Feasibility of lung cancer prediction from low-dose CT scan and smoking factors using causal models
IntroductionLow-dose CT (LDCT) is currently used in lung cancer screening of high-risk populations for early lung cancer diagnosis. However, 96% of individuals with detected nodules are false positives.MethodsIn order to develop an efficient early lung cancer predictor from clinical, demographic and...
Saved in:
Published in | Thorax Vol. 74; no. 7; pp. 643 - 649 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BMJ Publishing Group Ltd and British Thoracic Society
01.07.2019
BMJ Publishing Group LTD BMJ Publishing Group |
Series | Original article |
Subjects | |
Online Access | Get full text |
ISSN | 0040-6376 1468-3296 1468-3296 |
DOI | 10.1136/thoraxjnl-2018-212638 |
Cover
Loading…
Abstract | IntroductionLow-dose CT (LDCT) is currently used in lung cancer screening of high-risk populations for early lung cancer diagnosis. However, 96% of individuals with detected nodules are false positives.MethodsIn order to develop an efficient early lung cancer predictor from clinical, demographic and LDCT features, we studied a total of 218 subjects with lung cancer or benign nodules. Probabilistic graphical models (PGMs) were used to integrate demographics, clinical data and LDCT features from 92 subjects (training cohort) from the Pittsburgh Lung Screening Study cohort.ResultsLearnt PGMs identified three variables directly (causally) linked to malignant nodules and the largest benign nodule and used them to build the Lung Cancer Causal Model (LCCM), which was validated in a separate cohort of 126 subjects. Nodule and vessel numbers and years since the subject quit smoking were sufficient to discriminate malignant from benign nodules. Comparison with existing predictors in the training and validation cohorts showed that (1) incorporating LDCT scan features greatly enhances predictive accuracy; and (2) LCCM improves cancer detection over existing methods, including the Brock parsimonious model (p<0.001). Notably, the number of surrounding vessels, a feature not previously used in predictive models, significantly improves predictive efficiency. Based on the validation cohort results, LCCM is able to identify 30% of the benign nodules without risk of misclassifying cancer nodules.DiscussionLCCM shows promise as a lung cancer predictor as it is significantly improved over existing models. Validated in a larger, prospective study, it may help reduce unnecessary follow-up visits and procedures. |
---|---|
AbstractList | IntroductionLow-dose CT (LDCT) is currently used in lung cancer screening of high-risk populations for early lung cancer diagnosis. However, 96% of individuals with detected nodules are false positives.MethodsIn order to develop an efficient early lung cancer predictor from clinical, demographic and LDCT features, we studied a total of 218 subjects with lung cancer or benign nodules. Probabilistic graphical models (PGMs) were used to integrate demographics, clinical data and LDCT features from 92 subjects (training cohort) from the Pittsburgh Lung Screening Study cohort.ResultsLearnt PGMs identified three variables directly (causally) linked to malignant nodules and the largest benign nodule and used them to build the Lung Cancer Causal Model (LCCM), which was validated in a separate cohort of 126 subjects. Nodule and vessel numbers and years since the subject quit smoking were sufficient to discriminate malignant from benign nodules. Comparison with existing predictors in the training and validation cohorts showed that (1) incorporating LDCT scan features greatly enhances predictive accuracy; and (2) LCCM improves cancer detection over existing methods, including the Brock parsimonious model (p<0.001). Notably, the number of surrounding vessels, a feature not previously used in predictive models, significantly improves predictive efficiency. Based on the validation cohort results, LCCM is able to identify 30% of the benign nodules without risk of misclassifying cancer nodules.DiscussionLCCM shows promise as a lung cancer predictor as it is significantly improved over existing models. Validated in a larger, prospective study, it may help reduce unnecessary follow-up visits and procedures. Low-dose CT (LDCT) is currently used in lung cancer screening of high-risk populations for early lung cancer diagnosis. However, 96% of individuals with detected nodules are false positives. In order to develop an efficient early lung cancer predictor from clinical, demographic and LDCT features, we studied a total of 218 subjects with lung cancer or benign nodules. Probabilistic graphical models (PGMs) were used to integrate demographics, clinical data and LDCT features from 92 subjects (training cohort) from the Pittsburgh Lung Screening Study cohort. Learnt PGMs identified three variables directly (causally) linked to malignant nodules and the largest benign nodule and used them to build the Lung Cancer Causal Model (LCCM), which was validated in a separate cohort of 126 subjects. Nodule and vessel numbers and years since the subject quit smoking were sufficient to discriminate malignant from benign nodules. Comparison with existing predictors in the training and validation cohorts showed that (1) incorporating LDCT scan features greatly enhances predictive accuracy; and (2) LCCM improves cancer detection over existing methods, including the Brock parsimonious model (p 0.001). Notably, the number of surrounding vessels, a feature not previously used in predictive models, significantly improves predictive efficiency. Based on the validation cohort results, LCCM is able to identify 30% of the benign nodules without risk of misclassifying cancer nodules. LCCM shows promise as a lung cancer predictor as it is significantly improved over existing models. Validated in a larger, prospective study, it may help reduce unnecessary follow-up visits and procedures. Low-dose CT (LDCT) is currently used in lung cancer screening of high-risk populations for early lung cancer diagnosis. However, 96% of individuals with detected nodules are false positives.INTRODUCTIONLow-dose CT (LDCT) is currently used in lung cancer screening of high-risk populations for early lung cancer diagnosis. However, 96% of individuals with detected nodules are false positives.In order to develop an efficient early lung cancer predictor from clinical, demographic and LDCT features, we studied a total of 218 subjects with lung cancer or benign nodules. Probabilistic graphical models (PGMs) were used to integrate demographics, clinical data and LDCT features from 92 subjects (training cohort) from the Pittsburgh Lung Screening Study cohort.METHODSIn order to develop an efficient early lung cancer predictor from clinical, demographic and LDCT features, we studied a total of 218 subjects with lung cancer or benign nodules. Probabilistic graphical models (PGMs) were used to integrate demographics, clinical data and LDCT features from 92 subjects (training cohort) from the Pittsburgh Lung Screening Study cohort.Learnt PGMs identified three variables directly (causally) linked to malignant nodules and the largest benign nodule and used them to build the Lung Cancer Causal Model (LCCM), which was validated in a separate cohort of 126 subjects. Nodule and vessel numbers and years since the subject quit smoking were sufficient to discriminate malignant from benign nodules. Comparison with existing predictors in the training and validation cohorts showed that (1) incorporating LDCT scan features greatly enhances predictive accuracy; and (2) LCCM improves cancer detection over existing methods, including the Brock parsimonious model (p<0.001). Notably, the number of surrounding vessels, a feature not previously used in predictive models, significantly improves predictive efficiency. Based on the validation cohort results, LCCM is able to identify 30% of the benign nodules without risk of misclassifying cancer nodules.RESULTSLearnt PGMs identified three variables directly (causally) linked to malignant nodules and the largest benign nodule and used them to build the Lung Cancer Causal Model (LCCM), which was validated in a separate cohort of 126 subjects. Nodule and vessel numbers and years since the subject quit smoking were sufficient to discriminate malignant from benign nodules. Comparison with existing predictors in the training and validation cohorts showed that (1) incorporating LDCT scan features greatly enhances predictive accuracy; and (2) LCCM improves cancer detection over existing methods, including the Brock parsimonious model (p<0.001). Notably, the number of surrounding vessels, a feature not previously used in predictive models, significantly improves predictive efficiency. Based on the validation cohort results, LCCM is able to identify 30% of the benign nodules without risk of misclassifying cancer nodules.LCCM shows promise as a lung cancer predictor as it is significantly improved over existing models. Validated in a larger, prospective study, it may help reduce unnecessary follow-up visits and procedures.DISCUSSIONLCCM shows promise as a lung cancer predictor as it is significantly improved over existing models. Validated in a larger, prospective study, it may help reduce unnecessary follow-up visits and procedures. |
Author | Zhao, Wei Herman, James Raghu, Vineet K Yuan, Jian-Min Benos, Panayiotis V Pu, Jiantao Leader, Joseph K Wilson, David O Wang, Renwei |
AuthorAffiliation | 3 Department of Radiology , University of Pittsburgh , Pittsburgh , Pennsylvania , United States 2 Department of Computer Science , University of Pittsburgh , Pittsburgh , Pennsylvania , United States 4 Current affiliation: Department of Respiratory Medicine , Chinese PLA General Hospital , Beijing , China 5 Division of Cancer Control and Population Sciences , UPMC Hillman Cancer Center , Pittsburgh , Pennsylvania , United States 8 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine , University of Pittsburgh , Pittsburgh , Pennsylvania , United States 6 Division of Hematology, Oncology, Department of Medicine , University of Pittsburgh , Pittsburgh , Pennsylvania , United States 1 Department of Computational and Systems Biology , University of Pittsburgh , Pittsburgh , Pennsylvania , USA 7 Department of Epidemiology , University of Pittsburgh , Pittsburgh , Pennsylvania , United States |
AuthorAffiliation_xml | – name: 5 Division of Cancer Control and Population Sciences , UPMC Hillman Cancer Center , Pittsburgh , Pennsylvania , United States – name: 8 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine , University of Pittsburgh , Pittsburgh , Pennsylvania , United States – name: 6 Division of Hematology, Oncology, Department of Medicine , University of Pittsburgh , Pittsburgh , Pennsylvania , United States – name: 2 Department of Computer Science , University of Pittsburgh , Pittsburgh , Pennsylvania , United States – name: 4 Current affiliation: Department of Respiratory Medicine , Chinese PLA General Hospital , Beijing , China – name: 7 Department of Epidemiology , University of Pittsburgh , Pittsburgh , Pennsylvania , United States – name: 1 Department of Computational and Systems Biology , University of Pittsburgh , Pittsburgh , Pennsylvania , USA – name: 3 Department of Radiology , University of Pittsburgh , Pittsburgh , Pennsylvania , United States |
Author_xml | – sequence: 1 givenname: Vineet K surname: Raghu fullname: Raghu, Vineet K organization: Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States – sequence: 2 givenname: Wei surname: Zhao fullname: Zhao, Wei organization: Current affiliation: Department of Respiratory Medicine, Chinese PLA General Hospital, Beijing, China – sequence: 3 givenname: Jiantao surname: Pu fullname: Pu, Jiantao organization: Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States – sequence: 4 givenname: Joseph K surname: Leader fullname: Leader, Joseph K organization: Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States – sequence: 5 givenname: Renwei surname: Wang fullname: Wang, Renwei organization: Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, United States – sequence: 6 givenname: James surname: Herman fullname: Herman, James organization: Division of Hematology, Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States – sequence: 7 givenname: Jian-Min surname: Yuan fullname: Yuan, Jian-Min organization: Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States – sequence: 8 givenname: Panayiotis V orcidid: 0000-0003-3172-3132 surname: Benos fullname: Benos, Panayiotis V email: benos@pitt.edu organization: Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States – sequence: 9 givenname: David O surname: Wilson fullname: Wilson, David O organization: Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30862725$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUuPFCEUhYkZ4zz0J2hI3Lgp5dFQVExMTMdRk0ncjGtyi8cMLQUtVKnz76XtsdVZqGHBgu8c7rnnFB2lnBxCjyl5TimXL-brXODbJsWOEao6Rpnk6h46oSupOs4GeYROCFmRTvJeHqPTWjeEEEVp_wAdc6Ik65k4QebcQQ1jiGG-wdnjuKQrbCAZV_C2OBvMHHLCvuQJx_y1s7k6vL7EtTEYksV1yp9C03gwcy4VLzX8cFgqRDxl62J9iO57iNU9ur3P0MfzN5frd93Fh7fv168vulEoNXfWjIMH7zzjK987NayU8WLoqTUgpG_HUdJLAdIKQcFQYqUdQfZMwgjC8jP0au-7XcbJWePSXCDqbQkTlBudIeg_X1K41lf5i5ZCCU5kM3h2a1Dy58XVWU-hGhcjJJeXqhkdaNthP5CGPr2DbvJSUounGeODoL1kvFFPfp_oMMrP_TdA7AFTcq3F-QNCid71rA89613Pet9z0728ozNhhl1VLViI_1STvXqcNv_9If0lOUT9u-Y7JxDTqQ |
CitedBy_id | crossref_primary_10_1371_journal_pone_0220215 crossref_primary_10_1038_s41598_023_29058_1 crossref_primary_10_1016_j_lungcan_2020_07_007 crossref_primary_10_1183_16000617_0288_2020 crossref_primary_10_3390_app11199258 crossref_primary_10_1183_13993003_03386_2020 crossref_primary_10_1002_cncr_32805 crossref_primary_10_1097_CCM_0000000000004018 crossref_primary_10_3390_molecules28124850 crossref_primary_10_1097_PCC_0000000000002776 crossref_primary_10_3390_biology12050709 crossref_primary_10_1164_rccm_202008_3370LE crossref_primary_10_1155_2022_3585567 crossref_primary_10_1183_13993003_01613_2021 crossref_primary_10_2139_ssrn_4164147 crossref_primary_10_3390_diagnostics13162617 crossref_primary_10_1080_14737140_2019_1643239 crossref_primary_10_3390_app12041926 crossref_primary_10_1016_j_crad_2024_106788 crossref_primary_10_3390_agronomy14010008 crossref_primary_10_1111_1759_7714_13991 crossref_primary_10_1093_nar_gkaa350 crossref_primary_10_1007_s00117_020_00787_y crossref_primary_10_1080_24745332_2020_1819175 crossref_primary_10_1016_j_acra_2022_07_001 crossref_primary_10_3389_fonc_2023_1132514 crossref_primary_10_7717_peerj_16539 crossref_primary_10_1164_rccm_202008_3057LE crossref_primary_10_1002_mp_15158 crossref_primary_10_3389_fonc_2021_700179 crossref_primary_10_1097_CM9_0000000000001507 crossref_primary_10_22328_2079_5343_2022_13_1_14_20 crossref_primary_10_1016_j_jgg_2023_02_014 crossref_primary_10_3310_IJFM4802 crossref_primary_10_1016_j_bspc_2024_106938 crossref_primary_10_1038_s41571_020_00432_6 crossref_primary_10_3390_a17040138 crossref_primary_10_1016_j_eclinm_2024_102786 crossref_primary_10_1016_j_patter_2022_100473 crossref_primary_10_1038_s41598_021_04667_w crossref_primary_10_1109_TCBB_2020_3019237 crossref_primary_10_1016_S2213_2600_20_30081_3 crossref_primary_10_1097_HC9_0000000000000510 crossref_primary_10_1371_journal_pmed_1004444 crossref_primary_10_1111_1759_7714_14333 crossref_primary_10_1186_s12916_021_01928_3 crossref_primary_10_3389_fepid_2022_899655 |
Cites_doi | 10.1007/s41060-018-0104-3 10.2105/AJPH.86.2.231 10.1038/sj.bjc.6604158 10.1056/NEJMoa1211776 10.1093/jnci/95.6.470 10.1164/rccm.200802-336OC 10.1093/jnci/djk153 10.1186/s12859-016-1039-0 10.1093/bioinformatics/bty769 10.1016/j.lungcan.2013.07.017 10.1186/1471-2105-12-77 10.1158/1940-6207.CAPR-11-0026 10.7326/M14-2086 10.1056/NEJMoa1208962 10.1016/j.lungcan.2015.03.021 10.1093/bioinformatics/bty591 10.7326/M17-2701 10.1158/1940-6207.CAPR-08-0060 10.3389/fmicb.2018.01413 10.1002/cncr.27925 10.1056/NEJMoa1214726 10.2147/vhrm.2006.2.3.213 10.1513/AnnalsATS.201412-577OC 10.1080/10618600.2014.900500 10.1148/radiol.10091808 10.1093/jnci/djr173 10.1016/j.lungcan.2017.10.008 10.1017/CBO9780511803161 10.1038/s41598-019-39542-2 10.7551/mitpress/1754.001.0001 |
ContentType | Journal Article |
Copyright | Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2019 Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2019 |
Copyright_xml | – notice: Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. – notice: 2019 Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2019 |
DBID | 9YT ACMMV AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR BTHHO CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1136/thoraxjnl-2018-212638 |
DatabaseName | BMJ Open Access Journals BMJ Journals:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central BMJ Journals ProQuest One Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) BMJ Journals Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest One Academic Middle East (New) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: ACMMV name: BMJ Journals:Open Access url: https://journals.bmj.com/ sourceTypes: Publisher – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1468-3296 |
EndPage | 649 |
ExternalDocumentID | PMC6585306 30862725 10_1136_thoraxjnl_2018_212638 thoraxjnl |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States--US Pittsburgh Pennsylvania |
GeographicLocations_xml | – name: United States--US – name: Pittsburgh Pennsylvania |
GrantInformation_xml | – fundername: National Cancer Institute grantid: P30CA047904; P50CA90440; R21CA197493; T32CA082084 funderid: http://dx.doi.org/10.13039/100000054 – fundername: National Heart, Lung, and Blood Institute grantid: U01HL137159 funderid: http://dx.doi.org/10.13039/100000050 – fundername: U.S. National Library of Medicine grantid: R01LM012087 funderid: http://dx.doi.org/10.13039/100000092 – fundername: NHLBI NIH HHS grantid: U01 HL137159 – fundername: NLM NIH HHS grantid: R01 LM012087 – fundername: NCI NIH HHS grantid: T32 CA082084 – fundername: NHLBI NIH HHS grantid: R01 HL096613 – fundername: NCI NIH HHS grantid: P50 CA090440 – fundername: NCI NIH HHS grantid: P30 CA047904 – fundername: NCI NIH HHS grantid: R21 CA197493 – fundername: ; grantid: R01LM012087 – fundername: ; grantid: U01HL137159 – fundername: ; grantid: P30CA047904; P50CA90440; R21CA197493; T32CA082084 |
GroupedDBID | --- .55 .GJ .VT 08G 0R~ 123 18M 29Q 2WC 354 39C 3O- 4.4 40O 53G 5RE 5VS 6PF 7X7 7~S 88E 8F7 8FI 8FJ 8R4 8R5 9YT AAHLL AAKAS AAOJX AAWJN AAWTL AAYEP ABAAH ABJNI ABKDF ABMQD ABOCM ABTFR ABUWG ABVAJ ACGFO ACGFS ACGTL ACHTP ACMFJ ACMMV ACOAB ACOFX ACQSR ACTZY ADBBV ADCEG ADZCM AENEX AFKRA AFWFF AGQPQ AHMBA AHNKE AHQMW AJYBZ ALIPV ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN BAWUL BENPR BLJBA BOMFT BPHCQ BTFSW BTHHO BVXVI C45 CAG CCPQU COF CS3 CXRWF DIK DU5 E3Z EBS EJD F5P FEDTE FYUFA GX1 H13 HAJ HMCUK HVGLF HYE HZ~ IAO IEA IH2 IHR IOF ITC J5H KQ8 L7B M1P N4W N9A NTWIH NXWIF O9- OK1 OVD P2P PHGZT PQQKQ PROAC PSQYO Q2X R53 RHI RMJ RPM RV8 TEORI TR2 UAW UKHRP UYXKK V24 VM9 VVN W8F WH7 X7M YFH YOC YQY ZCG ZGI AAYXX ACQHZ ADGHP AERUA CITATION PHGZM CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-b588t-dcb9fafef234f7e8948cf5971dca56f6f6e10765a6d551ac10d6dba6726aba5d3 |
IEDL.DBID | 9YT |
ISSN | 0040-6376 1468-3296 |
IngestDate | Thu Aug 21 18:02:50 EDT 2025 Fri Jul 11 09:24:46 EDT 2025 Fri Jul 25 11:01:35 EDT 2025 Mon Jul 21 05:24:29 EDT 2025 Tue Jul 01 02:00:41 EDT 2025 Thu Apr 24 22:56:42 EDT 2025 Fri Apr 25 03:30:37 EDT 2025 Thu Apr 24 22:49:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | lung cancer risk low-dose CT cancer screening |
Language | English |
License | This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/. Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b588t-dcb9fafef234f7e8948cf5971dca56f6f6e10765a6d551ac10d6dba6726aba5d3 |
Notes | Original article ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3172-3132 |
OpenAccessLink | http://dx.doi.org/10.1136/thoraxjnl-2018-212638 |
PMID | 30862725 |
PQID | 2239517623 |
PQPubID | 2041050 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6585306 proquest_miscellaneous_2191008790 proquest_journals_2239517623 pubmed_primary_30862725 crossref_primary_10_1136_thoraxjnl_2018_212638 crossref_citationtrail_10_1136_thoraxjnl_2018_212638 bmj_primary_10_1136_thoraxjnl_2018_212638 bmj_journals_10_1136_thoraxjnl_2018_212638 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: BMA House, Tavistock Square, London, WC1H 9JR |
PublicationSeriesTitle | Original article |
PublicationTitle | Thorax |
PublicationTitleAbbrev | Thorax |
PublicationTitleAlternate | Thorax |
PublicationYear | 2019 |
Publisher | BMJ Publishing Group Ltd and British Thoracic Society BMJ Publishing Group LTD BMJ Publishing Group |
Publisher_xml | – name: BMJ Publishing Group Ltd and British Thoracic Society – name: BMJ Publishing Group LTD – name: BMJ Publishing Group |
References | Wilson, Weissfeld (R13) 2015; 89 Hocking, Tammemagi, Commins (R14) 2013; 82 Cassidy, Myles, van Tongeren (R8) 2008; 98 Tammemägi, Katki, Hocking (R11) 2013; 368 Raghu, Poon, Benos (R28) 2018 Nishida, Yano, Nishida (R32) 2006; 2 Park, Gareen, Jain (R3) 2013; 119 McWilliams, Tammemagi, Mayo (R12) 2013; 369 Wilson, Weissfeld, Fuhrman (R22) 2008; 178 Escobedo, Peddicord (R30) 1996; 86 Robin, Turck, Hainard (R29) 2011; 12 Kitsios, Fitch, Manatakis (R17) 2018; 9 Sedgewick, Shi, Donovan (R16) 2016; 17 Raghu, Ramsey, Morris (R25) 2018; 6 Lee, Hastie (R26) 2015; 24 Sedgewick, Buschur, Shi (R27) 2018; 183 Katki, Kovalchik, Petito (R15) 2018; 169 Wang, Leader, Wang (R23) 2017; 114 Pinsky, Gierada, Black (R24) 2015; 162 Aberle, Berg, Black (R1) 2011; 258 Abecasis, Sedgewick, Romkes (R19) 2019; 13 Spitz, Hong, Amos (R6) 2007; 99 Bach, Kattan, Thornquist (R5) 2003; 95 Thalanayar, Altintas, Weissfeld (R4) 2015; 12 Spitz, Etzel, Dong (R7) 2008; 1 Tammemagi, Pinsky, Caporaso (R10) 2011; 103 Aberle, DeMello, Berg (R2) 2013; 369 Manatakis, Raghu, Benos (R18) 2018; 34 Maisonneuve, Bagnardi, Bellomi (R9) 2011; 4 Tammemagi, Pinsky, Caporaso 2011; 103 Nishida, Yano, Nishida 2006; 2 Escobedo, Peddicord 1996; 86 Wang, Leader, Wang 2017; 114 Hocking, Tammemagi, Commins 2013; 82 Spitz, Hong, Amos 2007; 99 Park, Gareen, Jain 2013; 119 Katki, Kovalchik, Petito 2018; 169 Sedgewick, Shi, Donovan 2016; 17 Raghu, Ramsey, Morris 2018; 6 Wilson, Weissfeld, Fuhrman 2008; 178 Pinsky, Gierada, Black 2015; 162 Wilson, Weissfeld 2015; 89 Aberle, DeMello, Berg 2013; 369 Kitsios, Fitch, Manatakis 2018; 9 Robin, Turck, Hainard 2011; 12 Cassidy, Myles, van Tongeren 2008; 98 Bach, Kattan, Thornquist 2003; 95 Tammemägi, Katki, Hocking 2013; 368 Spitz, Etzel, Dong 2008; 1 Abecasis, Sedgewick, Romkes 2019; 13 Lee, Hastie 2015; 24 Aberle, Berg, Black 2011; 258 Thalanayar, Altintas, Weissfeld 2015; 12 Sedgewick, Buschur, Shi 2018; 183 Raghu, Poon, Benos 2018 Manatakis, Raghu, Benos 2018; 34 McWilliams, Tammemagi, Mayo 2013; 369 Maisonneuve, Bagnardi, Bellomi 2011; 4 2024120417103841000_74.7.643.22 2024120417103841000_74.7.643.21 2024120417103841000_74.7.643.20 2024120417103841000_74.7.643.29 Manatakis (2024120417103841000_74.7.643.18) 2018; 34 2024120417103841000_74.7.643.28 2024120417103841000_74.7.643.27 Pinsky (2024120417103841000_74.7.643.24) 2015; 162 Katki (2024120417103841000_74.7.643.15) 2018; 169 2024120417103841000_74.7.643.25 Wilson (2024120417103841000_74.7.643.13) 2015; 89 Lee (2024120417103841000_74.7.643.26) 2015; 24 Wang (2024120417103841000_74.7.643.23) 2017; 114 2024120417103841000_74.7.643.11 2024120417103841000_74.7.643.10 2024120417103841000_74.7.643.32 2024120417103841000_74.7.643.31 2024120417103841000_74.7.643.30 Thalanayar (2024120417103841000_74.7.643.4) 2015; 12 2024120417103841000_74.7.643.19 2024120417103841000_74.7.643.17 2024120417103841000_74.7.643.9 2024120417103841000_74.7.643.16 2024120417103841000_74.7.643.8 2024120417103841000_74.7.643.7 2024120417103841000_74.7.643.6 2024120417103841000_74.7.643.5 2024120417103841000_74.7.643.3 McWilliams (2024120417103841000_74.7.643.12) 2013; 369 2024120417103841000_74.7.643.2 2024120417103841000_74.7.643.1 Hocking (2024120417103841000_74.7.643.14) 2013; 82 |
References_xml | – volume: 6 start-page: 33 year: 2018 ident: R25 article-title: Comparison of strategies for scalable causal discovery of latent variable models from mixed data publication-title: Int J Data Sci Anal doi: 10.1007/s41060-018-0104-3 – volume: 86 start-page: 231 year: 1996 ident: R30 article-title: Smoking prevalence in US birth cohorts: the influence of gender and education publication-title: Am J Public Health doi: 10.2105/AJPH.86.2.231 – volume: 98 start-page: 270 year: 2008 ident: R8 article-title: The LLP risk model: an individual risk prediction model for lung cancer publication-title: Br J Cancer doi: 10.1038/sj.bjc.6604158 – volume: 368 start-page: 728 year: 2013 ident: R11 article-title: Selection criteria for lung-cancer screening publication-title: N Engl J Med doi: 10.1056/NEJMoa1211776 – volume: 95 start-page: 470 year: 2003 ident: R5 article-title: Variations in lung cancer risk among smokers publication-title: J Natl Cancer Inst doi: 10.1093/jnci/95.6.470 – start-page: 48 year: 2018 ident: R28 article-title: Evaluation of causal structure learning methods on mixed data types. Proceedings of 2018 ACM SIGKDD workshop on causal Disocvery publication-title: Proceedings of Machine Learning Research: PMLR – volume: 178 start-page: 956 year: 2008 ident: R22 article-title: The Pittsburgh Lung Screening study (PLuSS): outcomes within 3 years of a first computed tomography scan publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200802-336OC – volume: 99 start-page: 715 year: 2007 ident: R6 article-title: A risk model for prediction of lung cancer publication-title: JNCI Journal of the National Cancer Institute doi: 10.1093/jnci/djk153 – volume: 17 year: 2016 ident: R16 article-title: Learning mixed graphical models with separate sparsity parameters and stability-based model selection publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1039-0 – volume: 183 year: 2018 ident: R27 article-title: Mixed graphical models for integrative causal analysis with application to chronic lung disease diagnosis and prognosis publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty769 – volume: 82 start-page: 238 year: 2013 ident: R14 article-title: Diagnostic evaluation following a positive lung screening chest radiograph in the prostate, lung, colorectal, ovarian (PLCO) cancer screening trial publication-title: Lung Cancer doi: 10.1016/j.lungcan.2013.07.017 – volume: 12 year: 2011 ident: R29 article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-77 – volume: 4 start-page: 1778 year: 2011 ident: R9 article-title: Lung cancer risk prediction to select smokers for screening CT--a model based on the Italian COSMOS trial publication-title: Cancer Prev Res doi: 10.1158/1940-6207.CAPR-11-0026 – volume: 162 start-page: 485 year: 2015 ident: R24 article-title: Performance of lung-RADS in the national lung screening trial: a retrospective assessment publication-title: Ann Intern Med doi: 10.7326/M14-2086 – volume: 369 start-page: 920 year: 2013 ident: R2 article-title: Results of the two incidence screenings in the national lung screening trial publication-title: N Engl J Med doi: 10.1056/NEJMoa1208962 – volume: 89 start-page: 31 year: 2015 ident: R13 article-title: A simple model for predicting lung cancer occurrence in a lung cancer screening program: the Pittsburgh predictor publication-title: Lung Cancer doi: 10.1016/j.lungcan.2015.03.021 – volume: 34 start-page: i848 year: 2018 ident: R18 article-title: piMGM: incorporating multi-source priors in mixed graphical models for learning disease networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty591 – volume: 169 start-page: 10 year: 2018 ident: R15 article-title: Implications of nine risk prediction models for selecting Ever-Smokers for computed tomography lung cancer screening publication-title: Ann Intern Med doi: 10.7326/M17-2701 – volume: 1 start-page: 250 year: 2008 ident: R7 article-title: An expanded risk prediction model for lung cancer publication-title: Cancer Prev Res doi: 10.1158/1940-6207.CAPR-08-0060 – volume: 9 year: 2018 ident: R17 article-title: Respiratory microbiome profiling for etiologic diagnosis of pneumonia in mechanically ventilated patients publication-title: Front Microbiol doi: 10.3389/fmicb.2018.01413 – volume: 119 start-page: 1306 year: 2013 ident: R3 article-title: Examining whether Lung Screening changes risk perceptions: national lung screening trial participants at 1-year follow-up publication-title: Cancer doi: 10.1002/cncr.27925 – volume: 369 start-page: 910 year: 2013 ident: R12 article-title: Probability of cancer in pulmonary nodules detected on first screening CT publication-title: N Engl J Med Overseas Ed doi: 10.1056/NEJMoa1214726 – volume: 13 year: 2019 ident: R19 article-title: PARP1 rs1805407 increases sensitivity to PARP1 inhibitors in cancer cells suggesting an improved therapeutic strategy publication-title: Sci Rep – volume: 2 start-page: 213 year: 2006 ident: R32 article-title: Angiogenesis in cancer publication-title: Vasc Health Risk Manag doi: 10.2147/vhrm.2006.2.3.213 – volume: 12 start-page: 1193 year: 2015 ident: R4 article-title: Indolent, potentially inconsequential lung cancers in the Pittsburgh Lung Screening study publication-title: Ann Am Thorac Soc doi: 10.1513/AnnalsATS.201412-577OC – volume: 24 start-page: 230 year: 2015 ident: R26 article-title: Learning the structure of mixed graphical models publication-title: J Comput Graph Stat doi: 10.1080/10618600.2014.900500 – volume: 258 start-page: 243 year: 2011 ident: R1 article-title: The National Lung Screening trial: overview and study design publication-title: Radiology doi: 10.1148/radiol.10091808 – volume: 103 start-page: 1058 year: 2011 ident: R10 article-title: Lung cancer risk prediction: prostate, lung, colorectal and ovarian cancer screening trial models and validation publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djr173 – volume: 114 start-page: 38 year: 2017 ident: R23 article-title: Vasculature surrounding a nodule: a novel lung cancer biomarker publication-title: Lung Cancer doi: 10.1016/j.lungcan.2017.10.008 – volume: 183 year: 2018 article-title: Mixed graphical models for integrative causal analysis with application to chronic lung disease diagnosis and prognosis publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty769 – volume: 162 start-page: 485 year: 2015 article-title: Performance of lung-RADS in the national lung screening trial: a retrospective assessment publication-title: Ann Intern Med doi: 10.7326/M14-2086 – volume: 13 year: 2019 article-title: PARP1 rs1805407 increases sensitivity to PARP1 inhibitors in cancer cells suggesting an improved therapeutic strategy publication-title: Sci Rep – volume: 82 start-page: 238 year: 2013 article-title: Diagnostic evaluation following a positive lung screening chest radiograph in the prostate, lung, colorectal, ovarian (PLCO) cancer screening trial publication-title: Lung Cancer doi: 10.1016/j.lungcan.2013.07.017 – volume: 169 start-page: 10 year: 2018 article-title: Implications of nine risk prediction models for selecting Ever-Smokers for computed tomography lung cancer screening publication-title: Ann Intern Med doi: 10.7326/M17-2701 – volume: 12 year: 2011 article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-77 – volume: 34 start-page: i848 year: 2018 article-title: piMGM: incorporating multi-source priors in mixed graphical models for learning disease networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty591 – start-page: 48 year: 2018 article-title: Evaluation of causal structure learning methods on mixed data types. Proceedings of 2018 ACM SIGKDD workshop on causal Disocvery publication-title: Proceedings of Machine Learning Research: PMLR – volume: 24 start-page: 230 year: 2015 article-title: Learning the structure of mixed graphical models publication-title: J Comput Graph Stat doi: 10.1080/10618600.2014.900500 – volume: 258 start-page: 243 year: 2011 article-title: The National Lung Screening trial: overview and study design publication-title: Radiology doi: 10.1148/radiol.10091808 – volume: 103 start-page: 1058 year: 2011 article-title: Lung cancer risk prediction: prostate, lung, colorectal and ovarian cancer screening trial models and validation publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djr173 – volume: 95 start-page: 470 year: 2003 article-title: Variations in lung cancer risk among smokers publication-title: J Natl Cancer Inst doi: 10.1093/jnci/95.6.470 – volume: 119 start-page: 1306 year: 2013 article-title: Examining whether Lung Screening changes risk perceptions: national lung screening trial participants at 1-year follow-up publication-title: Cancer doi: 10.1002/cncr.27925 – volume: 12 start-page: 1193 year: 2015 article-title: Indolent, potentially inconsequential lung cancers in the Pittsburgh Lung Screening study publication-title: Ann Am Thorac Soc doi: 10.1513/AnnalsATS.201412-577OC – volume: 2 start-page: 213 year: 2006 article-title: Angiogenesis in cancer publication-title: Vasc Health Risk Manag doi: 10.2147/vhrm.2006.2.3.213 – volume: 178 start-page: 956 year: 2008 article-title: The Pittsburgh Lung Screening study (PLuSS): outcomes within 3 years of a first computed tomography scan publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200802-336OC – volume: 9 year: 2018 article-title: Respiratory microbiome profiling for etiologic diagnosis of pneumonia in mechanically ventilated patients publication-title: Front Microbiol doi: 10.3389/fmicb.2018.01413 – volume: 17 year: 2016 article-title: Learning mixed graphical models with separate sparsity parameters and stability-based model selection publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1039-0 – volume: 99 start-page: 715 year: 2007 article-title: A risk model for prediction of lung cancer publication-title: JNCI Journal of the National Cancer Institute doi: 10.1093/jnci/djk153 – volume: 368 start-page: 728 year: 2013 article-title: Selection criteria for lung-cancer screening publication-title: N Engl J Med doi: 10.1056/NEJMoa1211776 – volume: 4 start-page: 1778 year: 2011 article-title: Lung cancer risk prediction to select smokers for screening CT--a model based on the Italian COSMOS trial publication-title: Cancer Prev Res doi: 10.1158/1940-6207.CAPR-11-0026 – volume: 369 start-page: 920 year: 2013 article-title: Results of the two incidence screenings in the national lung screening trial publication-title: N Engl J Med doi: 10.1056/NEJMoa1208962 – volume: 114 start-page: 38 year: 2017 article-title: Vasculature surrounding a nodule: a novel lung cancer biomarker publication-title: Lung Cancer doi: 10.1016/j.lungcan.2017.10.008 – volume: 369 start-page: 910 year: 2013 article-title: Probability of cancer in pulmonary nodules detected on first screening CT publication-title: N Engl J Med Overseas Ed doi: 10.1056/NEJMoa1214726 – volume: 98 start-page: 270 year: 2008 article-title: The LLP risk model: an individual risk prediction model for lung cancer publication-title: Br J Cancer doi: 10.1038/sj.bjc.6604158 – volume: 6 start-page: 33 year: 2018 article-title: Comparison of strategies for scalable causal discovery of latent variable models from mixed data publication-title: Int J Data Sci Anal doi: 10.1007/s41060-018-0104-3 – volume: 86 start-page: 231 year: 1996 article-title: Smoking prevalence in US birth cohorts: the influence of gender and education publication-title: Am J Public Health doi: 10.2105/AJPH.86.2.231 – volume: 89 start-page: 31 year: 2015 article-title: A simple model for predicting lung cancer occurrence in a lung cancer screening program: the Pittsburgh predictor publication-title: Lung Cancer doi: 10.1016/j.lungcan.2015.03.021 – volume: 1 start-page: 250 year: 2008 article-title: An expanded risk prediction model for lung cancer publication-title: Cancer Prev Res doi: 10.1158/1940-6207.CAPR-08-0060 – ident: 2024120417103841000_74.7.643.27 doi: 10.1093/bioinformatics/bty769 – ident: 2024120417103841000_74.7.643.21 doi: 10.1017/CBO9780511803161 – ident: 2024120417103841000_74.7.643.30 doi: 10.2105/AJPH.86.2.231 – ident: 2024120417103841000_74.7.643.10 doi: 10.1093/jnci/djr173 – ident: 2024120417103841000_74.7.643.31 – ident: 2024120417103841000_74.7.643.16 doi: 10.1186/s12859-016-1039-0 – ident: 2024120417103841000_74.7.643.29 doi: 10.1186/1471-2105-12-77 – ident: 2024120417103841000_74.7.643.25 doi: 10.1007/s41060-018-0104-3 – volume: 24 start-page: 230 year: 2015 ident: 2024120417103841000_74.7.643.26 article-title: Learning the structure of mixed graphical models publication-title: J Comput Graph Stat doi: 10.1080/10618600.2014.900500 – ident: 2024120417103841000_74.7.643.1 doi: 10.1148/radiol.10091808 – ident: 2024120417103841000_74.7.643.7 doi: 10.1158/1940-6207.CAPR-08-0060 – ident: 2024120417103841000_74.7.643.9 doi: 10.1158/1940-6207.CAPR-11-0026 – volume: 34 start-page: i848 year: 2018 ident: 2024120417103841000_74.7.643.18 article-title: piMGM: incorporating multi-source priors in mixed graphical models for learning disease networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty591 – volume: 12 start-page: 1193 year: 2015 ident: 2024120417103841000_74.7.643.4 article-title: Indolent, potentially inconsequential lung cancers in the Pittsburgh Lung Screening study publication-title: Ann Am Thorac Soc – volume: 369 start-page: 910 year: 2013 ident: 2024120417103841000_74.7.643.12 article-title: Probability of cancer in pulmonary nodules detected on first screening CT publication-title: N Engl J Med Overseas Ed doi: 10.1056/NEJMoa1214726 – volume: 162 start-page: 485 year: 2015 ident: 2024120417103841000_74.7.643.24 article-title: Performance of lung-RADS in the national lung screening trial: a retrospective assessment publication-title: Ann Intern Med doi: 10.7326/M14-2086 – volume: 89 start-page: 31 year: 2015 ident: 2024120417103841000_74.7.643.13 article-title: A simple model for predicting lung cancer occurrence in a lung cancer screening program: the Pittsburgh predictor publication-title: Lung Cancer doi: 10.1016/j.lungcan.2015.03.021 – ident: 2024120417103841000_74.7.643.22 doi: 10.1164/rccm.200802-336OC – volume: 114 start-page: 38 year: 2017 ident: 2024120417103841000_74.7.643.23 article-title: Vasculature surrounding a nodule: a novel lung cancer biomarker publication-title: Lung Cancer doi: 10.1016/j.lungcan.2017.10.008 – ident: 2024120417103841000_74.7.643.6 doi: 10.1093/jnci/djk153 – volume: 169 start-page: 10 year: 2018 ident: 2024120417103841000_74.7.643.15 article-title: Implications of nine risk prediction models for selecting Ever-Smokers for computed tomography lung cancer screening publication-title: Ann Intern Med doi: 10.7326/M17-2701 – ident: 2024120417103841000_74.7.643.17 doi: 10.3389/fmicb.2018.01413 – ident: 2024120417103841000_74.7.643.5 doi: 10.1093/jnci/95.6.470 – ident: 2024120417103841000_74.7.643.3 doi: 10.1002/cncr.27925 – ident: 2024120417103841000_74.7.643.11 doi: 10.1056/NEJMoa1211776 – ident: 2024120417103841000_74.7.643.19 doi: 10.1038/s41598-019-39542-2 – volume: 82 start-page: 238 year: 2013 ident: 2024120417103841000_74.7.643.14 article-title: Diagnostic evaluation following a positive lung screening chest radiograph in the prostate, lung, colorectal, ovarian (PLCO) cancer screening trial publication-title: Lung Cancer doi: 10.1016/j.lungcan.2013.07.017 – ident: 2024120417103841000_74.7.643.2 doi: 10.1056/NEJMoa1208962 – ident: 2024120417103841000_74.7.643.8 doi: 10.1038/sj.bjc.6604158 – ident: 2024120417103841000_74.7.643.20 doi: 10.7551/mitpress/1754.001.0001 – ident: 2024120417103841000_74.7.643.28 – ident: 2024120417103841000_74.7.643.32 doi: 10.2147/vhrm.2006.2.3.213 |
SSID | ssj0008117 |
Score | 2.5062375 |
Snippet | IntroductionLow-dose CT (LDCT) is currently used in lung cancer screening of high-risk populations for early lung cancer diagnosis. However, 96% of individuals... Low-dose CT (LDCT) is currently used in lung cancer screening of high-risk populations for early lung cancer diagnosis. However, 96% of individuals with... |
SourceID | pubmedcentral proquest pubmed crossref bmj |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 643 |
SubjectTerms | Aged Angiogenesis Artificial intelligence Bioinformatics cancer screening Diagnosis, Differential Early Detection of Cancer - methods Feasibility Studies Female Humans low-dose CT Lung Cancer lung cancer risk Lung Neoplasms - diagnostic imaging Lung Neoplasms - etiology Lung Neoplasms - pathology Male Mass Screening - methods Medical imaging Medical screening Middle Aged Models, Statistical Multiple Pulmonary Nodules - diagnostic imaging Multiple Pulmonary Nodules - pathology Predictive Value of Tests Radiation Dosage Risk Factors Smoking - adverse effects Smoking Cessation - statistics & numerical data Tomography Tomography, X-Ray Computed - methods Variables |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB-0BfFFbNU22soKvrQQm2Szm-yTlGIpQn1q4d7CZj9oy11yXu5Q_3tnkr3Uq2AlTyGTbDIf2fntzgfAxyznjluVxFqIAgFKXsaaljlqnjvFDZ4ryh2-_CYvrvOvEzEJC25dCKtc_xP7H7VtDa2Rn-A0hs4Ami7_PP8eU9co2l0NLTSewjaVLqOQrmIyAq6EkijXUXMSLSlk8KRcnixvkMM_75opqkmKupJmsk9RqWd3mzPUX27nw-jJP6aj85fwIviR7HQQ_A48cc0uPLsMO-WvwKBvFyJff7HWsykaNTMk4gWbL4iMJMIou4RN2x-xbTvHzq5YhzRMN5Z1s5ZW0VloyMMoQJ6esOpw2L5_Tvcars-_XJ1dxKGhQlyLslzG1tTKa-98xnNfuFLlpfGIKFJrtJAeD4doUAotLTpS2qQJtZvSssikrrWw_A1sNW3j9oE569O6zHxWpAoRXqZoQ1ggpw3PZVLWERwjK6tgEF3VYw0uq5HvFfG9GvgewRERz4f6Go_R5mvpVCaUMaduGtPHbvs03vaf4xysRX__FfdKGMGH8TIaJO2y6Ma1K6RBBEyF_lQSwd6gKeOInABkkYkIig0dGgmo2Pfmleb2pi_6jZ6iQHj39t-v9Q6e4zeoIZ74ALaWi5U7RK9pWb_vTeM3JFgVcA priority: 102 providerName: ProQuest |
Title | Feasibility of lung cancer prediction from low-dose CT scan and smoking factors using causal models |
URI | https://thorax.bmj.com/content/74/7/643.full https://www.ncbi.nlm.nih.gov/pubmed/30862725 https://www.proquest.com/docview/2239517623 https://www.proquest.com/docview/2191008790 https://pubmed.ncbi.nlm.nih.gov/PMC6585306 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-aFkpfSvdZt13QYC8beI0tS7Yeu9APBiljpCN7MrIs0ZbULnFC2_9-d7bjLVtHN_xgbJ8trN-d9TvrdAfwLoy45bka-FqIGB2UKPE1_ebIeGQVN3isaO3w6FyeXUSfJ2KyBoePz-AHXB7OL7Ev7q-LKQIaIKpBiCrTg406Lwup9Pdx9-mlVZPLMDmJptMu2fnrY7ZgkxOnj6lSdi-7uV4dnf6gnL9HTv4yFJ3swHbLIdlRA_ozWLPFc9gctbPkL8Agr2ujXh9Y6dgUDZoZgnfGbmckRmgwWlnCpuWdn5eVZcMxq1CG6SJn1U1Jf9BZW4yHUXA8PWFRYbN17ZzqJVycHI-HZ35bTMHPRJLM_dxkymlnXcgjF9tERYlx6E0EudFCOtwseoJSaJkjidImGFCpKS3jUOpMi5y_gvWiLOwuMJu7IEtCF8aBQu8uVDQZLLDTDY_kIMk8-IBdmbbGUKW1n8Fl2kGQEgRpA4EH70n4tsmt8ZRstEQnNW0Kc6qkMX3qto_dbf_YzsES-p9vgTwK2SiOHdyDt91lNEaaYdGFLRcog94vJflTAw9eN5rStbhUNA_iFR3qBCjR9-qV4uqyTviNLFGga7f3H121D1t4pJrA4gNYn88W9g3Sp3nWh148ifu14fRh42g4Gn3D_afj8y9f8ezpJPgBZKMX_g |
linkProvider | BMJ Publishing Group Ltd |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJe0PgODDASPIAU1tixkzxMCMamjq0VQp20t8xxHI2pS0rTauyf2t-4u3yNgsR4mfpU5RIn59-d7-z7AHjDfWFFGvVdLWWADoofupq2ORLh20gY_B9R7vBwpAYH_tdDebgCF20uDIVVtjqxUtRpYWiPfAOXMTQGUHTFx-lPl7pG0elq20KjhsWePT9Dl63c3P2C8_uW853t8dbAbboKuIkMw7mbmiTKdGYzLvwssGHkhyZDs9pLjZYqw59Fl0hJrVK0JrTx-tRzSauAK51omQp87i1Y9QW6Mj1Y_bw9-va90_2UttnG6SmU3SZnyBNqY36Mc_rrJJ8gMD1Ep8dVlRSTnJ4sr4l_Gbp_xmv-tgDurMG9xnJln2qo3YcVmz-A28PmbP4hGLQmm1jbc1ZkbIJqhBkC1YxNZ0RGGGCUz8ImxZmbFqVlW2NWIg3TecrK04L27VnTAohRSD49YVHisFXHnvIRHNwIsx9DLy9y-xSYTTMvCXnGAy9Cn5JHdAQtkdNG-KofJg68R1bGjQiWceXdCBV3fI-J73HNdwfeEfG0ruhxHa3fzk5smsLp1L9jct1tH7rb_nOc9Xbqr77iCvYOvO4uowqgcx2d22KBNOhzU2nBqO_Akxop3YiCXNaASweCJQx1BFRefPlK_uO4KjOOtqlEh_LZv1_rFdwZjIf78f7uaO853MXviepo5nXozWcL-wJttnnyshEUBkc3LZuXYWhV3w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEO8GChgJDiCFTezYSQ4IoZZVS2nFoZX2FhzHVqm2ybLZVelf49cxk1dZkCiXKqcokzgez9jz2fMAeMkjYUWRBr6WMkaAEiW-pm2OXEQ2FQbvU4odPjhUu8fRp4mcrMHPPhaG3Cr7ObGZqIvK0B75CJcxNAZQdcXIdW4RX3bG72fffaogRSetfTmNVkT27cU5wrf63d4OjvUrzscfj7Z3_a7CgJ_LJFn4hclTp511XEQutkkaJcahiR0WRkvl8LIIj5TUqkDLQpswoPpLWsVc6VzLQuB3b8DNWMiQdCyeDGAvoADO3mNPoRZ30UOhUKPFCY7uj9NyiiIaopyGXDXhMfnZ6erq-JfJ-6fn5m9L4fgO3O5sWPahFbq7sGbLe7Bx0J3S3weDdmXndXvBKsemOKEwQ-I1Z7M5kZE0MIpsYdPq3C-q2rLtI1YjDdNlweqzinbwWVcMiJFzPn1hWWOzTe2e-gEcXwurH8J6WZV2E5gtXJgn3PE4TBFd8pQOoyVy2ohIBUnuwRtkZdYpY501OEeobOB7RnzPWr578JqIZ21uj6too350MtOlUKdKHtOrXns7vPaf7Wz1Q3_Zi0sF8ODF8BgnAzrh0aWtlkiD6JuSDKaBB49aSRlaFAReYy49iFdkaCCgROOrT8pvJ03CcbRSJULLx__-reewgRqZfd473H8Ct7A7aevWvAXri_nSPkXjbZE_a7SEwdfrVstfYQhYrw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+of+lung+cancer+prediction+from+low-dose+CT+scan+and+smoking+factors+using+causal+models&rft.jtitle=Thorax&rft.au=Raghu%2C+Vineet+K&rft.au=Zhao%2C+Wei&rft.au=Pu%2C+Jiantao&rft.au=Leader%2C+Joseph+K&rft.date=2019-07-01&rft.issn=1468-3296&rft.eissn=1468-3296&rft.volume=74&rft.issue=7&rft.spage=643&rft_id=info:doi/10.1136%2Fthoraxjnl-2018-212638&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6376&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6376&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6376&client=summon |