Feasibility of lung cancer prediction from low-dose CT scan and smoking factors using causal models

IntroductionLow-dose CT (LDCT) is currently used in lung cancer screening of high-risk populations for early lung cancer diagnosis. However, 96% of individuals with detected nodules are false positives.MethodsIn order to develop an efficient early lung cancer predictor from clinical, demographic and...

Full description

Saved in:
Bibliographic Details
Published inThorax Vol. 74; no. 7; pp. 643 - 649
Main Authors Raghu, Vineet K, Zhao, Wei, Pu, Jiantao, Leader, Joseph K, Wang, Renwei, Herman, James, Yuan, Jian-Min, Benos, Panayiotis V, Wilson, David O
Format Journal Article
LanguageEnglish
Published England BMJ Publishing Group Ltd and British Thoracic Society 01.07.2019
BMJ Publishing Group LTD
BMJ Publishing Group
SeriesOriginal article
Subjects
Online AccessGet full text
ISSN0040-6376
1468-3296
1468-3296
DOI10.1136/thoraxjnl-2018-212638

Cover

Loading…
Abstract IntroductionLow-dose CT (LDCT) is currently used in lung cancer screening of high-risk populations for early lung cancer diagnosis. However, 96% of individuals with detected nodules are false positives.MethodsIn order to develop an efficient early lung cancer predictor from clinical, demographic and LDCT features, we studied a total of 218 subjects with lung cancer or benign nodules. Probabilistic graphical models (PGMs) were used to integrate demographics, clinical data and LDCT features from 92 subjects (training cohort) from the Pittsburgh Lung Screening Study cohort.ResultsLearnt PGMs identified three variables directly (causally) linked to malignant nodules and the largest benign nodule and used them to build the Lung Cancer Causal Model (LCCM), which was validated in a separate cohort of 126 subjects. Nodule and vessel numbers and years since the subject quit smoking were sufficient to discriminate malignant from benign nodules. Comparison with existing predictors in the training and validation cohorts showed that (1) incorporating LDCT scan features greatly enhances predictive accuracy; and (2) LCCM improves cancer detection over existing methods, including the Brock parsimonious model (p<0.001). Notably, the number of surrounding vessels, a feature not previously used in predictive models, significantly improves predictive efficiency. Based on the validation cohort results, LCCM is able to identify 30% of the benign nodules without risk of misclassifying cancer nodules.DiscussionLCCM shows promise as a lung cancer predictor as it is significantly improved over existing models. Validated in a larger, prospective study, it may help reduce unnecessary follow-up visits and procedures.
AbstractList IntroductionLow-dose CT (LDCT) is currently used in lung cancer screening of high-risk populations for early lung cancer diagnosis. However, 96% of individuals with detected nodules are false positives.MethodsIn order to develop an efficient early lung cancer predictor from clinical, demographic and LDCT features, we studied a total of 218 subjects with lung cancer or benign nodules. Probabilistic graphical models (PGMs) were used to integrate demographics, clinical data and LDCT features from 92 subjects (training cohort) from the Pittsburgh Lung Screening Study cohort.ResultsLearnt PGMs identified three variables directly (causally) linked to malignant nodules and the largest benign nodule and used them to build the Lung Cancer Causal Model (LCCM), which was validated in a separate cohort of 126 subjects. Nodule and vessel numbers and years since the subject quit smoking were sufficient to discriminate malignant from benign nodules. Comparison with existing predictors in the training and validation cohorts showed that (1) incorporating LDCT scan features greatly enhances predictive accuracy; and (2) LCCM improves cancer detection over existing methods, including the Brock parsimonious model (p<0.001). Notably, the number of surrounding vessels, a feature not previously used in predictive models, significantly improves predictive efficiency. Based on the validation cohort results, LCCM is able to identify 30% of the benign nodules without risk of misclassifying cancer nodules.DiscussionLCCM shows promise as a lung cancer predictor as it is significantly improved over existing models. Validated in a larger, prospective study, it may help reduce unnecessary follow-up visits and procedures.
Low-dose CT (LDCT) is currently used in lung cancer screening of high-risk populations for early lung cancer diagnosis. However, 96% of individuals with detected nodules are false positives. In order to develop an efficient early lung cancer predictor from clinical, demographic and LDCT features, we studied a total of 218 subjects with lung cancer or benign nodules. Probabilistic graphical models (PGMs) were used to integrate demographics, clinical data and LDCT features from 92 subjects (training cohort) from the Pittsburgh Lung Screening Study cohort. Learnt PGMs identified three variables directly (causally) linked to malignant nodules and the largest benign nodule and used them to build the Lung Cancer Causal Model (LCCM), which was validated in a separate cohort of 126 subjects. Nodule and vessel numbers and years since the subject quit smoking were sufficient to discriminate malignant from benign nodules. Comparison with existing predictors in the training and validation cohorts showed that (1) incorporating LDCT scan features greatly enhances predictive accuracy; and (2) LCCM improves cancer detection over existing methods, including the Brock parsimonious model (p 0.001). Notably, the number of surrounding vessels, a feature not previously used in predictive models, significantly improves predictive efficiency. Based on the validation cohort results, LCCM is able to identify 30% of the benign nodules without risk of misclassifying cancer nodules. LCCM shows promise as a lung cancer predictor as it is significantly improved over existing models. Validated in a larger, prospective study, it may help reduce unnecessary follow-up visits and procedures.
Low-dose CT (LDCT) is currently used in lung cancer screening of high-risk populations for early lung cancer diagnosis. However, 96% of individuals with detected nodules are false positives.INTRODUCTIONLow-dose CT (LDCT) is currently used in lung cancer screening of high-risk populations for early lung cancer diagnosis. However, 96% of individuals with detected nodules are false positives.In order to develop an efficient early lung cancer predictor from clinical, demographic and LDCT features, we studied a total of 218 subjects with lung cancer or benign nodules. Probabilistic graphical models (PGMs) were used to integrate demographics, clinical data and LDCT features from 92 subjects (training cohort) from the Pittsburgh Lung Screening Study cohort.METHODSIn order to develop an efficient early lung cancer predictor from clinical, demographic and LDCT features, we studied a total of 218 subjects with lung cancer or benign nodules. Probabilistic graphical models (PGMs) were used to integrate demographics, clinical data and LDCT features from 92 subjects (training cohort) from the Pittsburgh Lung Screening Study cohort.Learnt PGMs identified three variables directly (causally) linked to malignant nodules and the largest benign nodule and used them to build the Lung Cancer Causal Model (LCCM), which was validated in a separate cohort of 126 subjects. Nodule and vessel numbers and years since the subject quit smoking were sufficient to discriminate malignant from benign nodules. Comparison with existing predictors in the training and validation cohorts showed that (1) incorporating LDCT scan features greatly enhances predictive accuracy; and (2) LCCM improves cancer detection over existing methods, including the Brock parsimonious model (p<0.001). Notably, the number of surrounding vessels, a feature not previously used in predictive models, significantly improves predictive efficiency. Based on the validation cohort results, LCCM is able to identify 30% of the benign nodules without risk of misclassifying cancer nodules.RESULTSLearnt PGMs identified three variables directly (causally) linked to malignant nodules and the largest benign nodule and used them to build the Lung Cancer Causal Model (LCCM), which was validated in a separate cohort of 126 subjects. Nodule and vessel numbers and years since the subject quit smoking were sufficient to discriminate malignant from benign nodules. Comparison with existing predictors in the training and validation cohorts showed that (1) incorporating LDCT scan features greatly enhances predictive accuracy; and (2) LCCM improves cancer detection over existing methods, including the Brock parsimonious model (p<0.001). Notably, the number of surrounding vessels, a feature not previously used in predictive models, significantly improves predictive efficiency. Based on the validation cohort results, LCCM is able to identify 30% of the benign nodules without risk of misclassifying cancer nodules.LCCM shows promise as a lung cancer predictor as it is significantly improved over existing models. Validated in a larger, prospective study, it may help reduce unnecessary follow-up visits and procedures.DISCUSSIONLCCM shows promise as a lung cancer predictor as it is significantly improved over existing models. Validated in a larger, prospective study, it may help reduce unnecessary follow-up visits and procedures.
Author Zhao, Wei
Herman, James
Raghu, Vineet K
Yuan, Jian-Min
Benos, Panayiotis V
Pu, Jiantao
Leader, Joseph K
Wilson, David O
Wang, Renwei
AuthorAffiliation 3 Department of Radiology , University of Pittsburgh , Pittsburgh , Pennsylvania , United States
2 Department of Computer Science , University of Pittsburgh , Pittsburgh , Pennsylvania , United States
4 Current affiliation: Department of Respiratory Medicine , Chinese PLA General Hospital , Beijing , China
5 Division of Cancer Control and Population Sciences , UPMC Hillman Cancer Center , Pittsburgh , Pennsylvania , United States
8 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine , University of Pittsburgh , Pittsburgh , Pennsylvania , United States
6 Division of Hematology, Oncology, Department of Medicine , University of Pittsburgh , Pittsburgh , Pennsylvania , United States
1 Department of Computational and Systems Biology , University of Pittsburgh , Pittsburgh , Pennsylvania , USA
7 Department of Epidemiology , University of Pittsburgh , Pittsburgh , Pennsylvania , United States
AuthorAffiliation_xml – name: 5 Division of Cancer Control and Population Sciences , UPMC Hillman Cancer Center , Pittsburgh , Pennsylvania , United States
– name: 8 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine , University of Pittsburgh , Pittsburgh , Pennsylvania , United States
– name: 6 Division of Hematology, Oncology, Department of Medicine , University of Pittsburgh , Pittsburgh , Pennsylvania , United States
– name: 2 Department of Computer Science , University of Pittsburgh , Pittsburgh , Pennsylvania , United States
– name: 4 Current affiliation: Department of Respiratory Medicine , Chinese PLA General Hospital , Beijing , China
– name: 7 Department of Epidemiology , University of Pittsburgh , Pittsburgh , Pennsylvania , United States
– name: 1 Department of Computational and Systems Biology , University of Pittsburgh , Pittsburgh , Pennsylvania , USA
– name: 3 Department of Radiology , University of Pittsburgh , Pittsburgh , Pennsylvania , United States
Author_xml – sequence: 1
  givenname: Vineet K
  surname: Raghu
  fullname: Raghu, Vineet K
  organization: Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
– sequence: 2
  givenname: Wei
  surname: Zhao
  fullname: Zhao, Wei
  organization: Current affiliation: Department of Respiratory Medicine, Chinese PLA General Hospital, Beijing, China
– sequence: 3
  givenname: Jiantao
  surname: Pu
  fullname: Pu, Jiantao
  organization: Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
– sequence: 4
  givenname: Joseph K
  surname: Leader
  fullname: Leader, Joseph K
  organization: Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
– sequence: 5
  givenname: Renwei
  surname: Wang
  fullname: Wang, Renwei
  organization: Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, United States
– sequence: 6
  givenname: James
  surname: Herman
  fullname: Herman, James
  organization: Division of Hematology, Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
– sequence: 7
  givenname: Jian-Min
  surname: Yuan
  fullname: Yuan, Jian-Min
  organization: Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
– sequence: 8
  givenname: Panayiotis V
  orcidid: 0000-0003-3172-3132
  surname: Benos
  fullname: Benos, Panayiotis V
  email: benos@pitt.edu
  organization: Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
– sequence: 9
  givenname: David O
  surname: Wilson
  fullname: Wilson, David O
  organization: Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30862725$$D View this record in MEDLINE/PubMed
BookMark eNqNkUuPFCEUhYkZ4zz0J2hI3Lgp5dFQVExMTMdRk0ncjGtyi8cMLQUtVKnz76XtsdVZqGHBgu8c7rnnFB2lnBxCjyl5TimXL-brXODbJsWOEao6Rpnk6h46oSupOs4GeYROCFmRTvJeHqPTWjeEEEVp_wAdc6Ik65k4QebcQQ1jiGG-wdnjuKQrbCAZV_C2OBvMHHLCvuQJx_y1s7k6vL7EtTEYksV1yp9C03gwcy4VLzX8cFgqRDxl62J9iO57iNU9ur3P0MfzN5frd93Fh7fv168vulEoNXfWjIMH7zzjK987NayU8WLoqTUgpG_HUdJLAdIKQcFQYqUdQfZMwgjC8jP0au-7XcbJWePSXCDqbQkTlBudIeg_X1K41lf5i5ZCCU5kM3h2a1Dy58XVWU-hGhcjJJeXqhkdaNthP5CGPr2DbvJSUounGeODoL1kvFFPfp_oMMrP_TdA7AFTcq3F-QNCid71rA89613Pet9z0728ozNhhl1VLViI_1STvXqcNv_9If0lOUT9u-Y7JxDTqQ
CitedBy_id crossref_primary_10_1371_journal_pone_0220215
crossref_primary_10_1038_s41598_023_29058_1
crossref_primary_10_1016_j_lungcan_2020_07_007
crossref_primary_10_1183_16000617_0288_2020
crossref_primary_10_3390_app11199258
crossref_primary_10_1183_13993003_03386_2020
crossref_primary_10_1002_cncr_32805
crossref_primary_10_1097_CCM_0000000000004018
crossref_primary_10_3390_molecules28124850
crossref_primary_10_1097_PCC_0000000000002776
crossref_primary_10_3390_biology12050709
crossref_primary_10_1164_rccm_202008_3370LE
crossref_primary_10_1155_2022_3585567
crossref_primary_10_1183_13993003_01613_2021
crossref_primary_10_2139_ssrn_4164147
crossref_primary_10_3390_diagnostics13162617
crossref_primary_10_1080_14737140_2019_1643239
crossref_primary_10_3390_app12041926
crossref_primary_10_1016_j_crad_2024_106788
crossref_primary_10_3390_agronomy14010008
crossref_primary_10_1111_1759_7714_13991
crossref_primary_10_1093_nar_gkaa350
crossref_primary_10_1007_s00117_020_00787_y
crossref_primary_10_1080_24745332_2020_1819175
crossref_primary_10_1016_j_acra_2022_07_001
crossref_primary_10_3389_fonc_2023_1132514
crossref_primary_10_7717_peerj_16539
crossref_primary_10_1164_rccm_202008_3057LE
crossref_primary_10_1002_mp_15158
crossref_primary_10_3389_fonc_2021_700179
crossref_primary_10_1097_CM9_0000000000001507
crossref_primary_10_22328_2079_5343_2022_13_1_14_20
crossref_primary_10_1016_j_jgg_2023_02_014
crossref_primary_10_3310_IJFM4802
crossref_primary_10_1016_j_bspc_2024_106938
crossref_primary_10_1038_s41571_020_00432_6
crossref_primary_10_3390_a17040138
crossref_primary_10_1016_j_eclinm_2024_102786
crossref_primary_10_1016_j_patter_2022_100473
crossref_primary_10_1038_s41598_021_04667_w
crossref_primary_10_1109_TCBB_2020_3019237
crossref_primary_10_1016_S2213_2600_20_30081_3
crossref_primary_10_1097_HC9_0000000000000510
crossref_primary_10_1371_journal_pmed_1004444
crossref_primary_10_1111_1759_7714_14333
crossref_primary_10_1186_s12916_021_01928_3
crossref_primary_10_3389_fepid_2022_899655
Cites_doi 10.1007/s41060-018-0104-3
10.2105/AJPH.86.2.231
10.1038/sj.bjc.6604158
10.1056/NEJMoa1211776
10.1093/jnci/95.6.470
10.1164/rccm.200802-336OC
10.1093/jnci/djk153
10.1186/s12859-016-1039-0
10.1093/bioinformatics/bty769
10.1016/j.lungcan.2013.07.017
10.1186/1471-2105-12-77
10.1158/1940-6207.CAPR-11-0026
10.7326/M14-2086
10.1056/NEJMoa1208962
10.1016/j.lungcan.2015.03.021
10.1093/bioinformatics/bty591
10.7326/M17-2701
10.1158/1940-6207.CAPR-08-0060
10.3389/fmicb.2018.01413
10.1002/cncr.27925
10.1056/NEJMoa1214726
10.2147/vhrm.2006.2.3.213
10.1513/AnnalsATS.201412-577OC
10.1080/10618600.2014.900500
10.1148/radiol.10091808
10.1093/jnci/djr173
10.1016/j.lungcan.2017.10.008
10.1017/CBO9780511803161
10.1038/s41598-019-39542-2
10.7551/mitpress/1754.001.0001
ContentType Journal Article
Copyright Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
2019 Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2019
Copyright_xml – notice: Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: 2019 Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2019
DBID 9YT
ACMMV
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
BTHHO
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1136/thoraxjnl-2018-212638
DatabaseName BMJ Open Access Journals
BMJ Journals:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
BMJ Journals
ProQuest One
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
BMJ Journals
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

ProQuest One Academic Middle East (New)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: ACMMV
  name: BMJ Journals:Open Access
  url: https://journals.bmj.com/
  sourceTypes: Publisher
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1468-3296
EndPage 649
ExternalDocumentID PMC6585306
30862725
10_1136_thoraxjnl_2018_212638
thoraxjnl
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
Pittsburgh Pennsylvania
GeographicLocations_xml – name: United States--US
– name: Pittsburgh Pennsylvania
GrantInformation_xml – fundername: National Cancer Institute
  grantid: P30CA047904; P50CA90440; R21CA197493; T32CA082084
  funderid: http://dx.doi.org/10.13039/100000054
– fundername: National Heart, Lung, and Blood Institute
  grantid: U01HL137159
  funderid: http://dx.doi.org/10.13039/100000050
– fundername: U.S. National Library of Medicine
  grantid: R01LM012087
  funderid: http://dx.doi.org/10.13039/100000092
– fundername: NHLBI NIH HHS
  grantid: U01 HL137159
– fundername: NLM NIH HHS
  grantid: R01 LM012087
– fundername: NCI NIH HHS
  grantid: T32 CA082084
– fundername: NHLBI NIH HHS
  grantid: R01 HL096613
– fundername: NCI NIH HHS
  grantid: P50 CA090440
– fundername: NCI NIH HHS
  grantid: P30 CA047904
– fundername: NCI NIH HHS
  grantid: R21 CA197493
– fundername: ;
  grantid: R01LM012087
– fundername: ;
  grantid: U01HL137159
– fundername: ;
  grantid: P30CA047904; P50CA90440; R21CA197493; T32CA082084
GroupedDBID ---
.55
.GJ
.VT
08G
0R~
123
18M
29Q
2WC
354
39C
3O-
4.4
40O
53G
5RE
5VS
6PF
7X7
7~S
88E
8F7
8FI
8FJ
8R4
8R5
9YT
AAHLL
AAKAS
AAOJX
AAWJN
AAWTL
AAYEP
ABAAH
ABJNI
ABKDF
ABMQD
ABOCM
ABTFR
ABUWG
ABVAJ
ACGFO
ACGFS
ACGTL
ACHTP
ACMFJ
ACMMV
ACOAB
ACOFX
ACQSR
ACTZY
ADBBV
ADCEG
ADZCM
AENEX
AFKRA
AFWFF
AGQPQ
AHMBA
AHNKE
AHQMW
AJYBZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
BAWUL
BENPR
BLJBA
BOMFT
BPHCQ
BTFSW
BTHHO
BVXVI
C45
CAG
CCPQU
COF
CS3
CXRWF
DIK
DU5
E3Z
EBS
EJD
F5P
FEDTE
FYUFA
GX1
H13
HAJ
HMCUK
HVGLF
HYE
HZ~
IAO
IEA
IH2
IHR
IOF
ITC
J5H
KQ8
L7B
M1P
N4W
N9A
NTWIH
NXWIF
O9-
OK1
OVD
P2P
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
R53
RHI
RMJ
RPM
RV8
TEORI
TR2
UAW
UKHRP
UYXKK
V24
VM9
VVN
W8F
WH7
X7M
YFH
YOC
YQY
ZCG
ZGI
AAYXX
ACQHZ
ADGHP
AERUA
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-b588t-dcb9fafef234f7e8948cf5971dca56f6f6e10765a6d551ac10d6dba6726aba5d3
IEDL.DBID 9YT
ISSN 0040-6376
1468-3296
IngestDate Thu Aug 21 18:02:50 EDT 2025
Fri Jul 11 09:24:46 EDT 2025
Fri Jul 25 11:01:35 EDT 2025
Mon Jul 21 05:24:29 EDT 2025
Tue Jul 01 02:00:41 EDT 2025
Thu Apr 24 22:56:42 EDT 2025
Fri Apr 25 03:30:37 EDT 2025
Thu Apr 24 22:49:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords lung cancer risk
low-dose CT
cancer screening
Language English
License This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.
Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b588t-dcb9fafef234f7e8948cf5971dca56f6f6e10765a6d551ac10d6dba6726aba5d3
Notes Original article
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3172-3132
OpenAccessLink http://dx.doi.org/10.1136/thoraxjnl-2018-212638
PMID 30862725
PQID 2239517623
PQPubID 2041050
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6585306
proquest_miscellaneous_2191008790
proquest_journals_2239517623
pubmed_primary_30862725
crossref_primary_10_1136_thoraxjnl_2018_212638
crossref_citationtrail_10_1136_thoraxjnl_2018_212638
bmj_primary_10_1136_thoraxjnl_2018_212638
bmj_journals_10_1136_thoraxjnl_2018_212638
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: BMA House, Tavistock Square, London, WC1H 9JR
PublicationSeriesTitle Original article
PublicationTitle Thorax
PublicationTitleAbbrev Thorax
PublicationTitleAlternate Thorax
PublicationYear 2019
Publisher BMJ Publishing Group Ltd and British Thoracic Society
BMJ Publishing Group LTD
BMJ Publishing Group
Publisher_xml – name: BMJ Publishing Group Ltd and British Thoracic Society
– name: BMJ Publishing Group LTD
– name: BMJ Publishing Group
References Wilson, Weissfeld (R13) 2015; 89
Hocking, Tammemagi, Commins (R14) 2013; 82
Cassidy, Myles, van Tongeren (R8) 2008; 98
Tammemägi, Katki, Hocking (R11) 2013; 368
Raghu, Poon, Benos (R28) 2018
Nishida, Yano, Nishida (R32) 2006; 2
Park, Gareen, Jain (R3) 2013; 119
McWilliams, Tammemagi, Mayo (R12) 2013; 369
Wilson, Weissfeld, Fuhrman (R22) 2008; 178
Escobedo, Peddicord (R30) 1996; 86
Robin, Turck, Hainard (R29) 2011; 12
Kitsios, Fitch, Manatakis (R17) 2018; 9
Sedgewick, Shi, Donovan (R16) 2016; 17
Raghu, Ramsey, Morris (R25) 2018; 6
Lee, Hastie (R26) 2015; 24
Sedgewick, Buschur, Shi (R27) 2018; 183
Katki, Kovalchik, Petito (R15) 2018; 169
Wang, Leader, Wang (R23) 2017; 114
Pinsky, Gierada, Black (R24) 2015; 162
Aberle, Berg, Black (R1) 2011; 258
Abecasis, Sedgewick, Romkes (R19) 2019; 13
Spitz, Hong, Amos (R6) 2007; 99
Bach, Kattan, Thornquist (R5) 2003; 95
Thalanayar, Altintas, Weissfeld (R4) 2015; 12
Spitz, Etzel, Dong (R7) 2008; 1
Tammemagi, Pinsky, Caporaso (R10) 2011; 103
Aberle, DeMello, Berg (R2) 2013; 369
Manatakis, Raghu, Benos (R18) 2018; 34
Maisonneuve, Bagnardi, Bellomi (R9) 2011; 4
Tammemagi, Pinsky, Caporaso 2011; 103
Nishida, Yano, Nishida 2006; 2
Escobedo, Peddicord 1996; 86
Wang, Leader, Wang 2017; 114
Hocking, Tammemagi, Commins 2013; 82
Spitz, Hong, Amos 2007; 99
Park, Gareen, Jain 2013; 119
Katki, Kovalchik, Petito 2018; 169
Sedgewick, Shi, Donovan 2016; 17
Raghu, Ramsey, Morris 2018; 6
Wilson, Weissfeld, Fuhrman 2008; 178
Pinsky, Gierada, Black 2015; 162
Wilson, Weissfeld 2015; 89
Aberle, DeMello, Berg 2013; 369
Kitsios, Fitch, Manatakis 2018; 9
Robin, Turck, Hainard 2011; 12
Cassidy, Myles, van Tongeren 2008; 98
Bach, Kattan, Thornquist 2003; 95
Tammemägi, Katki, Hocking 2013; 368
Spitz, Etzel, Dong 2008; 1
Abecasis, Sedgewick, Romkes 2019; 13
Lee, Hastie 2015; 24
Aberle, Berg, Black 2011; 258
Thalanayar, Altintas, Weissfeld 2015; 12
Sedgewick, Buschur, Shi 2018; 183
Raghu, Poon, Benos 2018
Manatakis, Raghu, Benos 2018; 34
McWilliams, Tammemagi, Mayo 2013; 369
Maisonneuve, Bagnardi, Bellomi 2011; 4
2024120417103841000_74.7.643.22
2024120417103841000_74.7.643.21
2024120417103841000_74.7.643.20
2024120417103841000_74.7.643.29
Manatakis (2024120417103841000_74.7.643.18) 2018; 34
2024120417103841000_74.7.643.28
2024120417103841000_74.7.643.27
Pinsky (2024120417103841000_74.7.643.24) 2015; 162
Katki (2024120417103841000_74.7.643.15) 2018; 169
2024120417103841000_74.7.643.25
Wilson (2024120417103841000_74.7.643.13) 2015; 89
Lee (2024120417103841000_74.7.643.26) 2015; 24
Wang (2024120417103841000_74.7.643.23) 2017; 114
2024120417103841000_74.7.643.11
2024120417103841000_74.7.643.10
2024120417103841000_74.7.643.32
2024120417103841000_74.7.643.31
2024120417103841000_74.7.643.30
Thalanayar (2024120417103841000_74.7.643.4) 2015; 12
2024120417103841000_74.7.643.19
2024120417103841000_74.7.643.17
2024120417103841000_74.7.643.9
2024120417103841000_74.7.643.16
2024120417103841000_74.7.643.8
2024120417103841000_74.7.643.7
2024120417103841000_74.7.643.6
2024120417103841000_74.7.643.5
2024120417103841000_74.7.643.3
McWilliams (2024120417103841000_74.7.643.12) 2013; 369
2024120417103841000_74.7.643.2
2024120417103841000_74.7.643.1
Hocking (2024120417103841000_74.7.643.14) 2013; 82
References_xml – volume: 6
  start-page: 33
  year: 2018
  ident: R25
  article-title: Comparison of strategies for scalable causal discovery of latent variable models from mixed data
  publication-title: Int J Data Sci Anal
  doi: 10.1007/s41060-018-0104-3
– volume: 86
  start-page: 231
  year: 1996
  ident: R30
  article-title: Smoking prevalence in US birth cohorts: the influence of gender and education
  publication-title: Am J Public Health
  doi: 10.2105/AJPH.86.2.231
– volume: 98
  start-page: 270
  year: 2008
  ident: R8
  article-title: The LLP risk model: an individual risk prediction model for lung cancer
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6604158
– volume: 368
  start-page: 728
  year: 2013
  ident: R11
  article-title: Selection criteria for lung-cancer screening
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1211776
– volume: 95
  start-page: 470
  year: 2003
  ident: R5
  article-title: Variations in lung cancer risk among smokers
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/95.6.470
– start-page: 48
  year: 2018
  ident: R28
  article-title: Evaluation of causal structure learning methods on mixed data types. Proceedings of 2018 ACM SIGKDD workshop on causal Disocvery
  publication-title: Proceedings of Machine Learning Research: PMLR
– volume: 178
  start-page: 956
  year: 2008
  ident: R22
  article-title: The Pittsburgh Lung Screening study (PLuSS): outcomes within 3 years of a first computed tomography scan
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.200802-336OC
– volume: 99
  start-page: 715
  year: 2007
  ident: R6
  article-title: A risk model for prediction of lung cancer
  publication-title: JNCI Journal of the National Cancer Institute
  doi: 10.1093/jnci/djk153
– volume: 17
  year: 2016
  ident: R16
  article-title: Learning mixed graphical models with separate sparsity parameters and stability-based model selection
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1039-0
– volume: 183
  year: 2018
  ident: R27
  article-title: Mixed graphical models for integrative causal analysis with application to chronic lung disease diagnosis and prognosis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty769
– volume: 82
  start-page: 238
  year: 2013
  ident: R14
  article-title: Diagnostic evaluation following a positive lung screening chest radiograph in the prostate, lung, colorectal, ovarian (PLCO) cancer screening trial
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2013.07.017
– volume: 12
  year: 2011
  ident: R29
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-77
– volume: 4
  start-page: 1778
  year: 2011
  ident: R9
  article-title: Lung cancer risk prediction to select smokers for screening CT--a model based on the Italian COSMOS trial
  publication-title: Cancer Prev Res
  doi: 10.1158/1940-6207.CAPR-11-0026
– volume: 162
  start-page: 485
  year: 2015
  ident: R24
  article-title: Performance of lung-RADS in the national lung screening trial: a retrospective assessment
  publication-title: Ann Intern Med
  doi: 10.7326/M14-2086
– volume: 369
  start-page: 920
  year: 2013
  ident: R2
  article-title: Results of the two incidence screenings in the national lung screening trial
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1208962
– volume: 89
  start-page: 31
  year: 2015
  ident: R13
  article-title: A simple model for predicting lung cancer occurrence in a lung cancer screening program: the Pittsburgh predictor
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2015.03.021
– volume: 34
  start-page: i848
  year: 2018
  ident: R18
  article-title: piMGM: incorporating multi-source priors in mixed graphical models for learning disease networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty591
– volume: 169
  start-page: 10
  year: 2018
  ident: R15
  article-title: Implications of nine risk prediction models for selecting Ever-Smokers for computed tomography lung cancer screening
  publication-title: Ann Intern Med
  doi: 10.7326/M17-2701
– volume: 1
  start-page: 250
  year: 2008
  ident: R7
  article-title: An expanded risk prediction model for lung cancer
  publication-title: Cancer Prev Res
  doi: 10.1158/1940-6207.CAPR-08-0060
– volume: 9
  year: 2018
  ident: R17
  article-title: Respiratory microbiome profiling for etiologic diagnosis of pneumonia in mechanically ventilated patients
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.01413
– volume: 119
  start-page: 1306
  year: 2013
  ident: R3
  article-title: Examining whether Lung Screening changes risk perceptions: national lung screening trial participants at 1-year follow-up
  publication-title: Cancer
  doi: 10.1002/cncr.27925
– volume: 369
  start-page: 910
  year: 2013
  ident: R12
  article-title: Probability of cancer in pulmonary nodules detected on first screening CT
  publication-title: N Engl J Med Overseas Ed
  doi: 10.1056/NEJMoa1214726
– volume: 13
  year: 2019
  ident: R19
  article-title: PARP1 rs1805407 increases sensitivity to PARP1 inhibitors in cancer cells suggesting an improved therapeutic strategy
  publication-title: Sci Rep
– volume: 2
  start-page: 213
  year: 2006
  ident: R32
  article-title: Angiogenesis in cancer
  publication-title: Vasc Health Risk Manag
  doi: 10.2147/vhrm.2006.2.3.213
– volume: 12
  start-page: 1193
  year: 2015
  ident: R4
  article-title: Indolent, potentially inconsequential lung cancers in the Pittsburgh Lung Screening study
  publication-title: Ann Am Thorac Soc
  doi: 10.1513/AnnalsATS.201412-577OC
– volume: 24
  start-page: 230
  year: 2015
  ident: R26
  article-title: Learning the structure of mixed graphical models
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2014.900500
– volume: 258
  start-page: 243
  year: 2011
  ident: R1
  article-title: The National Lung Screening trial: overview and study design
  publication-title: Radiology
  doi: 10.1148/radiol.10091808
– volume: 103
  start-page: 1058
  year: 2011
  ident: R10
  article-title: Lung cancer risk prediction: prostate, lung, colorectal and ovarian cancer screening trial models and validation
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djr173
– volume: 114
  start-page: 38
  year: 2017
  ident: R23
  article-title: Vasculature surrounding a nodule: a novel lung cancer biomarker
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2017.10.008
– volume: 183
  year: 2018
  article-title: Mixed graphical models for integrative causal analysis with application to chronic lung disease diagnosis and prognosis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty769
– volume: 162
  start-page: 485
  year: 2015
  article-title: Performance of lung-RADS in the national lung screening trial: a retrospective assessment
  publication-title: Ann Intern Med
  doi: 10.7326/M14-2086
– volume: 13
  year: 2019
  article-title: PARP1 rs1805407 increases sensitivity to PARP1 inhibitors in cancer cells suggesting an improved therapeutic strategy
  publication-title: Sci Rep
– volume: 82
  start-page: 238
  year: 2013
  article-title: Diagnostic evaluation following a positive lung screening chest radiograph in the prostate, lung, colorectal, ovarian (PLCO) cancer screening trial
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2013.07.017
– volume: 169
  start-page: 10
  year: 2018
  article-title: Implications of nine risk prediction models for selecting Ever-Smokers for computed tomography lung cancer screening
  publication-title: Ann Intern Med
  doi: 10.7326/M17-2701
– volume: 12
  year: 2011
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-77
– volume: 34
  start-page: i848
  year: 2018
  article-title: piMGM: incorporating multi-source priors in mixed graphical models for learning disease networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty591
– start-page: 48
  year: 2018
  article-title: Evaluation of causal structure learning methods on mixed data types. Proceedings of 2018 ACM SIGKDD workshop on causal Disocvery
  publication-title: Proceedings of Machine Learning Research: PMLR
– volume: 24
  start-page: 230
  year: 2015
  article-title: Learning the structure of mixed graphical models
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2014.900500
– volume: 258
  start-page: 243
  year: 2011
  article-title: The National Lung Screening trial: overview and study design
  publication-title: Radiology
  doi: 10.1148/radiol.10091808
– volume: 103
  start-page: 1058
  year: 2011
  article-title: Lung cancer risk prediction: prostate, lung, colorectal and ovarian cancer screening trial models and validation
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djr173
– volume: 95
  start-page: 470
  year: 2003
  article-title: Variations in lung cancer risk among smokers
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/95.6.470
– volume: 119
  start-page: 1306
  year: 2013
  article-title: Examining whether Lung Screening changes risk perceptions: national lung screening trial participants at 1-year follow-up
  publication-title: Cancer
  doi: 10.1002/cncr.27925
– volume: 12
  start-page: 1193
  year: 2015
  article-title: Indolent, potentially inconsequential lung cancers in the Pittsburgh Lung Screening study
  publication-title: Ann Am Thorac Soc
  doi: 10.1513/AnnalsATS.201412-577OC
– volume: 2
  start-page: 213
  year: 2006
  article-title: Angiogenesis in cancer
  publication-title: Vasc Health Risk Manag
  doi: 10.2147/vhrm.2006.2.3.213
– volume: 178
  start-page: 956
  year: 2008
  article-title: The Pittsburgh Lung Screening study (PLuSS): outcomes within 3 years of a first computed tomography scan
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.200802-336OC
– volume: 9
  year: 2018
  article-title: Respiratory microbiome profiling for etiologic diagnosis of pneumonia in mechanically ventilated patients
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.01413
– volume: 17
  year: 2016
  article-title: Learning mixed graphical models with separate sparsity parameters and stability-based model selection
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1039-0
– volume: 99
  start-page: 715
  year: 2007
  article-title: A risk model for prediction of lung cancer
  publication-title: JNCI Journal of the National Cancer Institute
  doi: 10.1093/jnci/djk153
– volume: 368
  start-page: 728
  year: 2013
  article-title: Selection criteria for lung-cancer screening
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1211776
– volume: 4
  start-page: 1778
  year: 2011
  article-title: Lung cancer risk prediction to select smokers for screening CT--a model based on the Italian COSMOS trial
  publication-title: Cancer Prev Res
  doi: 10.1158/1940-6207.CAPR-11-0026
– volume: 369
  start-page: 920
  year: 2013
  article-title: Results of the two incidence screenings in the national lung screening trial
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1208962
– volume: 114
  start-page: 38
  year: 2017
  article-title: Vasculature surrounding a nodule: a novel lung cancer biomarker
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2017.10.008
– volume: 369
  start-page: 910
  year: 2013
  article-title: Probability of cancer in pulmonary nodules detected on first screening CT
  publication-title: N Engl J Med Overseas Ed
  doi: 10.1056/NEJMoa1214726
– volume: 98
  start-page: 270
  year: 2008
  article-title: The LLP risk model: an individual risk prediction model for lung cancer
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6604158
– volume: 6
  start-page: 33
  year: 2018
  article-title: Comparison of strategies for scalable causal discovery of latent variable models from mixed data
  publication-title: Int J Data Sci Anal
  doi: 10.1007/s41060-018-0104-3
– volume: 86
  start-page: 231
  year: 1996
  article-title: Smoking prevalence in US birth cohorts: the influence of gender and education
  publication-title: Am J Public Health
  doi: 10.2105/AJPH.86.2.231
– volume: 89
  start-page: 31
  year: 2015
  article-title: A simple model for predicting lung cancer occurrence in a lung cancer screening program: the Pittsburgh predictor
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2015.03.021
– volume: 1
  start-page: 250
  year: 2008
  article-title: An expanded risk prediction model for lung cancer
  publication-title: Cancer Prev Res
  doi: 10.1158/1940-6207.CAPR-08-0060
– ident: 2024120417103841000_74.7.643.27
  doi: 10.1093/bioinformatics/bty769
– ident: 2024120417103841000_74.7.643.21
  doi: 10.1017/CBO9780511803161
– ident: 2024120417103841000_74.7.643.30
  doi: 10.2105/AJPH.86.2.231
– ident: 2024120417103841000_74.7.643.10
  doi: 10.1093/jnci/djr173
– ident: 2024120417103841000_74.7.643.31
– ident: 2024120417103841000_74.7.643.16
  doi: 10.1186/s12859-016-1039-0
– ident: 2024120417103841000_74.7.643.29
  doi: 10.1186/1471-2105-12-77
– ident: 2024120417103841000_74.7.643.25
  doi: 10.1007/s41060-018-0104-3
– volume: 24
  start-page: 230
  year: 2015
  ident: 2024120417103841000_74.7.643.26
  article-title: Learning the structure of mixed graphical models
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2014.900500
– ident: 2024120417103841000_74.7.643.1
  doi: 10.1148/radiol.10091808
– ident: 2024120417103841000_74.7.643.7
  doi: 10.1158/1940-6207.CAPR-08-0060
– ident: 2024120417103841000_74.7.643.9
  doi: 10.1158/1940-6207.CAPR-11-0026
– volume: 34
  start-page: i848
  year: 2018
  ident: 2024120417103841000_74.7.643.18
  article-title: piMGM: incorporating multi-source priors in mixed graphical models for learning disease networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty591
– volume: 12
  start-page: 1193
  year: 2015
  ident: 2024120417103841000_74.7.643.4
  article-title: Indolent, potentially inconsequential lung cancers in the Pittsburgh Lung Screening study
  publication-title: Ann Am Thorac Soc
– volume: 369
  start-page: 910
  year: 2013
  ident: 2024120417103841000_74.7.643.12
  article-title: Probability of cancer in pulmonary nodules detected on first screening CT
  publication-title: N Engl J Med Overseas Ed
  doi: 10.1056/NEJMoa1214726
– volume: 162
  start-page: 485
  year: 2015
  ident: 2024120417103841000_74.7.643.24
  article-title: Performance of lung-RADS in the national lung screening trial: a retrospective assessment
  publication-title: Ann Intern Med
  doi: 10.7326/M14-2086
– volume: 89
  start-page: 31
  year: 2015
  ident: 2024120417103841000_74.7.643.13
  article-title: A simple model for predicting lung cancer occurrence in a lung cancer screening program: the Pittsburgh predictor
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2015.03.021
– ident: 2024120417103841000_74.7.643.22
  doi: 10.1164/rccm.200802-336OC
– volume: 114
  start-page: 38
  year: 2017
  ident: 2024120417103841000_74.7.643.23
  article-title: Vasculature surrounding a nodule: a novel lung cancer biomarker
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2017.10.008
– ident: 2024120417103841000_74.7.643.6
  doi: 10.1093/jnci/djk153
– volume: 169
  start-page: 10
  year: 2018
  ident: 2024120417103841000_74.7.643.15
  article-title: Implications of nine risk prediction models for selecting Ever-Smokers for computed tomography lung cancer screening
  publication-title: Ann Intern Med
  doi: 10.7326/M17-2701
– ident: 2024120417103841000_74.7.643.17
  doi: 10.3389/fmicb.2018.01413
– ident: 2024120417103841000_74.7.643.5
  doi: 10.1093/jnci/95.6.470
– ident: 2024120417103841000_74.7.643.3
  doi: 10.1002/cncr.27925
– ident: 2024120417103841000_74.7.643.11
  doi: 10.1056/NEJMoa1211776
– ident: 2024120417103841000_74.7.643.19
  doi: 10.1038/s41598-019-39542-2
– volume: 82
  start-page: 238
  year: 2013
  ident: 2024120417103841000_74.7.643.14
  article-title: Diagnostic evaluation following a positive lung screening chest radiograph in the prostate, lung, colorectal, ovarian (PLCO) cancer screening trial
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2013.07.017
– ident: 2024120417103841000_74.7.643.2
  doi: 10.1056/NEJMoa1208962
– ident: 2024120417103841000_74.7.643.8
  doi: 10.1038/sj.bjc.6604158
– ident: 2024120417103841000_74.7.643.20
  doi: 10.7551/mitpress/1754.001.0001
– ident: 2024120417103841000_74.7.643.28
– ident: 2024120417103841000_74.7.643.32
  doi: 10.2147/vhrm.2006.2.3.213
SSID ssj0008117
Score 2.5062375
Snippet IntroductionLow-dose CT (LDCT) is currently used in lung cancer screening of high-risk populations for early lung cancer diagnosis. However, 96% of individuals...
Low-dose CT (LDCT) is currently used in lung cancer screening of high-risk populations for early lung cancer diagnosis. However, 96% of individuals with...
SourceID pubmedcentral
proquest
pubmed
crossref
bmj
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 643
SubjectTerms Aged
Angiogenesis
Artificial intelligence
Bioinformatics
cancer screening
Diagnosis, Differential
Early Detection of Cancer - methods
Feasibility Studies
Female
Humans
low-dose CT
Lung Cancer
lung cancer risk
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - etiology
Lung Neoplasms - pathology
Male
Mass Screening - methods
Medical imaging
Medical screening
Middle Aged
Models, Statistical
Multiple Pulmonary Nodules - diagnostic imaging
Multiple Pulmonary Nodules - pathology
Predictive Value of Tests
Radiation Dosage
Risk Factors
Smoking - adverse effects
Smoking Cessation - statistics & numerical data
Tomography
Tomography, X-Ray Computed - methods
Variables
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB-0BfFFbNU22soKvrQQm2Szm-yTlGIpQn1q4d7CZj9oy11yXu5Q_3tnkr3Uq2AlTyGTbDIf2fntzgfAxyznjluVxFqIAgFKXsaaljlqnjvFDZ4ryh2-_CYvrvOvEzEJC25dCKtc_xP7H7VtDa2Rn-A0hs4Ami7_PP8eU9co2l0NLTSewjaVLqOQrmIyAq6EkijXUXMSLSlk8KRcnixvkMM_75opqkmKupJmsk9RqWd3mzPUX27nw-jJP6aj85fwIviR7HQQ_A48cc0uPLsMO-WvwKBvFyJff7HWsykaNTMk4gWbL4iMJMIou4RN2x-xbTvHzq5YhzRMN5Z1s5ZW0VloyMMoQJ6esOpw2L5_Tvcars-_XJ1dxKGhQlyLslzG1tTKa-98xnNfuFLlpfGIKFJrtJAeD4doUAotLTpS2qQJtZvSssikrrWw_A1sNW3j9oE569O6zHxWpAoRXqZoQ1ggpw3PZVLWERwjK6tgEF3VYw0uq5HvFfG9GvgewRERz4f6Go_R5mvpVCaUMaduGtPHbvs03vaf4xysRX__FfdKGMGH8TIaJO2y6Ma1K6RBBEyF_lQSwd6gKeOInABkkYkIig0dGgmo2Pfmleb2pi_6jZ6iQHj39t-v9Q6e4zeoIZ74ALaWi5U7RK9pWb_vTeM3JFgVcA
  priority: 102
  providerName: ProQuest
Title Feasibility of lung cancer prediction from low-dose CT scan and smoking factors using causal models
URI https://thorax.bmj.com/content/74/7/643.full
https://www.ncbi.nlm.nih.gov/pubmed/30862725
https://www.proquest.com/docview/2239517623
https://www.proquest.com/docview/2191008790
https://pubmed.ncbi.nlm.nih.gov/PMC6585306
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-aFkpfSvdZt13QYC8beI0tS7Yeu9APBiljpCN7MrIs0ZbULnFC2_9-d7bjLVtHN_xgbJ8trN-d9TvrdAfwLoy45bka-FqIGB2UKPE1_ebIeGQVN3isaO3w6FyeXUSfJ2KyBoePz-AHXB7OL7Ev7q-LKQIaIKpBiCrTg406Lwup9Pdx9-mlVZPLMDmJptMu2fnrY7ZgkxOnj6lSdi-7uV4dnf6gnL9HTv4yFJ3swHbLIdlRA_ozWLPFc9gctbPkL8Agr2ujXh9Y6dgUDZoZgnfGbmckRmgwWlnCpuWdn5eVZcMxq1CG6SJn1U1Jf9BZW4yHUXA8PWFRYbN17ZzqJVycHI-HZ35bTMHPRJLM_dxkymlnXcgjF9tERYlx6E0EudFCOtwseoJSaJkjidImGFCpKS3jUOpMi5y_gvWiLOwuMJu7IEtCF8aBQu8uVDQZLLDTDY_kIMk8-IBdmbbGUKW1n8Fl2kGQEgRpA4EH70n4tsmt8ZRstEQnNW0Kc6qkMX3qto_dbf_YzsES-p9vgTwK2SiOHdyDt91lNEaaYdGFLRcog94vJflTAw9eN5rStbhUNA_iFR3qBCjR9-qV4uqyTviNLFGga7f3H121D1t4pJrA4gNYn88W9g3Sp3nWh148ifu14fRh42g4Gn3D_afj8y9f8ezpJPgBZKMX_g
linkProvider BMJ Publishing Group Ltd
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJe0PgODDASPIAU1tixkzxMCMamjq0VQp20t8xxHI2pS0rTauyf2t-4u3yNgsR4mfpU5RIn59-d7-z7AHjDfWFFGvVdLWWADoofupq2ORLh20gY_B9R7vBwpAYH_tdDebgCF20uDIVVtjqxUtRpYWiPfAOXMTQGUHTFx-lPl7pG0elq20KjhsWePT9Dl63c3P2C8_uW853t8dbAbboKuIkMw7mbmiTKdGYzLvwssGHkhyZDs9pLjZYqw59Fl0hJrVK0JrTx-tRzSauAK51omQp87i1Y9QW6Mj1Y_bw9-va90_2UttnG6SmU3SZnyBNqY36Mc_rrJJ8gMD1Ep8dVlRSTnJ4sr4l_Gbp_xmv-tgDurMG9xnJln2qo3YcVmz-A28PmbP4hGLQmm1jbc1ZkbIJqhBkC1YxNZ0RGGGCUz8ImxZmbFqVlW2NWIg3TecrK04L27VnTAohRSD49YVHisFXHnvIRHNwIsx9DLy9y-xSYTTMvCXnGAy9Cn5JHdAQtkdNG-KofJg68R1bGjQiWceXdCBV3fI-J73HNdwfeEfG0ruhxHa3fzk5smsLp1L9jct1tH7rb_nOc9Xbqr77iCvYOvO4uowqgcx2d22KBNOhzU2nBqO_Akxop3YiCXNaASweCJQx1BFRefPlK_uO4KjOOtqlEh_LZv1_rFdwZjIf78f7uaO853MXviepo5nXozWcL-wJttnnyshEUBkc3LZuXYWhV3w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEO8GChgJDiCFTezYSQ4IoZZVS2nFoZX2FhzHVqm2ybLZVelf49cxk1dZkCiXKqcokzgez9jz2fMAeMkjYUWRBr6WMkaAEiW-pm2OXEQ2FQbvU4odPjhUu8fRp4mcrMHPPhaG3Cr7ObGZqIvK0B75CJcxNAZQdcXIdW4RX3bG72fffaogRSetfTmNVkT27cU5wrf63d4OjvUrzscfj7Z3_a7CgJ_LJFn4hclTp511XEQutkkaJcahiR0WRkvl8LIIj5TUqkDLQpswoPpLWsVc6VzLQuB3b8DNWMiQdCyeDGAvoADO3mNPoRZ30UOhUKPFCY7uj9NyiiIaopyGXDXhMfnZ6erq-JfJ-6fn5m9L4fgO3O5sWPahFbq7sGbLe7Bx0J3S3weDdmXndXvBKsemOKEwQ-I1Z7M5kZE0MIpsYdPq3C-q2rLtI1YjDdNlweqzinbwWVcMiJFzPn1hWWOzTe2e-gEcXwurH8J6WZV2E5gtXJgn3PE4TBFd8pQOoyVy2ohIBUnuwRtkZdYpY501OEeobOB7RnzPWr578JqIZ21uj6too350MtOlUKdKHtOrXns7vPaf7Wz1Q3_Zi0sF8ODF8BgnAzrh0aWtlkiD6JuSDKaBB49aSRlaFAReYy49iFdkaCCgROOrT8pvJ03CcbRSJULLx__-reewgRqZfd473H8Ct7A7aevWvAXri_nSPkXjbZE_a7SEwdfrVstfYQhYrw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+of+lung+cancer+prediction+from+low-dose+CT+scan+and+smoking+factors+using+causal+models&rft.jtitle=Thorax&rft.au=Raghu%2C+Vineet+K&rft.au=Zhao%2C+Wei&rft.au=Pu%2C+Jiantao&rft.au=Leader%2C+Joseph+K&rft.date=2019-07-01&rft.issn=1468-3296&rft.eissn=1468-3296&rft.volume=74&rft.issue=7&rft.spage=643&rft_id=info:doi/10.1136%2Fthoraxjnl-2018-212638&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6376&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6376&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6376&client=summon