Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment
In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1...
Saved in:
Published in | Nanoscale research letters Vol. 9; no. 1; p. 497 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer New York
15.09.2014
Springer Nature B.V BioMed Central Ltd Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP,
ca.
10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes (
ca.
90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope.
In vitro
cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model.
In vitro
cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells. |
---|---|
AbstractList | In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes (ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells. In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes ( ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells. In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes (ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells.In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes (ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells. In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes ( ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells. |
ArticleNumber | 497 |
Author | Lin, Chi-Hung Hardiansyah, Andri Chan, Tzu-Yi Liu, Ting-Yu Tsai, Sung-Chen Yang, Ming-Chien Zou, Hui-Ming Yang, Chih-Yung Lian, Wei-Nan Huang, Li-Ying Kuo, Chih-Yu |
AuthorAffiliation | 3 Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, 11221, Taiwan 1 Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan 4 Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106, Taiwan 2 Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan |
AuthorAffiliation_xml | – name: 3 Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, 11221, Taiwan – name: 2 Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan – name: 4 Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106, Taiwan – name: 1 Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan |
Author_xml | – sequence: 1 givenname: Andri surname: Hardiansyah fullname: Hardiansyah, Andri organization: Department of Materials Science and Engineering, National Taiwan University of Science and Technology – sequence: 2 givenname: Li-Ying surname: Huang fullname: Huang, Li-Ying organization: Department of Materials Science and Engineering, National Taiwan University of Science and Technology – sequence: 3 givenname: Ming-Chien surname: Yang fullname: Yang, Ming-Chien email: myang@mail.ntust.edu.tw organization: Department of Materials Science and Engineering, National Taiwan University of Science and Technology – sequence: 4 givenname: Ting-Yu surname: Liu fullname: Liu, Ting-Yu email: tyliu0322@gmail.com organization: Department of Materials Engineering, Ming Chi University of Technology – sequence: 5 givenname: Sung-Chen surname: Tsai fullname: Tsai, Sung-Chen organization: Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University – sequence: 6 givenname: Chih-Yung surname: Yang fullname: Yang, Chih-Yung organization: Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University – sequence: 7 givenname: Chih-Yu surname: Kuo fullname: Kuo, Chih-Yu organization: Institute of Polymer Science and Engineering, National Taiwan University – sequence: 8 givenname: Tzu-Yi surname: Chan fullname: Chan, Tzu-Yi organization: Department of Materials Engineering, Ming Chi University of Technology – sequence: 9 givenname: Hui-Ming surname: Zou fullname: Zou, Hui-Ming organization: Department of Materials Engineering, Ming Chi University of Technology – sequence: 10 givenname: Wei-Nan surname: Lian fullname: Lian, Wei-Nan organization: Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University – sequence: 11 givenname: Chi-Hung surname: Lin fullname: Lin, Chi-Hung organization: Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25246875$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk2LFDEQDbLifujZmzR48dJu0pPPi6CLX7DiRcFbSGcqM1nSyZhkhPn3ppndYXZxPYSEqlevXr3KOTqJKQJCLwl-S4jkl4Qx3g-C_-pVT5V4gs4OkZOj9yk6L-UGYyqw4M_Q6cAGyqVgZ8h8M6sI1dsu-E0qaYLSuZQ7m0LKYKsJnTXRQotACKWra8hms-vGXbf2q3XvMvzeQrS7brojch7CsqsZTJ0g1ufoqTOhwIvb-wL9_PTxx9WX_vr7569X76_7kUlRe7DgpMWcCmfESJQCIkBxZyVWcmG4Fe1gw-xIlxyDcG7g0jE1Skwxt8PiAr3b82624wRL21pnE_Qm-8nknU7G6_uZ6Nd6lf5oSrgiC9oIPuwJRp8eIbifsWnSs8V6tlgr3RbQSN7cqsipGVOqnnyZrTMR0rY0PKccKybnfq8fQG_SNsfmkSacDUoRPMyoV8djHeTcrbABLvcAm1MpGdwBQrCeP8k_NLIHFdZXU32ax_LhP3V4X1dah7iCfCT4kZK_GZvSkA |
CitedBy_id | crossref_primary_10_3390_ijms25020772 crossref_primary_10_1002_adfm_202401776 crossref_primary_10_1016_j_apsb_2021_03_023 crossref_primary_10_1186_s11671_017_2119_4 crossref_primary_10_1039_D4NR02058H crossref_primary_10_1021_acs_langmuir_6b03644 crossref_primary_10_1016_j_saa_2022_121578 crossref_primary_10_1016_j_jmmm_2018_11_019 crossref_primary_10_1007_s10965_019_1964_5 crossref_primary_10_1080_09506608_2018_1446280 crossref_primary_10_1016_j_ejpb_2020_12_012 crossref_primary_10_1016_j_msec_2020_111116 crossref_primary_10_2217_nnm_2018_0242 crossref_primary_10_3390_magnetochemistry8090107 crossref_primary_10_1186_s40580_024_00421_w crossref_primary_10_1007_s13204_021_02018_9 crossref_primary_10_1002_mabi_202200466 crossref_primary_10_1016_j_snb_2016_09_076 crossref_primary_10_1016_j_ijpharm_2020_119246 crossref_primary_10_1016_j_jddst_2021_102916 crossref_primary_10_4236_ojmi_2016_61001 crossref_primary_10_3390_cancers13215346 crossref_primary_10_1039_C9RA08192E crossref_primary_10_1002_ppsc_202100179 crossref_primary_10_3390_pharmaceutics16121527 crossref_primary_10_3389_fonc_2021_623760 crossref_primary_10_3390_nano9040638 crossref_primary_10_1116_6_0003079 crossref_primary_10_1371_journal_pone_0124024 crossref_primary_10_7567_JJAP_56_055002 crossref_primary_10_1039_C4RA14834G crossref_primary_10_1155_2017_3528295 crossref_primary_10_1134_S0965545X19030167 crossref_primary_10_3390_biomedicines9060635 crossref_primary_10_1134_S0006350921020196 crossref_primary_10_1080_20415990_2024_2426447 crossref_primary_10_1186_s12951_016_0168_y crossref_primary_10_1016_j_apsb_2024_05_010 crossref_primary_10_1016_j_colsurfb_2022_112737 crossref_primary_10_1016_j_biortech_2024_130945 crossref_primary_10_2217_nnm_2019_0038 crossref_primary_10_1016_j_eurpolymj_2023_111877 crossref_primary_10_3390_cancers11010068 crossref_primary_10_1016_j_colsurfb_2017_07_015 crossref_primary_10_1080_17425247_2024_2394611 crossref_primary_10_3390_nano11113013 crossref_primary_10_3390_polym14153163 crossref_primary_10_1021_acsami_9b16428 crossref_primary_10_1016_j_addr_2018_10_004 crossref_primary_10_3390_ijms24086906 crossref_primary_10_1016_j_msec_2021_112623 crossref_primary_10_3390_ijms21155187 crossref_primary_10_1615_CritRevTherDrugCarrierSyst_2022039241 crossref_primary_10_1016_j_mtadv_2022_100313 crossref_primary_10_1016_j_colsurfa_2022_129189 crossref_primary_10_3390_pharmaceutics13030355 crossref_primary_10_3390_biom9120773 crossref_primary_10_3390_molecules23040907 crossref_primary_10_1016_j_ijpharm_2015_08_006 crossref_primary_10_1088_1361_6528_ab5f80 crossref_primary_10_3390_nano10040674 crossref_primary_10_1016_j_colsurfb_2017_03_008 crossref_primary_10_1021_acsami_6b08663 crossref_primary_10_2174_1874467213666200730114943 crossref_primary_10_1016_j_jddst_2018_03_017 crossref_primary_10_1016_j_jddst_2022_103739 crossref_primary_10_1016_j_jddst_2021_102946 crossref_primary_10_3390_ijms16048070 crossref_primary_10_3390_pharmaceutics15071958 crossref_primary_10_3390_ijms22126187 |
Cites_doi | 10.7150/thno.4847 10.1016/j.colsurfb.2012.02.029 10.3762/bjoc.6.98 10.1007/s11095-012-0900-8 10.1039/c2jm35593k 10.1002/adfm.200801304 10.1021/jp045402y 10.1016/j.colsurfb.2011.10.024 10.4236/jbise.2012.512089 10.1038/nrd1632 10.1038/mt.2009.160 10.1016/j.nantod.2008.10.011 10.1016/j.ejmp.2011.10.001 10.1021/ja0516460 10.1186/1556-276X-8-417 10.1186/1556-276X-7-452 10.1186/1556-276X-8-426 10.1006/abbi.1994.1387 10.1016/j.biomaterials.2004.10.012 10.1021/am100237p 10.1039/c3nr02148c 10.1186/1556-276X-6-379 10.1186/1556-276X-6-620 10.1186/1556-276X-7-462 10.1016/j.biomaterials.2010.05.045 10.1186/1556-276X-6-482 10.1039/C3SC52615A 10.1021/nn100274v 10.1021/la204466g 10.1016/j.addr.2003.10.038 10.1021/la801451v 10.1021/mp200039s 10.1140/epje/i2006-10051-y 10.7150/thno.5366 10.1186/1556-276X-7-144 10.1016/j.jconrel.2012.02.023 10.1002/ijc.20035 10.1016/j.jmmm.2012.09.042 10.1016/j.jconrel.2009.10.002 10.1039/c2nr31292a 10.1021/jp311556b 10.1016/S0031-6997(24)01494-7 |
ContentType | Journal Article |
Copyright | Hardiansyah et al.; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. Copyright Springer Nature B.V. Dec 2014 Copyright © 2014 Hardiansyah et al.; licensee Springer. 2014 Hardiansyah et al.; licensee Springer. |
Copyright_xml | – notice: Hardiansyah et al.; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. – notice: Copyright Springer Nature B.V. Dec 2014 – notice: Copyright © 2014 Hardiansyah et al.; licensee Springer. 2014 Hardiansyah et al.; licensee Springer. |
DBID | C6C AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
DOI | 10.1186/1556-276X-9-497 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1556-276X |
EndPage | 497 |
ExternalDocumentID | PMC4169134 oai_biomedcentral_com_1556_276X_9_497 3586099311 25246875 10_1186_1556_276X_9_497 |
Genre | Journal Article |
GroupedDBID | -A0 .4S .86 .DC 0R~ 123 29M 2WC 4.4 40G 5VS 6NX 8FE 8FG 8FH AAFWJ ABJCF ABMNI ACGFO ACGFS ACIWK ACPRK ADBBV ADINQ ADRAZ AEGXH AENEX AEUYN AFGCZ AFKRA AFPKN AFRAH AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARCSS BAPOH BBNVY BCNDV BENPR BGLVJ BGNMA BHPHI C24 C6C CAG CCPQU CS3 D1I DU5 EBS EDO EJD F5P GROUPED_DOAJ GX1 H13 HCIFZ HH5 HYE HZ~ I09 IPNFZ IZQ KB. KDC KQ8 LK8 M48 M4Y M7P MM. M~E NU0 O5R O5S O9- OK1 P2P PDBOC PGMZT PIMPY PROAC RIG RNS RPM RPX RSV SCM SDH SOJ TR2 TUS U2A ~KM AAYXX CITATION OVT 2VQ C1A COF NPM PHGZT TSK 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PHGZM PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 AAJSJ AAKKN AAYZJ ACACY AFGXO AHBXF 5PM |
ID | FETCH-LOGICAL-b587t-ecef8c0647fa7b199e17e96fc80983a6c7a6c0a5cb4d60e7ff268f59b80406c23 |
IEDL.DBID | M48 |
ISSN | 1556-276X 1931-7573 |
IngestDate | Thu Aug 21 18:06:41 EDT 2025 Wed May 22 07:12:19 EDT 2024 Fri Jul 11 11:21:11 EDT 2025 Mon Jun 30 09:07:36 EDT 2025 Thu Apr 03 07:03:31 EDT 2025 Tue Jul 01 05:01:02 EDT 2025 Thu Apr 24 22:51:17 EDT 2025 Fri Feb 21 02:38:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Magnetic nanoparticle Liposomes High-frequency magnetic field Drug controlled release Colorectal cancer |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b587t-ecef8c0647fa7b199e17e96fc80983a6c7a6c0a5cb4d60e7ff268f59b80406c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1556-276X-9-497 |
PMID | 25246875 |
PQID | 1652991024 |
PQPubID | 2034687 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4169134 biomedcentral_primary_oai_biomedcentral_com_1556_276X_9_497 proquest_miscellaneous_1564609584 proquest_journals_1652991024 pubmed_primary_25246875 crossref_primary_10_1186_1556_276X_9_497 crossref_citationtrail_10_1186_1556_276X_9_497 springer_journals_10_1186_1556_276X_9_497 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-15 |
PublicationDateYYYYMMDD | 2014-09-15 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Heidelberg |
PublicationTitle | Nanoscale research letters |
PublicationTitleAbbrev | Nanoscale Res Lett |
PublicationTitleAlternate | Nanoscale Res Lett |
PublicationYear | 2014 |
Publisher | Springer New York Springer Nature B.V BioMed Central Ltd Springer |
Publisher_xml | – name: Springer New York – name: Springer Nature B.V – name: BioMed Central Ltd – name: Springer |
References | Torchilin (CR4) 2005; 4 Jung, Na, Lee, Cho, Seong, Shin (CR10) 2012; 7 Garcia-Jimeno, Escribano, Queralt, Estelrich (CR24) 2012; 7 Yerushalmi, Arad, Margalit (CR30) 1994; 313 Leung, Romanowski (CR9) 2012; 2 Cheraghipour, Tamaddon, Javadpour, Bruce (CR19) 2013; 328 Kulak, Semsarilar, Kim, Ihli, Fielding, Cespedes, Armes, Meldrum (CR36) 2014; 5 Luengo, Nardecchia, Morales, Serrano (CR42) 2013; 5 Akbarzadeh, Samiei, Davaran (CR15) 2012; 7 Moghimi, Hunter, Murray (CR37) 2001; 53 Ding, Cai, Luo, Li, Hu, Shen (CR25) 2012; 4 Lentacker, Geers, Demeester, De Smedt, Sanders (CR11) 2010; 18 Simoes, Moreira, Fonseca, Duzgunes, de Lima (CR8) 2004; 56 Martina, Fortin, Menager, Clement, Barratt, Grabielle-Madelmont, Gazeau, Cabuil, Lesieur (CR40) 2005; 127 Dan, Scott, Hardy, Wydra, Hilt, Yokel, Bae (CR32) 2013; 30 Pradhan, Giri, Rieken, Koch, Mykhaylyk, Doblinger, Banerjee, Bahadur, Plank (CR12) 2010; 142 Radović, Vranješ-Đurić, Nikolić, Janković, Goya, Torres, Calatayud, Bruvera, Ibarra, Spasojević, Jančar, Antić (CR22) 2012; 22 Abreu, Castanheira, Queiroz, Ferreira, Vale-Silva, Pinto (CR6) 2011; 6 Castanheira, Carvalho, Rodrigues, Calhelha, Queiroz (CR5) 2011; 6 Liu, Hu, Liu, Shaiu, Liu, Chen (CR28) 2008; 24 Gupta, Gupta (CR23) 2005; 26 Li, Jiang, Luo, Song, Lan, Wu, Gu (CR20) 2013; 3 Liu, Liu, Liu, Chen, Chen (CR27) 2009; 19 Du, Cui, Wang, Liu, Cui (CR43) 2011; 8 Wang, Jou, Hung, Yang (CR29) 2012; 90 Mashhadizadeh (CR34) 2012 Allam, Sadat, Potter, Mast, Mohamed, Habib, Pauletti (CR35) 2013; 8 Urban, Estelrich, Adeva, Cortes, Fernandez-Busquets (CR7) 2011; 6 Cheraghipour (CR33) 2012; 05 Hayashi, Ono, Suzuki, Sawada, Moriya, Sakamoto, Yogo (CR16) 2010; 2 Chen, Bose, Bothun (CR26) 2010; 4 Nobuto, Sugita, Kubo, Shimose, Yasunaga, Murakami, Ochi (CR13) 2004; 109 Huang, Liu, Liu, Mevold, Hardiansyah, Liao, Lin, Yang (CR3) 2013; 8 Kulshrestha, Gogoi, Bahadur, Banerjee (CR14) 2012; 96 Shroff, Kokkoli (CR31) 2012; 28 Sahoo, Goodarzi, Swihart, Ohulchanskyy, Kaur, Furlani, Prasad (CR17) 2005; 109 Kono, Ozawa, Yoshida, Ozaki, Ishizaka, Maruyama, Kojima, Harada, Aoshima (CR2) 2010; 31 Racuciu, Creanga, Airinei (CR18) 2006; 21 Marten, Gelbrich, Schmidt (CR21) 2010; 6 Yang, Wong, Teng, Liu, Lu, Liang, Wei (CR39) 2012; 160 Li, Ke, An, Hou, Zhang, Lin, Zhang (CR44) 2013; 15 de Sousa, van Raap Fernández, Rivas, Mendoza Zélis, Girardin, Pasquevich, Alessandrini, Muraca, Sánchez (CR41) 2013; 117 Liu, Hu, Liu, Chen, Chen (CR1) 2009; 4 Mady, Fathy, Youssef, Khalil (CR38) 2012; 28 AS Abreu (2241_CR6) 2011; 6 H Nobuto (2241_CR13) 2004; 109 K Hayashi (2241_CR16) 2010; 2 M Radović (2241_CR22) 2012; 22 A Allam (2241_CR35) 2013; 8 LY Huang (2241_CR3) 2013; 8 H Du (2241_CR43) 2011; 8 E Cheraghipour (2241_CR33) 2012; 05 AK Gupta (2241_CR23) 2005; 26 L Li (2241_CR20) 2013; 3 Y Chen (2241_CR26) 2010; 4 N Yerushalmi (2241_CR30) 1994; 313 X Ding (2241_CR25) 2012; 4 P Pradhan (2241_CR12) 2010; 142 SM Moghimi (2241_CR37) 2001; 53 F-Y Yang (2241_CR39) 2012; 160 H Li (2241_CR44) 2013; 15 SJ Leung (2241_CR9) 2012; 2 P Urban (2241_CR7) 2011; 6 VP Torchilin (2241_CR4) 2005; 4 K Kono (2241_CR2) 2010; 31 P Kulshrestha (2241_CR14) 2012; 96 MM Mady (2241_CR38) 2012; 28 A Akbarzadeh (2241_CR15) 2012; 7 TY Liu (2241_CR27) 2009; 19 TY Liu (2241_CR28) 2008; 24 YW Wang (2241_CR29) 2012; 90 MH Mashhadizadeh (2241_CR34) 2012 AN Kulak (2241_CR36) 2014; 5 EM Castanheira (2241_CR5) 2011; 6 I Lentacker (2241_CR11) 2010; 18 M Dan (2241_CR32) 2013; 30 S Garcia-Jimeno (2241_CR24) 2012; 7 GU Marten (2241_CR21) 2010; 6 T-Y Liu (2241_CR1) 2009; 4 S Jung (2241_CR10) 2012; 7 ME de Sousa (2241_CR41) 2013; 117 S Simoes (2241_CR8) 2004; 56 M Racuciu (2241_CR18) 2006; 21 Y Luengo (2241_CR42) 2013; 5 E Cheraghipour (2241_CR19) 2013; 328 K Shroff (2241_CR31) 2012; 28 Y Sahoo (2241_CR17) 2005; 109 MS Martina (2241_CR40) 2005; 127 24103307 - Nanoscale Res Lett. 2013 Oct 08;8(1):417 21711906 - Nanoscale Res Lett. 2011 May 12;6(1):379 11356986 - Pharmacol Rev. 2001 Jun;53(2):283-318 22901317 - Nanoscale Res Lett. 2012 Aug 17;7(1):462 22883385 - Nanoscale Res Lett. 2012 Aug 10;7(1):452 21630705 - Mol Pharm. 2011 Aug 1;8(4):1224-32 20568697 - ACS Appl Mater Interfaces. 2010 Jul;2(7):1903-11 23080062 - Pharm Res. 2013 Feb;30(2):552-61 19623162 - Mol Ther. 2010 Jan;18(1):101-8 15626447 - Biomaterials. 2005 Jun;26(18):3995-4021 16045355 - J Am Chem Soc. 2005 Aug 3;127(30):10676-85 20580431 - Biomaterials. 2010 Sep;31(27):7096-105 22521681 - Colloids Surf B Biointerfaces. 2012 Aug 1;96:1-7 22976154 - Nanoscale. 2012 Oct 21;4(20):6289-92 22151840 - Nanoscale Res Lett. 2011 Dec 07;6:620 20507153 - ACS Nano. 2010 Jun 22;4(6):3215-21 23946825 - Theranostics. 2013 Jul 31;3(8):595-615 15688077 - Nat Rev Drug Discov. 2005 Feb;4(2):145-60 15066754 - Adv Drug Deliv Rev. 2004 Apr 23;56(7):947-65 24134544 - Nanoscale Res Lett. 2013 Oct 17;8(1):426 8080272 - Arch Biochem Biophys. 1994 Sep;313(2):267-73 21812989 - Nanoscale Res Lett. 2011 Aug 03;6(1):482 17180642 - Eur Phys J E Soft Matter. 2006 Oct;21(2):117-21 22056083 - Colloids Surf B Biointerfaces. 2012 Feb 1;90:169-76 20978622 - Beilstein J Org Chem. 2010 Sep 16;6:922-31 23963338 - Nanoscale. 2013 Dec 7;5(23 ):11428-37 22268611 - Langmuir. 2012 Mar 13;28(10):4729-36 16851439 - J Phys Chem B. 2005 Mar 10;109(9):3879-85 22027546 - Phys Med. 2012 Oct;28(4):288-95 18954093 - Langmuir. 2008 Dec 2;24(23):13306-11 23139729 - Theranostics. 2012;2(10):1020-36 22348683 - Nanoscale Res Lett. 2012 Feb 21;7(1):144 14991586 - Int J Cancer. 2004 Apr 20;109(4):627-35 22405901 - J Control Release. 2012 Jun 28;160(3):652-8 19819275 - J Control Release. 2010 Feb 25;142(1):108-21 |
References_xml | – volume: 2 start-page: 1020 year: 2012 end-page: 1036 ident: CR9 article-title: Light-activated content release from liposomes publication-title: Theranostics doi: 10.7150/thno.4847 – volume: 96 start-page: 1 year: 2012 end-page: 7 ident: CR14 article-title: In vitro application of paclitaxel loaded magnetoliposomes for combined chemotherapy and hyperthermia publication-title: Colloids Surf B: Biointerfaces doi: 10.1016/j.colsurfb.2012.02.029 – volume: 6 start-page: 922 year: 2010 end-page: 931 ident: CR21 article-title: Hybrid biofunctional nanostructures as stimuli-responsive catalytic systems publication-title: Beilstein J Org Chem doi: 10.3762/bjoc.6.98 – volume: 30 start-page: 552 year: 2013 end-page: 561 ident: CR32 article-title: Block copolymer cross-linked nanoassemblies improve particle stability and biocompatibility of superparamagnetic iron oxide nanoparticles publication-title: Pharm Res doi: 10.1007/s11095-012-0900-8 – volume: 22 start-page: 24017 year: 2012 ident: CR22 article-title: Development and evaluation of 90Y-labeled albumin microspheres loaded with magnetite nanoparticles for possible applications in cancer therapy publication-title: J Mater Chem doi: 10.1039/c2jm35593k – volume: 19 start-page: 616 year: 2009 end-page: 623 ident: CR27 article-title: Temperature-sensitive nanocapsules for controlled drug release caused by magnetically triggered structural disruption publication-title: Adv Funct Mater doi: 10.1002/adfm.200801304 – volume: 109 start-page: 3879 year: 2005 end-page: 3885 ident: CR17 article-title: Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control publication-title: J Phys Chem B doi: 10.1021/jp045402y – volume: 90 start-page: 169 year: 2012 end-page: 176 ident: CR29 article-title: Cellular fusion and whitening effect of a chitosan derivative coated liposome publication-title: Colloids Surf B: Biointerfaces doi: 10.1016/j.colsurfb.2011.10.024 – volume: 05 start-page: 715 year: 2012 end-page: 719 ident: CR33 article-title: Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy publication-title: J Biomed Sci Eng doi: 10.4236/jbise.2012.512089 – volume: 4 start-page: 145 year: 2005 end-page: 160 ident: CR4 article-title: Recent advances with liposomes as pharmaceutical carriers publication-title: Nat Rev Drug Discov doi: 10.1038/nrd1632 – volume: 18 start-page: 101 year: 2010 end-page: 108 ident: CR11 article-title: Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved publication-title: Mol Ther doi: 10.1038/mt.2009.160 – volume: 4 start-page: 52 year: 2009 end-page: 65 ident: CR1 article-title: Biomedical nanoparticle carriers with combined thermal and magnetic responses publication-title: Nano Today doi: 10.1016/j.nantod.2008.10.011 – volume: 28 start-page: 288 year: 2012 end-page: 295 ident: CR38 article-title: Biophysical characterization of gold nanoparticles-loaded liposomes publication-title: Phys Med doi: 10.1016/j.ejmp.2011.10.001 – volume: 127 start-page: 10676 year: 2005 end-page: 10685 ident: CR40 article-title: Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging publication-title: J Am Chem Soc doi: 10.1021/ja0516460 – volume: 8 start-page: 417 year: 2013 ident: CR3 article-title: Nanohybrid structure analysis and biomolecule release behavior of polysaccharide-CDHA drug carriers publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-8-417 – volume: 7 start-page: 452 year: 2012 ident: CR24 article-title: External magnetic field-induced selective biodistribution of magnetoliposomes in mice publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-7-452 – volume: 8 start-page: 1 year: 2013 end-page: 7 ident: CR35 article-title: Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-8-426 – volume: 313 start-page: 267 issue: 2 year: 1994 end-page: 273 ident: CR30 article-title: Molecular and cellular studies of hyaluronic acid-modified liposomes as bioadhesive carriers for topical drug delivery in wound healing publication-title: Arch Biochem Biophys doi: 10.1006/abbi.1994.1387 – volume: 26 start-page: 3995 year: 2005 end-page: 4021 ident: CR23 article-title: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.10.012 – volume: 2 start-page: 1903 year: 2010 end-page: 1911 ident: CR16 article-title: High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect publication-title: ACS Appl Mater Interfaces doi: 10.1021/am100237p – volume: 5 start-page: 11428 year: 2013 end-page: 11437 ident: CR42 article-title: Different cell responses induced by exposure to maghemite nanoparticles publication-title: Nanoscale doi: 10.1039/c3nr02148c – volume: 6 start-page: 379 year: 2011 ident: CR5 article-title: New potential antitumoral fluorescent tetracyclic thieno[3,2-b]pyridine derivatives: interaction with DNA and nanosized liposomes publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-6-379 – volume: 6 start-page: 620 year: 2011 ident: CR7 article-title: Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-6-620 – volume: 7 start-page: 462 year: 2012 ident: CR10 article-title: Gd(III)-DOTA-modified sonosensitive liposomes for ultrasound-triggered release and MR imaging publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-7-462 – volume: 31 start-page: 7096 year: 2010 end-page: 7105 ident: CR2 article-title: Highly temperature-sensitive liposomes based on a thermosensitive block copolymer for tumor-specific chemotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.05.045 – year: 2012 ident: CR34 article-title: Drug-carrying amino silane coated magnetic nanoparticles as potential vehicles for delivery of antibiotics publication-title: J Nanomedicine Nanotechnol – volume: 6 start-page: 482 year: 2011 ident: CR6 article-title: Nanoliposomes for encapsulation and delivery of the potential antitumoral methyl 6-methoxy-3-(4-methoxyphenyl)-1H-indole-2-carboxylate publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-6-482 – volume: 5 start-page: 738 year: 2014 ident: CR36 article-title: One-pot synthesis of an inorganic heterostructure: uniform occlusion of magnetite nanoparticles within calcite single crystals publication-title: Chem Sci doi: 10.1039/C3SC52615A – volume: 4 start-page: 3215 year: 2010 end-page: 3221 ident: CR26 article-title: Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating publication-title: ACS Nano doi: 10.1021/nn100274v – volume: 28 start-page: 4729 year: 2012 end-page: 4736 ident: CR31 article-title: PEGylated liposomal doxorubicin targeted to α5β1-expressing MDA-MB-231 breast cancer cells publication-title: Langmuir doi: 10.1021/la204466g – volume: 53 start-page: 283 year: 2001 end-page: 318 ident: CR37 article-title: Long-circulating and target-specific nanoparticles: theory to practice publication-title: Pharmacol Rev – volume: 56 start-page: 947 year: 2004 end-page: 965 ident: CR8 article-title: On the formulation of pH-sensitive liposomes with long circulation times publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2003.10.038 – volume: 24 start-page: 13306 year: 2008 end-page: 13311 ident: CR28 article-title: Instantaneous drug delivery of magnetic/thermally sensitive nanospheres by a high-frequency magnetic field publication-title: Langmuir doi: 10.1021/la801451v – volume: 8 start-page: 1224 year: 2011 end-page: 1232 ident: CR43 article-title: Novel tetrapeptide, RGDF, mediated tumor specific liposomal doxorubicin (DOX) preparations publication-title: Mol Pharm doi: 10.1021/mp200039s – volume: 21 start-page: 117 year: 2006 end-page: 121 ident: CR18 article-title: Citric-acid-coated magnetite nanoparticles for biological applications publication-title: Eur Phys J E Soft Matter doi: 10.1140/epje/i2006-10051-y – volume: 3 start-page: 595 year: 2013 end-page: 615 ident: CR20 article-title: Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking publication-title: Theranostics doi: 10.7150/thno.5366 – volume: 7 start-page: 144 year: 2012 ident: CR15 article-title: Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-7-144 – volume: 160 start-page: 652 year: 2012 end-page: 658 ident: CR39 article-title: Focused ultrasound and interleukin-4 receptor-targeted liposomal doxorubicin for enhanced targeted drug delivery and antitumor effect in glioblastoma multiforme publication-title: J Control Release doi: 10.1016/j.jconrel.2012.02.023 – volume: 109 start-page: 627 year: 2004 end-page: 635 ident: CR13 article-title: Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet publication-title: Int J Cancer doi: 10.1002/ijc.20035 – volume: 328 start-page: 91 year: 2013 end-page: 95 ident: CR19 article-title: PEG conjugated citrate-capped magnetite nanoparticles for biomedical applications publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2012.09.042 – volume: 142 start-page: 108 year: 2010 end-page: 121 ident: CR12 article-title: Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy publication-title: J Control Release doi: 10.1016/j.jconrel.2009.10.002 – volume: 4 start-page: 6289 year: 2012 end-page: 6292 ident: CR25 article-title: Biocompatible magnetic liposomes for temperature triggered drug delivery publication-title: Nanoscale doi: 10.1039/c2nr31292a – volume: 117 start-page: 5436 year: 2013 end-page: 5445 ident: CR41 article-title: Stability and relaxation mechanisms of citric acid coated magnetite nanoparticles for magnetic hyperthermia publication-title: J Phys Chem C doi: 10.1021/jp311556b – volume: 15 start-page: 1 year: 2013 end-page: 11 ident: CR44 article-title: Gemcitabine-loaded magnetic albumin nanospheres for cancer chemohyperthermia publication-title: J Nanopart Res – volume: 4 start-page: 145 year: 2005 ident: 2241_CR4 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd1632 – volume: 2 start-page: 1903 year: 2010 ident: 2241_CR16 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am100237p – volume: 117 start-page: 5436 year: 2013 ident: 2241_CR41 publication-title: J Phys Chem C doi: 10.1021/jp311556b – volume: 6 start-page: 620 year: 2011 ident: 2241_CR7 publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-6-620 – volume: 15 start-page: 1 year: 2013 ident: 2241_CR44 publication-title: J Nanopart Res – volume: 6 start-page: 379 year: 2011 ident: 2241_CR5 publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-6-379 – volume: 31 start-page: 7096 year: 2010 ident: 2241_CR2 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.05.045 – volume: 18 start-page: 101 year: 2010 ident: 2241_CR11 publication-title: Mol Ther doi: 10.1038/mt.2009.160 – volume: 3 start-page: 595 year: 2013 ident: 2241_CR20 publication-title: Theranostics doi: 10.7150/thno.5366 – volume: 30 start-page: 552 year: 2013 ident: 2241_CR32 publication-title: Pharm Res doi: 10.1007/s11095-012-0900-8 – volume: 4 start-page: 6289 year: 2012 ident: 2241_CR25 publication-title: Nanoscale doi: 10.1039/c2nr31292a – volume: 90 start-page: 169 year: 2012 ident: 2241_CR29 publication-title: Colloids Surf B: Biointerfaces doi: 10.1016/j.colsurfb.2011.10.024 – volume: 24 start-page: 13306 year: 2008 ident: 2241_CR28 publication-title: Langmuir doi: 10.1021/la801451v – volume: 8 start-page: 417 year: 2013 ident: 2241_CR3 publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-8-417 – volume: 56 start-page: 947 year: 2004 ident: 2241_CR8 publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2003.10.038 – volume: 4 start-page: 3215 year: 2010 ident: 2241_CR26 publication-title: ACS Nano doi: 10.1021/nn100274v – volume: 2 start-page: 1020 year: 2012 ident: 2241_CR9 publication-title: Theranostics doi: 10.7150/thno.4847 – volume: 109 start-page: 627 year: 2004 ident: 2241_CR13 publication-title: Int J Cancer doi: 10.1002/ijc.20035 – volume: 8 start-page: 1224 year: 2011 ident: 2241_CR43 publication-title: Mol Pharm doi: 10.1021/mp200039s – volume: 22 start-page: 24017 year: 2012 ident: 2241_CR22 publication-title: J Mater Chem doi: 10.1039/c2jm35593k – volume: 28 start-page: 288 year: 2012 ident: 2241_CR38 publication-title: Phys Med doi: 10.1016/j.ejmp.2011.10.001 – volume: 8 start-page: 1 year: 2013 ident: 2241_CR35 publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-8-426 – volume: 4 start-page: 52 year: 2009 ident: 2241_CR1 publication-title: Nano Today doi: 10.1016/j.nantod.2008.10.011 – volume: 21 start-page: 117 year: 2006 ident: 2241_CR18 publication-title: Eur Phys J E Soft Matter doi: 10.1140/epje/i2006-10051-y – volume: 7 start-page: 462 year: 2012 ident: 2241_CR10 publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-7-462 – volume: 19 start-page: 616 year: 2009 ident: 2241_CR27 publication-title: Adv Funct Mater doi: 10.1002/adfm.200801304 – volume: 53 start-page: 283 year: 2001 ident: 2241_CR37 publication-title: Pharmacol Rev doi: 10.1016/S0031-6997(24)01494-7 – volume: 313 start-page: 267 issue: 2 year: 1994 ident: 2241_CR30 publication-title: Arch Biochem Biophys doi: 10.1006/abbi.1994.1387 – volume-title: J Nanomedicine Nanotechnol year: 2012 ident: 2241_CR34 – volume: 142 start-page: 108 year: 2010 ident: 2241_CR12 publication-title: J Control Release doi: 10.1016/j.jconrel.2009.10.002 – volume: 05 start-page: 715 year: 2012 ident: 2241_CR33 publication-title: J Biomed Sci Eng doi: 10.4236/jbise.2012.512089 – volume: 160 start-page: 652 year: 2012 ident: 2241_CR39 publication-title: J Control Release doi: 10.1016/j.jconrel.2012.02.023 – volume: 6 start-page: 922 year: 2010 ident: 2241_CR21 publication-title: Beilstein J Org Chem doi: 10.3762/bjoc.6.98 – volume: 28 start-page: 4729 year: 2012 ident: 2241_CR31 publication-title: Langmuir doi: 10.1021/la204466g – volume: 5 start-page: 738 year: 2014 ident: 2241_CR36 publication-title: Chem Sci doi: 10.1039/C3SC52615A – volume: 109 start-page: 3879 year: 2005 ident: 2241_CR17 publication-title: J Phys Chem B doi: 10.1021/jp045402y – volume: 26 start-page: 3995 year: 2005 ident: 2241_CR23 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.10.012 – volume: 127 start-page: 10676 year: 2005 ident: 2241_CR40 publication-title: J Am Chem Soc doi: 10.1021/ja0516460 – volume: 5 start-page: 11428 year: 2013 ident: 2241_CR42 publication-title: Nanoscale doi: 10.1039/c3nr02148c – volume: 7 start-page: 144 year: 2012 ident: 2241_CR15 publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-7-144 – volume: 7 start-page: 452 year: 2012 ident: 2241_CR24 publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-7-452 – volume: 328 start-page: 91 year: 2013 ident: 2241_CR19 publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2012.09.042 – volume: 96 start-page: 1 year: 2012 ident: 2241_CR14 publication-title: Colloids Surf B: Biointerfaces doi: 10.1016/j.colsurfb.2012.02.029 – volume: 6 start-page: 482 year: 2011 ident: 2241_CR6 publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-6-482 – reference: 22056083 - Colloids Surf B Biointerfaces. 2012 Feb 1;90:169-76 – reference: 21630705 - Mol Pharm. 2011 Aug 1;8(4):1224-32 – reference: 21711906 - Nanoscale Res Lett. 2011 May 12;6(1):379 – reference: 23080062 - Pharm Res. 2013 Feb;30(2):552-61 – reference: 22976154 - Nanoscale. 2012 Oct 21;4(20):6289-92 – reference: 20507153 - ACS Nano. 2010 Jun 22;4(6):3215-21 – reference: 18954093 - Langmuir. 2008 Dec 2;24(23):13306-11 – reference: 16045355 - J Am Chem Soc. 2005 Aug 3;127(30):10676-85 – reference: 19623162 - Mol Ther. 2010 Jan;18(1):101-8 – reference: 22883385 - Nanoscale Res Lett. 2012 Aug 10;7(1):452 – reference: 14991586 - Int J Cancer. 2004 Apr 20;109(4):627-35 – reference: 23946825 - Theranostics. 2013 Jul 31;3(8):595-615 – reference: 20580431 - Biomaterials. 2010 Sep;31(27):7096-105 – reference: 17180642 - Eur Phys J E Soft Matter. 2006 Oct;21(2):117-21 – reference: 15066754 - Adv Drug Deliv Rev. 2004 Apr 23;56(7):947-65 – reference: 22521681 - Colloids Surf B Biointerfaces. 2012 Aug 1;96:1-7 – reference: 16851439 - J Phys Chem B. 2005 Mar 10;109(9):3879-85 – reference: 20568697 - ACS Appl Mater Interfaces. 2010 Jul;2(7):1903-11 – reference: 20978622 - Beilstein J Org Chem. 2010 Sep 16;6:922-31 – reference: 22405901 - J Control Release. 2012 Jun 28;160(3):652-8 – reference: 21812989 - Nanoscale Res Lett. 2011 Aug 03;6(1):482 – reference: 19819275 - J Control Release. 2010 Feb 25;142(1):108-21 – reference: 22268611 - Langmuir. 2012 Mar 13;28(10):4729-36 – reference: 23963338 - Nanoscale. 2013 Dec 7;5(23 ):11428-37 – reference: 22027546 - Phys Med. 2012 Oct;28(4):288-95 – reference: 22348683 - Nanoscale Res Lett. 2012 Feb 21;7(1):144 – reference: 15688077 - Nat Rev Drug Discov. 2005 Feb;4(2):145-60 – reference: 11356986 - Pharmacol Rev. 2001 Jun;53(2):283-318 – reference: 24103307 - Nanoscale Res Lett. 2013 Oct 08;8(1):417 – reference: 24134544 - Nanoscale Res Lett. 2013 Oct 17;8(1):426 – reference: 22151840 - Nanoscale Res Lett. 2011 Dec 07;6:620 – reference: 15626447 - Biomaterials. 2005 Jun;26(18):3995-4021 – reference: 22901317 - Nanoscale Res Lett. 2012 Aug 17;7(1):462 – reference: 23139729 - Theranostics. 2012;2(10):1020-36 – reference: 8080272 - Arch Biochem Biophys. 1994 Sep;313(2):267-73 |
SSID | ssj0047076 |
Score | 2.377587 |
Snippet | In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The... |
SourceID | pubmedcentral biomedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 497 |
SubjectTerms | Chemistry and Materials Science Chemotherapy Colorectal cancer Colorectal carcinoma Cytotoxicity EMN Meeting Evaporation Fourier transforms Light scattering Magnetic fields Materials Science Molecular Medicine Nano Express Nanochemistry Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Synergistic effect X-ray diffraction Zeta potential |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELba5dIeKuhzC1RG6oEeXPLwK-qhggqEkEAVKtLerNhrt0hpdkuWw_77ziTOlrCFQy6xncSZhz8nM98Q8jGAzSRZ4Cy3jjNuXc5soT1LsylsHoK2VmM28vmFPL3iZxMxiR_cmhhW2fvE1lFPZw6_kR-kUoDnhOWQf53_YVg1Cv-uxhIaT8kGuGCtR2Tj6Pji-2Xvi7lK2vJygFJSpoTKI7lPquUBLKSSZUpOWFtm7V7CezVcp9bA53oM5b0fqe36dLJJXkRgSQ87TdgiT3z9kjy_Qzf4ipTn5c8akxZpdT2fNfAYDQXMSpG4Gh0fDHeoBHDGV1VDu9ysJbVLiqzGLNx0cddL-ru_UBsAR1fR6q_J1cnxj2-nLJZYYFZotWDe-aAdJpyGUtm0KHyqfCGD00mh81I6BUdSCmf5VCZehZBJHURhNRi_dFn-hozqWe3fESqs9OA5AaHlALFgF6eECICPlC711PJiTL4MXrCZd3QaBgmuhy0gd4PiMSgeUxgQz5h87sVhXGQvxyIalWl3MVquD9hfDejv9GDXnV6-JlpwY_7p25jsrZrB9lACZe1nt9BHSI6EfRr6vO3UYXWvTGRcwjsYEzVQlMG0hy319a-W35sjgVEO1_zUq9Sdx_r_FN4_PoVt8gyAHsc4l1TskNHi5tbvApha2A_RYv4CM7Uf0Q priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4LDAg3pSXjMQAg6FJ_IqYUAVCSDCB1M2KXRuQQopoGfrvucujaigMDFnit89nfyfffSbkNIDOdOPAWWIdZ9y6hNlUexbFAzAegrZWYzTyw6O8e-b3fdGvSZIwFmb2_j7S8hKOO8liJfusfAxtkSyLKFH4RkNP9potlyuwxmvenl8K_Yhlz9tH0ByunHeP_HFHWh49t-tkrcaM9LoS8gZZ8MUmWZ1hEtwi2UP2UmA8Is3fPoYj6MaIAhylyEmNexoUdyhf-OPzfESrsKsJtROKhMUsfFYu1RP63lRU-rbRqSP6Nnm-vXnq3bH69QRmhVZj5p0P2mEsaciUjdLUR8qnMjjdTXWSSafg62bCWT6QXa9CiKUOIrUa9Fq6ONkhS8Ww8HuECis9bIoAvhJAT2CgKSECQB-lMz2wPO2Qq9YEm4-KKcMgd3U7BdTIoHgMisekBsTTIReNOIyricnxfYzclAaKlvMFzqYFmpb-zHrYyNfUyjkykRRwCAOy4h1yMk0GtUIJZIUffkEeITly8WnIs1sth2lbsYi5hDnoENVaKK1ht1OKt9eSupsjN1ECdZ43S2qmW78PYf8feQ_ICgA6jv4skTgkS-PPL38EoGlsj0uF-QaNPBQs priority: 102 providerName: Springer Nature |
Title | Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment |
URI | https://link.springer.com/article/10.1186/1556-276X-9-497 https://www.ncbi.nlm.nih.gov/pubmed/25246875 https://www.proquest.com/docview/1652991024 https://www.proquest.com/docview/1564609584 http://dx.doi.org/10.1186/1556-276X-9-497 https://pubmed.ncbi.nlm.nih.gov/PMC4169134 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZoe4EDAgo00EZG4lAOLvvwa4VQ1UZNK6RUCBEpN2vt2G2lZVOSVCL_nrH3QbdJOayljR-79sx4PmfngdBHBzITJY6SVBtKqDYp0Zm0JE6mcHhwUmvpvZFHl_xiTL9N2ORfOqB6ARcbj3Y-n9R4Xhz9-b06BoH_GgRe8s-gEjlJBJ-QkDBtC-2AWhI-ncGItp8UqIhCpjkALDERTKR1nJ8NAzzwfS-6KmsNh66bUz74phpU1fAFel5jTHxSMcVL9MSWr9Cze5EHd1E-yq9K77-Ii5vb2QJeY4EBvmIfw9rvgdDdeH6AX2xRLHDlprXCeoV9gGPi5pUJ9gr_agYKtnC4NVx_jcbDs5-DC1JnWyCaSbEk1lgnjfc9dbnQcZbZWNiMOyOjTKY5NwKuKGdG0ymPrHAu4dKxTEvYB7hJ0jdou5yVdg9hprmFTRTAWgpoCw50gjEHUEnIXE41zXroS2eB1W0VWUP5WNfdGhA75cmjPHlUpoA8PXTUkEOZOpC5z6dRqHCgkXy9w2HboXnSo033G_qqhhdVzBkobUBitIc-tNUghp4CeWlnd9CGcepj90lo87Zih_ZZCUsohzXoIdFhlM60uzXlzXUI9U19LKMUxvzUsNS919o8hXf_n8J79BQwH_UmLzHbR9vL-Z09AFy11H20RaNzKOUQyp3Ts8vvP-BuwAf98E8FlOeTuB-kCspxcvIXOzAn8w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqcgAOFe8GChgJJDiY7sOvFUIIASGlTU-tlJtZOzZU2m5CNxXKn-I3MrOP0G2AWw-5xPbu2jOe-bw78w0hzwPsmSgJnKXWccatS5nNtGdxMoXDQ9DWasxGHh_K0TH_MhGTDfKry4XBsMrOJtaGejpz-I58N5YCLCe4Q_5u_oNh1Sj8utqV0GjUYt8vf8KRrXq79xHk-yJJhp-OPoxYW1WAWaHVgnnng3aYYxlyZeMs87HymQxOR5lOc-kU_KJcOMunMvIqhETqIDKrQd-lQ6IDMPnXeAqeHDPTh587y89VVBezA0wUMyVU2lIJxVrugtuWLFFywuqibpfS64u-V1yDuusRm5c-29becHiLbLUwlr5v9O422fDlHXLzArnhXZKP828lpkjS4mQ-q-AxKgoImSJNNppZGO5Q5eAfXxQVbTLBltQuKXIos3DWRHkv6Wl3oTrcjq5i4--R4ytZ-vtks5yVfptQYaUHOw14MAVAB2dGJUQANKZ0rqeWZwPyprfAZt6Qdxik0-63gJYZFI9B8ZjMgHgG5HUnDuNarnQs2VGY-syk5fqAl6sB3Z3-2XWnk69p7UVl_mj3gDxbNcNORwnkpZ-dQx8hOdIDaujzoFGH1b0SkXAJazAgqqcovWn3W8qT7zWbOEe6pBSu-apTqQuP9fcpPPz_FJ6S66Oj8YE52Dvcf0RuAMTkGGETix2yuTg7948Bxi3sk3rvUPL1qjfrb6mcXB0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVEJwQLwJFDASSHAw2YdfK4QQ0EYtpVGFqJSbu3ZsqLRsQpMK5a_x65jZR-g2wK2HXGJ7d-157858Q8izADITJYGz1DrOuHUps5n2LE4mEDwEba3GauSDkdw94h_HYrxBfrW1MJhW2erESlFPpg7fkQ9iKUBzgjnkg9CkRRxuD9_OfjDsIIVfWtt2GjWL7PvlTwjf5m_2toHWz5NkuPPlwy5rOgwwK7RaMO980A7rLUOubJxlPlY-k8HpKNNpLp2CX5QLZ_lERl6FkEgdRGY18L50CHoA6n9TYVTUI5vvd0aHn1s7wFVUtbYDDylmSqi0ARaKtRyAEZcsUXLMqhZvF4rti66NXHN81_M3L3zErWzj8Aa53ji19F3NhTfJhi9vkWvnoA5vk_wg_1piwSQtTmbTOTzGnIK_TBE0G5UuLHfIgPCPL4o5revCltQuKSIqs3Ba53wv6ff2QlXyHV1lyt8hR5dy-HdJr5yW_j6hwkoPWhu8wxTcO4gglRABfDOlcz2xPOuT150DNrMaysMguHZ3BHjOIHkMksdkBsjTJ69achjXIKdjA4_CVBGUlusLXqwWtHf659Stlr6m0R5z84fX--TpahjkHimQl356BnOE5AgWqGHOvZodVvdKRMIlnEGfqA6jdLbdHSlPvlXY4hzBk1K45suWpc491t-38OD_W3hCroCgmk97o_2H5Cr4mxzTbWKxRXqL0zP_CHy6hX3cCA8lx5ctr78BnKxhrw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+liposomes+for+colorectal+cancer+cells+therapy+by+high-frequency+magnetic+field+treatment&rft.jtitle=Nanoscale+research+letters&rft.date=2014-09-15&rft.pub=Springer+Nature+B.V&rft.issn=1931-7573&rft.eissn=1556-276X&rft.volume=9&rft.issue=1&rft.spage=497&rft_id=info:doi/10.1186%2F1556-276X-9-497&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3586099311 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-276X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-276X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-276X&client=summon |