IhjmliyE1oVyMacCTHdiD5951ZySbGTehFEmgkpNHsznu72jcAX32D1B9iJHWmIxnGFmWSJVZaQ-kWOUrcCrmLfnQ-DH_ddG7WYF5ttHHg9J_UjutJDSej48f7px_U4L8z49SB4qneKY-SUF8brsMm5STNtQwuGqDv-mQuL-GqIio6kIRjvPov-JUbUCYyt1VV4nKiWkGfqz9RPge3LjudvYXtBlaKbh0HO7CG5TvY6lUE_Z7ewyVjTV7PJMY8TlCKn_2uuMMZT-fbirOXmFWCoKBwarOiKsR4RC6XYyfZzbxcsK7EpF4FMd2F4dnp9cm5bCopSNMhgiWTxES5iZHIUaTR9y0TlVzpBI2O0ENT2MKzmdEMX0xREIkwXoFa-3kQ59TqP8BGST75BAKNRxis6HgYYKgKP86NZ_2sEyiM6FJswZfaf-m4lstIiWawl1P2ctp4uQXf5s5NbSNGzjUxRi9YHy2sX7_rwfw7pfNISp2gfUxAWLXg8-I0NSKeGclKrB7o-oR1MkPavWyjKIsHxKYDsvlYf_rFwyiu60VAswV6KSgWBizivXymvP3jxLyZnwcePduxC59X3y_tDq6C5njvP15mH94oRiFu0OgANmaTBzwkDDUzbVhX4aANm73T_uB3241EtF2Toe117_IvehsdEQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VFAkuiH8CBRZBT8jF3nW88QGhlLZKaRsVaKXejHc9FpWKbZpUqDfegffgoXgSZtY_EFXNradE8tiyZ2d2vpnd_QbgVWCQ5kOMPJ3qyAuHFr04ja1nDYVbZCtxJ-T2JtH4MPxwNDhagt_tWRjeVtnOiW6izkrLNfI3jpd8SHhGvqu-e9w1ildX2xYatVns4PkPStmmb7c3aHxXpdzaPHg_9pquAp4ZULLhxbGJMjNEShQijUFgGbRnUsdodIQ-mtzmvk2N5lBu8pwAtfFz1DrI1DAjD6DnXoPlUEW-7MHy-uZk_1NX1XFtLOKw3mGvtJK8Dj3lEg4FgpCinDkuywLng-AFZHtxg-b_wNlFvq3bcKuBrGJU29gdWMLiLlxfLwlWnt-Dj4xj-ayUqLgGUYiNyUh8wxlvFbAlR0YxKwXBTOGYbEWZi-qEhvPPz1-VIwTnrF8wa8VpfcZieh8Or0SjD6BXkFYegUDjE8LLBz4qDGUeDDPj2yAdKIkR3Yp9eFlrMKlqMo6EkhjWc8J6Tho99-F1q97ENlTn3HHj5BLp1U568VNX2pFKGkefJv_Msg8vusvkorzukhZYntH9MbNwhvRzuYwkjKAoV1ck87Ae_O5lJHcNIxjbBz1nFp0AU4TPXymOvzqqcM7-lU_vtuYMaOH3JaP9z6r5_3jxtz6HG-ODvd1kd3uy8wRuSoY6rjK1Ar3Z6Rk-JaA2M88a7xDw5aod8i82D1KL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtRADLbKFqFeEP9dKDAIekJpk0k2kxwQ2rJdtRRWy0-l3kJm4ohKJQndrVBvvANvw-PwJNiTH1hV3VtPiRQnynjs8WePxwZ44Wmk9RBDR6UqdILIoBOnsXGMJnOLLCX2hNz7Sbh3GLw9GhytwO_2LAynVbZrol2os9JwjHzb1iWPCM_I7bxJi5iOxq-r7w53kOKd1radRi0iB3j-g9y32av9Ec31ppTj3c9v9pymw4CjB-R4OHGsw0xHSE5DqNDzDAP4TKoYtQrRRZ2b3DWpVmzWdZ4TuNZujkp5mR9lpA303Wuwqtgr6sHqzu5k-rGL8NiWFnFQZ9v7ype8Jz3jcA4ZhYAsnj4uywIXDeIFlHsxWfN_EG2t4PgW3GzgqxjW8nYbVrC4A9d3SoKY53fhA2NaPjclKo5HFGI0GYpvOOe0AVOylRTzUhDkFLaqrShzUZ3Q1P75-auyxcE5AiC4gsVpfd5idg8Or4Sj96FXEFfWQaB2Ce3lAxd9DGTuRZl2jZcOfIkhvYp9eF5zMKnqwhwJOTTM54T5nDR87sPLlr2Jacqec_eNk0uoNzvq5V_daGcqaZR-lvwT0T486x6TuvIeTFpgeUbvx1yRM6DL5TSS8IJPfrtPNA_qye9-RnIHMYK0fVALYtERcLnwxSfF8VdbNpwjAb5L_7ZlBWjp-JLh9JPf3D9cPtancIMUMXm3Pzl4BGuSUY8NUm1Ab356ho8Js831k0Y5BHy5an38C9qNVsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+pollen+DNA+metabarcoding+to+the+study+of+plant-pollinator+interactions&rft.jtitle=Applications+in+plant+sciences&rft.au=Bell%2C+Karen+L&rft.au=Fowler%2C+Julie&rft.au=Burgess%2C+Kevin+S&rft.au=Dobbs%2C+Emily+K&rft.date=2017-06-01&rft.issn=2168-0450&rft.eissn=2168-0450&rft.volume=5&rft.issue=6&rft_id=info:doi/10.3732%2Fapps.1600124&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0450&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0450&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0450&client=summon |