Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system
In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide (CuO), and multi-walled carbon nanotube (MWNT) are investigated using both physical mixing method (two-step method) and chemical reduction method (on...
Saved in:
Published in | Nanoscale research letters Vol. 6; no. 1; p. 297 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer New York
05.04.2011
Springer Nature B.V BioMed Central Ltd Springer SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1556-276X 1931-7573 1556-276X |
DOI | 10.1186/1556-276X-6-297 |
Cover
Loading…
Abstract | In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide (CuO), and multi-walled carbon nanotube (MWNT) are investigated using both physical mixing method (two-step method) and chemical reduction method (one-step method). The chemical reduction method is, however, used only for nanofluid containing Cu nanoparticle in water. The thermal conductivities of the nanofluids are measured by a modified transient hot wire method. Experimental results show that nanofluids with low concentration of Cu, CuO, or carbon nanotube (CNT) have considerably higher thermal conductivity than identical base liquids. For CuO-ethylene glycol suspensions at 5 vol.%, MWNT-ethylene glycol at 1 vol.%, MWNT-water at 1.5 vol.%, and MWNT-synthetic engine oil at 2 vol.%, thermal conductivity is enhanced by 22.4, 12.4, 17, and 30%, respectively. For Cu-water at 0.1 vol.%, thermal conductivity is increased by 23.8%. The thermal conductivity improvement for CuO and CNT nanofluids is approximately linear with the volume fraction. On the other hand, a strong dependence of thermal conductivity on the measured time is observed for Cu-water nanofluid. The system performance of a 10-RT water chiller (air conditioner) subject to MWNT/water nanofluid is experimentally investigated. The system is tested at the standard water chiller rating condition in the range of the flow rate from 60 to 140 L/min. In spite of the static measurement of thermal conductivity of nanofluid shows only 1.3% increase at room temperature relative to the base fluid at volume fraction of 0.001 (0.1 vol.%), it is observed that a 4.2% increase of cooling capacity and a small decrease of power consumption about 0.8% occur for the nanofluid system at a flow rate of 100 L/min. This result clearly indicates that the enhancement of cooling capacity is not just related to thermal conductivity alone. Dynamic effect, such as nanoparticle dispersion may effectively augment the system performance. It is also found that the dynamic dispersion is comparatively effective at lower flow rate regime, e.g., transition or laminar flow and becomes less effective at higher flow rate regime. Test results show that the coefficient of performance of the water chiller is increased by 5.15% relative to that without nanofluid. |
---|---|
AbstractList | In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide (CuO), and multi-walled carbon nanotube (MWNT) are investigated using both physical mixing method (two-step method) and chemical reduction method (one-step method). The chemical reduction method is, however, used only for nanofluid containing Cu nanoparticle in water. The thermal conductivities of the nanofluids are measured by a modified transient hot wire method. Experimental results show that nanofluids with low concentration of Cu, CuO, or carbon nanotube (CNT) have considerably higher thermal conductivity than identical base liquids. For CuO-ethylene glycol suspensions at 5 vol.%, MWNT-ethylene glycol at 1 vol.%, MWNT-water at 1.5 vol.%, and MWNT-synthetic engine oil at 2 vol.%, thermal conductivity is enhanced by 22.4, 12.4, 17, and 30%, respectively. For Cu-water at 0.1 vol.%, thermal conductivity is increased by 23.8%. The thermal conductivity improvement for CuO and CNT nanofluids is approximately linear with the volume fraction. On the other hand, a strong dependence of thermal conductivity on the measured time is observed for Cu-water nanofluid. The system performance of a 10-RT water chiller (air conditioner) subject to MWNT/water nanofluid is experimentally investigated. The system is tested at the standard water chiller rating condition in the range of the flow rate from 60 to 140 L/min. In spite of the static measurement of thermal conductivity of nanofluid shows only 1.3% increase at room temperature relative to the base fluid at volume fraction of 0.001 (0.1 vol.%), it is observed that a 4.2% increase of cooling capacity and a small decrease of power consumption about 0.8% occur for the nanofluid system at a flow rate of 100 L/min. This result clearly indicates that the enhancement of cooling capacity is not just related to thermal conductivity alone. Dynamic effect, such as nanoparticle dispersion may effectively augment the system performance. It is also found that the dynamic dispersion is comparatively effective at lower flow rate regime, e.g., transition or laminar flow and becomes less effective at higher flow rate regime. Test results show that the coefficient of performance of the water chiller is increased by 5.15% relative to that without nanofluid. Abstract In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide (CuO), and multi-walled carbon nanotube (MWNT) are investigated using both physical mixing method (two-step method) and chemical reduction method (one-step method). The chemical reduction method is, however, used only for nanofluid containing Cu nanoparticle in water. The thermal conductivities of the nanofluids are measured by a modified transient hot wire method. Experimental results show that nanofluids with low concentration of Cu, CuO, or carbon nanotube (CNT) have considerably higher thermal conductivity than identical base liquids. For CuO-ethylene glycol suspensions at 5 vol.%, MWNT-ethylene glycol at 1 vol.%, MWNT-water at 1.5 vol.%, and MWNT-synthetic engine oil at 2 vol.%, thermal conductivity is enhanced by 22.4, 12.4, 17, and 30%, respectively. For Cu-water at 0.1 vol.%, thermal conductivity is increased by 23.8%. The thermal conductivity improvement for CuO and CNT nanofluids is approximately linear with the volume fraction. On the other hand, a strong dependence of thermal conductivity on the measured time is observed for Cu-water nanofluid. The system performance of a 10-RT water chiller (air conditioner) subject to MWNT/water nanofluid is experimentally investigated. The system is tested at the standard water chiller rating condition in the range of the flow rate from 60 to 140 L/min. In spite of the static measurement of thermal conductivity of nanofluid shows only 1.3% increase at room temperature relative to the base fluid at volume fraction of 0.001 (0.1 vol.%), it is observed that a 4.2% increase of cooling capacity and a small decrease of power consumption about 0.8% occur for the nanofluid system at a flow rate of 100 L/min. This result clearly indicates that the enhancement of cooling capacity is not just related to thermal conductivity alone. Dynamic effect, such as nanoparticle dispersion may effectively augment the system performance. It is also found that the dynamic dispersion is comparatively effective at lower flow rate regime, e.g., transition or laminar flow and becomes less effective at higher flow rate regime. Test results show that the coefficient of performance of the water chiller is increased by 5.15% relative to that without nanofluid. In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide (CuO), and multi-walled carbon nanotube (MWNT) are investigated using both physical mixing method (two-step method) and chemical reduction method (one-step method). The chemical reduction method is, however, used only for nanofluid containing Cu nanoparticle in water. The thermal conductivities of the nanofluids are measured by a modified transient hot wire method. Experimental results show that nanofluids with low concentration of Cu, CuO, or carbon nanotube (CNT) have considerably higher thermal conductivity than identical base liquids. For CuO-ethylene glycol suspensions at 5 vol.%, MWNT-ethylene glycol at 1 vol.%, MWNT-water at 1.5 vol.%, and MWNT-synthetic engine oil at 2 vol.%, thermal conductivity is enhanced by 22.4, 12.4, 17, and 30%, respectively. For Cu-water at 0.1 vol.%, thermal conductivity is increased by 23.8%. The thermal conductivity improvement for CuO and CNT nanofluids is approximately linear with the volume fraction. On the other hand, a strong dependence of thermal conductivity on the measured time is observed for Cu-water nanofluid. The system performance of a 10-RT water chiller (air conditioner) subject to MWNT/water nanofluid is experimentally investigated. The system is tested at the standard water chiller rating condition in the range of the flow rate from 60 to 140 L/min. In spite of the static measurement of thermal conductivity of nanofluid shows only 1.3% increase at room temperature relative to the base fluid at volume fraction of 0.001 (0.1 vol.%), it is observed that a 4.2% increase of cooling capacity and a small decrease of power consumption about 0.8% occur for the nanofluid system at a flow rate of 100 L/min. This result clearly indicates that the enhancement of cooling capacity is not just related to thermal conductivity alone. Dynamic effect, such as nanoparticle dispersion may effectively augment the system performance. It is also found that the dynamic dispersion is comparatively effective at lower flow rate regime, e.g., transition or laminar flow and becomes less effective at higher flow rate regime. Test results show that the coefficient of performance of the water chiller is increased by 5.15% relative to that without nanofluid. In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide (CuO), and multi-walled carbon nanotube (MWNT) are investigated using both physical mixing method (two-step method) and chemical reduction method (one-step method). The chemical reduction method is, however, used only for nanofluid containing Cu nanoparticle in water. The thermal conductivities of the nanofluids are measured by a modified transient hot wire method. Experimental results show that nanofluids with low concentration of Cu, CuO, or carbon nanotube (CNT) have considerably higher thermal conductivity than identical base liquids. For CuO-ethylene glycol suspensions at 5 vol.%, MWNT-ethylene glycol at 1 vol.%, MWNT-water at 1.5 vol.%, and MWNT-synthetic engine oil at 2 vol.%, thermal conductivity is enhanced by 22.4, 12.4, 17, and 30%, respectively. For Cu-water at 0.1 vol.%, thermal conductivity is increased by 23.8%. The thermal conductivity improvement for CuO and CNT nanofluids is approximately linear with the volume fraction. On the other hand, a strong dependence of thermal conductivity on the measured time is observed for Cu-water nanofluid. The system performance of a 10-RT water chiller (air conditioner) subject to MWNT/water nanofluid is experimentally investigated. The system is tested at the standard water chiller rating condition in the range of the flow rate from 60 to 140 L/min. In spite of the static measurement of thermal conductivity of nanofluid shows only 1.3% increase at room temperature relative to the base fluid at volume fraction of 0.001 (0.1 vol.%), it is observed that a 4.2% increase of cooling capacity and a small decrease of power consumption about 0.8% occur for the nanofluid system at a flow rate of 100 L/min. This result clearly indicates that the enhancement of cooling capacity is not just related to thermal conductivity alone. Dynamic effect, such as nanoparticle dispersion may effectively augment the system performance. It is also found that the dynamic dispersion is comparatively effective at lower flow rate regime, e.g., transition or laminar flow and becomes less effective at higher flow rate regime. Test results show that the coefficient of performance of the water chiller is increased by 5.15% relative to that without nanofluid. |
ArticleNumber | 297 |
Author | Wang, ChiChuan Liu, MinSheng Lin, Mark ChingCheng |
AuthorAffiliation | 3 Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan 1 Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan 2 Material & Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan |
AuthorAffiliation_xml | – name: 3 Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan – name: 1 Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan – name: 2 Material & Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan |
Author_xml | – sequence: 1 givenname: MinSheng surname: Liu fullname: Liu, MinSheng organization: Green Energy & Environment Research Laboratories, Industrial Technology Research Institute – sequence: 2 givenname: Mark ChingCheng surname: Lin fullname: Lin, Mark ChingCheng organization: Material & Chemical Research Laboratories, Industrial Technology Research Institute – sequence: 3 givenname: ChiChuan surname: Wang fullname: Wang, ChiChuan email: ccwang@mail.nctu.edu.tw organization: Department of Mechanical Engineering, National Chiao Tung University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21711787$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNURD_gzA1F4sCly8ZO7DgXJFi1pVKhlyK4WeOP7HqV2IvttOoP4f_i3ZRlt6IcrBnPvPN4bM9xdmCd1Vn2GhXvEWJ0igihE1zTH5NkmvpZdrSNHOz4h9lxCMuiqOqipi-yQ4xqhGpWH2W_zuwCrNS9tjHkrs3jQvseulw6qwYZza2JRof8zsRFPhtO07o-zcGqXIIXzuYWrIuD0Bun7QajwiYNq1VnJESTNAn75fvXm-kdRO3_CvOUgnwMyoXpumTDfYi6f5k9b6EL-tWDPcm-nZ_dzD5Prq4vLmcfryaCMBonrCqIohJoiRpSUZp83ZQYCYUEkZilDa1pgUWFmlJDKbTAhLC2pES1ukHlSXY5cpWDJV9504O_5w4M3wScn3Pw0chOc2Caagw1VQmHcQWF0gIaJpSSwCqcWB9G1moQvVYyPaiHbg-6n7FmwefulqeGUUnLBPg0AoRxTwD2M9L1fP3FfP3FPJmmTpB3D11493PQIfLeBKm7Dqx2Q-CsrnDDyrJKyrePlEs3eJuem6fpwCVpKsKS6s3urbbd_JmgJJiOAuldCF63Wwkq-HpG_9EieVQhTdwMSrqV6f5TV4x1IZ1g59rvNPxEyW_9-_zl |
CitedBy_id | crossref_primary_10_1007_s10765_024_03488_z crossref_primary_10_1016_j_colsurfa_2021_126720 crossref_primary_10_1115_1_4025502 crossref_primary_10_1002_adma_202205098 crossref_primary_10_1016_j_rser_2021_111573 crossref_primary_10_1002_mma_6481 crossref_primary_10_1080_00295450_2022_2053927 crossref_primary_10_1007_s11356_024_32556_y crossref_primary_10_1115_1_4053930 crossref_primary_10_1016_j_colsurfa_2017_10_085 crossref_primary_10_1016_j_matchemphys_2020_123102 crossref_primary_10_1088_1742_6596_1569_3_032038 crossref_primary_10_1016_j_tsep_2022_101276 crossref_primary_10_1007_s11661_015_3295_4 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121149 crossref_primary_10_1016_j_jallcom_2021_160513 crossref_primary_10_1021_acs_jpcc_7b10020 crossref_primary_10_1016_j_carbon_2018_11_060 crossref_primary_10_1016_j_icheatmasstransfer_2015_05_002 crossref_primary_10_1016_j_applthermaleng_2023_120449 crossref_primary_10_3390_nano12061033 crossref_primary_10_1002_nme_4510 crossref_primary_10_1016_j_apt_2018_10_001 crossref_primary_10_1016_j_physa_2019_122159 crossref_primary_10_1016_j_renene_2020_08_119 crossref_primary_10_1016_j_icheatmasstransfer_2015_09_001 crossref_primary_10_3390_en14123550 crossref_primary_10_1016_j_polymertesting_2021_107231 crossref_primary_10_1111_jace_17445 crossref_primary_10_1002_bkcs_11410 crossref_primary_10_1002_zamm_202300573 crossref_primary_10_1007_s10973_019_08838_w crossref_primary_10_3390_nano12203628 crossref_primary_10_1039_C8FD00236C crossref_primary_10_1016_j_surfcoat_2023_129465 crossref_primary_10_1016_j_jcrysgro_2022_127063 crossref_primary_10_1016_j_ijft_2021_100065 crossref_primary_10_1016_j_jics_2021_100037 crossref_primary_10_1002_adem_202100403 crossref_primary_10_1016_j_applthermaleng_2023_121375 crossref_primary_10_1080_08916152_2025_2449956 crossref_primary_10_1002_adem_202301165 crossref_primary_10_1016_j_microrel_2016_06_016 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120391 crossref_primary_10_1088_1402_4896_acf4cf crossref_primary_10_1108_ILT_08_2016_0176 crossref_primary_10_1016_j_ijthermalsci_2014_04_019 crossref_primary_10_1007_s13204_021_01791_x crossref_primary_10_3390_catal10010034 crossref_primary_10_1021_jp401271c crossref_primary_10_1080_00986445_2013_782291 crossref_primary_10_3390_pr12040834 crossref_primary_10_1016_j_ijthermalsci_2013_11_017 crossref_primary_10_1007_s10891_021_02401_x crossref_primary_10_1002_adts_202301221 crossref_primary_10_1007_s10973_016_5548_x crossref_primary_10_1016_j_tca_2018_06_008 crossref_primary_10_1016_j_rser_2014_05_017 crossref_primary_10_1016_j_jallcom_2021_158783 crossref_primary_10_1016_j_applthermaleng_2016_09_024 crossref_primary_10_1016_j_molliq_2017_02_015 crossref_primary_10_1088_1742_6596_953_1_012058 crossref_primary_10_1109_TMTT_2018_2804980 crossref_primary_10_1016_j_jtice_2018_06_003 crossref_primary_10_1016_j_mtadv_2023_100412 crossref_primary_10_1063_5_0078037 crossref_primary_10_3740_MRSK_2017_27_4_221 crossref_primary_10_1016_j_applthermaleng_2023_121757 crossref_primary_10_1016_j_polymertesting_2020_106744 crossref_primary_10_1080_08916152_2021_1919243 crossref_primary_10_1016_j_molliq_2019_111780 crossref_primary_10_1038_srep04039 crossref_primary_10_1177_1687814016673569 crossref_primary_10_1016_j_cplett_2013_01_044 crossref_primary_10_1016_j_rser_2017_05_192 crossref_primary_10_3390_nano11061628 crossref_primary_10_1088_1742_6596_953_1_012063 crossref_primary_10_1002_cctc_202201610 crossref_primary_10_1007_s11172_022_3630_z crossref_primary_10_1016_j_applthermaleng_2016_07_026 crossref_primary_10_1080_01457632_2014_935214 crossref_primary_10_1021_acsnano_1c02932 crossref_primary_10_1016_j_cis_2021_102452 crossref_primary_10_1016_j_molliq_2019_02_102 crossref_primary_10_1016_j_molliq_2020_113476 crossref_primary_10_1016_j_molliq_2023_122104 crossref_primary_10_1080_10407782_2022_2083862 crossref_primary_10_1007_s00231_023_03345_z crossref_primary_10_1016_j_powtec_2017_04_061 crossref_primary_10_1016_j_powtec_2023_118508 crossref_primary_10_1007_s10973_018_7986_0 crossref_primary_10_3934_energy_2019_4_527 crossref_primary_10_1115_1_4034936 crossref_primary_10_1016_j_icheatmasstransfer_2015_08_015 crossref_primary_10_1016_j_jics_2022_100461 crossref_primary_10_1016_j_physe_2023_115830 crossref_primary_10_3390_en16093768 crossref_primary_10_1002_htj_22498 crossref_primary_10_1016_j_applthermaleng_2021_117627 crossref_primary_10_1016_j_jcrysgro_2018_10_010 crossref_primary_10_3390_nano10102004 crossref_primary_10_1016_j_physe_2016_08_020 crossref_primary_10_1016_j_apenergy_2016_11_017 crossref_primary_10_1016_j_ijmecsci_2017_02_020 crossref_primary_10_1016_j_inoche_2025_114141 crossref_primary_10_1007_s10973_015_5104_0 crossref_primary_10_1016_j_apsusc_2020_145325 crossref_primary_10_1088_2631_8695_ab9716 crossref_primary_10_1049_mnl_2017_0029 crossref_primary_10_1016_j_ijrefrig_2022_09_022 crossref_primary_10_1016_j_applthermaleng_2016_10_008 crossref_primary_10_1007_s40789_023_00573_w crossref_primary_10_1016_j_apsusc_2019_03_306 crossref_primary_10_1016_j_powtec_2017_12_046 crossref_primary_10_1016_j_jclepro_2020_120408 crossref_primary_10_1016_j_egyr_2022_02_087 crossref_primary_10_1016_j_rser_2015_10_042 crossref_primary_10_1016_j_csite_2024_105315 crossref_primary_10_1016_j_icheatmasstransfer_2016_12_010 crossref_primary_10_1016_j_icheatmasstransfer_2022_106114 crossref_primary_10_1002_htj_21829 crossref_primary_10_1016_j_microrel_2021_114407 crossref_primary_10_1021_acsaem_1c01230 crossref_primary_10_1007_s00231_013_1226_8 crossref_primary_10_1016_j_applthermaleng_2019_114398 crossref_primary_10_1039_C7RA10406E crossref_primary_10_4028_p_gdl41l crossref_primary_10_3390_ma14237224 crossref_primary_10_1063_1_4768454 crossref_primary_10_1002_masy_201700011 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121367 crossref_primary_10_1016_j_cep_2023_109477 crossref_primary_10_1021_jp3059432 crossref_primary_10_1007_s11664_019_07753_y crossref_primary_10_1007_s13204_012_0078_8 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123796 crossref_primary_10_1016_j_rser_2016_03_027 crossref_primary_10_1016_j_plana_2024_100070 crossref_primary_10_1007_s11082_023_04892_9 crossref_primary_10_1016_j_expthermflusci_2017_02_018 crossref_primary_10_1016_j_matchemphys_2021_125525 crossref_primary_10_1016_j_jtice_2015_03_037 crossref_primary_10_3390_app13064070 crossref_primary_10_3390_polym7071221 crossref_primary_10_1080_15567036_2024_2402440 crossref_primary_10_1016_j_icheatmasstransfer_2017_03_001 crossref_primary_10_1007_s00339_014_8902_5 crossref_primary_10_1016_j_rser_2017_10_064 crossref_primary_10_1021_acssuschemeng_9b01814 crossref_primary_10_1515_meceng_2017_0007 crossref_primary_10_1016_j_icheatmasstransfer_2014_07_003 crossref_primary_10_1016_j_matpr_2021_02_660 crossref_primary_10_1039_D1MA00927C crossref_primary_10_1088_1742_6596_1450_1_012087 crossref_primary_10_1007_s11277_024_11568_4 crossref_primary_10_1016_j_nanoen_2021_105871 crossref_primary_10_1039_c3ta14550f crossref_primary_10_4028_www_scientific_net_AMM_548_549_118 |
Cites_doi | 10.1016/j.ijheatfluidflow.2006.04.006 10.1016/j.rser.2010.03.017 10.1063/1.1613374 10.1016/j.powtec.2009.09.016 10.1016/j.icheatmasstransfer.2005.05.005 10.1016/j.carbon.2007.01.001 10.1016/j.expthermflusci.2006.06.009 10.1016/j.powtec.2009.07.025 10.1016/j.ijheatmasstransfer.2006.02.012 10.1016/j.ijheatmasstransfer.2008.06.032 10.1002/ceat.200500184 10.1016/j.icheatmasstransfer.2009.10.004 10.1016/j.ces.2009.04.004 10.2174/157341310797574989 10.1080/01457630701850851 10.1103/PhysRevLett.93.144301 10.1063/1.1756684 10.1016/S0142-727X(99)00067-3 10.1115/1.2825978 10.1063/1.1408272 10.1007/s11671-010-9638-6 10.1016/j.ijheatmasstransfer.2005.07.009 10.1007/s10404-009-0524-4 10.1016/j.ijthermalsci.2008.11.012 10.1080/01457630701850778 10.1063/1.2834370 10.1155/2010/172085 |
ContentType | Journal Article |
Copyright | Liu et al; licensee Springer. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Author(s) 2011 Copyright ©2011 Liu et al; licensee Springer. 2011 Liu et al; licensee Springer. |
Copyright_xml | – notice: Liu et al; licensee Springer. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: The Author(s) 2011 – notice: Copyright ©2011 Liu et al; licensee Springer. 2011 Liu et al; licensee Springer. |
DBID | C6C AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.1186/1556-276X-6-297 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1556-276X |
EndPage | 297 |
ExternalDocumentID | oai_doaj_org_article_a8e6e2a76d2b4224a0deba98bddca842 PMC3211363 oai_biomedcentral_com_1556_276X_6_297 3807174671 21711787 10_1186_1556_276X_6_297 |
Genre | Journal Article |
GroupedDBID | -A0 .4S .86 .DC 0R~ 123 29M 2VQ 2WC 4.4 40G 5VS 6NX 8FE 8FG 8FH AAFWJ ABJCF ABMNI ACGFO ACGFS ACIWK ACPRK ADBBV ADINQ ADRAZ AEGXH AENEX AEUYN AFGCZ AFKRA AFPKN AFRAH AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARCSS BAPOH BBNVY BCNDV BENPR BGLVJ BGNMA BHPHI C1A C24 C6C CAG CCPQU COF CS3 D1I DU5 EBS EDO EJD F5P GROUPED_DOAJ GX1 H13 HCIFZ HH5 HYE HZ~ I09 IPNFZ IZQ KB. KDC KQ8 LK8 M48 M4Y M7P MM. M~E NU0 O5R O5S O9- OK1 P2P PDBOC PGMZT PIMPY PROAC RIG RNS RPM RPX RSV SCM SDH SOJ TR2 TSK TUS U2A ~KM AAYXX CITATION OVT PHGZM PHGZT NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 PUEGO AAJSJ AAKKN AAYZJ ACACY AFGXO AHBXF 5PM |
ID | FETCH-LOGICAL-b586t-8405d6ca63195466d6ce9321bd1b5c28e9367602b4193ea3beb2558f365dfe913 |
IEDL.DBID | M48 |
ISSN | 1556-276X 1931-7573 |
IngestDate | Wed Aug 27 01:28:11 EDT 2025 Thu Aug 21 14:01:44 EDT 2025 Wed May 22 07:17:11 EDT 2024 Fri Sep 05 04:25:55 EDT 2025 Fri Jul 25 11:07:13 EDT 2025 Thu Apr 03 07:07:53 EDT 2025 Tue Jul 01 03:54:04 EDT 2025 Thu Apr 24 23:04:34 EDT 2025 Fri Feb 21 02:34:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Thermal Conductivity Ratio Base Fluid Heat Transfer Performance Thermal Conductivity Enhancement Cooling Capacity |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b586t-8405d6ca63195466d6ce9321bd1b5c28e9367602b4193ea3beb2558f365dfe913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1556-276X-6-297 |
PMID | 21711787 |
PQID | 1712359458 |
PQPubID | 2034687 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a8e6e2a76d2b4224a0deba98bddca842 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3211363 biomedcentral_primary_oai_biomedcentral_com_1556_276X_6_297 proquest_miscellaneous_874298334 proquest_journals_1712359458 pubmed_primary_21711787 crossref_primary_10_1186_1556_276X_6_297 crossref_citationtrail_10_1186_1556_276X_6_297 springer_journals_10_1186_1556_276X_6_297 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20110405 |
PublicationDateYYYYMMDD | 2011-04-05 |
PublicationDate_xml | – month: 4 year: 2011 text: 20110405 day: 5 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Heidelberg |
PublicationTitle | Nanoscale research letters |
PublicationTitleAbbrev | Nanoscale Res Lett |
PublicationTitleAlternate | Nanoscale Res Lett |
PublicationYear | 2011 |
Publisher | Springer New York Springer Nature B.V BioMed Central Ltd Springer SpringerOpen |
Publisher_xml | – name: Springer New York – name: Springer Nature B.V – name: BioMed Central Ltd – name: Springer – name: SpringerOpen |
References | Li, Zhou, Tung, Eric, Xi (CR5) 2009; 196 Ding, Alias, Wen, Williams (CR24) 2006; 49 Wensel, Wright, Thomas, Douglas, Mannhalter, Cross, Hong, Kellar, Smith, Roy (CR27) 2008; 92 Xuan, Li (CR14) 2000; 21 Wang, Fan (CR18) 2010; 5 Liu, Lin, Huang, Wang (CR6) 2006; 29 Liu, Lin, Huang, Wang (CR7) 2005; 32 Jiang, Wang (CR16) 2010; 6 Meibodi, Vafaie-Sefti, Rashidi, Amrollahi, Tabasi, Kalal (CR19) 2010; 37 Behzadmehr, Saffar-Avval, Galanis (CR26) 2007; 28 Xie, Lee, Youn, Choi (CR12) 2003; 94 Yu, Xie, Chen, Li (CR15) 2010; 197 Jiang, Ding, Peng (CR20) 2009; 48 Zhou, Wang, Peng, Du, Yang (CR23) 2010; 2010 Choi (CR2) 2008; 29 Hwang, Jang, Choi (CR4) 2009; 52 Liu, Lin, Liaw, Hu, Wang (CR10) 2009; 115 Pantzali, Mouza, Paras (CR21) 2009; 64 Lee, Choi, Li, Eastman (CR11) 1999; 121 Kumar, Patel, Kumar, Sundararajan, Pradeep, Das (CR17) 2004; 93 Jang, Choi (CR29) 2004; 84 Liu, Lin, Tsai, Wang (CR8) 2006; 49 Choi, Zhang, Yu, Lockwood, Grulke (CR13) 2001; 79 Paul, Chopkar, Manna, Das (CR9) 2010; 14 Zhang, Gu, Fujii (CR25) 2007; 31 Ozerinc, Kakac, Yazicioglu (CR22) 2010; 8 Choi, Siginer, Wang (CR1) 1995 Yu, France, Routbort, Choi (CR3) 2008; 29 Lu, Fei, Xin, Wang, Li, Guan (CR28) 2007; 45 YJ Li (211_CR5) 2009; 196 Y Xuan (211_CR14) 2000; 21 ME Meibodi (211_CR19) 2010; 37 LP Zhou (211_CR23) 2010; 2010 SUS Choi (211_CR2) 2008; 29 A Behzadmehr (211_CR26) 2007; 28 LQ Wang (211_CR18) 2010; 5 W Yu (211_CR3) 2008; 29 MS Liu (211_CR8) 2006; 49 MN Pantzali (211_CR21) 2009; 64 MS Liu (211_CR6) 2006; 29 Y Ding (211_CR24) 2006; 49 MS Liu (211_CR10) 2009; 115 WT Jiang (211_CR20) 2009; 48 SUS Choi (211_CR1) 1995 S Lee (211_CR11) 1999; 121 J Wensel (211_CR27) 2008; 92 W Jiang (211_CR16) 2010; 6 DH Kumar (211_CR17) 2004; 93 MS Liu (211_CR7) 2005; 32 G Paul (211_CR9) 2010; 14 W Yu (211_CR15) 2010; 197 SP Jang (211_CR29) 2004; 84 S Ozerinc (211_CR22) 2010; 8 HF Lu (211_CR28) 2007; 45 SUS Choi (211_CR13) 2001; 79 KS Hwang (211_CR4) 2009; 52 HQ Xie (211_CR12) 2003; 94 X Zhang (211_CR25) 2007; 31 15524799 - Phys Rev Lett. 2004 Oct 1;93(14):144301 20676214 - Nanoscale Res Lett. 2010 May 22;5(8):1241-52 |
References_xml | – volume: 28 start-page: 211 year: 2007 ident: CR26 article-title: Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2006.04.006 – volume: 14 start-page: 1913 year: 2010 ident: CR9 article-title: Techniques for measuring the thermal conductivity of nanofluids: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2010.03.017 – volume: 115 start-page: 581 year: 2009 ident: CR10 article-title: Performance augmentation of a water chiller system using nanofluids publication-title: ASHRAE Trans – volume: 94 start-page: 4967 year: 2003 ident: CR12 article-title: Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities publication-title: J Appl Phys doi: 10.1063/1.1613374 – volume: 197 start-page: 218 year: 2010 ident: CR15 article-title: Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles publication-title: Powder Technol doi: 10.1016/j.powtec.2009.09.016 – volume: 32 start-page: 1202 year: 2005 ident: CR7 article-title: Enhancement of thermal conductivity with carbon nanotube for nanofluids publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2005.05.005 – volume: 45 start-page: 936 year: 2007 ident: CR28 article-title: Synthesis and lubricating performance of a carbon nanotube seeded miniemulsion publication-title: Carbon doi: 10.1016/j.carbon.2007.01.001 – volume: 31 start-page: 593 year: 2007 ident: CR25 article-title: Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2006.06.009 – volume: 196 start-page: 89 year: 2009 ident: CR5 article-title: A review on development of nanofluid preparation and characterization publication-title: Powder Technol doi: 10.1016/j.powtec.2009.07.025 – volume: 49 start-page: 3028 year: 2006 ident: CR8 article-title: Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2006.02.012 – start-page: 99 year: 1995 ident: CR1 article-title: Enhancing thermal conductivity of fluids with nanoparticles publication-title: Developments and Applications of Non-Newtonian Flows. FED-vol. 231/MD-vol. 66 – volume: 52 start-page: 193 year: 2009 ident: CR4 article-title: Flow and convective heat transfer characteristics of water-based Al O nanofluids in fully developed laminar flow regime publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2008.06.032 – volume: 29 start-page: 72 year: 2006 ident: CR6 article-title: Enhancement of thermal conductivity with CuO for nanofluids publication-title: Chem Eng Technol doi: 10.1002/ceat.200500184 – volume: 37 start-page: 319 year: 2010 ident: CR19 article-title: The role of different parameters on the stability and thermal conductivity of carbon nanotube/water nanofluids publication-title: Int J Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2009.10.004 – volume: 64 start-page: 3290 year: 2009 ident: CR21 article-title: Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE) publication-title: Chem Eng Sci doi: 10.1016/j.ces.2009.04.004 – volume: 6 start-page: 512 year: 2010 ident: CR16 article-title: Copper nanofluids: synthesis and thermal conductivity publication-title: Curr Nanosci doi: 10.2174/157341310797574989 – volume: 29 start-page: 432 year: 2008 ident: CR3 article-title: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements publication-title: Heat Transf Eng doi: 10.1080/01457630701850851 – volume: 93 start-page: 144301 year: 2004 ident: CR17 article-title: Model for heat conduction in nanofluids publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.93.144301 – volume: 84 start-page: 4316 year: 2004 ident: CR29 article-title: Role of Brownian motion in the enhanced thermal conductivity of nanofluids publication-title: Appl Phys Lett doi: 10.1063/1.1756684 – volume: 21 start-page: 58 year: 2000 ident: CR14 article-title: Heat transfer enhancement of nanofluids publication-title: Int J Heat Fluid Flow doi: 10.1016/S0142-727X(99)00067-3 – volume: 121 start-page: 280 year: 1999 ident: CR11 article-title: Measuring thermal conductivity of fluids containing oxide nanoparticles publication-title: J Heat Transf doi: 10.1115/1.2825978 – volume: 79 start-page: 2252 year: 2001 ident: CR13 article-title: Anomalous thermal conductivity enhancement in nanotube suspensions publication-title: Appl Phys Lett doi: 10.1063/1.1408272 – volume: 5 start-page: 1241 year: 2010 ident: CR18 article-title: Nanofluids research: key issues publication-title: Nanoscale Res Lett doi: 10.1007/s11671-010-9638-6 – volume: 49 start-page: 240 year: 2006 ident: CR24 article-title: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2005.07.009 – volume: 8 start-page: 145 year: 2010 ident: CR22 article-title: Enhanced thermal conductivity of nanofluids: a state-of-the-art review publication-title: Microfluid Nanofluid doi: 10.1007/s10404-009-0524-4 – volume: 2010 start-page: 172085 year: 2010 ident: CR23 article-title: On the specific heat capacity of CuO nanofluid publication-title: Adv Mech Eng – volume: 48 start-page: 1108 year: 2009 ident: CR20 article-title: Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2008.11.012 – volume: 29 start-page: 429 year: 2008 ident: CR2 article-title: Nanofluids: a new fluid of scientific research and innovative applications publication-title: Heat Transf Eng doi: 10.1080/01457630701850778 – volume: 92 start-page: 023110 year: 2008 ident: CR27 article-title: Enhanced thermal conductivity by aggregation in heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes publication-title: Appl Phys Lett doi: 10.1063/1.2834370 – volume: 79 start-page: 2252 year: 2001 ident: 211_CR13 publication-title: Appl Phys Lett doi: 10.1063/1.1408272 – volume: 31 start-page: 593 year: 2007 ident: 211_CR25 publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2006.06.009 – volume: 32 start-page: 1202 year: 2005 ident: 211_CR7 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2005.05.005 – volume: 84 start-page: 4316 year: 2004 ident: 211_CR29 publication-title: Appl Phys Lett doi: 10.1063/1.1756684 – volume: 94 start-page: 4967 year: 2003 ident: 211_CR12 publication-title: J Appl Phys doi: 10.1063/1.1613374 – volume: 29 start-page: 432 year: 2008 ident: 211_CR3 publication-title: Heat Transf Eng doi: 10.1080/01457630701850851 – volume: 197 start-page: 218 year: 2010 ident: 211_CR15 publication-title: Powder Technol doi: 10.1016/j.powtec.2009.09.016 – volume: 92 start-page: 023110 year: 2008 ident: 211_CR27 publication-title: Appl Phys Lett doi: 10.1063/1.2834370 – volume: 21 start-page: 58 year: 2000 ident: 211_CR14 publication-title: Int J Heat Fluid Flow doi: 10.1016/S0142-727X(99)00067-3 – start-page: 99 volume-title: Developments and Applications of Non-Newtonian Flows. FED-vol. 231/MD-vol. 66 year: 1995 ident: 211_CR1 – volume: 48 start-page: 1108 year: 2009 ident: 211_CR20 publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2008.11.012 – volume: 8 start-page: 145 year: 2010 ident: 211_CR22 publication-title: Microfluid Nanofluid doi: 10.1007/s10404-009-0524-4 – volume: 37 start-page: 319 year: 2010 ident: 211_CR19 publication-title: Int J Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2009.10.004 – volume: 14 start-page: 1913 year: 2010 ident: 211_CR9 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2010.03.017 – volume: 5 start-page: 1241 year: 2010 ident: 211_CR18 publication-title: Nanoscale Research Letters doi: 10.1007/s11671-010-9638-6 – volume: 49 start-page: 240 year: 2006 ident: 211_CR24 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2005.07.009 – volume: 196 start-page: 89 year: 2009 ident: 211_CR5 publication-title: Powder Technol doi: 10.1016/j.powtec.2009.07.025 – volume: 28 start-page: 211 year: 2007 ident: 211_CR26 publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2006.04.006 – volume: 52 start-page: 193 year: 2009 ident: 211_CR4 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2008.06.032 – volume: 115 start-page: 581 year: 2009 ident: 211_CR10 publication-title: ASHRAE Trans – volume: 93 start-page: 144301 year: 2004 ident: 211_CR17 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.93.144301 – volume: 29 start-page: 72 year: 2006 ident: 211_CR6 publication-title: Chem Eng Technol doi: 10.1002/ceat.200500184 – volume: 49 start-page: 3028 year: 2006 ident: 211_CR8 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2006.02.012 – volume: 45 start-page: 936 year: 2007 ident: 211_CR28 publication-title: Carbon doi: 10.1016/j.carbon.2007.01.001 – volume: 121 start-page: 280 year: 1999 ident: 211_CR11 publication-title: J Heat Transf doi: 10.1115/1.2825978 – volume: 6 start-page: 512 year: 2010 ident: 211_CR16 publication-title: Curr Nanosci doi: 10.2174/157341310797574989 – volume: 64 start-page: 3290 year: 2009 ident: 211_CR21 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2009.04.004 – volume: 29 start-page: 429 year: 2008 ident: 211_CR2 publication-title: Heat Transf Eng doi: 10.1080/01457630701850778 – volume: 2010 start-page: 172085 year: 2010 ident: 211_CR23 publication-title: Adv Mech Eng doi: 10.1155/2010/172085 – reference: 20676214 - Nanoscale Res Lett. 2010 May 22;5(8):1241-52 – reference: 15524799 - Phys Rev Lett. 2004 Oct 1;93(14):144301 |
SSID | ssj0047076 |
Score | 2.3833954 |
Snippet | In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide (CuO),... Abstract In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide... |
SourceID | doaj pubmedcentral biomedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 297 |
SubjectTerms | Carbon Chemical reduction Chemistry and Materials Science Cooling Copper Flow rates Laminar flow Materials Science Molecular Medicine Nano Express Nanochemistry Nanofluids Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Power consumption Thermal conductivity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkU5AMHkGo2juNHxAmqVhUS5dKKvVl27KiVtg7ah_pL-n8Z28myoUVcOETOZuKs4xl7ZuLxNwi9s4z6zsWwckU5qcFmJk3JHLEtl1XrYEDlKN9TcXJef53z-U6qrxgTluGBc8fNjPLCV0YKV9ka9I0pnbemUda51qg6zb6g80ZnKs_BtSxTWjmwTiiRXLIB1IcqMQMFKkglxZxAEbGeJhvdFxP9lGD877I9b4dQ_rGOmtTT8SP0cLAr8ef8Po_RPR-eoAc7aINP0c1RuIg8TpvacN_haPtdQSVwiSPqa0wjAX4zjp9m8eHmAI7vB9gEh1uztH3AwYR-vbE-nXSLzaVbJfLOInh87Lcfp2eza7Bhl79vxEAyOF-M-8cXUGYQ6Wfo_Pjo7PCEDFkZiOVKrAl4hNyJ1ggWweKEgHMPRiC1jlreVgp-CClK4Bb0vjfMgu_OueqY4K7zDWXP0V7og3-JMKvisiyzMTKndlTZlraNEaLsgIGVEwX6NOGN_pkROHTExJ5SYHjqyFkdOauhaGSBPo6c1O0AeB7zbix0cnyUuF3h_bbC-E9_vfVLFI1Jg9IFEF09iK7-l-gWaH8ULD3MHCtNZdy93NRcFQhvyTDm40KOCb7frLSSYEUoxuoCvchiuG0IeJiUwiRcIDkR0ElLp5RweZFgxYGHlAlWoA-jKO-06u5uePU_uuE1up8_1Nek5Ptob73c-Ddg6a3t2zSofwGQV1In priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4k1KQT5wAKlm4zh2HHFAtNqqQmJBqBV7s-zYaSstSdmH-kv4v8zksd3QwmHlbBxnvZ7xeMYz_oaQN07wUHoMK9dcshR0ZpbHwjNXyCwpPEyoNsp3qo5P088zOes23JZdWGUvExtB7esC98jHPMNTnXkq9cfLXwyzRqF3tUuhcZfsgAjWckR2DibTb997WZxmcZNeDrQUzjKZiQ7ch2s1hoVUsSRTMwYFYj4NDrzPB-tUA-d_mw56M5TyL39qs0wdPSQPOv2SfmoZ4hG5E6rH5P4W6uAT8ntSnSOtm8NttC4p6oA_oRGYxoj-iukkwH6muEVLD9f78Pm6T23laWEXrq5oZat6tXahuSjn6wu_bKq3nOH42i8_pifjK9BlF9cPUqiytL2J58jnULZg0k_J6dHk5PCYddkZmJNarRhYhtKrwiqBoHFKwXUAZZA7z50sEg1fVKbixKUw-sEKBza8lLoUSvoy5Fw8I6OqrsILQkWC7lnhMEIn9Vy7ghe5VSougYCJVxH5MKCNuWyROAxiYw9rgGUMUtYgZQ0UeRaR9z0lTdEBn2P-jblpDCCtbjZ4u2nQ_9I_Hz1A1hh0qLlRL85MN_eN1UGFxGbKw2CAymRjH5zNtfO-sDpNIrLXM5bpJMjSXPN7ROimGuY-OnRsFer10ugMtAktRBqR5y0bbjoClibnIIwjkg0YdNDTYU11cd7AiwMNuVAiIu96Vt7q1e3DsPv_f_CS3Gu34lMWyz0yWi3W4RXociv3upuwfwD3VEmO priority: 102 providerName: ProQuest – databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 dbid: 40G link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKucCh4k1KQT5wAKmhcfyMOEHVUiFRLq3Ym2XHDq20OGh3I34J_5exkyybdjlwWDmbsXetzIw9k5n5jNBrS4lvXEwrV4TnDGzmvCqoy23NZVk7UKg-y_dcnF2yzzM-20FkrIVJ2e5jSDKt1EmtlTiCjU_kpRSzHJpK3kF3I5ZYFGpWfBoXXybBLx8QfLYMulHVPp9sRgmzf5uheTtf8kbQNO1Fpw_Q3mBE4g891x-iHR8eofsb0IKP0e-TcBUZmirYcNvgaOj9gEHg_0aI13hmBDjJOL6HxcfdIXy-HmITHK7NwrYBBxPaVWd9umjm3bVbJvJGxDv-7Jdv5xdHv8BgXfztiIFkcH8zFovPoe0Ro5-gy9OTi-OzfDiCIbdciVUO7h93ojaCRmQ4IeDag8VHrCOW16WCL0KKorQMDEFvqAVHnXPVUMFd4ytCn6Ld0Ab_HGFaxhgstTENhzmibE3qyghRNMC00okMvZ_wRv_s4TZ0BMCeUkAsdOSsjpzV0FQyQ-9GTup6QDePh2zMdfJylLg94M16wPhP_-z6MYrGZELpRrv4rgcF10Z54UsjhYOHAXaRKZy3plLWudooVmboYBQsPSwTS01kLFWuGFcZwmsyKHiM2pjg226plQSTQVHKMvSsF8P1RMCdJARW3AzJiYBOZjqlhOurhCEOPCRU0Ay9HUV5Y1bbH8P-f_R9ge71L99ZXvADtLtadP4lWG8r-yrp6x8g4kHL priority: 102 providerName: Springer Nature |
Title | Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system |
URI | https://link.springer.com/article/10.1186/1556-276X-6-297 https://www.ncbi.nlm.nih.gov/pubmed/21711787 https://www.proquest.com/docview/1712359458 https://www.proquest.com/docview/874298334 http://dx.doi.org/10.1186/1556-276X-6-297 https://pubmed.ncbi.nlm.nih.gov/PMC3211363 https://doaj.org/article/a8e6e2a76d2b4224a0deba98bddca842 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0KLtBQ6IdwNl5QMHkJo2jh9xhBBqV9tWSF0Q6oq9WXbs0EpLAvsQ8CH8L2Mnu920y4lD7CRjJ5Znxp7x2DMIvTKUuNL6beWS8JiBzBznCbWxKXiWFhYYqtnlOxRnI_ZhzMfX4YDaDpxtVO18PKnRdHLw68fv98Dw7wLDS3EIU6KI00yMY8jybAvtwLQkPImfs5VJgWVJiDS3Ktz6-dnwgRtn3yedKSt49t8kjt7eVXnDtBpmrJMH6H4rauKjhjYeojuueoTurTkgfIz-DKpLj_Zwzg3XJfbi4DeoBFqydwTrI0uAKo39ai3uL_bh-riPdWVxoaemrnClq3q-MC7clJPFlZ0F8Jpd3H_2_Mvw4vAniLXT64IYQBo3L_2R8gnkjV_pJ2h0Mrjon8VtoIbYcCnmMSiJ3IpCC-r9xwkB9w7kQmIsMbxIJTyITCSpYSAuOk0NqPOcy5IKbkuXE_oUbVd15XYRpqm31FLjN-swS6QpSJFrIZISEJhaEaG3Hdyo741TDuXdZHchwLHKY1Z5zCrI8ixCB0tMqqL1ge5DcUxU0IWkuF3h9arC8k__LHrsSaPToPCinn5V7TCgtHTCpToTFjoDpCedWGd0Lo21hZYsjdDekrDUkhcUyfyB5pxxGSG8AsMw4G07unL1YqZkBoKFpJRF6FlDhquGgNJJCIzLEco6BNppaRdSXV0GT-OAQ0IFjdCbJSmvtWpzNzz_LwS9QHebRXsWJ3wPbc-nC_cSpL656aEtlpxCKk8g3TkeDD99hqe-6PfCOgqkp2PSCzwP6Sg9-gspnV37 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOiDeBAj6ABFLDxnH8iBBCtGy1pe2CUCv2ZuzYoZWWpOxDFT-Ev8FvZJzHdkMLtx5WzmbirDczHn-TGc8g9MxQ4nLrw8olYWECmDlMI2pDkzERZxYmVB3lO-SDw-TDiI1W0O92L4wPq2x1YqWobZn5d-Q9IvyuzjRh8u3Jj9BXjfLe1baERi0Wu-7nKZhs0zc774G_z-N4u3-wNQibqgKhYZLPQrBomOWZ5tQnO-Mcjh2AGGIsMSyLJXzhgkexSQDbOE0N2J6MyZxyZnOXEgr3vYLWAGakMIvWNvvDT59b3Z-IqCpnBz1JKJigTTIhInkPFm4exoKPQmh8jqnOBvtxZ12sygdchHnPh27-5b-tlsXtm-hGg2fxu1oAb6EVV9xG15eyHN5Bv_rFkZetajMdLnPsMed36ASmuM8268tXgL2O_SthvDXfgM_HDawLizM9MWWBC12Us7lx1UE-nh_baUVecr772-5_GR70TgE7T84uxEDSuD7p962Poa2TV99Fh5fCt3totSgL9wBhGnt3MDU-IiixRJqMZKnmPMqBgbHlAXrd4Y06qTN_KJ-Lu0sBEVWes8pzVkGTigC9ajmpsibRuq_3MVaVwSX5-Q4vFh3aX_rnpZteNDoDqk6Uk2-q0TVKS8ddrAW38DAAounIOqNTaazNtEziAK23gqUajTVVZ_MrQHhBBl3jHUi6cOV8qqQA9CIpTQJ0vxbDxUDAsiUElH-AREdAOyPtUorjoyqdOfCQUE4D9LIV5aVRXfwYHv7_HzxFVwcH-3tqb2e4-whdq90ASRixdbQ6m8zdY8CRM_OkmbwYfb1sffEHlfWFQw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqdhOABcScwwA8ggbTQOI4vEUKIba02BmVCm-ibsWOHTSrJ6EUTH8LP8HUc57I1bPC2h8ppTpy6OcfnknND6JmhxOXWh5VLwsIEdOYwjagNTcZEnFnYUHWU74hvHyTvx2y8gn63uTA-rLLliRWjtmXm35H3ifBZnWnCZD9vwiL2toZvj3-EvoOU97S27TRqEtl1P0_AfJu92dkCXD-P4-Fgf3M7bDoMhIZJPg_BumGWZ5pTX_iMczh2oNAQY4lhWSzhCxc8ik0Ceo7T1IAdypjMKWc2dymhcN8raFWAVJQ9tLoxGO19buVAIqKqtR3MJKFggjaFhYjkfRDiPIwFH4cw-HpTnWT7SUdGVq0ELtJ_z4dx_uXLrUTk8Ca60ei2-F1NjLfQiituo-tLFQ_voF-D4tDTWZVYh8sce_3zO0wCs9xXnvWtLMB2x_71MN5crMPn0zrWhcWZnpqywIUuyvnCuOognyyO7KwCLzni_W0_fhnt909Aj56eXYgBpHF90uewT2CsC1nfRQeXgrd7qFeUhXuAMI29a5gaHx2UWCJNRrJUcx7lgMDY8gC97uBGHddVQJSvy92FALkqj1nlMatgSEWAXrWYVFlTdN33_pioyviS_PyEF6cT2l_656UbnjQ6C6pOlNNvquE7SkvHXawFt_AwQF3TkXVGp9JYm2mZxAFaawlLNdxrps72WoDwKRj4jncm6cKVi5mSAjQZSWkSoPs1GZ4uBKxcQkAQBEh0CLSz0i6kODqsSpsDDgnlNEAvW1JeWtXFj-Hh___BU3QV-IT6sDPafYSu1R6BJIzYGurNpwv3GFTKuXnS7F2Mvl42u_gDuVaJbw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancements+of+thermal+conductivities+with+Cu%2C+CuO%2C+and+carbon+nanotube+nanofluids+and+application+of+MWNT%2Fwater+nanofluid+on+a+water+chiller+system&rft.jtitle=Nanoscale+research+letters&rft.au=Liu%2C+MinSheng&rft.au=Lin%2C+Mark&rft.au=Wang%2C+ChiChuan&rft.date=2011-04-05&rft.pub=BioMed+Central+Ltd&rft.issn=1556-276X&rft.eissn=1556-276X&rft.volume=6&rft.issue=1&rft.spage=297&rft.epage=297&rft_id=info:doi/10.1186%2F1556-276X-6-297&rft.externalDBID=n%2Fa&rft.externalDocID=oai_biomedcentral_com_1556_276X_6_297 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-276X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-276X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-276X&client=summon |