A graphical tool for locating inconsistency in network meta-analyses
Background In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For...
Saved in:
Published in | BMC medical research methodology Vol. 13; no. 1; p. 35 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
09.03.2013
BioMed Central Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2288 1471-2288 |
DOI | 10.1186/1471-2288-13-35 |
Cover
Abstract | Background
In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For a valid analysis of the network, consistent information from different pathways is assumed. Consistency can be checked by contrasting effect estimates from direct comparisons with the evidence of the remaining network. Unfortunately, one deviating direct comparison may have side effects on the network estimates of others, thus producing hot spots of inconsistency.
Methods
We provide a tool, the net heat plot, to render transparent which direct comparisons drive each network estimate and to display hot spots of inconsistency: this permits singling out which of the suspicious direct comparisons are sufficient to explain the presence of inconsistency. We base our methods on fixed-effects models. For disclosure of potential drivers, the plot comprises the contribution of each direct estimate to network estimates resulting from regression diagnostics. In combination, we show heat colors corresponding to the change in agreement between direct and indirect estimate when relaxing the assumption of consistency for one direct comparison. A clustering procedure is applied to the heat matrix in order to find hot spots of inconsistency.
Results
The method is shown to work with several examples, which are constructed by perturbing the effect of single study designs, and with two published network meta-analyses. Once the possible sources of inconsistencies are identified, our method also reveals which network estimates they affect.
Conclusion
Our proposal is seen to be useful for identifying sources of inconsistencies in the network together with the interrelatedness of effect estimates. It opens the way for a further analysis based on subject matter considerations. |
---|---|
AbstractList | In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For a valid analysis of the network, consistent information from different pathways is assumed. Consistency can be checked by contrasting effect estimates from direct comparisons with the evidence of the remaining network. Unfortunately, one deviating direct comparison may have side effects on the network estimates of others, thus producing hot spots of inconsistency.BACKGROUNDIn network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For a valid analysis of the network, consistent information from different pathways is assumed. Consistency can be checked by contrasting effect estimates from direct comparisons with the evidence of the remaining network. Unfortunately, one deviating direct comparison may have side effects on the network estimates of others, thus producing hot spots of inconsistency.We provide a tool, the net heat plot, to render transparent which direct comparisons drive each network estimate and to display hot spots of inconsistency: this permits singling out which of the suspicious direct comparisons are sufficient to explain the presence of inconsistency. We base our methods on fixed-effects models. For disclosure of potential drivers, the plot comprises the contribution of each direct estimate to network estimates resulting from regression diagnostics. In combination, we show heat colors corresponding to the change in agreement between direct and indirect estimate when relaxing the assumption of consistency for one direct comparison. A clustering procedure is applied to the heat matrix in order to find hot spots of inconsistency.METHODSWe provide a tool, the net heat plot, to render transparent which direct comparisons drive each network estimate and to display hot spots of inconsistency: this permits singling out which of the suspicious direct comparisons are sufficient to explain the presence of inconsistency. We base our methods on fixed-effects models. For disclosure of potential drivers, the plot comprises the contribution of each direct estimate to network estimates resulting from regression diagnostics. In combination, we show heat colors corresponding to the change in agreement between direct and indirect estimate when relaxing the assumption of consistency for one direct comparison. A clustering procedure is applied to the heat matrix in order to find hot spots of inconsistency.The method is shown to work with several examples, which are constructed by perturbing the effect of single study designs, and with two published network meta-analyses. Once the possible sources of inconsistencies are identified, our method also reveals which network estimates they affect.RESULTSThe method is shown to work with several examples, which are constructed by perturbing the effect of single study designs, and with two published network meta-analyses. Once the possible sources of inconsistencies are identified, our method also reveals which network estimates they affect.Our proposal is seen to be useful for identifying sources of inconsistencies in the network together with the interrelatedness of effect estimates. It opens the way for a further analysis based on subject matter considerations.CONCLUSIONOur proposal is seen to be useful for identifying sources of inconsistencies in the network together with the interrelatedness of effect estimates. It opens the way for a further analysis based on subject matter considerations. Background In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For a valid analysis of the network, consistent information from different pathways is assumed. Consistency can be checked by contrasting effect estimates from direct comparisons with the evidence of the remaining network. Unfortunately, one deviating direct comparison may have side effects on the network estimates of others, thus producing hot spots of inconsistency. Methods We provide a tool, the net heat plot, to render transparent which direct comparisons drive each network estimate and to display hot spots of inconsistency: this permits singling out which of the suspicious direct comparisons are sufficient to explain the presence of inconsistency. We base our methods on fixed-effects models. For disclosure of potential drivers, the plot comprises the contribution of each direct estimate to network estimates resulting from regression diagnostics. In combination, we show heat colors corresponding to the change in agreement between direct and indirect estimate when relaxing the assumption of consistency for one direct comparison. A clustering procedure is applied to the heat matrix in order to find hot spots of inconsistency. Results The method is shown to work with several examples, which are constructed by perturbing the effect of single study designs, and with two published network meta-analyses. Once the possible sources of inconsistencies are identified, our method also reveals which network estimates they affect. Conclusion Our proposal is seen to be useful for identifying sources of inconsistencies in the network together with the interrelatedness of effect estimates. It opens the way for a further analysis based on subject matter considerations. Keywords: Network meta-analysis, Inconsistency, Cochran's Q, Hat matrix Doc number: 35 Abstract Background: In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For a valid analysis of the network, consistent information from different pathways is assumed. Consistency can be checked by contrasting effect estimates from direct comparisons with the evidence of the remaining network. Unfortunately, one deviating direct comparison may have side effects on the network estimates of others, thus producing hot spots of inconsistency. Methods: We provide a tool, the net heat plot, to render transparent which direct comparisons drive each network estimate and to display hot spots of inconsistency: this permits singling out which of the suspicious direct comparisons are sufficient to explain the presence of inconsistency. We base our methods on fixed-effects models. For disclosure of potential drivers, the plot comprises the contribution of each direct estimate to network estimates resulting from regression diagnostics. In combination, we show heat colors corresponding to the change in agreement between direct and indirect estimate when relaxing the assumption of consistency for one direct comparison. A clustering procedure is applied to the heat matrix in order to find hot spots of inconsistency. Results: The method is shown to work with several examples, which are constructed by perturbing the effect of single study designs, and with two published network meta-analyses. Once the possible sources of inconsistencies are identified, our method also reveals which network estimates they affect. Conclusion: Our proposal is seen to be useful for identifying sources of inconsistencies in the network together with the interrelatedness of effect estimates. It opens the way for a further analysis based on subject matter considerations. Background In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For a valid analysis of the network, consistent information from different pathways is assumed. Consistency can be checked by contrasting effect estimates from direct comparisons with the evidence of the remaining network. Unfortunately, one deviating direct comparison may have side effects on the network estimates of others, thus producing hot spots of inconsistency. Methods We provide a tool, the net heat plot, to render transparent which direct comparisons drive each network estimate and to display hot spots of inconsistency: this permits singling out which of the suspicious direct comparisons are sufficient to explain the presence of inconsistency. We base our methods on fixed-effects models. For disclosure of potential drivers, the plot comprises the contribution of each direct estimate to network estimates resulting from regression diagnostics. In combination, we show heat colors corresponding to the change in agreement between direct and indirect estimate when relaxing the assumption of consistency for one direct comparison. A clustering procedure is applied to the heat matrix in order to find hot spots of inconsistency. Results The method is shown to work with several examples, which are constructed by perturbing the effect of single study designs, and with two published network meta-analyses. Once the possible sources of inconsistencies are identified, our method also reveals which network estimates they affect. Conclusion Our proposal is seen to be useful for identifying sources of inconsistencies in the network together with the interrelatedness of effect estimates. It opens the way for a further analysis based on subject matter considerations. In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For a valid analysis of the network, consistent information from different pathways is assumed. Consistency can be checked by contrasting effect estimates from direct comparisons with the evidence of the remaining network. Unfortunately, one deviating direct comparison may have side effects on the network estimates of others, thus producing hot spots of inconsistency. We provide a tool, the net heat plot, to render transparent which direct comparisons drive each network estimate and to display hot spots of inconsistency: this permits singling out which of the suspicious direct comparisons are sufficient to explain the presence of inconsistency. We base our methods on fixed-effects models. For disclosure of potential drivers, the plot comprises the contribution of each direct estimate to network estimates resulting from regression diagnostics. In combination, we show heat colors corresponding to the change in agreement between direct and indirect estimate when relaxing the assumption of consistency for one direct comparison. A clustering procedure is applied to the heat matrix in order to find hot spots of inconsistency. The method is shown to work with several examples, which are constructed by perturbing the effect of single study designs, and with two published network meta-analyses. Once the possible sources of inconsistencies are identified, our method also reveals which network estimates they affect. Our proposal is seen to be useful for identifying sources of inconsistencies in the network together with the interrelatedness of effect estimates. It opens the way for a further analysis based on subject matter considerations. BACKGROUND: In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For a valid analysis of the network, consistent information from different pathways is assumed. Consistency can be checked by contrasting effect estimates from direct comparisons with the evidence of the remaining network. Unfortunately, one deviating direct comparison may have side effects on the network estimates of others, thus producing hot spots of inconsistency. METHODS: We provide a tool, the net heat plot, to render transparent which direct comparisons drive each network estimate and to display hot spots of inconsistency: this permits singling out which of the suspicious direct comparisons are sufficient to explain the presence of inconsistency. We base our methods on fixed-effects models. For disclosure of potential drivers, the plot comprises the contribution of each direct estimate to network estimates resulting from regression diagnostics. In combination, we show heat colors corresponding to the change in agreement between direct and indirect estimate when relaxing the assumption of consistency for one direct comparison. A clustering procedure is applied to the heat matrix in order to find hot spots of inconsistency. RESULTS: The method is shown to work with several examples, which are constructed by perturbing the effect of single study designs, and with two published network meta-analyses. Once the possible sources of inconsistencies are identified, our method also reveals which network estimates they affect. CONCLUSION: Our proposal is seen to be useful for identifying sources of inconsistencies in the network together with the interrelatedness of effect estimates. It opens the way for a further analysis based on subject matter considerations. In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For a valid analysis of the network, consistent information from different pathways is assumed. Consistency can be checked by contrasting effect estimates from direct comparisons with the evidence of the remaining network. Unfortunately, one deviating direct comparison may have side effects on the network estimates of others, thus producing hot spots of inconsistency. We provide a tool, the net heat plot, to render transparent which direct comparisons drive each network estimate and to display hot spots of inconsistency: this permits singling out which of the suspicious direct comparisons are sufficient to explain the presence of inconsistency. We base our methods on fixed-effects models. For disclosure of potential drivers, the plot comprises the contribution of each direct estimate to network estimates resulting from regression diagnostics. In combination, we show heat colors corresponding to the change in agreement between direct and indirect estimate when relaxing the assumption of consistency for one direct comparison. A clustering procedure is applied to the heat matrix in order to find hot spots of inconsistency. The method is shown to work with several examples, which are constructed by perturbing the effect of single study designs, and with two published network meta-analyses. Once the possible sources of inconsistencies are identified, our method also reveals which network estimates they affect. Our proposal is seen to be useful for identifying sources of inconsistencies in the network together with the interrelatedness of effect estimates. It opens the way for a further analysis based on subject matter considerations. |
ArticleNumber | 35 |
Audience | Academic |
Author | König, Jochem Krahn, Ulrike Binder, Harald |
AuthorAffiliation | 1 Division Medical Biometry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 69, 55131 Mainz, Germany |
AuthorAffiliation_xml | – name: 1 Division Medical Biometry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 69, 55131 Mainz, Germany |
Author_xml | – sequence: 1 givenname: Ulrike surname: Krahn fullname: Krahn, Ulrike email: ulrike.krahn@unimedizin-mainz.de organization: Division Medical Biometry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Johannes Gutenberg University Mainz – sequence: 2 givenname: Harald surname: Binder fullname: Binder, Harald organization: Division Medical Biometry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Johannes Gutenberg University Mainz – sequence: 3 givenname: Jochem surname: König fullname: König, Jochem organization: Division Medical Biometry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Johannes Gutenberg University Mainz |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23496991$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1vFCEYxompsR969mYm8eJlWhg-Bi4m2_qZNPGiZ8Iy70ypDKwwq9n_Xsat627TGg58_Z7nhQdO0VGIARB6SfA5IVJcENaSummkrAmtKX-CTnYrR3vjY3Sa8y3GpJVUPEPHDWVKKEVO0LtFNSSzunHW-GqK0Vd9TJWP1kwuDJULNobs8gTBbsqsCjD9iul7NcJkahOM32TIz9HT3vgML-76M_Ttw_uvV5_q6y8fP18trusll3KqZYuNkQRz1QkLfRlzQjhVBqw10FimCsA6s2wF7juDRdsbpTppgQvLWEvP0Nut72q9HKGzEKZkvF4lN5q00dE4fbgT3I0e4k9NBWONkMXgcmuwdPERg8MdG0c9p6jnFDWhmvJi8ubuFCn-WEOe9OiyBe9NgLjOhWIKq4ZhVtDX99DbuE4ltT-UVCUWof5Rg_GgXehjqW1nU73glHEpsCKFOn-AKq2D0ZVXgt6V9QPBq_20drf8-_gFuNgCNsWcE_Q7hGA9f68Hrs7vKaybyk-Jc1rO_0eHt7pcKoQB0l4Oj0h-A16h4aM |
CitedBy_id | crossref_primary_10_1007_s00784_021_03802_1 crossref_primary_10_1093_ejcts_ezaa319 crossref_primary_10_3390_life13122259 crossref_primary_10_1016_j_jep_2022_115996 crossref_primary_10_1093_ehjcvp_pvad003 crossref_primary_10_1093_jac_dkx430 crossref_primary_10_1002_14651858_CD013761_pub2 crossref_primary_10_1136_bmj_2024_081164 crossref_primary_10_1136_bmjmed_2022_000346 crossref_primary_10_1093_sleep_zsy185 crossref_primary_10_1002_sim_9145 crossref_primary_10_1097_MD_0000000000011682 crossref_primary_10_5691_jjb_44_107 crossref_primary_10_1001_jamanetworkopen_2022_53942 crossref_primary_10_4178_epih_e2017047 crossref_primary_10_1007_s00167_021_06613_9 crossref_primary_10_1016_j_fertnstert_2019_09_016 crossref_primary_10_1038_s41432_021_0207_x crossref_primary_10_1016_j_jclinepi_2016_02_016 crossref_primary_10_1007_s12325_019_01167_2 crossref_primary_10_1093_bjsopen_zrab130 crossref_primary_10_3389_fphar_2022_757969 crossref_primary_10_1136_bmjopen_2015_010252 crossref_primary_10_1186_s13643_016_0302_9 crossref_primary_10_1371_journal_pone_0076654 crossref_primary_10_3389_fphys_2022_1001978 crossref_primary_10_1177_02698811241303654 crossref_primary_10_1007_s00540_018_2597_2 crossref_primary_10_1136_bmjopen_2023_074317 crossref_primary_10_1002_jrsm_1329 crossref_primary_10_1016_j_thromres_2015_02_032 crossref_primary_10_1016_j_neurom_2022_01_005 crossref_primary_10_1111_ijcp_12698 crossref_primary_10_1002_sim_6321 crossref_primary_10_1002_14651858_CD012583_pub2 crossref_primary_10_1016_j_jgar_2023_05_011 crossref_primary_10_1097_MD_0000000000038014 crossref_primary_10_1002_14651858_CD013499 crossref_primary_10_1002_14651858_CD013255 crossref_primary_10_1186_s12903_023_03079_8 crossref_primary_10_1021_acs_estlett_4c00119 crossref_primary_10_1097_MJT_0000000000000928 crossref_primary_10_3109_13697137_2015_1078106 crossref_primary_10_1001_jamadermatol_2021_2779 crossref_primary_10_1093_ecco_jcc_jjy216 crossref_primary_10_1016_j_fertnstert_2018_11_012 crossref_primary_10_1002_jrsm_1210 crossref_primary_10_1097_MD_0000000000019618 crossref_primary_10_1002_jcb_25976 crossref_primary_10_1371_journal_pmed_1003822 crossref_primary_10_3389_fpubh_2024_1373691 crossref_primary_10_1016_S2352_4642_22_00316_9 crossref_primary_10_1371_journal_pone_0153380 crossref_primary_10_1016_j_jacc_2022_10_037 crossref_primary_10_1186_s12984_017_0301_7 crossref_primary_10_1186_s13643_017_0455_1 crossref_primary_10_1097_MD_0000000000027351 crossref_primary_10_1097_SLA_0000000000004076 crossref_primary_10_1111_nmo_14107 crossref_primary_10_1016_j_jphys_2018_02_014 crossref_primary_10_1097_EJA_0000000000001860 crossref_primary_10_3390_antibiotics9070388 crossref_primary_10_1136_bmjopen_2021_056400 crossref_primary_10_1192_bjp_2022_35 crossref_primary_10_2147_NSS_S404113 crossref_primary_10_1186_s12875_015_0314_x crossref_primary_10_1515_ijb_2022_0070 crossref_primary_10_1002_bimj_201800167 crossref_primary_10_1186_s12874_016_0184_5 crossref_primary_10_1016_j_jad_2021_12_134 crossref_primary_10_1016_j_ehj_2015_11_001 crossref_primary_10_2519_jospt_2025_12707 crossref_primary_10_3390_jcm11216302 crossref_primary_10_1159_000529753 crossref_primary_10_1002_14651858_CD013252_pub2 crossref_primary_10_1136_bmjgh_2021_005029 crossref_primary_10_1002_14651858_CD014678_pub2 crossref_primary_10_1177_1536867X1501500402 crossref_primary_10_1007_s11657_023_01211_3 crossref_primary_10_1016_S0140_6736_23_02454_6 crossref_primary_10_1128_AAC_00355_18 crossref_primary_10_3390_jcm8050737 crossref_primary_10_1016_j_jogoh_2020_101798 crossref_primary_10_1093_rheumatology_kez380 crossref_primary_10_1136_bmjopen_2018_028430 crossref_primary_10_1002_14651858_CD013798_pub2 crossref_primary_10_1002_14651858_CD013684 crossref_primary_10_1002_14651858_CD014770 crossref_primary_10_1002_sim_6236 crossref_primary_10_1016_S1470_2045_24_00379_6 crossref_primary_10_1111_acps_13728 crossref_primary_10_1136_bmjopen_2020_042997 crossref_primary_10_1007_s12519_023_00716_8 crossref_primary_10_1002_jrsm_1246 crossref_primary_10_1177_0962280215611702 crossref_primary_10_1002_jrsm_1480 crossref_primary_10_1002_jrsm_1244 crossref_primary_10_1155_2022_4529520 crossref_primary_10_1007_s00404_022_06769_w crossref_primary_10_1371_journal_pmed_1003738 crossref_primary_10_1002_sim_9073 crossref_primary_10_1002_sim_9074 crossref_primary_10_1212_WNL_0000000000201371 crossref_primary_10_4097_kja_21358 crossref_primary_10_1016_j_numecd_2019_07_001 crossref_primary_10_1001_jamapsychiatry_2023_3985 crossref_primary_10_1200_JCO_2016_67_4846 crossref_primary_10_3310_hta19200 crossref_primary_10_1016_j_eujim_2020_101112 crossref_primary_10_1186_s10194_024_01723_4 crossref_primary_10_1371_journal_pone_0099682 crossref_primary_10_1080_17474124_2023_2172397 crossref_primary_10_1093_humupd_dmae008 crossref_primary_10_1186_s13643_024_02680_4 crossref_primary_10_1038_s41598_021_84836_z crossref_primary_10_3389_fnins_2022_1053283 crossref_primary_10_1038_srep44979 crossref_primary_10_1002_sim_7223 crossref_primary_10_1161_JAHA_118_010839 crossref_primary_10_1016_j_jpsychires_2020_03_012 crossref_primary_10_1371_journal_pmed_1003501 crossref_primary_10_1007_s10815_022_02503_2 crossref_primary_10_1186_1471_2288_14_131 crossref_primary_10_1016_j_ijcard_2022_10_023 crossref_primary_10_1002_14651858_CD013499_pub2 crossref_primary_10_1002_jrsm_1700 crossref_primary_10_1007_s12291_023_01132_5 crossref_primary_10_1186_s12874_018_0574_y crossref_primary_10_1016_j_arthro_2022_11_039 crossref_primary_10_1136_bmj_m2521 crossref_primary_10_1002_14651858_CD013798 crossref_primary_10_1136_bmjgast_2022_001067 crossref_primary_10_1002_jrsm_1143 crossref_primary_10_1186_s12966_023_01467_5 crossref_primary_10_23736_S0375_9393_19_13267_1 crossref_primary_10_3390_jcm11071872 crossref_primary_10_1007_s00415_019_09510_x crossref_primary_10_1007_s00540_022_03132_w crossref_primary_10_1016_S0140_6736_24_00351_9 crossref_primary_10_1002_14651858_CD012583 crossref_primary_10_1016_j_jclinane_2024_111531 crossref_primary_10_23736_S0375_9393_23_17410_4 crossref_primary_10_1177_21925682231168577 crossref_primary_10_1038_s41366_021_00767_9 crossref_primary_10_1111_aji_12856 crossref_primary_10_1371_journal_pone_0226879 crossref_primary_10_1007_s10557_024_07622_9 crossref_primary_10_1038_s41598_023_39023_7 crossref_primary_10_1016_j_jval_2015_10_002 crossref_primary_10_1001_jamadermatol_2022_0345 crossref_primary_10_1038_s41598_024_58232_2 crossref_primary_10_1186_s12874_020_0911_9 crossref_primary_10_1016_j_jclinepi_2015_10_010 crossref_primary_10_1001_jamanetworkopen_2020_24352 crossref_primary_10_1016_j_cct_2023_107233 crossref_primary_10_1016_j_jebdp_2021_101540 crossref_primary_10_1002_bimj_201700265 crossref_primary_10_1007_s00223_023_01078_z crossref_primary_10_1007_s00784_023_04981_9 crossref_primary_10_1136_thoraxjnl_2019_214054 crossref_primary_10_4048_jbc_2020_23_e55 crossref_primary_10_1002_14651858_CD013745_pub2 crossref_primary_10_1002_14651858_CD013761 crossref_primary_10_1136_bmj_l6483 crossref_primary_10_1002_nur_22284 crossref_primary_10_1136_bmjopen_2024_088959 crossref_primary_10_1016_j_clnu_2020_11_006 crossref_primary_10_1136_bmj_2022_072962 crossref_primary_10_1016_j_amjcard_2018_09_005 crossref_primary_10_1093_jac_dkab093 crossref_primary_10_1371_journal_pone_0293183 crossref_primary_10_1136_bmj_n1537 crossref_primary_10_23736_S0375_9393_18_12813_6 crossref_primary_10_1002_cac2_12396 crossref_primary_10_1016_j_jclinepi_2016_07_003 crossref_primary_10_1177_1744806918768972 crossref_primary_10_1186_s13104_016_2019_1 crossref_primary_10_3310_pgfar04130 crossref_primary_10_1111_jcpe_12362 crossref_primary_10_1136_bmjopen_2016_014736 crossref_primary_10_1136_postgradmedj_2021_140076 crossref_primary_10_1111_rssa_12341 crossref_primary_10_1111_idh_12390 crossref_primary_10_1002_sim_6608 crossref_primary_10_1111_jebm_12429 crossref_primary_10_1016_j_apmr_2023_04_027 crossref_primary_10_1136_bmj_2021_068882 crossref_primary_10_1097_CCM_0000000000003049 crossref_primary_10_1002_14651858_CD012633_pub2 crossref_primary_10_1186_s13643_024_02573_6 crossref_primary_10_1002_14651858_CD012775_pub2 crossref_primary_10_1093_eurheartj_ehab836 crossref_primary_10_1186_s13054_019_2596_1 crossref_primary_10_1111_os_14371 crossref_primary_10_1016_j_asjsur_2022_03_116 crossref_primary_10_1002_jrsm_1292 crossref_primary_10_1016_j_eclinm_2024_102425 crossref_primary_10_1002_14651858_CD012775 crossref_primary_10_1177_0022034520972945 crossref_primary_10_1002_uog_15900 crossref_primary_10_1016_S1473_3099_18_30285_8 crossref_primary_10_1002_14651858_CD011947_pub2 crossref_primary_10_1053_j_jvca_2018_08_208 crossref_primary_10_1007_s10549_018_4969_6 crossref_primary_10_1097_MJT_0000000000000892 crossref_primary_10_1002_14651858_CD012527_pub2 crossref_primary_10_1016_j_eclinm_2025_103129 crossref_primary_10_1155_2022_1755368 crossref_primary_10_1001_jamapsychiatry_2024_3908 crossref_primary_10_1186_s12874_020_01075_y crossref_primary_10_1080_10408398_2018_1463967 crossref_primary_10_1371_journal_pone_0192707 crossref_primary_10_1007_s41999_024_01013_x crossref_primary_10_1016_j_jtcvs_2019_02_045 crossref_primary_10_1093_ehjcvp_pvaa024 crossref_primary_10_1371_journal_pone_0115065 crossref_primary_10_1002_14651858_CD014600 crossref_primary_10_1016_j_jcrc_2016_08_010 crossref_primary_10_1089_cap_2024_0049 crossref_primary_10_1093_advances_nmaa056 crossref_primary_10_1016_j_resuscitation_2017_10_012 crossref_primary_10_1002_sim_70027 crossref_primary_10_1111_obr_13218 crossref_primary_10_1186_s12888_024_05924_8 crossref_primary_10_1213_ANE_0000000000003887 crossref_primary_10_1007_s11605_023_05702_z crossref_primary_10_1097_MEG_0000000000002035 crossref_primary_10_1111_anae_15295 crossref_primary_10_3390_ijerph18052406 crossref_primary_10_1136_gutjnl_2021_326390 crossref_primary_10_1016_S2468_1253_19_30324_3 crossref_primary_10_1136_gutjnl_2022_328052 crossref_primary_10_1186_s13643_023_02388_x crossref_primary_10_1093_neuros_nyab180 crossref_primary_10_1016_j_surg_2017_07_013 crossref_primary_10_1111_clr_14357 crossref_primary_10_1186_s13098_021_00733_5 crossref_primary_10_1111_jebm_12485 crossref_primary_10_1002_14651858_CD012633 crossref_primary_10_1002_jrsm_1195 crossref_primary_10_1371_journal_pone_0212650 crossref_primary_10_1016_j_jclinepi_2015_05_027 crossref_primary_10_1002_14651858_CD015468 crossref_primary_10_3390_jpm12040512 crossref_primary_10_1002_14651858_CD013045 crossref_primary_10_18632_oncotarget_12451 crossref_primary_10_1016_j_jhin_2015_06_020 crossref_primary_10_1177_2325967120930567 crossref_primary_10_1002_ppul_25007 crossref_primary_10_1002_rmv_2336 crossref_primary_10_1016_j_arthro_2020_04_023 crossref_primary_10_1177_09645284221085280 crossref_primary_10_1177_17562848231154319 crossref_primary_10_1002_14651858_CD012527 crossref_primary_10_1371_journal_pone_0269391 crossref_primary_10_1186_s12874_019_0689_9 crossref_primary_10_1002_14651858_CD013295 crossref_primary_10_1136_bmjopen_2021_056982 crossref_primary_10_3389_fphar_2023_1102792 crossref_primary_10_1016_j_addbeh_2022_107329 crossref_primary_10_1186_1471_2288_14_61 crossref_primary_10_1136_thorax_2023_220071 crossref_primary_10_1016_j_eururo_2023_02_028 crossref_primary_10_3238_arztebl_2015_0803 crossref_primary_10_1002_sim_8383 crossref_primary_10_1002_bimj_201300216 crossref_primary_10_1002_jrsm_1531 crossref_primary_10_1007_s10006_025_01330_w crossref_primary_10_1007_s00431_023_04979_1 crossref_primary_10_1002_jrsm_1412 crossref_primary_10_1097_MD_0000000000003873 crossref_primary_10_1111_hel_12389 crossref_primary_10_1002_14651858_CD012859 crossref_primary_10_1007_s13760_023_02460_2 crossref_primary_10_1007_s13760_023_02277_z crossref_primary_10_1002_14651858_CD013295_pub2 crossref_primary_10_1111_nmo_13441 crossref_primary_10_7326_M14_2385 crossref_primary_10_1097_MD_0000000000015979 crossref_primary_10_1002_sim_7187 crossref_primary_10_1002_sim_8158 crossref_primary_10_1002_14651858_CD013020 crossref_primary_10_1111_obr_12831 crossref_primary_10_1136_gutjnl_2020_321191 crossref_primary_10_1002_14651858_CD003006_pub4 crossref_primary_10_1016_j_jval_2016_07_005 crossref_primary_10_3758_s13428_022_01905_5 crossref_primary_10_1002_14651858_CD013020_pub2 crossref_primary_10_1097_MEG_0000000000002362 crossref_primary_10_1016_S0140_6736_21_01640_8 crossref_primary_10_1186_s12885_024_13168_8 crossref_primary_10_1186_s12916_019_1409_3 crossref_primary_10_1111_jocs_15961 crossref_primary_10_1002_jrsm_1304 crossref_primary_10_3389_fmed_2021_752984 crossref_primary_10_1016_j_jclinepi_2020_04_009 crossref_primary_10_1097_MCG_0000000000001773 crossref_primary_10_1016_j_jvsv_2024_101896 crossref_primary_10_1097_MD_0000000000020877 crossref_primary_10_1097_JS9_0000000000000715 crossref_primary_10_1186_s13643_021_01661_1 crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107822 crossref_primary_10_1016_j_lanepe_2024_101152 crossref_primary_10_1002_14651858_CD012859_pub2 crossref_primary_10_1097_MD_0000000000021169 crossref_primary_10_1111_obr_12720 crossref_primary_10_1155_2018_9282646 crossref_primary_10_1016_j_jclinepi_2017_10_005 crossref_primary_10_1007_s40265_024_02092_7 crossref_primary_10_1093_eurheartj_ehv563 crossref_primary_10_1016_j_diabres_2015_05_048 crossref_primary_10_1094_PHYTO_12_15_0342_RVW crossref_primary_10_1002_ejhf_765 crossref_primary_10_1136_bmjopen_2017_017099 crossref_primary_10_1136_bmjopen_2020_038330 crossref_primary_10_1027_2151_2604_a000252 |
Cites_doi | 10.1186/1471-2288-11-19 10.1002/sim.3767 10.1002/sim.4001 10.2307/3001666 10.1002/9780470743386 10.1016/S0140-6736(09)60046-5 10.1002/jrsm.1037 10.1002/sim.3594 10.1186/1471-2288-8-60 10.1017/S0370164600014346 10.1002/sim.4780070807 10.1002/jrsm.1044 10.1016/j.jclinepi.2009.08.025 10.1002/sim.4247 10.1016/j.jclinepi.2007.06.006 10.1016/j.jclinepi.2008.10.001 10.1177/1740774508093614 10.1214/ss/1177013622 10.1016/j.jval.2011.01.011 10.1002/sim.1201 10.1002/sim.5471 10.1186/1471-2288-2-13 10.1037/0033-2909.103.1.111 10.1016/S0895-4356(97)00049-8 10.1002/jrsm.1058 10.1198/016214505000001302 10.1201/9780367805302 10.1186/1471-2288-12-138 10.1136/bmj.309.6965.1351 10.1002/jrsm.34 10.1177/0962280207080643 10.1002/jrsm.1045 10.1002/jrsm.11 |
ContentType | Journal Article |
Copyright | Krahn et al.; licensee BioMed Central Ltd. 2013 COPYRIGHT 2013 BioMed Central Ltd. 2013 Krahn et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2013 Krahn et al.; licensee BioMed Central Ltd. 2013 Krahn et al.; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Krahn et al.; licensee BioMed Central Ltd. 2013 – notice: COPYRIGHT 2013 BioMed Central Ltd. – notice: 2013 Krahn et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright © 2013 Krahn et al.; licensee BioMed Central Ltd. 2013 Krahn et al.; licensee BioMed Central Ltd. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1186/1471-2288-13-35 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1471-2288 |
EndPage | 35 |
ExternalDocumentID | PMC3644268 oai_biomedcentral_com_1471_2288_13_35 2963669331 A534586091 23496991 10_1186_1471_2288_13_35 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IHR INH INR IPNFZ ITC KQ8 M1P M48 MK0 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 -A0 ABVAZ ACRMQ ADINQ AFGXO AFNRJ C24 5PM |
ID | FETCH-LOGICAL-b588t-870aa81059d6cefaa8511539aeccae2c4970a4dab760fda067fa99d8ce56c4473 |
IEDL.DBID | M48 |
ISSN | 1471-2288 |
IngestDate | Thu Aug 21 18:30:55 EDT 2025 Wed May 22 07:14:25 EDT 2024 Fri Sep 05 14:06:27 EDT 2025 Fri Jul 25 03:52:08 EDT 2025 Tue Jun 17 22:05:19 EDT 2025 Tue Jun 10 21:02:49 EDT 2025 Thu Apr 03 07:00:50 EDT 2025 Thu Apr 24 23:08:03 EDT 2025 Tue Jul 01 04:30:50 EDT 2025 Sat Sep 06 07:28:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Network meta-analysis Inconsistency Hat matrix Cochran’s Q |
Language | English |
License | http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b588t-870aa81059d6cefaa8511539aeccae2c4970a4dab760fda067fa99d8ce56c4473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doi.org/10.1186/1471-2288-13-35 |
PMID | 23496991 |
PQID | 1348958869 |
PQPubID | 42579 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3644268 biomedcentral_primary_oai_biomedcentral_com_1471_2288_13_35 proquest_miscellaneous_1349092404 proquest_journals_1348958869 gale_infotracmisc_A534586091 gale_infotracacademiconefile_A534586091 pubmed_primary_23496991 crossref_primary_10_1186_1471_2288_13_35 crossref_citationtrail_10_1186_1471_2288_13_35 springer_journals_10_1186_1471_2288_13_35 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-09 |
PublicationDateYYYYMMDD | 2013-03-09 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | BMC medical research methodology |
PublicationTitleAbbrev | BMC Med Res Methodol |
PublicationTitleAlternate | BMC Med Res Methodol |
PublicationYear | 2013 |
Publisher | BioMed Central BioMed Central Ltd |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd |
References | GalbraithRFA note on graphical presentation of estimated odds ratios from several clinical trialsStat Med198878898941:STN:280:DyaL1czitFCjtQ%3D%3D10.1002/sim.47800708073413368 BorensteinMHedgesLVHigginsJPTRothsteinHRIntroduction to Meta-Analysis2009ChichesterJohn Wiley & Sons10.1002/9780470743386 CaldwellDMWeltonNJAdesAEMixed treatment comparison analysis provides internally coherent treatment effect estimates based on overviews of reviews and can reveal inconsistencyJ Clin Epidemiol201063887588210.1016/j.jclinepi.2009.08.02520080027http://dx.doi.org/10.1016/j.jclinepi.2009.08.025 [] ChungHLumleyTGraphical exploration of network meta-analysis data: the use of multidimensional scalingClin Trials20085430130710.1177/174077450809361418697844http://dx.doi.org/10.1177/1740774508093614 [] GleserLJOlkinICooperHHedgesLVValentineJCStochastically dependent effect sizesThe Handbook of Research Synthesis and Meta-Analysis,2009New YorkRussell Sage Foundation357376 SalantiGDiasSWeltonNJAdesAEGolfinopoulosVKyrgiouMMauriDIoannidisJPAEvaluating novel agent effects in multiple-treatments meta-regressionStat Med201029232369238320687172http://dx.doi.org/10.1002/sim.4001 [] BakerSGKramerBSThe transitive fallacy for randomized trials: if A bests B and B bests C in separate trials, is A better than C?BMC Med Res Methodol200221310.1186/1471-2288-2-1312429069137603 BucherHCGuyattGHGriffithLEWalterSDThe results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trialsJ Clin Epidemiol19975066836911:STN:280:DyaK2szptlygsw%3D%3D10.1016/S0895-4356(97)00049-89250266 DiasSWeltonNJCaldwellDMAdesAEChecking consistency in mixed treatment comparison meta-analysisStat Med2010297–89329441:STN:280:DC%2BC3c7otVKisQ%3D%3D10.1002/sim.376720213715http://dx.doi.org/10.1002/sim.3767 [] AitkenACOn least squares and linear combination of observationsProc R Soc Edinb193455424810.1017/S0370164600014346 ChatterjeeSHadiASInfluential Observations, High Leverage Points, and Outliers in Linear RegressionStatist Sci19861337939310.1214/ss/1177013622 JacksonDRileyRWhiteIRMultivariate meta-analysis: Potential and promiseStat Med201130202481249810.1002/sim.4247212680523470931http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3470931/ [] HigginsJPTJacksonDBarrettJKLuGAdesaEWhiteIRConsistency and inconsistency in network meta-analysis: concepts and models for multi-arm studiesRes Syn Meth201232981101:STN:280:DC%2BC2Mbitlyiuw%3D%3D10.1002/jrsm.1044http://doi.wiley.com/10.1002/jrsm.1044 [] CochranWThe combination of estimates from different experimentsBiometrics19541010112910.2307/3001666 CiprianiAFurukawaTASalantiGGeddesJRHigginsJPChurchillRWatanabeNNakagawaAOmoriIMMcGuireHTansellaMBarbuiCComparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysisLancet200937396657467581:CAS:528:DC%2BD1MXisVOrtr8%3D10.1016/S0140-6736(09)60046-519185342http://dx.doi.org/10.1016/S0140-6736(09)60046 [-5] RaudenbushSWBeckerBJKalaianHModeling multivariate effect sizesPsych Bull198810311112010.1037/0033-2909.103.1.111 LuGAdesAEAssessing evidence inconsistency in mixed treatment comparisonsJ Am Stat Assoc20061014744474591:CAS:528:DC%2BD2sXms1ynsw%3D%3D10.1198/016214505000001302 GumedzeFNJacksonDA random effects variance shift model for detecting and accommodating outliers in meta-analysisBMC Med Res Methodol2011111910.1186/1471-2288-11-19213241803050872http://dx.doi.org/10.1186/1471-2288-11-19 [] JorgensenAWMaricKLTendalBFaurschouAGotzschePCIndustry-supported meta-analyses compared with meta-analyses with non-profit or no support: differences in methodological quality and conclusionsBMC Med Res Methodol200886010.1186/1471-2288-8-60187824302553412http://dx.doi.org/10.1186/1471-2288-8-60 [] BelsleyDAKuhEWelschRERegression Diagnostics: Identifying Influential Data and Sources of Collinearity (Wiley Series in Probability and Statistics)2004New JerseyJohn Wiley & SonsⒸ1980 HoaglinDCHawkinsNJansenJPScottDAItzlerRCappelleriJCBoersmaCThompsonDLarholtKMDiazMBarrettAConducting indirect-treatment-comparison and network-meta-analysis studies: report of the ISPOR task force on indirect treatment comparisons good research practices: part 2Value Health201114442943710.1016/j.jval.2011.01.01121669367http://dx.doi.org/10.1016/j.jval.2011.01.011 [] CooperNJSuttonAJMorrisDAdesAEWeltonNJAddressing between-study heterogeneity and inconsistency in mixed treatment comparisons: Application to stroke prevention treatments in individuals with non-rheumatic atrial fibrillationStat Med200928141861188110.1002/sim.359419399825 RückerGNetwork meta-analysis, electrical networks and graph theoryRes Syn Meth20123431232410.1002/jrsm.1058http://doi.wiley.com/10.1002/jrsm.1058 [] ViechtbauerWCheungWLOutlier and influence diagnostics for meta-analysisRes Syn Meth20101211212510.1002/jrsm.11 DiasSWeltonNJSuttonAJCaldwellDMGuobingLAdesAE (Eds)Inconsistency in Networks of Evidence Based on Randomised Controlled Trials,2011NICE DSUTechnical Support Document 4http://www.nicedsu.org.uk [] WellsGASultanSAChenLKhanMCoyleD (Eds)Indirect Evidence: Indirect Treatment Comparisons in Meta-Analysis2009OttawaCanadian Agency for Drugs and Technologies in Health GordonADClassification1999LondonChapman and Hall/ CRC SennSGaviniFMagrezDScheenAIssues in performing a network meta-analysisStat Methods Med Res2012http://dx.doi.org/10.1177/0962280211432220 (Epub ahead of print). [] GasparriniAArmstrongBKenwardMGMultivariate meta-analysis for non-linear and other multi-parameter associationsStat Med20123129382138391:STN:280:DC%2BC38fgvFSgtw%3D%3D10.1002/sim.5471228070433546395 DiasSWeltonNJSuttonAJE AA(Eds)A Generalised Linear Modelling Framework for Pairwise and Network Meta-Analysis of Randomised Controlled Trials,2011NICE DSUTechnical Support Document 2http://www.nicedsu.org.uk [] SalantiGMarinhoVHigginsJPTA case study of multiple-treatments meta-analysis demonstrates that covariates should be consideredJ Clin Epidemiol2009628857—86410.1016/j.jclinepi.2008.10.00119157778http://dx.doi.org/10.1016/j.jclinepi.2008.10.001 [] LumleyTNetwork meta-analysis for indirect treatment comparisonsStat Med200221162313—232410.1002/sim.120112210616http://dx.doi.org/10.1002/sim.1201 [] SongFClarkABachmannMOMaasJSimulation evaluation of statistical properties of methods for indirect and mixed treatment comparisonsBMC Med Res Meth20121213810.1186/1471-2288-12-138http://www.ncbi.nlm.nih.gov/pubmed/22970794 [] SalantiGHigginsJPTAdesAEIoannidisJPAEvaluation of networks of randomized trialsStat Methods Med Res200817327930110.1177/096228020708064317925316http://dx.doi.org/10.1177/0962280207080643 [] SalantiGIndirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis toolRes Syn Meth201232809710.1002/jrsm.1037http://doi.wiley.com/10.1002/jrsm.1037 [] LuGWeltonNJHigginsJPTWhiteIRAdesALinear inference for mixed treatment comparison meta-analysis: A two-stage approachRes Syn Meth20112436010.1002/jrsm.34 R Core TeamR: A Language and Environment for Statistical Computing2012ViennaR Foundation for Statistical Computinghttp://www.R-project.org/ []. [ISBN 3-900051-07-0] SongFHarveyILilfordRAdjusted indirect comparison may be less biased than direct comparison for evaluating new pharmaceutical interventionsJ Clin Epidemiol20086154554631:STN:280:DC%2BD1c3jsF2hsw%3D%3D10.1016/j.jclinepi.2007.06.00618394538http://www.ncbi.nlm.nih.gov/pubmed/18394538 [] ThompsonSGWhy sources of heterogeneity in meta-analysis should be investigatedBMJ19943096965135113551:STN:280:DyaK2M7ntVelsQ%3D%3D10.1136/bmj.309.6965.135178660852541868 WhiteIRBarrettJKJacksonDHigginsJPTConsistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regressionRes Syn Meth20123211112510.1002/jrsm.1045http://doi.wiley.com/10.1002/jrsm.1045 [] OelkeDJanetzkoHSimonSNeuhausKKeimDVisual boosting in pixel-based visualizationsComput Graphics Forum 3020113871—880 HC Bucher (934_CR11) 1997; 50 H Chung (934_CR24) 2008; 5 AD Gordon (934_CR34) 1999 DC Hoaglin (934_CR2) 2011; 14 S Dias (934_CR3) 2011 G Salanti (934_CR13) 2008; 17 SG Thompson (934_CR40) 1994; 309 S Dias (934_CR10) 2011 S Dias (934_CR14) 2010; 29 IR White (934_CR16) 2012; 3 G Lu (934_CR23) 2011; 2 AC Aitken (934_CR26) 1934; 55 S Chatterjee (934_CR20) 1986; 1 AW Jorgensen (934_CR7) 2008; 8 G Rücker (934_CR18) 2012; 3 SW Raudenbush (934_CR31) 1988; 103 A Gasparrini (934_CR37) 2012; 31 F Song (934_CR39) 2008; 61 G Lu (934_CR9) 2006; 101 F Song (934_CR33) 2012; 12 M Borenstein (934_CR32) 2009 DM Caldwell (934_CR19) 2010; 63 G Salanti (934_CR4) 2012; 3 S Senn (934_CR17) 2012 R Core Team (934_CR36) 2012 LJ Gleser (934_CR27) 2009 RF Galbraith (934_CR25) 1988; 7 G Salanti (934_CR6) 2009; 62 D Oelke (934_CR35) 2011; 3 T Lumley (934_CR8) 2002; 21 SG Baker (934_CR5) 2002; 2 JPT Higgins (934_CR15) 2012; 3 G Salanti (934_CR41) 2010; 29 NJ Cooper (934_CR38) 2009; 28 W Viechtbauer (934_CR21) 2010; 1 DA Belsley (934_CR29) 2004 FN Gumedze (934_CR22) 2011; 11 GA Wells (934_CR1) 2009 A Cipriani (934_CR12) 2009; 373 D Jackson (934_CR28) 2011; 30 W Cochran (934_CR30) 1954; 10 26061599 - Res Synth Methods. 2011 Mar;2(1):43-60 18394538 - J Clin Epidemiol. 2008 May;61(5):455-63 21268052 - Stat Med. 2011 Sep 10;30(20):2481-98 20213715 - Stat Med. 2010 Mar 30;29(7-8):932-44 26061377 - Res Synth Methods. 2010 Apr;1(2):112-25 22970794 - BMC Med Res Methodol. 2012;12:138 26062084 - Res Synth Methods. 2012 Jun;3(2):98-110 17925316 - Stat Methods Med Res. 2008 Jun;17(3):279-301 3413368 - Stat Med. 1988 Aug;7(8):889-94 19185342 - Lancet. 2009 Feb 28;373(9665):746-58 26062085 - Res Synth Methods. 2012 Jun;3(2):111-25 20080027 - J Clin Epidemiol. 2010 Aug;63(8):875-82 12210616 - Stat Med. 2002 Aug 30;21(16):2313-24 22807043 - Stat Med. 2012 Dec 20;31(29):3821-39 20687172 - Stat Med. 2010 Oct 15;29(23):2369-83 9250266 - J Clin Epidemiol. 1997 Jun;50(6):683-91 18697844 - Clin Trials. 2008;5(4):301-7 26053424 - Res Synth Methods. 2012 Dec;3(4):312-24 18782430 - BMC Med Res Methodol. 2008;8:60 7866085 - BMJ. 1994 Nov 19;309(6965):1351-5 22218368 - Stat Methods Med Res. 2013 Apr;22(2):169-89 21324180 - BMC Med Res Methodol. 2011;11:19 21669367 - Value Health. 2011 Jun;14(4):429-37 26062083 - Res Synth Methods. 2012 Jun;3(2):80-97 19157778 - J Clin Epidemiol. 2009 Aug;62(8):857-64 19399825 - Stat Med. 2009 Jun 30;28(14):1861-81 12429069 - BMC Med Res Methodol. 2002 Nov 13;2:13 |
References_xml | – reference: JacksonDRileyRWhiteIRMultivariate meta-analysis: Potential and promiseStat Med201130202481249810.1002/sim.4247212680523470931http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3470931/ [] – reference: SalantiGMarinhoVHigginsJPTA case study of multiple-treatments meta-analysis demonstrates that covariates should be consideredJ Clin Epidemiol2009628857—86410.1016/j.jclinepi.2008.10.00119157778http://dx.doi.org/10.1016/j.jclinepi.2008.10.001 [] – reference: LuGAdesAEAssessing evidence inconsistency in mixed treatment comparisonsJ Am Stat Assoc20061014744474591:CAS:528:DC%2BD2sXms1ynsw%3D%3D10.1198/016214505000001302 – reference: ViechtbauerWCheungWLOutlier and influence diagnostics for meta-analysisRes Syn Meth20101211212510.1002/jrsm.11 – reference: CooperNJSuttonAJMorrisDAdesAEWeltonNJAddressing between-study heterogeneity and inconsistency in mixed treatment comparisons: Application to stroke prevention treatments in individuals with non-rheumatic atrial fibrillationStat Med200928141861188110.1002/sim.359419399825 – reference: WellsGASultanSAChenLKhanMCoyleD (Eds)Indirect Evidence: Indirect Treatment Comparisons in Meta-Analysis2009OttawaCanadian Agency for Drugs and Technologies in Health – reference: ThompsonSGWhy sources of heterogeneity in meta-analysis should be investigatedBMJ19943096965135113551:STN:280:DyaK2M7ntVelsQ%3D%3D10.1136/bmj.309.6965.135178660852541868 – reference: BucherHCGuyattGHGriffithLEWalterSDThe results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trialsJ Clin Epidemiol19975066836911:STN:280:DyaK2szptlygsw%3D%3D10.1016/S0895-4356(97)00049-89250266 – reference: DiasSWeltonNJSuttonAJE AA(Eds)A Generalised Linear Modelling Framework for Pairwise and Network Meta-Analysis of Randomised Controlled Trials,2011NICE DSUTechnical Support Document 2http://www.nicedsu.org.uk [] – reference: GordonADClassification1999LondonChapman and Hall/ CRC – reference: SongFHarveyILilfordRAdjusted indirect comparison may be less biased than direct comparison for evaluating new pharmaceutical interventionsJ Clin Epidemiol20086154554631:STN:280:DC%2BD1c3jsF2hsw%3D%3D10.1016/j.jclinepi.2007.06.00618394538http://www.ncbi.nlm.nih.gov/pubmed/18394538 [] – reference: BelsleyDAKuhEWelschRERegression Diagnostics: Identifying Influential Data and Sources of Collinearity (Wiley Series in Probability and Statistics)2004New JerseyJohn Wiley & SonsⒸ1980 – reference: RaudenbushSWBeckerBJKalaianHModeling multivariate effect sizesPsych Bull198810311112010.1037/0033-2909.103.1.111 – reference: R Core TeamR: A Language and Environment for Statistical Computing2012ViennaR Foundation for Statistical Computinghttp://www.R-project.org/ []. [ISBN 3-900051-07-0] – reference: LuGWeltonNJHigginsJPTWhiteIRAdesALinear inference for mixed treatment comparison meta-analysis: A two-stage approachRes Syn Meth20112436010.1002/jrsm.34 – reference: GasparriniAArmstrongBKenwardMGMultivariate meta-analysis for non-linear and other multi-parameter associationsStat Med20123129382138391:STN:280:DC%2BC38fgvFSgtw%3D%3D10.1002/sim.5471228070433546395 – reference: SalantiGHigginsJPTAdesAEIoannidisJPAEvaluation of networks of randomized trialsStat Methods Med Res200817327930110.1177/096228020708064317925316http://dx.doi.org/10.1177/0962280207080643 [] – reference: ChungHLumleyTGraphical exploration of network meta-analysis data: the use of multidimensional scalingClin Trials20085430130710.1177/174077450809361418697844http://dx.doi.org/10.1177/1740774508093614 [] – reference: CochranWThe combination of estimates from different experimentsBiometrics19541010112910.2307/3001666 – reference: RückerGNetwork meta-analysis, electrical networks and graph theoryRes Syn Meth20123431232410.1002/jrsm.1058http://doi.wiley.com/10.1002/jrsm.1058 [] – reference: GleserLJOlkinICooperHHedgesLVValentineJCStochastically dependent effect sizesThe Handbook of Research Synthesis and Meta-Analysis,2009New YorkRussell Sage Foundation357376 – reference: SalantiGDiasSWeltonNJAdesAEGolfinopoulosVKyrgiouMMauriDIoannidisJPAEvaluating novel agent effects in multiple-treatments meta-regressionStat Med201029232369238320687172http://dx.doi.org/10.1002/sim.4001 [] – reference: JorgensenAWMaricKLTendalBFaurschouAGotzschePCIndustry-supported meta-analyses compared with meta-analyses with non-profit or no support: differences in methodological quality and conclusionsBMC Med Res Methodol200886010.1186/1471-2288-8-60187824302553412http://dx.doi.org/10.1186/1471-2288-8-60 [] – reference: LumleyTNetwork meta-analysis for indirect treatment comparisonsStat Med200221162313—232410.1002/sim.120112210616http://dx.doi.org/10.1002/sim.1201 [] – reference: SennSGaviniFMagrezDScheenAIssues in performing a network meta-analysisStat Methods Med Res2012http://dx.doi.org/10.1177/0962280211432220 (Epub ahead of print). [] – reference: OelkeDJanetzkoHSimonSNeuhausKKeimDVisual boosting in pixel-based visualizationsComput Graphics Forum 3020113871—880 – reference: HoaglinDCHawkinsNJansenJPScottDAItzlerRCappelleriJCBoersmaCThompsonDLarholtKMDiazMBarrettAConducting indirect-treatment-comparison and network-meta-analysis studies: report of the ISPOR task force on indirect treatment comparisons good research practices: part 2Value Health201114442943710.1016/j.jval.2011.01.01121669367http://dx.doi.org/10.1016/j.jval.2011.01.011 [] – reference: WhiteIRBarrettJKJacksonDHigginsJPTConsistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regressionRes Syn Meth20123211112510.1002/jrsm.1045http://doi.wiley.com/10.1002/jrsm.1045 [] – reference: HigginsJPTJacksonDBarrettJKLuGAdesaEWhiteIRConsistency and inconsistency in network meta-analysis: concepts and models for multi-arm studiesRes Syn Meth201232981101:STN:280:DC%2BC2Mbitlyiuw%3D%3D10.1002/jrsm.1044http://doi.wiley.com/10.1002/jrsm.1044 [] – reference: GalbraithRFA note on graphical presentation of estimated odds ratios from several clinical trialsStat Med198878898941:STN:280:DyaL1czitFCjtQ%3D%3D10.1002/sim.47800708073413368 – reference: SongFClarkABachmannMOMaasJSimulation evaluation of statistical properties of methods for indirect and mixed treatment comparisonsBMC Med Res Meth20121213810.1186/1471-2288-12-138http://www.ncbi.nlm.nih.gov/pubmed/22970794 [] – reference: BorensteinMHedgesLVHigginsJPTRothsteinHRIntroduction to Meta-Analysis2009ChichesterJohn Wiley & Sons10.1002/9780470743386 – reference: SalantiGIndirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis toolRes Syn Meth201232809710.1002/jrsm.1037http://doi.wiley.com/10.1002/jrsm.1037 [] – reference: BakerSGKramerBSThe transitive fallacy for randomized trials: if A bests B and B bests C in separate trials, is A better than C?BMC Med Res Methodol200221310.1186/1471-2288-2-1312429069137603 – reference: CaldwellDMWeltonNJAdesAEMixed treatment comparison analysis provides internally coherent treatment effect estimates based on overviews of reviews and can reveal inconsistencyJ Clin Epidemiol201063887588210.1016/j.jclinepi.2009.08.02520080027http://dx.doi.org/10.1016/j.jclinepi.2009.08.025 [] – reference: GumedzeFNJacksonDA random effects variance shift model for detecting and accommodating outliers in meta-analysisBMC Med Res Methodol2011111910.1186/1471-2288-11-19213241803050872http://dx.doi.org/10.1186/1471-2288-11-19 [] – reference: DiasSWeltonNJSuttonAJCaldwellDMGuobingLAdesAE (Eds)Inconsistency in Networks of Evidence Based on Randomised Controlled Trials,2011NICE DSUTechnical Support Document 4http://www.nicedsu.org.uk [] – reference: CiprianiAFurukawaTASalantiGGeddesJRHigginsJPChurchillRWatanabeNNakagawaAOmoriIMMcGuireHTansellaMBarbuiCComparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysisLancet200937396657467581:CAS:528:DC%2BD1MXisVOrtr8%3D10.1016/S0140-6736(09)60046-519185342http://dx.doi.org/10.1016/S0140-6736(09)60046 [-5] – reference: ChatterjeeSHadiASInfluential Observations, High Leverage Points, and Outliers in Linear RegressionStatist Sci19861337939310.1214/ss/1177013622 – reference: AitkenACOn least squares and linear combination of observationsProc R Soc Edinb193455424810.1017/S0370164600014346 – reference: DiasSWeltonNJCaldwellDMAdesAEChecking consistency in mixed treatment comparison meta-analysisStat Med2010297–89329441:STN:280:DC%2BC3c7otVKisQ%3D%3D10.1002/sim.376720213715http://dx.doi.org/10.1002/sim.3767 [] – volume: 11 start-page: 19 year: 2011 ident: 934_CR22 publication-title: BMC Med Res Methodol doi: 10.1186/1471-2288-11-19 – volume-title: Inconsistency in Networks of Evidence Based on Randomised Controlled Trials, year: 2011 ident: 934_CR10 – volume: 3 start-page: 871—880 year: 2011 ident: 934_CR35 publication-title: Comput Graphics Forum 30 – volume: 29 start-page: 932 issue: 7–8 year: 2010 ident: 934_CR14 publication-title: Stat Med doi: 10.1002/sim.3767 – volume-title: R: A Language and Environment for Statistical Computing year: 2012 ident: 934_CR36 – volume: 29 start-page: 2369 issue: 23 year: 2010 ident: 934_CR41 publication-title: Stat Med doi: 10.1002/sim.4001 – volume-title: Indirect Evidence: Indirect Treatment Comparisons in Meta-Analysis year: 2009 ident: 934_CR1 – volume: 10 start-page: 101 year: 1954 ident: 934_CR30 publication-title: Biometrics doi: 10.2307/3001666 – volume-title: Introduction to Meta-Analysis year: 2009 ident: 934_CR32 doi: 10.1002/9780470743386 – volume: 373 start-page: 746 issue: 9665 year: 2009 ident: 934_CR12 publication-title: Lancet doi: 10.1016/S0140-6736(09)60046-5 – volume: 3 start-page: 80 issue: 2 year: 2012 ident: 934_CR4 publication-title: Res Syn Meth doi: 10.1002/jrsm.1037 – volume: 28 start-page: 1861 issue: 14 year: 2009 ident: 934_CR38 publication-title: Stat Med doi: 10.1002/sim.3594 – volume: 8 start-page: 60 year: 2008 ident: 934_CR7 publication-title: BMC Med Res Methodol doi: 10.1186/1471-2288-8-60 – volume: 55 start-page: 42 year: 1934 ident: 934_CR26 publication-title: Proc R Soc Edinb doi: 10.1017/S0370164600014346 – volume: 7 start-page: 889 year: 1988 ident: 934_CR25 publication-title: Stat Med doi: 10.1002/sim.4780070807 – volume: 3 start-page: 98 issue: 2 year: 2012 ident: 934_CR15 publication-title: Res Syn Meth doi: 10.1002/jrsm.1044 – volume: 63 start-page: 875 issue: 8 year: 2010 ident: 934_CR19 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2009.08.025 – volume: 30 start-page: 2481 issue: 20 year: 2011 ident: 934_CR28 publication-title: Stat Med doi: 10.1002/sim.4247 – volume: 61 start-page: 455 issue: 5 year: 2008 ident: 934_CR39 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2007.06.006 – volume: 62 start-page: 857—864 issue: 8 year: 2009 ident: 934_CR6 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2008.10.001 – volume: 5 start-page: 301 issue: 4 year: 2008 ident: 934_CR24 publication-title: Clin Trials doi: 10.1177/1740774508093614 – volume: 1 start-page: 379 issue: 3 year: 1986 ident: 934_CR20 publication-title: Statist Sci doi: 10.1214/ss/1177013622 – volume: 14 start-page: 429 issue: 4 year: 2011 ident: 934_CR2 publication-title: Value Health doi: 10.1016/j.jval.2011.01.011 – volume: 21 start-page: 2313—2324 issue: 16 year: 2002 ident: 934_CR8 publication-title: Stat Med doi: 10.1002/sim.1201 – volume-title: A Generalised Linear Modelling Framework for Pairwise and Network Meta-Analysis of Randomised Controlled Trials, year: 2011 ident: 934_CR3 – volume: 31 start-page: 3821 issue: 29 year: 2012 ident: 934_CR37 publication-title: Stat Med doi: 10.1002/sim.5471 – volume: 2 start-page: 13 year: 2002 ident: 934_CR5 publication-title: BMC Med Res Methodol doi: 10.1186/1471-2288-2-13 – start-page: 357 volume-title: The Handbook of Research Synthesis and Meta-Analysis, year: 2009 ident: 934_CR27 – volume: 103 start-page: 111 year: 1988 ident: 934_CR31 publication-title: Psych Bull doi: 10.1037/0033-2909.103.1.111 – volume-title: Stat Methods Med Res year: 2012 ident: 934_CR17 – volume: 50 start-page: 683 issue: 6 year: 1997 ident: 934_CR11 publication-title: J Clin Epidemiol doi: 10.1016/S0895-4356(97)00049-8 – volume: 3 start-page: 312 issue: 4 year: 2012 ident: 934_CR18 publication-title: Res Syn Meth doi: 10.1002/jrsm.1058 – volume: 101 start-page: 447 issue: 474 year: 2006 ident: 934_CR9 publication-title: J Am Stat Assoc doi: 10.1198/016214505000001302 – volume-title: Classification year: 1999 ident: 934_CR34 doi: 10.1201/9780367805302 – volume-title: Regression Diagnostics: Identifying Influential Data and Sources of Collinearity (Wiley Series in Probability and Statistics) year: 2004 ident: 934_CR29 – volume: 12 start-page: 138 year: 2012 ident: 934_CR33 publication-title: BMC Med Res Meth doi: 10.1186/1471-2288-12-138 – volume: 309 start-page: 1351 issue: 6965 year: 1994 ident: 934_CR40 publication-title: BMJ doi: 10.1136/bmj.309.6965.1351 – volume: 2 start-page: 43 year: 2011 ident: 934_CR23 publication-title: Res Syn Meth doi: 10.1002/jrsm.34 – volume: 17 start-page: 279 issue: 3 year: 2008 ident: 934_CR13 publication-title: Stat Methods Med Res doi: 10.1177/0962280207080643 – volume: 3 start-page: 111 issue: 2 year: 2012 ident: 934_CR16 publication-title: Res Syn Meth doi: 10.1002/jrsm.1045 – volume: 1 start-page: 112 issue: 2 year: 2010 ident: 934_CR21 publication-title: Res Syn Meth doi: 10.1002/jrsm.11 – reference: 3413368 - Stat Med. 1988 Aug;7(8):889-94 – reference: 12429069 - BMC Med Res Methodol. 2002 Nov 13;2:13 – reference: 22218368 - Stat Methods Med Res. 2013 Apr;22(2):169-89 – reference: 26061377 - Res Synth Methods. 2010 Apr;1(2):112-25 – reference: 9250266 - J Clin Epidemiol. 1997 Jun;50(6):683-91 – reference: 19185342 - Lancet. 2009 Feb 28;373(9665):746-58 – reference: 21324180 - BMC Med Res Methodol. 2011;11:19 – reference: 7866085 - BMJ. 1994 Nov 19;309(6965):1351-5 – reference: 19157778 - J Clin Epidemiol. 2009 Aug;62(8):857-64 – reference: 21669367 - Value Health. 2011 Jun;14(4):429-37 – reference: 26061599 - Res Synth Methods. 2011 Mar;2(1):43-60 – reference: 20213715 - Stat Med. 2010 Mar 30;29(7-8):932-44 – reference: 21268052 - Stat Med. 2011 Sep 10;30(20):2481-98 – reference: 20687172 - Stat Med. 2010 Oct 15;29(23):2369-83 – reference: 19399825 - Stat Med. 2009 Jun 30;28(14):1861-81 – reference: 18782430 - BMC Med Res Methodol. 2008;8:60 – reference: 26062085 - Res Synth Methods. 2012 Jun;3(2):111-25 – reference: 18394538 - J Clin Epidemiol. 2008 May;61(5):455-63 – reference: 12210616 - Stat Med. 2002 Aug 30;21(16):2313-24 – reference: 22807043 - Stat Med. 2012 Dec 20;31(29):3821-39 – reference: 17925316 - Stat Methods Med Res. 2008 Jun;17(3):279-301 – reference: 18697844 - Clin Trials. 2008;5(4):301-7 – reference: 26062083 - Res Synth Methods. 2012 Jun;3(2):80-97 – reference: 22970794 - BMC Med Res Methodol. 2012;12:138 – reference: 26053424 - Res Synth Methods. 2012 Dec;3(4):312-24 – reference: 26062084 - Res Synth Methods. 2012 Jun;3(2):98-110 – reference: 20080027 - J Clin Epidemiol. 2010 Aug;63(8):875-82 |
SSID | ssj0017836 |
Score | 2.521596 |
Snippet | Background
In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more... In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The... Background In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more... Doc number: 35 Abstract Background: In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have... BACKGROUND: In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more... |
SourceID | pubmedcentral biomedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 35 |
SubjectTerms | Computer Communication Networks Computer Graphics Data analysis Estimation theory Generalized linear models Health Sciences Humans Maximum likelihood method Medical research Medicine Medicine & Public Health Medicine, Experimental Meta-analysis Meta-Analysis as Topic Research Article Statistical Theory and Methods statistics and modelling Statistics for Life Sciences Studies Theory of Medicine/Bioethics Treatment outcome |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFB60gvgi1mtqLSMI6kNskrnjgyzVUgR9srBvw2QyQWFNqpv-_54zO1k7qxXysGEum5z7ZM58h5BXgWMNi7YCRYIlChdOltqrunROdRA-KNP3Ee3zqzw755-XYpk-uK1TWuVsE6Oh7kaP38iPa8a1EVpL8-HiV4lVo3B3NZXQuE3uROgykGe13C64ajyhkOB8ai2PazDEZdOAaNSsxPpu2RH3VeaZdu3zNQe1mzy5s4MaHdPpA3I_RZR0sRGBfXIrDA_J3S9pz_wR-bigEZUauUGncVxRiFMp-jDMeKaIzjCskdlgZuGODpvEcPozTK50EbMkrB-T89NP307OylQ7oWyBSBMYuco5jcFTJ33o4TdEVoIZhywLjecGOvDOtUpWfefAZ_XOmE77IKTnXLEnZG8Yh_CMUGmCgClYC56M-9a3PGhuePB9ZVTPVEHeZ3S0FxucDIvI1XkLMNQiFyxywdbMMlGQdzPVrU-w5FgdY2Xj8kTLvwe82Q6Y_-nGrq-RjRZ1Feb0Lh05gPdC1Cu7EIwLLSFkKshh1hN0zOfNsyDYpONr-0ciC_Jy24wjMW9tCONl7GMqWOJWvCBPN3KzfegGsfoNTq4yicrol7cMP75HBHAGUWwjdUHezrJ37bH-TYuD_7_Cc3KviYU-4DKHZG_6fRleQLg1tUdRp64AJwspMQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SBEIvIUkfcV4oUEhzcGtbD0vktORBCLSnBHITsizTwsYbss7_z4zWu6y36SHgg82MHp7RaEaM9AngWxB0h0WVoSHhEkVIp1Ltyzx1rqwxfChN00S0z9_q5l7cPsiHHiSJzsIs5-9zrX7mOHmmRYHqzHnK5QfYkDlXMSurLhbpAjqK0OP2vFFo5Sz7eOCCVifiJU-0uktyJVUaPdD1Nmz1oSMbzXS9A2uh3YXNX31y_BNcjliEnyaxs24yGTMMSBk5K9razAiGoZ2SVnE-xS_WznaAs8fQudRFcJIw_Qz311d3Fzdpf0lCWkmtO5zNMuc0RUm18qHBdwyhJDeOdBMKLwwyiNpVpcqa2qFzapwxtfZBKi9Eyb_Aejtpwx4wZYLEKniFLkv4ylciaGFE8E1myoaXCZwP5GifZoAYliCqhxS0FktasKQFm3PLZQI_5lK3vscfp2swxjauQ7T6t8D3RYF5S_9lPSU1WjJKrNO7_mwB_hfBW9mR5EJqhbFRAocDTjQmPyTPB4LtjXmKTQhtUNjKJHCyIFNJ2qDWhslL5DEZrmUzkcDX2bhZdLogUH5DlZeDETWQ35DS_v0Tob45hquF0gmczcfeUrfelsX-O3gP4GMRr_fAxxzCevf8Eo4wyOqq42hgr2_7IDk priority: 102 providerName: Springer Nature |
Title | A graphical tool for locating inconsistency in network meta-analyses |
URI | https://link.springer.com/article/10.1186/1471-2288-13-35 https://www.ncbi.nlm.nih.gov/pubmed/23496991 https://www.proquest.com/docview/1348958869 https://www.proquest.com/docview/1349092404 http://dx.doi.org/10.1186/1471-2288-13-35 https://pubmed.ncbi.nlm.nih.gov/PMC3644268 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ri9NAEB-8OxC_iG-jZ4kgqB9yptk3ItKrdxzCHXJYKH5ZNpsNCjXVaw70v3dmm_YutQqlNOzsJpnHzkx39zcALwKnGhZljoaEKQoXTmbaq2HmnKowfFCmriPa55k8mfCPUzG9KgfUMXCxNbWjelKTi9nBr5-_36PBv4sGr-WbIU6wWVGgyIcsY2IH9tAtScrETvnVkgIdV4hHjTriDudnywAbZ99nPZe1OXFf81ybuyo3llajxzq-A7e7UDMdLXXjLtwIzT24edotpt-HD6M0wlWTmNJ2Pp-lGMCm5NxoK3RKsA3NgrQA51-8SpvljvH0e2hd5iKYSVg8gMnx0efxSdYVVchKoXWLs1_unKaoqpI-1PgbQy7BjCNZhsJzgwS8cqWSeV05dGa1M6bSPgjpOVfsIew28yY8hlSaIHAIVqKL4770JQ-aGx58nRtVM5XA2x4f7Y8lgIYlSOt-C1qXJSlYkoIdMstEAgcrrlvf4ZVT2YyZjXmLln93eLXusLrTP0lfkhgtqRWO6V13FgHfi-Cw7EgwLrTEWCqB_R4lGp_vN68Uwa50F2_BtUFmS5PA83Uz9aQNbU2YX0Yak2Pum_MEHi31Zv3QBYH4Gxpc9TSqx79-S_Pta4QGZxjeFlIn8Hqle9ceazsvnvz_DZ_CrSJWAMGP2Yfd9uIyPMM4rC0HsKOmagB7h0dnn87xaizHg_ifxiBaHn6fH375AwBzMl4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEN8EBhgJBDyEJbHj2EIIFbapY1uF0CbtzTiOI5BKMmgmxD_F38hdmpSlfLxN6kMrfyQ-35fru98BPPaCaljkEQoSHlFEamWoXBaH1mYFug-ZLssW7XMqJ0fi3XF6vAY_-1wYCqvsdWKrqIva0X_kmzEXSqdKSf365GtIVaPodrUvobFgiz3_4zse2eavdrdwf58kyc724dtJ2FUVCHMc3qD4R9YqcisK6XyJ39HnSLm2tBifOKGxgyhsnsmoLCxq89JqXSjnU-mEyDjOewHWBWW0jmD9zfb0_YflvQXlRHQAQrGSmzGq_jBJkBljHlJFuUFS_WxgC1ctwhmTuBquuXJn25rCnatwpfNh2XjBdNdgzVfX4eJBd0t_A7bGrMXBpv1nTV3PGHrGjKwmxVgzwoOo5sReqNjxF6sWoejsi29saFuUFD-_CUfnQtdbMKrqyt8BJrVPcQqeo-0ULne58Epo4V0Z6azkWQAvB3Q0JwtkDkNY2cMWZCFDu2BoF0zMDU8DeNFT3bgOCJ3qccxMeyBS8s8Bz5YD-if9s-tT2kZD2gHndLZLcsB1Ec6WGadcpEqikxbAxqAnSrUbNveMYDqtMje_ZSCAR8tmGkmRcpWvT9s-OsJDdSQCuL3gm-VLJ1QdQNPk2YCjBvQbtlSfP7WY4xz95kSqAJ73vHfmtf5Oi7v_X8JDuDQ5PNg3-7vTvXtwOWnLjOBHb8Co-Xbq76Oz1-QPOglj8PG8hfoXO7xo3A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkFAvVUsfhNLiSpXaHlKy8SO2eloBK-gD9VAkbpbjOAJpm0Vs-P-dcZIV2dJDpRwSeewk8_CMNePPAO-DoDMsygwNCZcoQjqVal9MUueKCsOHwtR1RPs8V6cX4uulvOxrc5ZDtfuQkuz2NBBKU9Me3lR1Z-JaHU5wSk3zHIU84SmXj2BLkN-jXK06WiURaINCj-bzQKe1He7zkWNan57v-af12sm1BGr0S7On8KQPKNm004BnsBGaHdj-0afMn8PxlEVQahIGaxeLOcMwlZELo4JnRuAMzZJkjbMsPrGmqwtnv0PrUhchS8LyBVzMTn4dnab90QlpKbVucY7LnNMUO1XKhxrvMbCS3DiSWMi9MEggKlcWKqsrhy6rdsZU2gepvBAFfwmbzaIJu8CUCRKH4CU6MuFLX4qghRHB15kpal4k8GXER3vTwWRYAq4et6A4LUnBkhTshFsuE_g8cN36HpWcDseY27g60ervDh9XHYY3_ZP0A4nRkqnimN71Ow7wvwj0yk4lF1Ir1JwE9keUaGJ-3Dwogu1NfImvENogs5VJ4N2qmXpS2VoTFneRxmS4ws1EAq86vVl9dE5Q_YYGL0YaNeLfuKW5vooA4ByD2FzpBD4Nunfvsx7mxd5_0B7A9s_jmf1-dv7tNTzO4_kfeJl92Gxv78IbjMLa8m20tT-7aitt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graphical+tool+for+locating+inconsistency+in+network+meta-analyses&rft.jtitle=BMC+medical+research+methodology&rft.au=Krahn%2C+Ulrike&rft.au=Binder%2C+Harald&rft.au=K%C3%B6nig%2C+Jochem&rft.date=2013-03-09&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2288&rft.eissn=1471-2288&rft.volume=13&rft_id=info:doi/10.1186%2F1471-2288-13-35&rft.externalDocID=A534586091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon |