Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment

In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1...

Full description

Saved in:
Bibliographic Details
Published inNanoscale research letters Vol. 9; no. 1; p. 497
Main Authors Hardiansyah, Andri, Huang, Li-Ying, Yang, Ming-Chien, Liu, Ting-Yu, Tsai, Sung-Chen, Yang, Chih-Yung, Kuo, Chih-Yu, Chan, Tzu-Yi, Zou, Hui-Ming, Lian, Wei-Nan, Lin, Chi-Hung
Format Journal Article
LanguageEnglish
Published New York Springer New York 15.09.2014
Springer Nature B.V
BioMed Central Ltd
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes ( ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells.
AbstractList In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes (ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells.
In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes ( ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells.
In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes (ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells.In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes (ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells.
In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes ( ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells.
ArticleNumber 497
Author Lin, Chi-Hung
Hardiansyah, Andri
Chan, Tzu-Yi
Liu, Ting-Yu
Tsai, Sung-Chen
Yang, Ming-Chien
Zou, Hui-Ming
Yang, Chih-Yung
Lian, Wei-Nan
Huang, Li-Ying
Kuo, Chih-Yu
AuthorAffiliation 3 Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, 11221, Taiwan
1 Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
4 Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106, Taiwan
2 Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
AuthorAffiliation_xml – name: 3 Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, 11221, Taiwan
– name: 2 Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
– name: 4 Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106, Taiwan
– name: 1 Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
Author_xml – sequence: 1
  givenname: Andri
  surname: Hardiansyah
  fullname: Hardiansyah, Andri
  organization: Department of Materials Science and Engineering, National Taiwan University of Science and Technology
– sequence: 2
  givenname: Li-Ying
  surname: Huang
  fullname: Huang, Li-Ying
  organization: Department of Materials Science and Engineering, National Taiwan University of Science and Technology
– sequence: 3
  givenname: Ming-Chien
  surname: Yang
  fullname: Yang, Ming-Chien
  email: myang@mail.ntust.edu.tw
  organization: Department of Materials Science and Engineering, National Taiwan University of Science and Technology
– sequence: 4
  givenname: Ting-Yu
  surname: Liu
  fullname: Liu, Ting-Yu
  email: tyliu0322@gmail.com
  organization: Department of Materials Engineering, Ming Chi University of Technology
– sequence: 5
  givenname: Sung-Chen
  surname: Tsai
  fullname: Tsai, Sung-Chen
  organization: Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University
– sequence: 6
  givenname: Chih-Yung
  surname: Yang
  fullname: Yang, Chih-Yung
  organization: Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University
– sequence: 7
  givenname: Chih-Yu
  surname: Kuo
  fullname: Kuo, Chih-Yu
  organization: Institute of Polymer Science and Engineering, National Taiwan University
– sequence: 8
  givenname: Tzu-Yi
  surname: Chan
  fullname: Chan, Tzu-Yi
  organization: Department of Materials Engineering, Ming Chi University of Technology
– sequence: 9
  givenname: Hui-Ming
  surname: Zou
  fullname: Zou, Hui-Ming
  organization: Department of Materials Engineering, Ming Chi University of Technology
– sequence: 10
  givenname: Wei-Nan
  surname: Lian
  fullname: Lian, Wei-Nan
  organization: Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University
– sequence: 11
  givenname: Chi-Hung
  surname: Lin
  fullname: Lin, Chi-Hung
  organization: Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25246875$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk2LFDEQDbLifujZmzR48dJu0pPPi6CLX7DiRcFbSGcqM1nSyZhkhPn3ppndYXZxPYSEqlevXr3KOTqJKQJCLwl-S4jkl4Qx3g-C_-pVT5V4gs4OkZOj9yk6L-UGYyqw4M_Q6cAGyqVgZ8h8M6sI1dsu-E0qaYLSuZQ7m0LKYKsJnTXRQotACKWra8hms-vGXbf2q3XvMvzeQrS7brojch7CsqsZTJ0g1ufoqTOhwIvb-wL9_PTxx9WX_vr7569X76_7kUlRe7DgpMWcCmfESJQCIkBxZyVWcmG4Fe1gw-xIlxyDcG7g0jE1Skwxt8PiAr3b82624wRL21pnE_Qm-8nknU7G6_uZ6Nd6lf5oSrgiC9oIPuwJRp8eIbifsWnSs8V6tlgr3RbQSN7cqsipGVOqnnyZrTMR0rY0PKccKybnfq8fQG_SNsfmkSacDUoRPMyoV8djHeTcrbABLvcAm1MpGdwBQrCeP8k_NLIHFdZXU32ax_LhP3V4X1dah7iCfCT4kZK_GZvSkA
CitedBy_id crossref_primary_10_3390_ijms25020772
crossref_primary_10_1002_adfm_202401776
crossref_primary_10_1016_j_apsb_2021_03_023
crossref_primary_10_1186_s11671_017_2119_4
crossref_primary_10_1039_D4NR02058H
crossref_primary_10_1021_acs_langmuir_6b03644
crossref_primary_10_1016_j_saa_2022_121578
crossref_primary_10_1016_j_jmmm_2018_11_019
crossref_primary_10_1007_s10965_019_1964_5
crossref_primary_10_1080_09506608_2018_1446280
crossref_primary_10_1016_j_ejpb_2020_12_012
crossref_primary_10_1016_j_msec_2020_111116
crossref_primary_10_2217_nnm_2018_0242
crossref_primary_10_3390_magnetochemistry8090107
crossref_primary_10_1186_s40580_024_00421_w
crossref_primary_10_1007_s13204_021_02018_9
crossref_primary_10_1002_mabi_202200466
crossref_primary_10_1016_j_snb_2016_09_076
crossref_primary_10_1016_j_ijpharm_2020_119246
crossref_primary_10_1016_j_jddst_2021_102916
crossref_primary_10_4236_ojmi_2016_61001
crossref_primary_10_3390_cancers13215346
crossref_primary_10_1039_C9RA08192E
crossref_primary_10_1002_ppsc_202100179
crossref_primary_10_3390_pharmaceutics16121527
crossref_primary_10_3389_fonc_2021_623760
crossref_primary_10_3390_nano9040638
crossref_primary_10_1116_6_0003079
crossref_primary_10_1371_journal_pone_0124024
crossref_primary_10_7567_JJAP_56_055002
crossref_primary_10_1039_C4RA14834G
crossref_primary_10_1155_2017_3528295
crossref_primary_10_1134_S0965545X19030167
crossref_primary_10_3390_biomedicines9060635
crossref_primary_10_1134_S0006350921020196
crossref_primary_10_1080_20415990_2024_2426447
crossref_primary_10_1186_s12951_016_0168_y
crossref_primary_10_1016_j_apsb_2024_05_010
crossref_primary_10_1016_j_colsurfb_2022_112737
crossref_primary_10_1016_j_biortech_2024_130945
crossref_primary_10_2217_nnm_2019_0038
crossref_primary_10_1016_j_eurpolymj_2023_111877
crossref_primary_10_3390_cancers11010068
crossref_primary_10_1016_j_colsurfb_2017_07_015
crossref_primary_10_1080_17425247_2024_2394611
crossref_primary_10_3390_nano11113013
crossref_primary_10_3390_polym14153163
crossref_primary_10_1021_acsami_9b16428
crossref_primary_10_1016_j_addr_2018_10_004
crossref_primary_10_3390_ijms24086906
crossref_primary_10_1016_j_msec_2021_112623
crossref_primary_10_3390_ijms21155187
crossref_primary_10_1615_CritRevTherDrugCarrierSyst_2022039241
crossref_primary_10_1016_j_mtadv_2022_100313
crossref_primary_10_1016_j_colsurfa_2022_129189
crossref_primary_10_3390_pharmaceutics13030355
crossref_primary_10_3390_biom9120773
crossref_primary_10_3390_molecules23040907
crossref_primary_10_1016_j_ijpharm_2015_08_006
crossref_primary_10_1088_1361_6528_ab5f80
crossref_primary_10_3390_nano10040674
crossref_primary_10_1016_j_colsurfb_2017_03_008
crossref_primary_10_1021_acsami_6b08663
crossref_primary_10_2174_1874467213666200730114943
crossref_primary_10_1016_j_jddst_2018_03_017
crossref_primary_10_1016_j_jddst_2022_103739
crossref_primary_10_1016_j_jddst_2021_102946
crossref_primary_10_3390_ijms16048070
crossref_primary_10_3390_pharmaceutics15071958
crossref_primary_10_3390_ijms22126187
Cites_doi 10.7150/thno.4847
10.1016/j.colsurfb.2012.02.029
10.3762/bjoc.6.98
10.1007/s11095-012-0900-8
10.1039/c2jm35593k
10.1002/adfm.200801304
10.1021/jp045402y
10.1016/j.colsurfb.2011.10.024
10.4236/jbise.2012.512089
10.1038/nrd1632
10.1038/mt.2009.160
10.1016/j.nantod.2008.10.011
10.1016/j.ejmp.2011.10.001
10.1021/ja0516460
10.1186/1556-276X-8-417
10.1186/1556-276X-7-452
10.1186/1556-276X-8-426
10.1006/abbi.1994.1387
10.1016/j.biomaterials.2004.10.012
10.1021/am100237p
10.1039/c3nr02148c
10.1186/1556-276X-6-379
10.1186/1556-276X-6-620
10.1186/1556-276X-7-462
10.1016/j.biomaterials.2010.05.045
10.1186/1556-276X-6-482
10.1039/C3SC52615A
10.1021/nn100274v
10.1021/la204466g
10.1016/j.addr.2003.10.038
10.1021/la801451v
10.1021/mp200039s
10.1140/epje/i2006-10051-y
10.7150/thno.5366
10.1186/1556-276X-7-144
10.1016/j.jconrel.2012.02.023
10.1002/ijc.20035
10.1016/j.jmmm.2012.09.042
10.1016/j.jconrel.2009.10.002
10.1039/c2nr31292a
10.1021/jp311556b
10.1016/S0031-6997(24)01494-7
ContentType Journal Article
Copyright Hardiansyah et al.; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
Copyright Springer Nature B.V. Dec 2014
Copyright © 2014 Hardiansyah et al.; licensee Springer. 2014 Hardiansyah et al.; licensee Springer.
Copyright_xml – notice: Hardiansyah et al.; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
– notice: Copyright Springer Nature B.V. Dec 2014
– notice: Copyright © 2014 Hardiansyah et al.; licensee Springer. 2014 Hardiansyah et al.; licensee Springer.
DBID C6C
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOI 10.1186/1556-276X-9-497
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
PubMed
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-276X
EndPage 497
ExternalDocumentID PMC4169134
oai_biomedcentral_com_1556_276X_9_497
3586099311
25246875
10_1186_1556_276X_9_497
Genre Journal Article
GroupedDBID -A0
.4S
.86
.DC
0R~
123
29M
2WC
4.4
40G
5VS
6NX
8FE
8FG
8FH
AAFWJ
ABJCF
ABMNI
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADINQ
ADRAZ
AEGXH
AENEX
AEUYN
AFGCZ
AFKRA
AFPKN
AFRAH
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARCSS
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BGNMA
BHPHI
C24
C6C
CAG
CCPQU
CS3
D1I
DU5
EBS
EDO
EJD
F5P
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
HYE
HZ~
I09
IPNFZ
IZQ
KB.
KDC
KQ8
LK8
M48
M4Y
M7P
MM.
M~E
NU0
O5R
O5S
O9-
OK1
P2P
PDBOC
PGMZT
PIMPY
PROAC
RIG
RNS
RPM
RPX
RSV
SCM
SDH
SOJ
TR2
TUS
U2A
~KM
AAYXX
CITATION
OVT
2VQ
C1A
COF
NPM
PHGZT
TSK
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PHGZM
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
AAJSJ
AAKKN
AAYZJ
ACACY
AFGXO
AHBXF
5PM
ID FETCH-LOGICAL-b587t-ecef8c0647fa7b199e17e96fc80983a6c7a6c0a5cb4d60e7ff268f59b80406c23
IEDL.DBID M48
ISSN 1556-276X
1931-7573
IngestDate Thu Aug 21 18:06:41 EDT 2025
Wed May 22 07:12:19 EDT 2024
Fri Jul 11 11:21:11 EDT 2025
Mon Jun 30 09:07:36 EDT 2025
Thu Apr 03 07:03:31 EDT 2025
Tue Jul 01 05:01:02 EDT 2025
Thu Apr 24 22:51:17 EDT 2025
Fri Feb 21 02:38:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Magnetic nanoparticle
Liposomes
High-frequency magnetic field
Drug controlled release
Colorectal cancer
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b587t-ecef8c0647fa7b199e17e96fc80983a6c7a6c0a5cb4d60e7ff268f59b80406c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1556-276X-9-497
PMID 25246875
PQID 1652991024
PQPubID 2034687
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4169134
biomedcentral_primary_oai_biomedcentral_com_1556_276X_9_497
proquest_miscellaneous_1564609584
proquest_journals_1652991024
pubmed_primary_25246875
crossref_primary_10_1186_1556_276X_9_497
crossref_citationtrail_10_1186_1556_276X_9_497
springer_journals_10_1186_1556_276X_9_497
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-15
PublicationDateYYYYMMDD 2014-09-15
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Heidelberg
PublicationTitle Nanoscale research letters
PublicationTitleAbbrev Nanoscale Res Lett
PublicationTitleAlternate Nanoscale Res Lett
PublicationYear 2014
Publisher Springer New York
Springer Nature B.V
BioMed Central Ltd
Springer
Publisher_xml – name: Springer New York
– name: Springer Nature B.V
– name: BioMed Central Ltd
– name: Springer
References Torchilin (CR4) 2005; 4
Jung, Na, Lee, Cho, Seong, Shin (CR10) 2012; 7
Garcia-Jimeno, Escribano, Queralt, Estelrich (CR24) 2012; 7
Yerushalmi, Arad, Margalit (CR30) 1994; 313
Leung, Romanowski (CR9) 2012; 2
Cheraghipour, Tamaddon, Javadpour, Bruce (CR19) 2013; 328
Kulak, Semsarilar, Kim, Ihli, Fielding, Cespedes, Armes, Meldrum (CR36) 2014; 5
Luengo, Nardecchia, Morales, Serrano (CR42) 2013; 5
Akbarzadeh, Samiei, Davaran (CR15) 2012; 7
Moghimi, Hunter, Murray (CR37) 2001; 53
Ding, Cai, Luo, Li, Hu, Shen (CR25) 2012; 4
Lentacker, Geers, Demeester, De Smedt, Sanders (CR11) 2010; 18
Simoes, Moreira, Fonseca, Duzgunes, de Lima (CR8) 2004; 56
Martina, Fortin, Menager, Clement, Barratt, Grabielle-Madelmont, Gazeau, Cabuil, Lesieur (CR40) 2005; 127
Dan, Scott, Hardy, Wydra, Hilt, Yokel, Bae (CR32) 2013; 30
Pradhan, Giri, Rieken, Koch, Mykhaylyk, Doblinger, Banerjee, Bahadur, Plank (CR12) 2010; 142
Radović, Vranješ-Đurić, Nikolić, Janković, Goya, Torres, Calatayud, Bruvera, Ibarra, Spasojević, Jančar, Antić (CR22) 2012; 22
Abreu, Castanheira, Queiroz, Ferreira, Vale-Silva, Pinto (CR6) 2011; 6
Castanheira, Carvalho, Rodrigues, Calhelha, Queiroz (CR5) 2011; 6
Liu, Hu, Liu, Shaiu, Liu, Chen (CR28) 2008; 24
Gupta, Gupta (CR23) 2005; 26
Li, Jiang, Luo, Song, Lan, Wu, Gu (CR20) 2013; 3
Liu, Liu, Liu, Chen, Chen (CR27) 2009; 19
Du, Cui, Wang, Liu, Cui (CR43) 2011; 8
Wang, Jou, Hung, Yang (CR29) 2012; 90
Mashhadizadeh (CR34) 2012
Allam, Sadat, Potter, Mast, Mohamed, Habib, Pauletti (CR35) 2013; 8
Urban, Estelrich, Adeva, Cortes, Fernandez-Busquets (CR7) 2011; 6
Cheraghipour (CR33) 2012; 05
Hayashi, Ono, Suzuki, Sawada, Moriya, Sakamoto, Yogo (CR16) 2010; 2
Chen, Bose, Bothun (CR26) 2010; 4
Nobuto, Sugita, Kubo, Shimose, Yasunaga, Murakami, Ochi (CR13) 2004; 109
Huang, Liu, Liu, Mevold, Hardiansyah, Liao, Lin, Yang (CR3) 2013; 8
Kulshrestha, Gogoi, Bahadur, Banerjee (CR14) 2012; 96
Shroff, Kokkoli (CR31) 2012; 28
Sahoo, Goodarzi, Swihart, Ohulchanskyy, Kaur, Furlani, Prasad (CR17) 2005; 109
Kono, Ozawa, Yoshida, Ozaki, Ishizaka, Maruyama, Kojima, Harada, Aoshima (CR2) 2010; 31
Racuciu, Creanga, Airinei (CR18) 2006; 21
Marten, Gelbrich, Schmidt (CR21) 2010; 6
Yang, Wong, Teng, Liu, Lu, Liang, Wei (CR39) 2012; 160
Li, Ke, An, Hou, Zhang, Lin, Zhang (CR44) 2013; 15
de Sousa, van Raap Fernández, Rivas, Mendoza Zélis, Girardin, Pasquevich, Alessandrini, Muraca, Sánchez (CR41) 2013; 117
Liu, Hu, Liu, Chen, Chen (CR1) 2009; 4
Mady, Fathy, Youssef, Khalil (CR38) 2012; 28
AS Abreu (2241_CR6) 2011; 6
H Nobuto (2241_CR13) 2004; 109
K Hayashi (2241_CR16) 2010; 2
M Radović (2241_CR22) 2012; 22
A Allam (2241_CR35) 2013; 8
LY Huang (2241_CR3) 2013; 8
H Du (2241_CR43) 2011; 8
E Cheraghipour (2241_CR33) 2012; 05
AK Gupta (2241_CR23) 2005; 26
L Li (2241_CR20) 2013; 3
Y Chen (2241_CR26) 2010; 4
N Yerushalmi (2241_CR30) 1994; 313
X Ding (2241_CR25) 2012; 4
P Pradhan (2241_CR12) 2010; 142
SM Moghimi (2241_CR37) 2001; 53
F-Y Yang (2241_CR39) 2012; 160
H Li (2241_CR44) 2013; 15
SJ Leung (2241_CR9) 2012; 2
P Urban (2241_CR7) 2011; 6
VP Torchilin (2241_CR4) 2005; 4
K Kono (2241_CR2) 2010; 31
P Kulshrestha (2241_CR14) 2012; 96
MM Mady (2241_CR38) 2012; 28
A Akbarzadeh (2241_CR15) 2012; 7
TY Liu (2241_CR27) 2009; 19
TY Liu (2241_CR28) 2008; 24
YW Wang (2241_CR29) 2012; 90
MH Mashhadizadeh (2241_CR34) 2012
AN Kulak (2241_CR36) 2014; 5
EM Castanheira (2241_CR5) 2011; 6
I Lentacker (2241_CR11) 2010; 18
M Dan (2241_CR32) 2013; 30
S Garcia-Jimeno (2241_CR24) 2012; 7
GU Marten (2241_CR21) 2010; 6
T-Y Liu (2241_CR1) 2009; 4
S Jung (2241_CR10) 2012; 7
ME de Sousa (2241_CR41) 2013; 117
S Simoes (2241_CR8) 2004; 56
M Racuciu (2241_CR18) 2006; 21
Y Luengo (2241_CR42) 2013; 5
E Cheraghipour (2241_CR19) 2013; 328
K Shroff (2241_CR31) 2012; 28
Y Sahoo (2241_CR17) 2005; 109
MS Martina (2241_CR40) 2005; 127
24103307 - Nanoscale Res Lett. 2013 Oct 08;8(1):417
21711906 - Nanoscale Res Lett. 2011 May 12;6(1):379
11356986 - Pharmacol Rev. 2001 Jun;53(2):283-318
22901317 - Nanoscale Res Lett. 2012 Aug 17;7(1):462
22883385 - Nanoscale Res Lett. 2012 Aug 10;7(1):452
21630705 - Mol Pharm. 2011 Aug 1;8(4):1224-32
20568697 - ACS Appl Mater Interfaces. 2010 Jul;2(7):1903-11
23080062 - Pharm Res. 2013 Feb;30(2):552-61
19623162 - Mol Ther. 2010 Jan;18(1):101-8
15626447 - Biomaterials. 2005 Jun;26(18):3995-4021
16045355 - J Am Chem Soc. 2005 Aug 3;127(30):10676-85
20580431 - Biomaterials. 2010 Sep;31(27):7096-105
22521681 - Colloids Surf B Biointerfaces. 2012 Aug 1;96:1-7
22976154 - Nanoscale. 2012 Oct 21;4(20):6289-92
22151840 - Nanoscale Res Lett. 2011 Dec 07;6:620
20507153 - ACS Nano. 2010 Jun 22;4(6):3215-21
23946825 - Theranostics. 2013 Jul 31;3(8):595-615
15688077 - Nat Rev Drug Discov. 2005 Feb;4(2):145-60
15066754 - Adv Drug Deliv Rev. 2004 Apr 23;56(7):947-65
24134544 - Nanoscale Res Lett. 2013 Oct 17;8(1):426
8080272 - Arch Biochem Biophys. 1994 Sep;313(2):267-73
21812989 - Nanoscale Res Lett. 2011 Aug 03;6(1):482
17180642 - Eur Phys J E Soft Matter. 2006 Oct;21(2):117-21
22056083 - Colloids Surf B Biointerfaces. 2012 Feb 1;90:169-76
20978622 - Beilstein J Org Chem. 2010 Sep 16;6:922-31
23963338 - Nanoscale. 2013 Dec 7;5(23 ):11428-37
22268611 - Langmuir. 2012 Mar 13;28(10):4729-36
16851439 - J Phys Chem B. 2005 Mar 10;109(9):3879-85
22027546 - Phys Med. 2012 Oct;28(4):288-95
18954093 - Langmuir. 2008 Dec 2;24(23):13306-11
23139729 - Theranostics. 2012;2(10):1020-36
22348683 - Nanoscale Res Lett. 2012 Feb 21;7(1):144
14991586 - Int J Cancer. 2004 Apr 20;109(4):627-35
22405901 - J Control Release. 2012 Jun 28;160(3):652-8
19819275 - J Control Release. 2010 Feb 25;142(1):108-21
References_xml – volume: 2
  start-page: 1020
  year: 2012
  end-page: 1036
  ident: CR9
  article-title: Light-activated content release from liposomes
  publication-title: Theranostics
  doi: 10.7150/thno.4847
– volume: 96
  start-page: 1
  year: 2012
  end-page: 7
  ident: CR14
  article-title: In vitro application of paclitaxel loaded magnetoliposomes for combined chemotherapy and hyperthermia
  publication-title: Colloids Surf B: Biointerfaces
  doi: 10.1016/j.colsurfb.2012.02.029
– volume: 6
  start-page: 922
  year: 2010
  end-page: 931
  ident: CR21
  article-title: Hybrid biofunctional nanostructures as stimuli-responsive catalytic systems
  publication-title: Beilstein J Org Chem
  doi: 10.3762/bjoc.6.98
– volume: 30
  start-page: 552
  year: 2013
  end-page: 561
  ident: CR32
  article-title: Block copolymer cross-linked nanoassemblies improve particle stability and biocompatibility of superparamagnetic iron oxide nanoparticles
  publication-title: Pharm Res
  doi: 10.1007/s11095-012-0900-8
– volume: 22
  start-page: 24017
  year: 2012
  ident: CR22
  article-title: Development and evaluation of 90Y-labeled albumin microspheres loaded with magnetite nanoparticles for possible applications in cancer therapy
  publication-title: J Mater Chem
  doi: 10.1039/c2jm35593k
– volume: 19
  start-page: 616
  year: 2009
  end-page: 623
  ident: CR27
  article-title: Temperature-sensitive nanocapsules for controlled drug release caused by magnetically triggered structural disruption
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.200801304
– volume: 109
  start-page: 3879
  year: 2005
  end-page: 3885
  ident: CR17
  article-title: Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control
  publication-title: J Phys Chem B
  doi: 10.1021/jp045402y
– volume: 90
  start-page: 169
  year: 2012
  end-page: 176
  ident: CR29
  article-title: Cellular fusion and whitening effect of a chitosan derivative coated liposome
  publication-title: Colloids Surf B: Biointerfaces
  doi: 10.1016/j.colsurfb.2011.10.024
– volume: 05
  start-page: 715
  year: 2012
  end-page: 719
  ident: CR33
  article-title: Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy
  publication-title: J Biomed Sci Eng
  doi: 10.4236/jbise.2012.512089
– volume: 4
  start-page: 145
  year: 2005
  end-page: 160
  ident: CR4
  article-title: Recent advances with liposomes as pharmaceutical carriers
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd1632
– volume: 18
  start-page: 101
  year: 2010
  end-page: 108
  ident: CR11
  article-title: Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved
  publication-title: Mol Ther
  doi: 10.1038/mt.2009.160
– volume: 4
  start-page: 52
  year: 2009
  end-page: 65
  ident: CR1
  article-title: Biomedical nanoparticle carriers with combined thermal and magnetic responses
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2008.10.011
– volume: 28
  start-page: 288
  year: 2012
  end-page: 295
  ident: CR38
  article-title: Biophysical characterization of gold nanoparticles-loaded liposomes
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2011.10.001
– volume: 127
  start-page: 10676
  year: 2005
  end-page: 10685
  ident: CR40
  article-title: Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0516460
– volume: 8
  start-page: 417
  year: 2013
  ident: CR3
  article-title: Nanohybrid structure analysis and biomolecule release behavior of polysaccharide-CDHA drug carriers
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-8-417
– volume: 7
  start-page: 452
  year: 2012
  ident: CR24
  article-title: External magnetic field-induced selective biodistribution of magnetoliposomes in mice
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-7-452
– volume: 8
  start-page: 1
  year: 2013
  end-page: 7
  ident: CR35
  article-title: Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-8-426
– volume: 313
  start-page: 267
  issue: 2
  year: 1994
  end-page: 273
  ident: CR30
  article-title: Molecular and cellular studies of hyaluronic acid-modified liposomes as bioadhesive carriers for topical drug delivery in wound healing
  publication-title: Arch Biochem Biophys
  doi: 10.1006/abbi.1994.1387
– volume: 26
  start-page: 3995
  year: 2005
  end-page: 4021
  ident: CR23
  article-title: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.10.012
– volume: 2
  start-page: 1903
  year: 2010
  end-page: 1911
  ident: CR16
  article-title: High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am100237p
– volume: 5
  start-page: 11428
  year: 2013
  end-page: 11437
  ident: CR42
  article-title: Different cell responses induced by exposure to maghemite nanoparticles
  publication-title: Nanoscale
  doi: 10.1039/c3nr02148c
– volume: 6
  start-page: 379
  year: 2011
  ident: CR5
  article-title: New potential antitumoral fluorescent tetracyclic thieno[3,2-b]pyridine derivatives: interaction with DNA and nanosized liposomes
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-6-379
– volume: 6
  start-page: 620
  year: 2011
  ident: CR7
  article-title: Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-6-620
– volume: 7
  start-page: 462
  year: 2012
  ident: CR10
  article-title: Gd(III)-DOTA-modified sonosensitive liposomes for ultrasound-triggered release and MR imaging
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-7-462
– volume: 31
  start-page: 7096
  year: 2010
  end-page: 7105
  ident: CR2
  article-title: Highly temperature-sensitive liposomes based on a thermosensitive block copolymer for tumor-specific chemotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.05.045
– year: 2012
  ident: CR34
  article-title: Drug-carrying amino silane coated magnetic nanoparticles as potential vehicles for delivery of antibiotics
  publication-title: J Nanomedicine Nanotechnol
– volume: 6
  start-page: 482
  year: 2011
  ident: CR6
  article-title: Nanoliposomes for encapsulation and delivery of the potential antitumoral methyl 6-methoxy-3-(4-methoxyphenyl)-1H-indole-2-carboxylate
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-6-482
– volume: 5
  start-page: 738
  year: 2014
  ident: CR36
  article-title: One-pot synthesis of an inorganic heterostructure: uniform occlusion of magnetite nanoparticles within calcite single crystals
  publication-title: Chem Sci
  doi: 10.1039/C3SC52615A
– volume: 4
  start-page: 3215
  year: 2010
  end-page: 3221
  ident: CR26
  article-title: Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating
  publication-title: ACS Nano
  doi: 10.1021/nn100274v
– volume: 28
  start-page: 4729
  year: 2012
  end-page: 4736
  ident: CR31
  article-title: PEGylated liposomal doxorubicin targeted to α5β1-expressing MDA-MB-231 breast cancer cells
  publication-title: Langmuir
  doi: 10.1021/la204466g
– volume: 53
  start-page: 283
  year: 2001
  end-page: 318
  ident: CR37
  article-title: Long-circulating and target-specific nanoparticles: theory to practice
  publication-title: Pharmacol Rev
– volume: 56
  start-page: 947
  year: 2004
  end-page: 965
  ident: CR8
  article-title: On the formulation of pH-sensitive liposomes with long circulation times
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2003.10.038
– volume: 24
  start-page: 13306
  year: 2008
  end-page: 13311
  ident: CR28
  article-title: Instantaneous drug delivery of magnetic/thermally sensitive nanospheres by a high-frequency magnetic field
  publication-title: Langmuir
  doi: 10.1021/la801451v
– volume: 8
  start-page: 1224
  year: 2011
  end-page: 1232
  ident: CR43
  article-title: Novel tetrapeptide, RGDF, mediated tumor specific liposomal doxorubicin (DOX) preparations
  publication-title: Mol Pharm
  doi: 10.1021/mp200039s
– volume: 21
  start-page: 117
  year: 2006
  end-page: 121
  ident: CR18
  article-title: Citric-acid-coated magnetite nanoparticles for biological applications
  publication-title: Eur Phys J E Soft Matter
  doi: 10.1140/epje/i2006-10051-y
– volume: 3
  start-page: 595
  year: 2013
  end-page: 615
  ident: CR20
  article-title: Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking
  publication-title: Theranostics
  doi: 10.7150/thno.5366
– volume: 7
  start-page: 144
  year: 2012
  ident: CR15
  article-title: Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-7-144
– volume: 160
  start-page: 652
  year: 2012
  end-page: 658
  ident: CR39
  article-title: Focused ultrasound and interleukin-4 receptor-targeted liposomal doxorubicin for enhanced targeted drug delivery and antitumor effect in glioblastoma multiforme
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2012.02.023
– volume: 109
  start-page: 627
  year: 2004
  end-page: 635
  ident: CR13
  article-title: Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet
  publication-title: Int J Cancer
  doi: 10.1002/ijc.20035
– volume: 328
  start-page: 91
  year: 2013
  end-page: 95
  ident: CR19
  article-title: PEG conjugated citrate-capped magnetite nanoparticles for biomedical applications
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2012.09.042
– volume: 142
  start-page: 108
  year: 2010
  end-page: 121
  ident: CR12
  article-title: Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2009.10.002
– volume: 4
  start-page: 6289
  year: 2012
  end-page: 6292
  ident: CR25
  article-title: Biocompatible magnetic liposomes for temperature triggered drug delivery
  publication-title: Nanoscale
  doi: 10.1039/c2nr31292a
– volume: 117
  start-page: 5436
  year: 2013
  end-page: 5445
  ident: CR41
  article-title: Stability and relaxation mechanisms of citric acid coated magnetite nanoparticles for magnetic hyperthermia
  publication-title: J Phys Chem C
  doi: 10.1021/jp311556b
– volume: 15
  start-page: 1
  year: 2013
  end-page: 11
  ident: CR44
  article-title: Gemcitabine-loaded magnetic albumin nanospheres for cancer chemohyperthermia
  publication-title: J Nanopart Res
– volume: 4
  start-page: 145
  year: 2005
  ident: 2241_CR4
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd1632
– volume: 2
  start-page: 1903
  year: 2010
  ident: 2241_CR16
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am100237p
– volume: 117
  start-page: 5436
  year: 2013
  ident: 2241_CR41
  publication-title: J Phys Chem C
  doi: 10.1021/jp311556b
– volume: 6
  start-page: 620
  year: 2011
  ident: 2241_CR7
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-6-620
– volume: 15
  start-page: 1
  year: 2013
  ident: 2241_CR44
  publication-title: J Nanopart Res
– volume: 6
  start-page: 379
  year: 2011
  ident: 2241_CR5
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-6-379
– volume: 31
  start-page: 7096
  year: 2010
  ident: 2241_CR2
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.05.045
– volume: 18
  start-page: 101
  year: 2010
  ident: 2241_CR11
  publication-title: Mol Ther
  doi: 10.1038/mt.2009.160
– volume: 3
  start-page: 595
  year: 2013
  ident: 2241_CR20
  publication-title: Theranostics
  doi: 10.7150/thno.5366
– volume: 30
  start-page: 552
  year: 2013
  ident: 2241_CR32
  publication-title: Pharm Res
  doi: 10.1007/s11095-012-0900-8
– volume: 4
  start-page: 6289
  year: 2012
  ident: 2241_CR25
  publication-title: Nanoscale
  doi: 10.1039/c2nr31292a
– volume: 90
  start-page: 169
  year: 2012
  ident: 2241_CR29
  publication-title: Colloids Surf B: Biointerfaces
  doi: 10.1016/j.colsurfb.2011.10.024
– volume: 24
  start-page: 13306
  year: 2008
  ident: 2241_CR28
  publication-title: Langmuir
  doi: 10.1021/la801451v
– volume: 8
  start-page: 417
  year: 2013
  ident: 2241_CR3
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-8-417
– volume: 56
  start-page: 947
  year: 2004
  ident: 2241_CR8
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2003.10.038
– volume: 4
  start-page: 3215
  year: 2010
  ident: 2241_CR26
  publication-title: ACS Nano
  doi: 10.1021/nn100274v
– volume: 2
  start-page: 1020
  year: 2012
  ident: 2241_CR9
  publication-title: Theranostics
  doi: 10.7150/thno.4847
– volume: 109
  start-page: 627
  year: 2004
  ident: 2241_CR13
  publication-title: Int J Cancer
  doi: 10.1002/ijc.20035
– volume: 8
  start-page: 1224
  year: 2011
  ident: 2241_CR43
  publication-title: Mol Pharm
  doi: 10.1021/mp200039s
– volume: 22
  start-page: 24017
  year: 2012
  ident: 2241_CR22
  publication-title: J Mater Chem
  doi: 10.1039/c2jm35593k
– volume: 28
  start-page: 288
  year: 2012
  ident: 2241_CR38
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2011.10.001
– volume: 8
  start-page: 1
  year: 2013
  ident: 2241_CR35
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-8-426
– volume: 4
  start-page: 52
  year: 2009
  ident: 2241_CR1
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2008.10.011
– volume: 21
  start-page: 117
  year: 2006
  ident: 2241_CR18
  publication-title: Eur Phys J E Soft Matter
  doi: 10.1140/epje/i2006-10051-y
– volume: 7
  start-page: 462
  year: 2012
  ident: 2241_CR10
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-7-462
– volume: 19
  start-page: 616
  year: 2009
  ident: 2241_CR27
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.200801304
– volume: 53
  start-page: 283
  year: 2001
  ident: 2241_CR37
  publication-title: Pharmacol Rev
  doi: 10.1016/S0031-6997(24)01494-7
– volume: 313
  start-page: 267
  issue: 2
  year: 1994
  ident: 2241_CR30
  publication-title: Arch Biochem Biophys
  doi: 10.1006/abbi.1994.1387
– volume-title: J Nanomedicine Nanotechnol
  year: 2012
  ident: 2241_CR34
– volume: 142
  start-page: 108
  year: 2010
  ident: 2241_CR12
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2009.10.002
– volume: 05
  start-page: 715
  year: 2012
  ident: 2241_CR33
  publication-title: J Biomed Sci Eng
  doi: 10.4236/jbise.2012.512089
– volume: 160
  start-page: 652
  year: 2012
  ident: 2241_CR39
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2012.02.023
– volume: 6
  start-page: 922
  year: 2010
  ident: 2241_CR21
  publication-title: Beilstein J Org Chem
  doi: 10.3762/bjoc.6.98
– volume: 28
  start-page: 4729
  year: 2012
  ident: 2241_CR31
  publication-title: Langmuir
  doi: 10.1021/la204466g
– volume: 5
  start-page: 738
  year: 2014
  ident: 2241_CR36
  publication-title: Chem Sci
  doi: 10.1039/C3SC52615A
– volume: 109
  start-page: 3879
  year: 2005
  ident: 2241_CR17
  publication-title: J Phys Chem B
  doi: 10.1021/jp045402y
– volume: 26
  start-page: 3995
  year: 2005
  ident: 2241_CR23
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.10.012
– volume: 127
  start-page: 10676
  year: 2005
  ident: 2241_CR40
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0516460
– volume: 5
  start-page: 11428
  year: 2013
  ident: 2241_CR42
  publication-title: Nanoscale
  doi: 10.1039/c3nr02148c
– volume: 7
  start-page: 144
  year: 2012
  ident: 2241_CR15
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-7-144
– volume: 7
  start-page: 452
  year: 2012
  ident: 2241_CR24
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-7-452
– volume: 328
  start-page: 91
  year: 2013
  ident: 2241_CR19
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2012.09.042
– volume: 96
  start-page: 1
  year: 2012
  ident: 2241_CR14
  publication-title: Colloids Surf B: Biointerfaces
  doi: 10.1016/j.colsurfb.2012.02.029
– volume: 6
  start-page: 482
  year: 2011
  ident: 2241_CR6
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-6-482
– reference: 22056083 - Colloids Surf B Biointerfaces. 2012 Feb 1;90:169-76
– reference: 21630705 - Mol Pharm. 2011 Aug 1;8(4):1224-32
– reference: 21711906 - Nanoscale Res Lett. 2011 May 12;6(1):379
– reference: 23080062 - Pharm Res. 2013 Feb;30(2):552-61
– reference: 22976154 - Nanoscale. 2012 Oct 21;4(20):6289-92
– reference: 20507153 - ACS Nano. 2010 Jun 22;4(6):3215-21
– reference: 18954093 - Langmuir. 2008 Dec 2;24(23):13306-11
– reference: 16045355 - J Am Chem Soc. 2005 Aug 3;127(30):10676-85
– reference: 19623162 - Mol Ther. 2010 Jan;18(1):101-8
– reference: 22883385 - Nanoscale Res Lett. 2012 Aug 10;7(1):452
– reference: 14991586 - Int J Cancer. 2004 Apr 20;109(4):627-35
– reference: 23946825 - Theranostics. 2013 Jul 31;3(8):595-615
– reference: 20580431 - Biomaterials. 2010 Sep;31(27):7096-105
– reference: 17180642 - Eur Phys J E Soft Matter. 2006 Oct;21(2):117-21
– reference: 15066754 - Adv Drug Deliv Rev. 2004 Apr 23;56(7):947-65
– reference: 22521681 - Colloids Surf B Biointerfaces. 2012 Aug 1;96:1-7
– reference: 16851439 - J Phys Chem B. 2005 Mar 10;109(9):3879-85
– reference: 20568697 - ACS Appl Mater Interfaces. 2010 Jul;2(7):1903-11
– reference: 20978622 - Beilstein J Org Chem. 2010 Sep 16;6:922-31
– reference: 22405901 - J Control Release. 2012 Jun 28;160(3):652-8
– reference: 21812989 - Nanoscale Res Lett. 2011 Aug 03;6(1):482
– reference: 19819275 - J Control Release. 2010 Feb 25;142(1):108-21
– reference: 22268611 - Langmuir. 2012 Mar 13;28(10):4729-36
– reference: 23963338 - Nanoscale. 2013 Dec 7;5(23 ):11428-37
– reference: 22027546 - Phys Med. 2012 Oct;28(4):288-95
– reference: 22348683 - Nanoscale Res Lett. 2012 Feb 21;7(1):144
– reference: 15688077 - Nat Rev Drug Discov. 2005 Feb;4(2):145-60
– reference: 11356986 - Pharmacol Rev. 2001 Jun;53(2):283-318
– reference: 24103307 - Nanoscale Res Lett. 2013 Oct 08;8(1):417
– reference: 24134544 - Nanoscale Res Lett. 2013 Oct 17;8(1):426
– reference: 22151840 - Nanoscale Res Lett. 2011 Dec 07;6:620
– reference: 15626447 - Biomaterials. 2005 Jun;26(18):3995-4021
– reference: 22901317 - Nanoscale Res Lett. 2012 Aug 17;7(1):462
– reference: 23139729 - Theranostics. 2012;2(10):1020-36
– reference: 8080272 - Arch Biochem Biophys. 1994 Sep;313(2):267-73
SSID ssj0047076
Score 2.377587
Snippet In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The...
SourceID pubmedcentral
biomedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 497
SubjectTerms Chemistry and Materials Science
Chemotherapy
Colorectal cancer
Colorectal carcinoma
Cytotoxicity
EMN Meeting
Evaporation
Fourier transforms
Light scattering
Magnetic fields
Materials Science
Molecular Medicine
Nano Express
Nanochemistry
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Synergistic effect
X-ray diffraction
Zeta potential
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELba5dIeKuhzC1RG6oEeXPLwK-qhggqEkEAVKtLerNhrt0hpdkuWw_77ziTOlrCFQy6xncSZhz8nM98Q8jGAzSRZ4Cy3jjNuXc5soT1LsylsHoK2VmM28vmFPL3iZxMxiR_cmhhW2fvE1lFPZw6_kR-kUoDnhOWQf53_YVg1Cv-uxhIaT8kGuGCtR2Tj6Pji-2Xvi7lK2vJygFJSpoTKI7lPquUBLKSSZUpOWFtm7V7CezVcp9bA53oM5b0fqe36dLJJXkRgSQ87TdgiT3z9kjy_Qzf4ipTn5c8akxZpdT2fNfAYDQXMSpG4Gh0fDHeoBHDGV1VDu9ysJbVLiqzGLNx0cddL-ru_UBsAR1fR6q_J1cnxj2-nLJZYYFZotWDe-aAdJpyGUtm0KHyqfCGD00mh81I6BUdSCmf5VCZehZBJHURhNRi_dFn-hozqWe3fESqs9OA5AaHlALFgF6eECICPlC711PJiTL4MXrCZd3QaBgmuhy0gd4PiMSgeUxgQz5h87sVhXGQvxyIalWl3MVquD9hfDejv9GDXnV6-JlpwY_7p25jsrZrB9lACZe1nt9BHSI6EfRr6vO3UYXWvTGRcwjsYEzVQlMG0hy319a-W35sjgVEO1_zUq9Sdx_r_FN4_PoVt8gyAHsc4l1TskNHi5tbvApha2A_RYv4CM7Uf0Q
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4LDAg3pSXjMQAg6FJ_IqYUAVCSDCB1M2KXRuQQopoGfrvucujaigMDFnit89nfyfffSbkNIDOdOPAWWIdZ9y6hNlUexbFAzAegrZWYzTyw6O8e-b3fdGvSZIwFmb2_j7S8hKOO8liJfusfAxtkSyLKFH4RkNP9potlyuwxmvenl8K_Yhlz9tH0ByunHeP_HFHWh49t-tkrcaM9LoS8gZZ8MUmWZ1hEtwi2UP2UmA8Is3fPoYj6MaIAhylyEmNexoUdyhf-OPzfESrsKsJtROKhMUsfFYu1RP63lRU-rbRqSP6Nnm-vXnq3bH69QRmhVZj5p0P2mEsaciUjdLUR8qnMjjdTXWSSafg62bCWT6QXa9CiKUOIrUa9Fq6ONkhS8Ww8HuECis9bIoAvhJAT2CgKSECQB-lMz2wPO2Qq9YEm4-KKcMgd3U7BdTIoHgMisekBsTTIReNOIyricnxfYzclAaKlvMFzqYFmpb-zHrYyNfUyjkykRRwCAOy4h1yMk0GtUIJZIUffkEeITly8WnIs1sth2lbsYi5hDnoENVaKK1ht1OKt9eSupsjN1ECdZ43S2qmW78PYf8feQ_ICgA6jv4skTgkS-PPL38EoGlsj0uF-QaNPBQs
  priority: 102
  providerName: Springer Nature
Title Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment
URI https://link.springer.com/article/10.1186/1556-276X-9-497
https://www.ncbi.nlm.nih.gov/pubmed/25246875
https://www.proquest.com/docview/1652991024
https://www.proquest.com/docview/1564609584
http://dx.doi.org/10.1186/1556-276X-9-497
https://pubmed.ncbi.nlm.nih.gov/PMC4169134
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZoe4EDAgo00EZG4lAOLvvwa4VQ1UZNK6RUCBEpN2vt2G2lZVOSVCL_nrH3QbdJOayljR-79sx4PmfngdBHBzITJY6SVBtKqDYp0Zm0JE6mcHhwUmvpvZFHl_xiTL9N2ORfOqB6ARcbj3Y-n9R4Xhz9-b06BoH_GgRe8s-gEjlJBJ-QkDBtC-2AWhI-ncGItp8UqIhCpjkALDERTKR1nJ8NAzzwfS-6KmsNh66bUz74phpU1fAFel5jTHxSMcVL9MSWr9Cze5EHd1E-yq9K77-Ii5vb2QJeY4EBvmIfw9rvgdDdeH6AX2xRLHDlprXCeoV9gGPi5pUJ9gr_agYKtnC4NVx_jcbDs5-DC1JnWyCaSbEk1lgnjfc9dbnQcZbZWNiMOyOjTKY5NwKuKGdG0ymPrHAu4dKxTEvYB7hJ0jdou5yVdg9hprmFTRTAWgpoCw50gjEHUEnIXE41zXroS2eB1W0VWUP5WNfdGhA75cmjPHlUpoA8PXTUkEOZOpC5z6dRqHCgkXy9w2HboXnSo033G_qqhhdVzBkobUBitIc-tNUghp4CeWlnd9CGcepj90lo87Zih_ZZCUsohzXoIdFhlM60uzXlzXUI9U19LKMUxvzUsNS919o8hXf_n8J79BQwH_UmLzHbR9vL-Z09AFy11H20RaNzKOUQyp3Ts8vvP-BuwAf98E8FlOeTuB-kCspxcvIXOzAn8w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqcgAOFe8GChgJJDiY7sOvFUIIASGlTU-tlJtZOzZU2m5CNxXKn-I3MrOP0G2AWw-5xPbu2jOe-bw78w0hzwPsmSgJnKXWccatS5nNtGdxMoXDQ9DWasxGHh_K0TH_MhGTDfKry4XBsMrOJtaGejpz-I58N5YCLCe4Q_5u_oNh1Sj8utqV0GjUYt8vf8KRrXq79xHk-yJJhp-OPoxYW1WAWaHVgnnng3aYYxlyZeMs87HymQxOR5lOc-kU_KJcOMunMvIqhETqIDKrQd-lQ6IDMPnXeAqeHDPTh587y89VVBezA0wUMyVU2lIJxVrugtuWLFFywuqibpfS64u-V1yDuusRm5c-29becHiLbLUwlr5v9O422fDlHXLzArnhXZKP828lpkjS4mQ-q-AxKgoImSJNNppZGO5Q5eAfXxQVbTLBltQuKXIos3DWRHkv6Wl3oTrcjq5i4--R4ytZ-vtks5yVfptQYaUHOw14MAVAB2dGJUQANKZ0rqeWZwPyprfAZt6Qdxik0-63gJYZFI9B8ZjMgHgG5HUnDuNarnQs2VGY-syk5fqAl6sB3Z3-2XWnk69p7UVl_mj3gDxbNcNORwnkpZ-dQx8hOdIDaujzoFGH1b0SkXAJazAgqqcovWn3W8qT7zWbOEe6pBSu-apTqQuP9fcpPPz_FJ6S66Oj8YE52Dvcf0RuAMTkGGETix2yuTg7948Bxi3sk3rvUPL1qjfrb6mcXB0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVEJwQLwJFDASSHAw2YdfK4QQ0EYtpVGFqJSbu3ZsqLRsQpMK5a_x65jZR-g2wK2HXGJ7d-157858Q8izADITJYGz1DrOuHUps5n2LE4mEDwEba3GauSDkdw94h_HYrxBfrW1MJhW2erESlFPpg7fkQ9iKUBzgjnkg9CkRRxuD9_OfjDsIIVfWtt2GjWL7PvlTwjf5m_2toHWz5NkuPPlwy5rOgwwK7RaMO980A7rLUOubJxlPlY-k8HpKNNpLp2CX5QLZ_lERl6FkEgdRGY18L50CHoA6n9TYVTUI5vvd0aHn1s7wFVUtbYDDylmSqi0ARaKtRyAEZcsUXLMqhZvF4rti66NXHN81_M3L3zErWzj8Aa53ji19F3NhTfJhi9vkWvnoA5vk_wg_1piwSQtTmbTOTzGnIK_TBE0G5UuLHfIgPCPL4o5revCltQuKSIqs3Ba53wv6ff2QlXyHV1lyt8hR5dy-HdJr5yW_j6hwkoPWhu8wxTcO4gglRABfDOlcz2xPOuT150DNrMaysMguHZ3BHjOIHkMksdkBsjTJ69achjXIKdjA4_CVBGUlusLXqwWtHf659Stlr6m0R5z84fX--TpahjkHimQl356BnOE5AgWqGHOvZodVvdKRMIlnEGfqA6jdLbdHSlPvlXY4hzBk1K45suWpc491t-38OD_W3hCroCgmk97o_2H5Cr4mxzTbWKxRXqL0zP_CHy6hX3cCA8lx5ctr78BnKxhrw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+liposomes+for+colorectal+cancer+cells+therapy+by+high-frequency+magnetic+field+treatment&rft.jtitle=Nanoscale+research+letters&rft.date=2014-09-15&rft.pub=Springer+Nature+B.V&rft.issn=1931-7573&rft.eissn=1556-276X&rft.volume=9&rft.issue=1&rft.spage=497&rft_id=info:doi/10.1186%2F1556-276X-9-497&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3586099311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-276X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-276X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-276X&client=summon