A graphical tool for locating inconsistency in network meta-analyses

Background In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For...

Full description

Saved in:
Bibliographic Details
Published inBMC medical research methodology Vol. 13; no. 1; p. 35
Main Authors Krahn, Ulrike, Binder, Harald, König, Jochem
Format Journal Article
LanguageEnglish
Published London BioMed Central 09.03.2013
BioMed Central Ltd
Subjects
Online AccessGet full text
ISSN1471-2288
1471-2288
DOI10.1186/1471-2288-13-35

Cover

Abstract Background In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For a valid analysis of the network, consistent information from different pathways is assumed. Consistency can be checked by contrasting effect estimates from direct comparisons with the evidence of the remaining network. Unfortunately, one deviating direct comparison may have side effects on the network estimates of others, thus producing hot spots of inconsistency. Methods We provide a tool, the net heat plot, to render transparent which direct comparisons drive each network estimate and to display hot spots of inconsistency: this permits singling out which of the suspicious direct comparisons are sufficient to explain the presence of inconsistency. We base our methods on fixed-effects models. For disclosure of potential drivers, the plot comprises the contribution of each direct estimate to network estimates resulting from regression diagnostics. In combination, we show heat colors corresponding to the change in agreement between direct and indirect estimate when relaxing the assumption of consistency for one direct comparison. A clustering procedure is applied to the heat matrix in order to find hot spots of inconsistency. Results The method is shown to work with several examples, which are constructed by perturbing the effect of single study designs, and with two published network meta-analyses. Once the possible sources of inconsistencies are identified, our method also reveals which network estimates they affect. Conclusion Our proposal is seen to be useful for identifying sources of inconsistencies in the network together with the interrelatedness of effect estimates. It opens the way for a further analysis based on subject matter considerations.
AbstractList In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For a valid analysis of the network, consistent information from different pathways is assumed. Consistency can be checked by contrasting effect estimates from direct comparisons with the evidence of the remaining network. Unfortunately, one deviating direct comparison may have side effects on the network estimates of others, thus producing hot spots of inconsistency.BACKGROUNDIn network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For a valid analysis of the network, consistent information from different pathways is assumed. Consistency can be checked by contrasting effect estimates from direct comparisons with the evidence of the remaining network. Unfortunately, one deviating direct comparison may have side effects on the network estimates of others, thus producing hot spots of inconsistency.We provide a tool, the net heat plot, to render transparent which direct comparisons drive each network estimate and to display hot spots of inconsistency: this permits singling out which of the suspicious direct comparisons are sufficient to explain the presence of inconsistency. We base our methods on fixed-effects models. For disclosure of potential drivers, the plot comprises the contribution of each direct estimate to network estimates resulting from regression diagnostics. In combination, we show heat colors corresponding to the change in agreement between direct and indirect estimate when relaxing the assumption of consistency for one direct comparison. A clustering procedure is applied to the heat matrix in order to find hot spots of inconsistency.METHODSWe provide a tool, the net heat plot, to render transparent which direct comparisons drive each network estimate and to display hot spots of inconsistency: this permits singling out which of the suspicious direct comparisons are sufficient to explain the presence of inconsistency. We base our methods on fixed-effects models. For disclosure of potential drivers, the plot comprises the contribution of each direct estimate to network estimates resulting from regression diagnostics. In combination, we show heat colors corresponding to the change in agreement between direct and indirect estimate when relaxing the assumption of consistency for one direct comparison. A clustering procedure is applied to the heat matrix in order to find hot spots of inconsistency.The method is shown to work with several examples, which are constructed by perturbing the effect of single study designs, and with two published network meta-analyses. Once the possible sources of inconsistencies are identified, our method also reveals which network estimates they affect.RESULTSThe method is shown to work with several examples, which are constructed by perturbing the effect of single study designs, and with two published network meta-analyses. Once the possible sources of inconsistencies are identified, our method also reveals which network estimates they affect.Our proposal is seen to be useful for identifying sources of inconsistencies in the network together with the interrelatedness of effect estimates. It opens the way for a further analysis based on subject matter considerations.CONCLUSIONOur proposal is seen to be useful for identifying sources of inconsistencies in the network together with the interrelatedness of effect estimates. It opens the way for a further analysis based on subject matter considerations.
Background In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For a valid analysis of the network, consistent information from different pathways is assumed. Consistency can be checked by contrasting effect estimates from direct comparisons with the evidence of the remaining network. Unfortunately, one deviating direct comparison may have side effects on the network estimates of others, thus producing hot spots of inconsistency. Methods We provide a tool, the net heat plot, to render transparent which direct comparisons drive each network estimate and to display hot spots of inconsistency: this permits singling out which of the suspicious direct comparisons are sufficient to explain the presence of inconsistency. We base our methods on fixed-effects models. For disclosure of potential drivers, the plot comprises the contribution of each direct estimate to network estimates resulting from regression diagnostics. In combination, we show heat colors corresponding to the change in agreement between direct and indirect estimate when relaxing the assumption of consistency for one direct comparison. A clustering procedure is applied to the heat matrix in order to find hot spots of inconsistency. Results The method is shown to work with several examples, which are constructed by perturbing the effect of single study designs, and with two published network meta-analyses. Once the possible sources of inconsistencies are identified, our method also reveals which network estimates they affect. Conclusion Our proposal is seen to be useful for identifying sources of inconsistencies in the network together with the interrelatedness of effect estimates. It opens the way for a further analysis based on subject matter considerations. Keywords: Network meta-analysis, Inconsistency, Cochran's Q, Hat matrix
Doc number: 35 Abstract Background: In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For a valid analysis of the network, consistent information from different pathways is assumed. Consistency can be checked by contrasting effect estimates from direct comparisons with the evidence of the remaining network. Unfortunately, one deviating direct comparison may have side effects on the network estimates of others, thus producing hot spots of inconsistency. Methods: We provide a tool, the net heat plot, to render transparent which direct comparisons drive each network estimate and to display hot spots of inconsistency: this permits singling out which of the suspicious direct comparisons are sufficient to explain the presence of inconsistency. We base our methods on fixed-effects models. For disclosure of potential drivers, the plot comprises the contribution of each direct estimate to network estimates resulting from regression diagnostics. In combination, we show heat colors corresponding to the change in agreement between direct and indirect estimate when relaxing the assumption of consistency for one direct comparison. A clustering procedure is applied to the heat matrix in order to find hot spots of inconsistency. Results: The method is shown to work with several examples, which are constructed by perturbing the effect of single study designs, and with two published network meta-analyses. Once the possible sources of inconsistencies are identified, our method also reveals which network estimates they affect. Conclusion: Our proposal is seen to be useful for identifying sources of inconsistencies in the network together with the interrelatedness of effect estimates. It opens the way for a further analysis based on subject matter considerations.
Background In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For a valid analysis of the network, consistent information from different pathways is assumed. Consistency can be checked by contrasting effect estimates from direct comparisons with the evidence of the remaining network. Unfortunately, one deviating direct comparison may have side effects on the network estimates of others, thus producing hot spots of inconsistency. Methods We provide a tool, the net heat plot, to render transparent which direct comparisons drive each network estimate and to display hot spots of inconsistency: this permits singling out which of the suspicious direct comparisons are sufficient to explain the presence of inconsistency. We base our methods on fixed-effects models. For disclosure of potential drivers, the plot comprises the contribution of each direct estimate to network estimates resulting from regression diagnostics. In combination, we show heat colors corresponding to the change in agreement between direct and indirect estimate when relaxing the assumption of consistency for one direct comparison. A clustering procedure is applied to the heat matrix in order to find hot spots of inconsistency. Results The method is shown to work with several examples, which are constructed by perturbing the effect of single study designs, and with two published network meta-analyses. Once the possible sources of inconsistencies are identified, our method also reveals which network estimates they affect. Conclusion Our proposal is seen to be useful for identifying sources of inconsistencies in the network together with the interrelatedness of effect estimates. It opens the way for a further analysis based on subject matter considerations.
In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For a valid analysis of the network, consistent information from different pathways is assumed. Consistency can be checked by contrasting effect estimates from direct comparisons with the evidence of the remaining network. Unfortunately, one deviating direct comparison may have side effects on the network estimates of others, thus producing hot spots of inconsistency. We provide a tool, the net heat plot, to render transparent which direct comparisons drive each network estimate and to display hot spots of inconsistency: this permits singling out which of the suspicious direct comparisons are sufficient to explain the presence of inconsistency. We base our methods on fixed-effects models. For disclosure of potential drivers, the plot comprises the contribution of each direct estimate to network estimates resulting from regression diagnostics. In combination, we show heat colors corresponding to the change in agreement between direct and indirect estimate when relaxing the assumption of consistency for one direct comparison. A clustering procedure is applied to the heat matrix in order to find hot spots of inconsistency. The method is shown to work with several examples, which are constructed by perturbing the effect of single study designs, and with two published network meta-analyses. Once the possible sources of inconsistencies are identified, our method also reveals which network estimates they affect. Our proposal is seen to be useful for identifying sources of inconsistencies in the network together with the interrelatedness of effect estimates. It opens the way for a further analysis based on subject matter considerations.
BACKGROUND: In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For a valid analysis of the network, consistent information from different pathways is assumed. Consistency can be checked by contrasting effect estimates from direct comparisons with the evidence of the remaining network. Unfortunately, one deviating direct comparison may have side effects on the network estimates of others, thus producing hot spots of inconsistency. METHODS: We provide a tool, the net heat plot, to render transparent which direct comparisons drive each network estimate and to display hot spots of inconsistency: this permits singling out which of the suspicious direct comparisons are sufficient to explain the presence of inconsistency. We base our methods on fixed-effects models. For disclosure of potential drivers, the plot comprises the contribution of each direct estimate to network estimates resulting from regression diagnostics. In combination, we show heat colors corresponding to the change in agreement between direct and indirect estimate when relaxing the assumption of consistency for one direct comparison. A clustering procedure is applied to the heat matrix in order to find hot spots of inconsistency. RESULTS: The method is shown to work with several examples, which are constructed by perturbing the effect of single study designs, and with two published network meta-analyses. Once the possible sources of inconsistencies are identified, our method also reveals which network estimates they affect. CONCLUSION: Our proposal is seen to be useful for identifying sources of inconsistencies in the network together with the interrelatedness of effect estimates. It opens the way for a further analysis based on subject matter considerations.
In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The resulting trial network allows estimating the relative effects of all pairs of treatments taking indirect evidence into account. For a valid analysis of the network, consistent information from different pathways is assumed. Consistency can be checked by contrasting effect estimates from direct comparisons with the evidence of the remaining network. Unfortunately, one deviating direct comparison may have side effects on the network estimates of others, thus producing hot spots of inconsistency. We provide a tool, the net heat plot, to render transparent which direct comparisons drive each network estimate and to display hot spots of inconsistency: this permits singling out which of the suspicious direct comparisons are sufficient to explain the presence of inconsistency. We base our methods on fixed-effects models. For disclosure of potential drivers, the plot comprises the contribution of each direct estimate to network estimates resulting from regression diagnostics. In combination, we show heat colors corresponding to the change in agreement between direct and indirect estimate when relaxing the assumption of consistency for one direct comparison. A clustering procedure is applied to the heat matrix in order to find hot spots of inconsistency. The method is shown to work with several examples, which are constructed by perturbing the effect of single study designs, and with two published network meta-analyses. Once the possible sources of inconsistencies are identified, our method also reveals which network estimates they affect. Our proposal is seen to be useful for identifying sources of inconsistencies in the network together with the interrelatedness of effect estimates. It opens the way for a further analysis based on subject matter considerations.
ArticleNumber 35
Audience Academic
Author König, Jochem
Krahn, Ulrike
Binder, Harald
AuthorAffiliation 1 Division Medical Biometry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 69, 55131 Mainz, Germany
AuthorAffiliation_xml – name: 1 Division Medical Biometry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 69, 55131 Mainz, Germany
Author_xml – sequence: 1
  givenname: Ulrike
  surname: Krahn
  fullname: Krahn, Ulrike
  email: ulrike.krahn@unimedizin-mainz.de
  organization: Division Medical Biometry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Johannes Gutenberg University Mainz
– sequence: 2
  givenname: Harald
  surname: Binder
  fullname: Binder, Harald
  organization: Division Medical Biometry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Johannes Gutenberg University Mainz
– sequence: 3
  givenname: Jochem
  surname: König
  fullname: König, Jochem
  organization: Division Medical Biometry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Johannes Gutenberg University Mainz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23496991$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1vFCEYxompsR969mYm8eJlWhg-Bi4m2_qZNPGiZ8Iy70ypDKwwq9n_Xsat627TGg58_Z7nhQdO0VGIARB6SfA5IVJcENaSummkrAmtKX-CTnYrR3vjY3Sa8y3GpJVUPEPHDWVKKEVO0LtFNSSzunHW-GqK0Vd9TJWP1kwuDJULNobs8gTBbsqsCjD9iul7NcJkahOM32TIz9HT3vgML-76M_Ttw_uvV5_q6y8fP18trusll3KqZYuNkQRz1QkLfRlzQjhVBqw10FimCsA6s2wF7juDRdsbpTppgQvLWEvP0Nut72q9HKGzEKZkvF4lN5q00dE4fbgT3I0e4k9NBWONkMXgcmuwdPERg8MdG0c9p6jnFDWhmvJi8ubuFCn-WEOe9OiyBe9NgLjOhWIKq4ZhVtDX99DbuE4ltT-UVCUWof5Rg_GgXehjqW1nU73glHEpsCKFOn-AKq2D0ZVXgt6V9QPBq_20drf8-_gFuNgCNsWcE_Q7hGA9f68Hrs7vKaybyk-Jc1rO_0eHt7pcKoQB0l4Oj0h-A16h4aM
CitedBy_id crossref_primary_10_1007_s00784_021_03802_1
crossref_primary_10_1093_ejcts_ezaa319
crossref_primary_10_3390_life13122259
crossref_primary_10_1016_j_jep_2022_115996
crossref_primary_10_1093_ehjcvp_pvad003
crossref_primary_10_1093_jac_dkx430
crossref_primary_10_1002_14651858_CD013761_pub2
crossref_primary_10_1136_bmj_2024_081164
crossref_primary_10_1136_bmjmed_2022_000346
crossref_primary_10_1093_sleep_zsy185
crossref_primary_10_1002_sim_9145
crossref_primary_10_1097_MD_0000000000011682
crossref_primary_10_5691_jjb_44_107
crossref_primary_10_1001_jamanetworkopen_2022_53942
crossref_primary_10_4178_epih_e2017047
crossref_primary_10_1007_s00167_021_06613_9
crossref_primary_10_1016_j_fertnstert_2019_09_016
crossref_primary_10_1038_s41432_021_0207_x
crossref_primary_10_1016_j_jclinepi_2016_02_016
crossref_primary_10_1007_s12325_019_01167_2
crossref_primary_10_1093_bjsopen_zrab130
crossref_primary_10_3389_fphar_2022_757969
crossref_primary_10_1136_bmjopen_2015_010252
crossref_primary_10_1186_s13643_016_0302_9
crossref_primary_10_1371_journal_pone_0076654
crossref_primary_10_3389_fphys_2022_1001978
crossref_primary_10_1177_02698811241303654
crossref_primary_10_1007_s00540_018_2597_2
crossref_primary_10_1136_bmjopen_2023_074317
crossref_primary_10_1002_jrsm_1329
crossref_primary_10_1016_j_thromres_2015_02_032
crossref_primary_10_1016_j_neurom_2022_01_005
crossref_primary_10_1111_ijcp_12698
crossref_primary_10_1002_sim_6321
crossref_primary_10_1002_14651858_CD012583_pub2
crossref_primary_10_1016_j_jgar_2023_05_011
crossref_primary_10_1097_MD_0000000000038014
crossref_primary_10_1002_14651858_CD013499
crossref_primary_10_1002_14651858_CD013255
crossref_primary_10_1186_s12903_023_03079_8
crossref_primary_10_1021_acs_estlett_4c00119
crossref_primary_10_1097_MJT_0000000000000928
crossref_primary_10_3109_13697137_2015_1078106
crossref_primary_10_1001_jamadermatol_2021_2779
crossref_primary_10_1093_ecco_jcc_jjy216
crossref_primary_10_1016_j_fertnstert_2018_11_012
crossref_primary_10_1002_jrsm_1210
crossref_primary_10_1097_MD_0000000000019618
crossref_primary_10_1002_jcb_25976
crossref_primary_10_1371_journal_pmed_1003822
crossref_primary_10_3389_fpubh_2024_1373691
crossref_primary_10_1016_S2352_4642_22_00316_9
crossref_primary_10_1371_journal_pone_0153380
crossref_primary_10_1016_j_jacc_2022_10_037
crossref_primary_10_1186_s12984_017_0301_7
crossref_primary_10_1186_s13643_017_0455_1
crossref_primary_10_1097_MD_0000000000027351
crossref_primary_10_1097_SLA_0000000000004076
crossref_primary_10_1111_nmo_14107
crossref_primary_10_1016_j_jphys_2018_02_014
crossref_primary_10_1097_EJA_0000000000001860
crossref_primary_10_3390_antibiotics9070388
crossref_primary_10_1136_bmjopen_2021_056400
crossref_primary_10_1192_bjp_2022_35
crossref_primary_10_2147_NSS_S404113
crossref_primary_10_1186_s12875_015_0314_x
crossref_primary_10_1515_ijb_2022_0070
crossref_primary_10_1002_bimj_201800167
crossref_primary_10_1186_s12874_016_0184_5
crossref_primary_10_1016_j_jad_2021_12_134
crossref_primary_10_1016_j_ehj_2015_11_001
crossref_primary_10_2519_jospt_2025_12707
crossref_primary_10_3390_jcm11216302
crossref_primary_10_1159_000529753
crossref_primary_10_1002_14651858_CD013252_pub2
crossref_primary_10_1136_bmjgh_2021_005029
crossref_primary_10_1002_14651858_CD014678_pub2
crossref_primary_10_1177_1536867X1501500402
crossref_primary_10_1007_s11657_023_01211_3
crossref_primary_10_1016_S0140_6736_23_02454_6
crossref_primary_10_1128_AAC_00355_18
crossref_primary_10_3390_jcm8050737
crossref_primary_10_1016_j_jogoh_2020_101798
crossref_primary_10_1093_rheumatology_kez380
crossref_primary_10_1136_bmjopen_2018_028430
crossref_primary_10_1002_14651858_CD013798_pub2
crossref_primary_10_1002_14651858_CD013684
crossref_primary_10_1002_14651858_CD014770
crossref_primary_10_1002_sim_6236
crossref_primary_10_1016_S1470_2045_24_00379_6
crossref_primary_10_1111_acps_13728
crossref_primary_10_1136_bmjopen_2020_042997
crossref_primary_10_1007_s12519_023_00716_8
crossref_primary_10_1002_jrsm_1246
crossref_primary_10_1177_0962280215611702
crossref_primary_10_1002_jrsm_1480
crossref_primary_10_1002_jrsm_1244
crossref_primary_10_1155_2022_4529520
crossref_primary_10_1007_s00404_022_06769_w
crossref_primary_10_1371_journal_pmed_1003738
crossref_primary_10_1002_sim_9073
crossref_primary_10_1002_sim_9074
crossref_primary_10_1212_WNL_0000000000201371
crossref_primary_10_4097_kja_21358
crossref_primary_10_1016_j_numecd_2019_07_001
crossref_primary_10_1001_jamapsychiatry_2023_3985
crossref_primary_10_1200_JCO_2016_67_4846
crossref_primary_10_3310_hta19200
crossref_primary_10_1016_j_eujim_2020_101112
crossref_primary_10_1186_s10194_024_01723_4
crossref_primary_10_1371_journal_pone_0099682
crossref_primary_10_1080_17474124_2023_2172397
crossref_primary_10_1093_humupd_dmae008
crossref_primary_10_1186_s13643_024_02680_4
crossref_primary_10_1038_s41598_021_84836_z
crossref_primary_10_3389_fnins_2022_1053283
crossref_primary_10_1038_srep44979
crossref_primary_10_1002_sim_7223
crossref_primary_10_1161_JAHA_118_010839
crossref_primary_10_1016_j_jpsychires_2020_03_012
crossref_primary_10_1371_journal_pmed_1003501
crossref_primary_10_1007_s10815_022_02503_2
crossref_primary_10_1186_1471_2288_14_131
crossref_primary_10_1016_j_ijcard_2022_10_023
crossref_primary_10_1002_14651858_CD013499_pub2
crossref_primary_10_1002_jrsm_1700
crossref_primary_10_1007_s12291_023_01132_5
crossref_primary_10_1186_s12874_018_0574_y
crossref_primary_10_1016_j_arthro_2022_11_039
crossref_primary_10_1136_bmj_m2521
crossref_primary_10_1002_14651858_CD013798
crossref_primary_10_1136_bmjgast_2022_001067
crossref_primary_10_1002_jrsm_1143
crossref_primary_10_1186_s12966_023_01467_5
crossref_primary_10_23736_S0375_9393_19_13267_1
crossref_primary_10_3390_jcm11071872
crossref_primary_10_1007_s00415_019_09510_x
crossref_primary_10_1007_s00540_022_03132_w
crossref_primary_10_1016_S0140_6736_24_00351_9
crossref_primary_10_1002_14651858_CD012583
crossref_primary_10_1016_j_jclinane_2024_111531
crossref_primary_10_23736_S0375_9393_23_17410_4
crossref_primary_10_1177_21925682231168577
crossref_primary_10_1038_s41366_021_00767_9
crossref_primary_10_1111_aji_12856
crossref_primary_10_1371_journal_pone_0226879
crossref_primary_10_1007_s10557_024_07622_9
crossref_primary_10_1038_s41598_023_39023_7
crossref_primary_10_1016_j_jval_2015_10_002
crossref_primary_10_1001_jamadermatol_2022_0345
crossref_primary_10_1038_s41598_024_58232_2
crossref_primary_10_1186_s12874_020_0911_9
crossref_primary_10_1016_j_jclinepi_2015_10_010
crossref_primary_10_1001_jamanetworkopen_2020_24352
crossref_primary_10_1016_j_cct_2023_107233
crossref_primary_10_1016_j_jebdp_2021_101540
crossref_primary_10_1002_bimj_201700265
crossref_primary_10_1007_s00223_023_01078_z
crossref_primary_10_1007_s00784_023_04981_9
crossref_primary_10_1136_thoraxjnl_2019_214054
crossref_primary_10_4048_jbc_2020_23_e55
crossref_primary_10_1002_14651858_CD013745_pub2
crossref_primary_10_1002_14651858_CD013761
crossref_primary_10_1136_bmj_l6483
crossref_primary_10_1002_nur_22284
crossref_primary_10_1136_bmjopen_2024_088959
crossref_primary_10_1016_j_clnu_2020_11_006
crossref_primary_10_1136_bmj_2022_072962
crossref_primary_10_1016_j_amjcard_2018_09_005
crossref_primary_10_1093_jac_dkab093
crossref_primary_10_1371_journal_pone_0293183
crossref_primary_10_1136_bmj_n1537
crossref_primary_10_23736_S0375_9393_18_12813_6
crossref_primary_10_1002_cac2_12396
crossref_primary_10_1016_j_jclinepi_2016_07_003
crossref_primary_10_1177_1744806918768972
crossref_primary_10_1186_s13104_016_2019_1
crossref_primary_10_3310_pgfar04130
crossref_primary_10_1111_jcpe_12362
crossref_primary_10_1136_bmjopen_2016_014736
crossref_primary_10_1136_postgradmedj_2021_140076
crossref_primary_10_1111_rssa_12341
crossref_primary_10_1111_idh_12390
crossref_primary_10_1002_sim_6608
crossref_primary_10_1111_jebm_12429
crossref_primary_10_1016_j_apmr_2023_04_027
crossref_primary_10_1136_bmj_2021_068882
crossref_primary_10_1097_CCM_0000000000003049
crossref_primary_10_1002_14651858_CD012633_pub2
crossref_primary_10_1186_s13643_024_02573_6
crossref_primary_10_1002_14651858_CD012775_pub2
crossref_primary_10_1093_eurheartj_ehab836
crossref_primary_10_1186_s13054_019_2596_1
crossref_primary_10_1111_os_14371
crossref_primary_10_1016_j_asjsur_2022_03_116
crossref_primary_10_1002_jrsm_1292
crossref_primary_10_1016_j_eclinm_2024_102425
crossref_primary_10_1002_14651858_CD012775
crossref_primary_10_1177_0022034520972945
crossref_primary_10_1002_uog_15900
crossref_primary_10_1016_S1473_3099_18_30285_8
crossref_primary_10_1002_14651858_CD011947_pub2
crossref_primary_10_1053_j_jvca_2018_08_208
crossref_primary_10_1007_s10549_018_4969_6
crossref_primary_10_1097_MJT_0000000000000892
crossref_primary_10_1002_14651858_CD012527_pub2
crossref_primary_10_1016_j_eclinm_2025_103129
crossref_primary_10_1155_2022_1755368
crossref_primary_10_1001_jamapsychiatry_2024_3908
crossref_primary_10_1186_s12874_020_01075_y
crossref_primary_10_1080_10408398_2018_1463967
crossref_primary_10_1371_journal_pone_0192707
crossref_primary_10_1007_s41999_024_01013_x
crossref_primary_10_1016_j_jtcvs_2019_02_045
crossref_primary_10_1093_ehjcvp_pvaa024
crossref_primary_10_1371_journal_pone_0115065
crossref_primary_10_1002_14651858_CD014600
crossref_primary_10_1016_j_jcrc_2016_08_010
crossref_primary_10_1089_cap_2024_0049
crossref_primary_10_1093_advances_nmaa056
crossref_primary_10_1016_j_resuscitation_2017_10_012
crossref_primary_10_1002_sim_70027
crossref_primary_10_1111_obr_13218
crossref_primary_10_1186_s12888_024_05924_8
crossref_primary_10_1213_ANE_0000000000003887
crossref_primary_10_1007_s11605_023_05702_z
crossref_primary_10_1097_MEG_0000000000002035
crossref_primary_10_1111_anae_15295
crossref_primary_10_3390_ijerph18052406
crossref_primary_10_1136_gutjnl_2021_326390
crossref_primary_10_1016_S2468_1253_19_30324_3
crossref_primary_10_1136_gutjnl_2022_328052
crossref_primary_10_1186_s13643_023_02388_x
crossref_primary_10_1093_neuros_nyab180
crossref_primary_10_1016_j_surg_2017_07_013
crossref_primary_10_1111_clr_14357
crossref_primary_10_1186_s13098_021_00733_5
crossref_primary_10_1111_jebm_12485
crossref_primary_10_1002_14651858_CD012633
crossref_primary_10_1002_jrsm_1195
crossref_primary_10_1371_journal_pone_0212650
crossref_primary_10_1016_j_jclinepi_2015_05_027
crossref_primary_10_1002_14651858_CD015468
crossref_primary_10_3390_jpm12040512
crossref_primary_10_1002_14651858_CD013045
crossref_primary_10_18632_oncotarget_12451
crossref_primary_10_1016_j_jhin_2015_06_020
crossref_primary_10_1177_2325967120930567
crossref_primary_10_1002_ppul_25007
crossref_primary_10_1002_rmv_2336
crossref_primary_10_1016_j_arthro_2020_04_023
crossref_primary_10_1177_09645284221085280
crossref_primary_10_1177_17562848231154319
crossref_primary_10_1002_14651858_CD012527
crossref_primary_10_1371_journal_pone_0269391
crossref_primary_10_1186_s12874_019_0689_9
crossref_primary_10_1002_14651858_CD013295
crossref_primary_10_1136_bmjopen_2021_056982
crossref_primary_10_3389_fphar_2023_1102792
crossref_primary_10_1016_j_addbeh_2022_107329
crossref_primary_10_1186_1471_2288_14_61
crossref_primary_10_1136_thorax_2023_220071
crossref_primary_10_1016_j_eururo_2023_02_028
crossref_primary_10_3238_arztebl_2015_0803
crossref_primary_10_1002_sim_8383
crossref_primary_10_1002_bimj_201300216
crossref_primary_10_1002_jrsm_1531
crossref_primary_10_1007_s10006_025_01330_w
crossref_primary_10_1007_s00431_023_04979_1
crossref_primary_10_1002_jrsm_1412
crossref_primary_10_1097_MD_0000000000003873
crossref_primary_10_1111_hel_12389
crossref_primary_10_1002_14651858_CD012859
crossref_primary_10_1007_s13760_023_02460_2
crossref_primary_10_1007_s13760_023_02277_z
crossref_primary_10_1002_14651858_CD013295_pub2
crossref_primary_10_1111_nmo_13441
crossref_primary_10_7326_M14_2385
crossref_primary_10_1097_MD_0000000000015979
crossref_primary_10_1002_sim_7187
crossref_primary_10_1002_sim_8158
crossref_primary_10_1002_14651858_CD013020
crossref_primary_10_1111_obr_12831
crossref_primary_10_1136_gutjnl_2020_321191
crossref_primary_10_1002_14651858_CD003006_pub4
crossref_primary_10_1016_j_jval_2016_07_005
crossref_primary_10_3758_s13428_022_01905_5
crossref_primary_10_1002_14651858_CD013020_pub2
crossref_primary_10_1097_MEG_0000000000002362
crossref_primary_10_1016_S0140_6736_21_01640_8
crossref_primary_10_1186_s12885_024_13168_8
crossref_primary_10_1186_s12916_019_1409_3
crossref_primary_10_1111_jocs_15961
crossref_primary_10_1002_jrsm_1304
crossref_primary_10_3389_fmed_2021_752984
crossref_primary_10_1016_j_jclinepi_2020_04_009
crossref_primary_10_1097_MCG_0000000000001773
crossref_primary_10_1016_j_jvsv_2024_101896
crossref_primary_10_1097_MD_0000000000020877
crossref_primary_10_1097_JS9_0000000000000715
crossref_primary_10_1186_s13643_021_01661_1
crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107822
crossref_primary_10_1016_j_lanepe_2024_101152
crossref_primary_10_1002_14651858_CD012859_pub2
crossref_primary_10_1097_MD_0000000000021169
crossref_primary_10_1111_obr_12720
crossref_primary_10_1155_2018_9282646
crossref_primary_10_1016_j_jclinepi_2017_10_005
crossref_primary_10_1007_s40265_024_02092_7
crossref_primary_10_1093_eurheartj_ehv563
crossref_primary_10_1016_j_diabres_2015_05_048
crossref_primary_10_1094_PHYTO_12_15_0342_RVW
crossref_primary_10_1002_ejhf_765
crossref_primary_10_1136_bmjopen_2017_017099
crossref_primary_10_1136_bmjopen_2020_038330
crossref_primary_10_1027_2151_2604_a000252
Cites_doi 10.1186/1471-2288-11-19
10.1002/sim.3767
10.1002/sim.4001
10.2307/3001666
10.1002/9780470743386
10.1016/S0140-6736(09)60046-5
10.1002/jrsm.1037
10.1002/sim.3594
10.1186/1471-2288-8-60
10.1017/S0370164600014346
10.1002/sim.4780070807
10.1002/jrsm.1044
10.1016/j.jclinepi.2009.08.025
10.1002/sim.4247
10.1016/j.jclinepi.2007.06.006
10.1016/j.jclinepi.2008.10.001
10.1177/1740774508093614
10.1214/ss/1177013622
10.1016/j.jval.2011.01.011
10.1002/sim.1201
10.1002/sim.5471
10.1186/1471-2288-2-13
10.1037/0033-2909.103.1.111
10.1016/S0895-4356(97)00049-8
10.1002/jrsm.1058
10.1198/016214505000001302
10.1201/9780367805302
10.1186/1471-2288-12-138
10.1136/bmj.309.6965.1351
10.1002/jrsm.34
10.1177/0962280207080643
10.1002/jrsm.1045
10.1002/jrsm.11
ContentType Journal Article
Copyright Krahn et al.; licensee BioMed Central Ltd. 2013
COPYRIGHT 2013 BioMed Central Ltd.
2013 Krahn et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2013 Krahn et al.; licensee BioMed Central Ltd. 2013 Krahn et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Krahn et al.; licensee BioMed Central Ltd. 2013
– notice: COPYRIGHT 2013 BioMed Central Ltd.
– notice: 2013 Krahn et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2013 Krahn et al.; licensee BioMed Central Ltd. 2013 Krahn et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1186/1471-2288-13-35
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database



MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2288
EndPage 35
ExternalDocumentID PMC3644268
oai_biomedcentral_com_1471_2288_13_35
2963669331
A534586091
23496991
10_1186_1471_2288_13_35
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
-A0
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
5PM
ID FETCH-LOGICAL-b588t-870aa81059d6cefaa8511539aeccae2c4970a4dab760fda067fa99d8ce56c4473
IEDL.DBID M48
ISSN 1471-2288
IngestDate Thu Aug 21 18:30:55 EDT 2025
Wed May 22 07:14:25 EDT 2024
Fri Sep 05 14:06:27 EDT 2025
Fri Jul 25 03:52:08 EDT 2025
Tue Jun 17 22:05:19 EDT 2025
Tue Jun 10 21:02:49 EDT 2025
Thu Apr 03 07:00:50 EDT 2025
Thu Apr 24 23:08:03 EDT 2025
Tue Jul 01 04:30:50 EDT 2025
Sat Sep 06 07:28:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Network meta-analysis
Inconsistency
Hat matrix
Cochran’s Q
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b588t-870aa81059d6cefaa8511539aeccae2c4970a4dab760fda067fa99d8ce56c4473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1186/1471-2288-13-35
PMID 23496991
PQID 1348958869
PQPubID 42579
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3644268
biomedcentral_primary_oai_biomedcentral_com_1471_2288_13_35
proquest_miscellaneous_1349092404
proquest_journals_1348958869
gale_infotracmisc_A534586091
gale_infotracacademiconefile_A534586091
pubmed_primary_23496991
crossref_primary_10_1186_1471_2288_13_35
crossref_citationtrail_10_1186_1471_2288_13_35
springer_journals_10_1186_1471_2288_13_35
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-09
PublicationDateYYYYMMDD 2013-03-09
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-09
  day: 09
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical research methodology
PublicationTitleAbbrev BMC Med Res Methodol
PublicationTitleAlternate BMC Med Res Methodol
PublicationYear 2013
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References GalbraithRFA note on graphical presentation of estimated odds ratios from several clinical trialsStat Med198878898941:STN:280:DyaL1czitFCjtQ%3D%3D10.1002/sim.47800708073413368
BorensteinMHedgesLVHigginsJPTRothsteinHRIntroduction to Meta-Analysis2009ChichesterJohn Wiley & Sons10.1002/9780470743386
CaldwellDMWeltonNJAdesAEMixed treatment comparison analysis provides internally coherent treatment effect estimates based on overviews of reviews and can reveal inconsistencyJ Clin Epidemiol201063887588210.1016/j.jclinepi.2009.08.02520080027http://dx.doi.org/10.1016/j.jclinepi.2009.08.025 []
ChungHLumleyTGraphical exploration of network meta-analysis data: the use of multidimensional scalingClin Trials20085430130710.1177/174077450809361418697844http://dx.doi.org/10.1177/1740774508093614 []
GleserLJOlkinICooperHHedgesLVValentineJCStochastically dependent effect sizesThe Handbook of Research Synthesis and Meta-Analysis,2009New YorkRussell Sage Foundation357376
SalantiGDiasSWeltonNJAdesAEGolfinopoulosVKyrgiouMMauriDIoannidisJPAEvaluating novel agent effects in multiple-treatments meta-regressionStat Med201029232369238320687172http://dx.doi.org/10.1002/sim.4001 []
BakerSGKramerBSThe transitive fallacy for randomized trials: if A bests B and B bests C in separate trials, is A better than C?BMC Med Res Methodol200221310.1186/1471-2288-2-1312429069137603
BucherHCGuyattGHGriffithLEWalterSDThe results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trialsJ Clin Epidemiol19975066836911:STN:280:DyaK2szptlygsw%3D%3D10.1016/S0895-4356(97)00049-89250266
DiasSWeltonNJCaldwellDMAdesAEChecking consistency in mixed treatment comparison meta-analysisStat Med2010297–89329441:STN:280:DC%2BC3c7otVKisQ%3D%3D10.1002/sim.376720213715http://dx.doi.org/10.1002/sim.3767 []
AitkenACOn least squares and linear combination of observationsProc R Soc Edinb193455424810.1017/S0370164600014346
ChatterjeeSHadiASInfluential Observations, High Leverage Points, and Outliers in Linear RegressionStatist Sci19861337939310.1214/ss/1177013622
JacksonDRileyRWhiteIRMultivariate meta-analysis: Potential and promiseStat Med201130202481249810.1002/sim.4247212680523470931http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3470931/ []
HigginsJPTJacksonDBarrettJKLuGAdesaEWhiteIRConsistency and inconsistency in network meta-analysis: concepts and models for multi-arm studiesRes Syn Meth201232981101:STN:280:DC%2BC2Mbitlyiuw%3D%3D10.1002/jrsm.1044http://doi.wiley.com/10.1002/jrsm.1044 []
CochranWThe combination of estimates from different experimentsBiometrics19541010112910.2307/3001666
CiprianiAFurukawaTASalantiGGeddesJRHigginsJPChurchillRWatanabeNNakagawaAOmoriIMMcGuireHTansellaMBarbuiCComparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysisLancet200937396657467581:CAS:528:DC%2BD1MXisVOrtr8%3D10.1016/S0140-6736(09)60046-519185342http://dx.doi.org/10.1016/S0140-6736(09)60046 [-5]
RaudenbushSWBeckerBJKalaianHModeling multivariate effect sizesPsych Bull198810311112010.1037/0033-2909.103.1.111
LuGAdesAEAssessing evidence inconsistency in mixed treatment comparisonsJ Am Stat Assoc20061014744474591:CAS:528:DC%2BD2sXms1ynsw%3D%3D10.1198/016214505000001302
GumedzeFNJacksonDA random effects variance shift model for detecting and accommodating outliers in meta-analysisBMC Med Res Methodol2011111910.1186/1471-2288-11-19213241803050872http://dx.doi.org/10.1186/1471-2288-11-19 []
JorgensenAWMaricKLTendalBFaurschouAGotzschePCIndustry-supported meta-analyses compared with meta-analyses with non-profit or no support: differences in methodological quality and conclusionsBMC Med Res Methodol200886010.1186/1471-2288-8-60187824302553412http://dx.doi.org/10.1186/1471-2288-8-60 []
BelsleyDAKuhEWelschRERegression Diagnostics: Identifying Influential Data and Sources of Collinearity (Wiley Series in Probability and Statistics)2004New JerseyJohn Wiley & SonsⒸ1980
HoaglinDCHawkinsNJansenJPScottDAItzlerRCappelleriJCBoersmaCThompsonDLarholtKMDiazMBarrettAConducting indirect-treatment-comparison and network-meta-analysis studies: report of the ISPOR task force on indirect treatment comparisons good research practices: part 2Value Health201114442943710.1016/j.jval.2011.01.01121669367http://dx.doi.org/10.1016/j.jval.2011.01.011 []
CooperNJSuttonAJMorrisDAdesAEWeltonNJAddressing between-study heterogeneity and inconsistency in mixed treatment comparisons: Application to stroke prevention treatments in individuals with non-rheumatic atrial fibrillationStat Med200928141861188110.1002/sim.359419399825
RückerGNetwork meta-analysis, electrical networks and graph theoryRes Syn Meth20123431232410.1002/jrsm.1058http://doi.wiley.com/10.1002/jrsm.1058 []
ViechtbauerWCheungWLOutlier and influence diagnostics for meta-analysisRes Syn Meth20101211212510.1002/jrsm.11
DiasSWeltonNJSuttonAJCaldwellDMGuobingLAdesAE (Eds)Inconsistency in Networks of Evidence Based on Randomised Controlled Trials,2011NICE DSUTechnical Support Document 4http://www.nicedsu.org.uk []
WellsGASultanSAChenLKhanMCoyleD (Eds)Indirect Evidence: Indirect Treatment Comparisons in Meta-Analysis2009OttawaCanadian Agency for Drugs and Technologies in Health
GordonADClassification1999LondonChapman and Hall/ CRC
SennSGaviniFMagrezDScheenAIssues in performing a network meta-analysisStat Methods Med Res2012http://dx.doi.org/10.1177/0962280211432220 (Epub ahead of print). []
GasparriniAArmstrongBKenwardMGMultivariate meta-analysis for non-linear and other multi-parameter associationsStat Med20123129382138391:STN:280:DC%2BC38fgvFSgtw%3D%3D10.1002/sim.5471228070433546395
DiasSWeltonNJSuttonAJE AA(Eds)A Generalised Linear Modelling Framework for Pairwise and Network Meta-Analysis of Randomised Controlled Trials,2011NICE DSUTechnical Support Document 2http://www.nicedsu.org.uk []
SalantiGMarinhoVHigginsJPTA case study of multiple-treatments meta-analysis demonstrates that covariates should be consideredJ Clin Epidemiol2009628857—86410.1016/j.jclinepi.2008.10.00119157778http://dx.doi.org/10.1016/j.jclinepi.2008.10.001 []
LumleyTNetwork meta-analysis for indirect treatment comparisonsStat Med200221162313—232410.1002/sim.120112210616http://dx.doi.org/10.1002/sim.1201 []
SongFClarkABachmannMOMaasJSimulation evaluation of statistical properties of methods for indirect and mixed treatment comparisonsBMC Med Res Meth20121213810.1186/1471-2288-12-138http://www.ncbi.nlm.nih.gov/pubmed/22970794 []
SalantiGHigginsJPTAdesAEIoannidisJPAEvaluation of networks of randomized trialsStat Methods Med Res200817327930110.1177/096228020708064317925316http://dx.doi.org/10.1177/0962280207080643 []
SalantiGIndirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis toolRes Syn Meth201232809710.1002/jrsm.1037http://doi.wiley.com/10.1002/jrsm.1037 []
LuGWeltonNJHigginsJPTWhiteIRAdesALinear inference for mixed treatment comparison meta-analysis: A two-stage approachRes Syn Meth20112436010.1002/jrsm.34
R Core TeamR: A Language and Environment for Statistical Computing2012ViennaR Foundation for Statistical Computinghttp://www.R-project.org/ []. [ISBN 3-900051-07-0]
SongFHarveyILilfordRAdjusted indirect comparison may be less biased than direct comparison for evaluating new pharmaceutical interventionsJ Clin Epidemiol20086154554631:STN:280:DC%2BD1c3jsF2hsw%3D%3D10.1016/j.jclinepi.2007.06.00618394538http://www.ncbi.nlm.nih.gov/pubmed/18394538 []
ThompsonSGWhy sources of heterogeneity in meta-analysis should be investigatedBMJ19943096965135113551:STN:280:DyaK2M7ntVelsQ%3D%3D10.1136/bmj.309.6965.135178660852541868
WhiteIRBarrettJKJacksonDHigginsJPTConsistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regressionRes Syn Meth20123211112510.1002/jrsm.1045http://doi.wiley.com/10.1002/jrsm.1045 []
OelkeDJanetzkoHSimonSNeuhausKKeimDVisual boosting in pixel-based visualizationsComput Graphics Forum 3020113871—880
HC Bucher (934_CR11) 1997; 50
H Chung (934_CR24) 2008; 5
AD Gordon (934_CR34) 1999
DC Hoaglin (934_CR2) 2011; 14
S Dias (934_CR3) 2011
G Salanti (934_CR13) 2008; 17
SG Thompson (934_CR40) 1994; 309
S Dias (934_CR10) 2011
S Dias (934_CR14) 2010; 29
IR White (934_CR16) 2012; 3
G Lu (934_CR23) 2011; 2
AC Aitken (934_CR26) 1934; 55
S Chatterjee (934_CR20) 1986; 1
AW Jorgensen (934_CR7) 2008; 8
G Rücker (934_CR18) 2012; 3
SW Raudenbush (934_CR31) 1988; 103
A Gasparrini (934_CR37) 2012; 31
F Song (934_CR39) 2008; 61
G Lu (934_CR9) 2006; 101
F Song (934_CR33) 2012; 12
M Borenstein (934_CR32) 2009
DM Caldwell (934_CR19) 2010; 63
G Salanti (934_CR4) 2012; 3
S Senn (934_CR17) 2012
R Core Team (934_CR36) 2012
LJ Gleser (934_CR27) 2009
RF Galbraith (934_CR25) 1988; 7
G Salanti (934_CR6) 2009; 62
D Oelke (934_CR35) 2011; 3
T Lumley (934_CR8) 2002; 21
SG Baker (934_CR5) 2002; 2
JPT Higgins (934_CR15) 2012; 3
G Salanti (934_CR41) 2010; 29
NJ Cooper (934_CR38) 2009; 28
W Viechtbauer (934_CR21) 2010; 1
DA Belsley (934_CR29) 2004
FN Gumedze (934_CR22) 2011; 11
GA Wells (934_CR1) 2009
A Cipriani (934_CR12) 2009; 373
D Jackson (934_CR28) 2011; 30
W Cochran (934_CR30) 1954; 10
26061599 - Res Synth Methods. 2011 Mar;2(1):43-60
18394538 - J Clin Epidemiol. 2008 May;61(5):455-63
21268052 - Stat Med. 2011 Sep 10;30(20):2481-98
20213715 - Stat Med. 2010 Mar 30;29(7-8):932-44
26061377 - Res Synth Methods. 2010 Apr;1(2):112-25
22970794 - BMC Med Res Methodol. 2012;12:138
26062084 - Res Synth Methods. 2012 Jun;3(2):98-110
17925316 - Stat Methods Med Res. 2008 Jun;17(3):279-301
3413368 - Stat Med. 1988 Aug;7(8):889-94
19185342 - Lancet. 2009 Feb 28;373(9665):746-58
26062085 - Res Synth Methods. 2012 Jun;3(2):111-25
20080027 - J Clin Epidemiol. 2010 Aug;63(8):875-82
12210616 - Stat Med. 2002 Aug 30;21(16):2313-24
22807043 - Stat Med. 2012 Dec 20;31(29):3821-39
20687172 - Stat Med. 2010 Oct 15;29(23):2369-83
9250266 - J Clin Epidemiol. 1997 Jun;50(6):683-91
18697844 - Clin Trials. 2008;5(4):301-7
26053424 - Res Synth Methods. 2012 Dec;3(4):312-24
18782430 - BMC Med Res Methodol. 2008;8:60
7866085 - BMJ. 1994 Nov 19;309(6965):1351-5
22218368 - Stat Methods Med Res. 2013 Apr;22(2):169-89
21324180 - BMC Med Res Methodol. 2011;11:19
21669367 - Value Health. 2011 Jun;14(4):429-37
26062083 - Res Synth Methods. 2012 Jun;3(2):80-97
19157778 - J Clin Epidemiol. 2009 Aug;62(8):857-64
19399825 - Stat Med. 2009 Jun 30;28(14):1861-81
12429069 - BMC Med Res Methodol. 2002 Nov 13;2:13
References_xml – reference: JacksonDRileyRWhiteIRMultivariate meta-analysis: Potential and promiseStat Med201130202481249810.1002/sim.4247212680523470931http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3470931/ []
– reference: SalantiGMarinhoVHigginsJPTA case study of multiple-treatments meta-analysis demonstrates that covariates should be consideredJ Clin Epidemiol2009628857—86410.1016/j.jclinepi.2008.10.00119157778http://dx.doi.org/10.1016/j.jclinepi.2008.10.001 []
– reference: LuGAdesAEAssessing evidence inconsistency in mixed treatment comparisonsJ Am Stat Assoc20061014744474591:CAS:528:DC%2BD2sXms1ynsw%3D%3D10.1198/016214505000001302
– reference: ViechtbauerWCheungWLOutlier and influence diagnostics for meta-analysisRes Syn Meth20101211212510.1002/jrsm.11
– reference: CooperNJSuttonAJMorrisDAdesAEWeltonNJAddressing between-study heterogeneity and inconsistency in mixed treatment comparisons: Application to stroke prevention treatments in individuals with non-rheumatic atrial fibrillationStat Med200928141861188110.1002/sim.359419399825
– reference: WellsGASultanSAChenLKhanMCoyleD (Eds)Indirect Evidence: Indirect Treatment Comparisons in Meta-Analysis2009OttawaCanadian Agency for Drugs and Technologies in Health
– reference: ThompsonSGWhy sources of heterogeneity in meta-analysis should be investigatedBMJ19943096965135113551:STN:280:DyaK2M7ntVelsQ%3D%3D10.1136/bmj.309.6965.135178660852541868
– reference: BucherHCGuyattGHGriffithLEWalterSDThe results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trialsJ Clin Epidemiol19975066836911:STN:280:DyaK2szptlygsw%3D%3D10.1016/S0895-4356(97)00049-89250266
– reference: DiasSWeltonNJSuttonAJE AA(Eds)A Generalised Linear Modelling Framework for Pairwise and Network Meta-Analysis of Randomised Controlled Trials,2011NICE DSUTechnical Support Document 2http://www.nicedsu.org.uk []
– reference: GordonADClassification1999LondonChapman and Hall/ CRC
– reference: SongFHarveyILilfordRAdjusted indirect comparison may be less biased than direct comparison for evaluating new pharmaceutical interventionsJ Clin Epidemiol20086154554631:STN:280:DC%2BD1c3jsF2hsw%3D%3D10.1016/j.jclinepi.2007.06.00618394538http://www.ncbi.nlm.nih.gov/pubmed/18394538 []
– reference: BelsleyDAKuhEWelschRERegression Diagnostics: Identifying Influential Data and Sources of Collinearity (Wiley Series in Probability and Statistics)2004New JerseyJohn Wiley & SonsⒸ1980
– reference: RaudenbushSWBeckerBJKalaianHModeling multivariate effect sizesPsych Bull198810311112010.1037/0033-2909.103.1.111
– reference: R Core TeamR: A Language and Environment for Statistical Computing2012ViennaR Foundation for Statistical Computinghttp://www.R-project.org/ []. [ISBN 3-900051-07-0]
– reference: LuGWeltonNJHigginsJPTWhiteIRAdesALinear inference for mixed treatment comparison meta-analysis: A two-stage approachRes Syn Meth20112436010.1002/jrsm.34
– reference: GasparriniAArmstrongBKenwardMGMultivariate meta-analysis for non-linear and other multi-parameter associationsStat Med20123129382138391:STN:280:DC%2BC38fgvFSgtw%3D%3D10.1002/sim.5471228070433546395
– reference: SalantiGHigginsJPTAdesAEIoannidisJPAEvaluation of networks of randomized trialsStat Methods Med Res200817327930110.1177/096228020708064317925316http://dx.doi.org/10.1177/0962280207080643 []
– reference: ChungHLumleyTGraphical exploration of network meta-analysis data: the use of multidimensional scalingClin Trials20085430130710.1177/174077450809361418697844http://dx.doi.org/10.1177/1740774508093614 []
– reference: CochranWThe combination of estimates from different experimentsBiometrics19541010112910.2307/3001666
– reference: RückerGNetwork meta-analysis, electrical networks and graph theoryRes Syn Meth20123431232410.1002/jrsm.1058http://doi.wiley.com/10.1002/jrsm.1058 []
– reference: GleserLJOlkinICooperHHedgesLVValentineJCStochastically dependent effect sizesThe Handbook of Research Synthesis and Meta-Analysis,2009New YorkRussell Sage Foundation357376
– reference: SalantiGDiasSWeltonNJAdesAEGolfinopoulosVKyrgiouMMauriDIoannidisJPAEvaluating novel agent effects in multiple-treatments meta-regressionStat Med201029232369238320687172http://dx.doi.org/10.1002/sim.4001 []
– reference: JorgensenAWMaricKLTendalBFaurschouAGotzschePCIndustry-supported meta-analyses compared with meta-analyses with non-profit or no support: differences in methodological quality and conclusionsBMC Med Res Methodol200886010.1186/1471-2288-8-60187824302553412http://dx.doi.org/10.1186/1471-2288-8-60 []
– reference: LumleyTNetwork meta-analysis for indirect treatment comparisonsStat Med200221162313—232410.1002/sim.120112210616http://dx.doi.org/10.1002/sim.1201 []
– reference: SennSGaviniFMagrezDScheenAIssues in performing a network meta-analysisStat Methods Med Res2012http://dx.doi.org/10.1177/0962280211432220 (Epub ahead of print). []
– reference: OelkeDJanetzkoHSimonSNeuhausKKeimDVisual boosting in pixel-based visualizationsComput Graphics Forum 3020113871—880
– reference: HoaglinDCHawkinsNJansenJPScottDAItzlerRCappelleriJCBoersmaCThompsonDLarholtKMDiazMBarrettAConducting indirect-treatment-comparison and network-meta-analysis studies: report of the ISPOR task force on indirect treatment comparisons good research practices: part 2Value Health201114442943710.1016/j.jval.2011.01.01121669367http://dx.doi.org/10.1016/j.jval.2011.01.011 []
– reference: WhiteIRBarrettJKJacksonDHigginsJPTConsistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regressionRes Syn Meth20123211112510.1002/jrsm.1045http://doi.wiley.com/10.1002/jrsm.1045 []
– reference: HigginsJPTJacksonDBarrettJKLuGAdesaEWhiteIRConsistency and inconsistency in network meta-analysis: concepts and models for multi-arm studiesRes Syn Meth201232981101:STN:280:DC%2BC2Mbitlyiuw%3D%3D10.1002/jrsm.1044http://doi.wiley.com/10.1002/jrsm.1044 []
– reference: GalbraithRFA note on graphical presentation of estimated odds ratios from several clinical trialsStat Med198878898941:STN:280:DyaL1czitFCjtQ%3D%3D10.1002/sim.47800708073413368
– reference: SongFClarkABachmannMOMaasJSimulation evaluation of statistical properties of methods for indirect and mixed treatment comparisonsBMC Med Res Meth20121213810.1186/1471-2288-12-138http://www.ncbi.nlm.nih.gov/pubmed/22970794 []
– reference: BorensteinMHedgesLVHigginsJPTRothsteinHRIntroduction to Meta-Analysis2009ChichesterJohn Wiley & Sons10.1002/9780470743386
– reference: SalantiGIndirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis toolRes Syn Meth201232809710.1002/jrsm.1037http://doi.wiley.com/10.1002/jrsm.1037 []
– reference: BakerSGKramerBSThe transitive fallacy for randomized trials: if A bests B and B bests C in separate trials, is A better than C?BMC Med Res Methodol200221310.1186/1471-2288-2-1312429069137603
– reference: CaldwellDMWeltonNJAdesAEMixed treatment comparison analysis provides internally coherent treatment effect estimates based on overviews of reviews and can reveal inconsistencyJ Clin Epidemiol201063887588210.1016/j.jclinepi.2009.08.02520080027http://dx.doi.org/10.1016/j.jclinepi.2009.08.025 []
– reference: GumedzeFNJacksonDA random effects variance shift model for detecting and accommodating outliers in meta-analysisBMC Med Res Methodol2011111910.1186/1471-2288-11-19213241803050872http://dx.doi.org/10.1186/1471-2288-11-19 []
– reference: DiasSWeltonNJSuttonAJCaldwellDMGuobingLAdesAE (Eds)Inconsistency in Networks of Evidence Based on Randomised Controlled Trials,2011NICE DSUTechnical Support Document 4http://www.nicedsu.org.uk []
– reference: CiprianiAFurukawaTASalantiGGeddesJRHigginsJPChurchillRWatanabeNNakagawaAOmoriIMMcGuireHTansellaMBarbuiCComparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysisLancet200937396657467581:CAS:528:DC%2BD1MXisVOrtr8%3D10.1016/S0140-6736(09)60046-519185342http://dx.doi.org/10.1016/S0140-6736(09)60046 [-5]
– reference: ChatterjeeSHadiASInfluential Observations, High Leverage Points, and Outliers in Linear RegressionStatist Sci19861337939310.1214/ss/1177013622
– reference: AitkenACOn least squares and linear combination of observationsProc R Soc Edinb193455424810.1017/S0370164600014346
– reference: DiasSWeltonNJCaldwellDMAdesAEChecking consistency in mixed treatment comparison meta-analysisStat Med2010297–89329441:STN:280:DC%2BC3c7otVKisQ%3D%3D10.1002/sim.376720213715http://dx.doi.org/10.1002/sim.3767 []
– volume: 11
  start-page: 19
  year: 2011
  ident: 934_CR22
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-11-19
– volume-title: Inconsistency in Networks of Evidence Based on Randomised Controlled Trials,
  year: 2011
  ident: 934_CR10
– volume: 3
  start-page: 871—880
  year: 2011
  ident: 934_CR35
  publication-title: Comput Graphics Forum 30
– volume: 29
  start-page: 932
  issue: 7–8
  year: 2010
  ident: 934_CR14
  publication-title: Stat Med
  doi: 10.1002/sim.3767
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2012
  ident: 934_CR36
– volume: 29
  start-page: 2369
  issue: 23
  year: 2010
  ident: 934_CR41
  publication-title: Stat Med
  doi: 10.1002/sim.4001
– volume-title: Indirect Evidence: Indirect Treatment Comparisons in Meta-Analysis
  year: 2009
  ident: 934_CR1
– volume: 10
  start-page: 101
  year: 1954
  ident: 934_CR30
  publication-title: Biometrics
  doi: 10.2307/3001666
– volume-title: Introduction to Meta-Analysis
  year: 2009
  ident: 934_CR32
  doi: 10.1002/9780470743386
– volume: 373
  start-page: 746
  issue: 9665
  year: 2009
  ident: 934_CR12
  publication-title: Lancet
  doi: 10.1016/S0140-6736(09)60046-5
– volume: 3
  start-page: 80
  issue: 2
  year: 2012
  ident: 934_CR4
  publication-title: Res Syn Meth
  doi: 10.1002/jrsm.1037
– volume: 28
  start-page: 1861
  issue: 14
  year: 2009
  ident: 934_CR38
  publication-title: Stat Med
  doi: 10.1002/sim.3594
– volume: 8
  start-page: 60
  year: 2008
  ident: 934_CR7
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-8-60
– volume: 55
  start-page: 42
  year: 1934
  ident: 934_CR26
  publication-title: Proc R Soc Edinb
  doi: 10.1017/S0370164600014346
– volume: 7
  start-page: 889
  year: 1988
  ident: 934_CR25
  publication-title: Stat Med
  doi: 10.1002/sim.4780070807
– volume: 3
  start-page: 98
  issue: 2
  year: 2012
  ident: 934_CR15
  publication-title: Res Syn Meth
  doi: 10.1002/jrsm.1044
– volume: 63
  start-page: 875
  issue: 8
  year: 2010
  ident: 934_CR19
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2009.08.025
– volume: 30
  start-page: 2481
  issue: 20
  year: 2011
  ident: 934_CR28
  publication-title: Stat Med
  doi: 10.1002/sim.4247
– volume: 61
  start-page: 455
  issue: 5
  year: 2008
  ident: 934_CR39
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2007.06.006
– volume: 62
  start-page: 857—864
  issue: 8
  year: 2009
  ident: 934_CR6
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2008.10.001
– volume: 5
  start-page: 301
  issue: 4
  year: 2008
  ident: 934_CR24
  publication-title: Clin Trials
  doi: 10.1177/1740774508093614
– volume: 1
  start-page: 379
  issue: 3
  year: 1986
  ident: 934_CR20
  publication-title: Statist Sci
  doi: 10.1214/ss/1177013622
– volume: 14
  start-page: 429
  issue: 4
  year: 2011
  ident: 934_CR2
  publication-title: Value Health
  doi: 10.1016/j.jval.2011.01.011
– volume: 21
  start-page: 2313—2324
  issue: 16
  year: 2002
  ident: 934_CR8
  publication-title: Stat Med
  doi: 10.1002/sim.1201
– volume-title: A Generalised Linear Modelling Framework for Pairwise and Network Meta-Analysis of Randomised Controlled Trials,
  year: 2011
  ident: 934_CR3
– volume: 31
  start-page: 3821
  issue: 29
  year: 2012
  ident: 934_CR37
  publication-title: Stat Med
  doi: 10.1002/sim.5471
– volume: 2
  start-page: 13
  year: 2002
  ident: 934_CR5
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-2-13
– start-page: 357
  volume-title: The Handbook of Research Synthesis and Meta-Analysis,
  year: 2009
  ident: 934_CR27
– volume: 103
  start-page: 111
  year: 1988
  ident: 934_CR31
  publication-title: Psych Bull
  doi: 10.1037/0033-2909.103.1.111
– volume-title: Stat Methods Med Res
  year: 2012
  ident: 934_CR17
– volume: 50
  start-page: 683
  issue: 6
  year: 1997
  ident: 934_CR11
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(97)00049-8
– volume: 3
  start-page: 312
  issue: 4
  year: 2012
  ident: 934_CR18
  publication-title: Res Syn Meth
  doi: 10.1002/jrsm.1058
– volume: 101
  start-page: 447
  issue: 474
  year: 2006
  ident: 934_CR9
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214505000001302
– volume-title: Classification
  year: 1999
  ident: 934_CR34
  doi: 10.1201/9780367805302
– volume-title: Regression Diagnostics: Identifying Influential Data and Sources of Collinearity (Wiley Series in Probability and Statistics)
  year: 2004
  ident: 934_CR29
– volume: 12
  start-page: 138
  year: 2012
  ident: 934_CR33
  publication-title: BMC Med Res Meth
  doi: 10.1186/1471-2288-12-138
– volume: 309
  start-page: 1351
  issue: 6965
  year: 1994
  ident: 934_CR40
  publication-title: BMJ
  doi: 10.1136/bmj.309.6965.1351
– volume: 2
  start-page: 43
  year: 2011
  ident: 934_CR23
  publication-title: Res Syn Meth
  doi: 10.1002/jrsm.34
– volume: 17
  start-page: 279
  issue: 3
  year: 2008
  ident: 934_CR13
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280207080643
– volume: 3
  start-page: 111
  issue: 2
  year: 2012
  ident: 934_CR16
  publication-title: Res Syn Meth
  doi: 10.1002/jrsm.1045
– volume: 1
  start-page: 112
  issue: 2
  year: 2010
  ident: 934_CR21
  publication-title: Res Syn Meth
  doi: 10.1002/jrsm.11
– reference: 3413368 - Stat Med. 1988 Aug;7(8):889-94
– reference: 12429069 - BMC Med Res Methodol. 2002 Nov 13;2:13
– reference: 22218368 - Stat Methods Med Res. 2013 Apr;22(2):169-89
– reference: 26061377 - Res Synth Methods. 2010 Apr;1(2):112-25
– reference: 9250266 - J Clin Epidemiol. 1997 Jun;50(6):683-91
– reference: 19185342 - Lancet. 2009 Feb 28;373(9665):746-58
– reference: 21324180 - BMC Med Res Methodol. 2011;11:19
– reference: 7866085 - BMJ. 1994 Nov 19;309(6965):1351-5
– reference: 19157778 - J Clin Epidemiol. 2009 Aug;62(8):857-64
– reference: 21669367 - Value Health. 2011 Jun;14(4):429-37
– reference: 26061599 - Res Synth Methods. 2011 Mar;2(1):43-60
– reference: 20213715 - Stat Med. 2010 Mar 30;29(7-8):932-44
– reference: 21268052 - Stat Med. 2011 Sep 10;30(20):2481-98
– reference: 20687172 - Stat Med. 2010 Oct 15;29(23):2369-83
– reference: 19399825 - Stat Med. 2009 Jun 30;28(14):1861-81
– reference: 18782430 - BMC Med Res Methodol. 2008;8:60
– reference: 26062085 - Res Synth Methods. 2012 Jun;3(2):111-25
– reference: 18394538 - J Clin Epidemiol. 2008 May;61(5):455-63
– reference: 12210616 - Stat Med. 2002 Aug 30;21(16):2313-24
– reference: 22807043 - Stat Med. 2012 Dec 20;31(29):3821-39
– reference: 17925316 - Stat Methods Med Res. 2008 Jun;17(3):279-301
– reference: 18697844 - Clin Trials. 2008;5(4):301-7
– reference: 26062083 - Res Synth Methods. 2012 Jun;3(2):80-97
– reference: 22970794 - BMC Med Res Methodol. 2012;12:138
– reference: 26053424 - Res Synth Methods. 2012 Dec;3(4):312-24
– reference: 26062084 - Res Synth Methods. 2012 Jun;3(2):98-110
– reference: 20080027 - J Clin Epidemiol. 2010 Aug;63(8):875-82
SSID ssj0017836
Score 2.521596
Snippet Background In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more...
In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more treatments. The...
Background In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more...
Doc number: 35 Abstract Background: In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have...
BACKGROUND: In network meta-analyses, several treatments can be compared by connecting evidence from clinical trials that have investigated two or more...
SourceID pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 35
SubjectTerms Computer Communication Networks
Computer Graphics
Data analysis
Estimation theory
Generalized linear models
Health Sciences
Humans
Maximum likelihood method
Medical research
Medicine
Medicine & Public Health
Medicine, Experimental
Meta-analysis
Meta-Analysis as Topic
Research Article
Statistical Theory and Methods
statistics and modelling
Statistics for Life Sciences
Studies
Theory of Medicine/Bioethics
Treatment outcome
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFB60gvgi1mtqLSMI6kNskrnjgyzVUgR9srBvw2QyQWFNqpv-_54zO1k7qxXysGEum5z7ZM58h5BXgWMNi7YCRYIlChdOltqrunROdRA-KNP3Ee3zqzw755-XYpk-uK1TWuVsE6Oh7kaP38iPa8a1EVpL8-HiV4lVo3B3NZXQuE3uROgykGe13C64ajyhkOB8ai2PazDEZdOAaNSsxPpu2RH3VeaZdu3zNQe1mzy5s4MaHdPpA3I_RZR0sRGBfXIrDA_J3S9pz_wR-bigEZUauUGncVxRiFMp-jDMeKaIzjCskdlgZuGODpvEcPozTK50EbMkrB-T89NP307OylQ7oWyBSBMYuco5jcFTJ33o4TdEVoIZhywLjecGOvDOtUpWfefAZ_XOmE77IKTnXLEnZG8Yh_CMUGmCgClYC56M-9a3PGhuePB9ZVTPVEHeZ3S0FxucDIvI1XkLMNQiFyxywdbMMlGQdzPVrU-w5FgdY2Xj8kTLvwe82Q6Y_-nGrq-RjRZ1Feb0Lh05gPdC1Cu7EIwLLSFkKshh1hN0zOfNsyDYpONr-0ciC_Jy24wjMW9tCONl7GMqWOJWvCBPN3KzfegGsfoNTq4yicrol7cMP75HBHAGUWwjdUHezrJ37bH-TYuD_7_Cc3KviYU-4DKHZG_6fRleQLg1tUdRp64AJwspMQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SBEIvIUkfcV4oUEhzcGtbD0vktORBCLSnBHITsizTwsYbss7_z4zWu6y36SHgg82MHp7RaEaM9AngWxB0h0WVoSHhEkVIp1Ltyzx1rqwxfChN00S0z9_q5l7cPsiHHiSJzsIs5-9zrX7mOHmmRYHqzHnK5QfYkDlXMSurLhbpAjqK0OP2vFFo5Sz7eOCCVifiJU-0uktyJVUaPdD1Nmz1oSMbzXS9A2uh3YXNX31y_BNcjliEnyaxs24yGTMMSBk5K9razAiGoZ2SVnE-xS_WznaAs8fQudRFcJIw_Qz311d3Fzdpf0lCWkmtO5zNMuc0RUm18qHBdwyhJDeOdBMKLwwyiNpVpcqa2qFzapwxtfZBKi9Eyb_Aejtpwx4wZYLEKniFLkv4ylciaGFE8E1myoaXCZwP5GifZoAYliCqhxS0FktasKQFm3PLZQI_5lK3vscfp2swxjauQ7T6t8D3RYF5S_9lPSU1WjJKrNO7_mwB_hfBW9mR5EJqhbFRAocDTjQmPyTPB4LtjXmKTQhtUNjKJHCyIFNJ2qDWhslL5DEZrmUzkcDX2bhZdLogUH5DlZeDETWQ35DS_v0Tob45hquF0gmczcfeUrfelsX-O3gP4GMRr_fAxxzCevf8Eo4wyOqq42hgr2_7IDk
  priority: 102
  providerName: Springer Nature
Title A graphical tool for locating inconsistency in network meta-analyses
URI https://link.springer.com/article/10.1186/1471-2288-13-35
https://www.ncbi.nlm.nih.gov/pubmed/23496991
https://www.proquest.com/docview/1348958869
https://www.proquest.com/docview/1349092404
http://dx.doi.org/10.1186/1471-2288-13-35
https://pubmed.ncbi.nlm.nih.gov/PMC3644268
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ri9NAEB-8OxC_iG-jZ4kgqB9yptk3ItKrdxzCHXJYKH5ZNpsNCjXVaw70v3dmm_YutQqlNOzsJpnHzkx39zcALwKnGhZljoaEKQoXTmbaq2HmnKowfFCmriPa55k8mfCPUzG9KgfUMXCxNbWjelKTi9nBr5-_36PBv4sGr-WbIU6wWVGgyIcsY2IH9tAtScrETvnVkgIdV4hHjTriDudnywAbZ99nPZe1OXFf81ybuyo3llajxzq-A7e7UDMdLXXjLtwIzT24edotpt-HD6M0wlWTmNJ2Pp-lGMCm5NxoK3RKsA3NgrQA51-8SpvljvH0e2hd5iKYSVg8gMnx0efxSdYVVchKoXWLs1_unKaoqpI-1PgbQy7BjCNZhsJzgwS8cqWSeV05dGa1M6bSPgjpOVfsIew28yY8hlSaIHAIVqKL4770JQ-aGx58nRtVM5XA2x4f7Y8lgIYlSOt-C1qXJSlYkoIdMstEAgcrrlvf4ZVT2YyZjXmLln93eLXusLrTP0lfkhgtqRWO6V13FgHfi-Cw7EgwLrTEWCqB_R4lGp_vN68Uwa50F2_BtUFmS5PA83Uz9aQNbU2YX0Yak2Pum_MEHi31Zv3QBYH4Gxpc9TSqx79-S_Pta4QGZxjeFlIn8Hqle9ceazsvnvz_DZ_CrSJWAMGP2Yfd9uIyPMM4rC0HsKOmagB7h0dnn87xaizHg_ifxiBaHn6fH375AwBzMl4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEN8EBhgJBDyEJbHj2EIIFbapY1uF0CbtzTiOI5BKMmgmxD_F38hdmpSlfLxN6kMrfyQ-35fru98BPPaCaljkEQoSHlFEamWoXBaH1mYFug-ZLssW7XMqJ0fi3XF6vAY_-1wYCqvsdWKrqIva0X_kmzEXSqdKSf365GtIVaPodrUvobFgiz3_4zse2eavdrdwf58kyc724dtJ2FUVCHMc3qD4R9YqcisK6XyJ39HnSLm2tBifOKGxgyhsnsmoLCxq89JqXSjnU-mEyDjOewHWBWW0jmD9zfb0_YflvQXlRHQAQrGSmzGq_jBJkBljHlJFuUFS_WxgC1ctwhmTuBquuXJn25rCnatwpfNh2XjBdNdgzVfX4eJBd0t_A7bGrMXBpv1nTV3PGHrGjKwmxVgzwoOo5sReqNjxF6sWoejsi29saFuUFD-_CUfnQtdbMKrqyt8BJrVPcQqeo-0ULne58Epo4V0Z6azkWQAvB3Q0JwtkDkNY2cMWZCFDu2BoF0zMDU8DeNFT3bgOCJ3qccxMeyBS8s8Bz5YD-if9s-tT2kZD2gHndLZLcsB1Ec6WGadcpEqikxbAxqAnSrUbNveMYDqtMje_ZSCAR8tmGkmRcpWvT9s-OsJDdSQCuL3gm-VLJ1QdQNPk2YCjBvQbtlSfP7WY4xz95kSqAJ73vHfmtf5Oi7v_X8JDuDQ5PNg3-7vTvXtwOWnLjOBHb8Co-Xbq76Oz1-QPOglj8PG8hfoXO7xo3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkFAvVUsfhNLiSpXaHlKy8SO2eloBK-gD9VAkbpbjOAJpm0Vs-P-dcZIV2dJDpRwSeewk8_CMNePPAO-DoDMsygwNCZcoQjqVal9MUueKCsOHwtR1RPs8V6cX4uulvOxrc5ZDtfuQkuz2NBBKU9Me3lR1Z-JaHU5wSk3zHIU84SmXj2BLkN-jXK06WiURaINCj-bzQKe1He7zkWNan57v-af12sm1BGr0S7On8KQPKNm004BnsBGaHdj-0afMn8PxlEVQahIGaxeLOcMwlZELo4JnRuAMzZJkjbMsPrGmqwtnv0PrUhchS8LyBVzMTn4dnab90QlpKbVucY7LnNMUO1XKhxrvMbCS3DiSWMi9MEggKlcWKqsrhy6rdsZU2gepvBAFfwmbzaIJu8CUCRKH4CU6MuFLX4qghRHB15kpal4k8GXER3vTwWRYAq4et6A4LUnBkhTshFsuE_g8cN36HpWcDseY27g60ervDh9XHYY3_ZP0A4nRkqnimN71Ow7wvwj0yk4lF1Ir1JwE9keUaGJ-3Dwogu1NfImvENogs5VJ4N2qmXpS2VoTFneRxmS4ws1EAq86vVl9dE5Q_YYGL0YaNeLfuKW5vooA4ByD2FzpBD4Nunfvsx7mxd5_0B7A9s_jmf1-dv7tNTzO4_kfeJl92Gxv78IbjMLa8m20tT-7aitt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graphical+tool+for+locating+inconsistency+in+network+meta-analyses&rft.jtitle=BMC+medical+research+methodology&rft.au=Krahn%2C+Ulrike&rft.au=Binder%2C+Harald&rft.au=K%C3%B6nig%2C+Jochem&rft.date=2013-03-09&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2288&rft.eissn=1471-2288&rft.volume=13&rft_id=info:doi/10.1186%2F1471-2288-13-35&rft.externalDocID=A534586091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon