Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system

In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide (CuO), and multi-walled carbon nanotube (MWNT) are investigated using both physical mixing method (two-step method) and chemical reduction method (on...

Full description

Saved in:
Bibliographic Details
Published inNanoscale research letters Vol. 6; no. 1; p. 297
Main Authors Liu, MinSheng, Lin, Mark ChingCheng, Wang, ChiChuan
Format Journal Article
LanguageEnglish
Published New York Springer New York 05.04.2011
Springer Nature B.V
BioMed Central Ltd
Springer
SpringerOpen
Subjects
Online AccessGet full text
ISSN1556-276X
1931-7573
1556-276X
DOI10.1186/1556-276X-6-297

Cover

Loading…
Abstract In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide (CuO), and multi-walled carbon nanotube (MWNT) are investigated using both physical mixing method (two-step method) and chemical reduction method (one-step method). The chemical reduction method is, however, used only for nanofluid containing Cu nanoparticle in water. The thermal conductivities of the nanofluids are measured by a modified transient hot wire method. Experimental results show that nanofluids with low concentration of Cu, CuO, or carbon nanotube (CNT) have considerably higher thermal conductivity than identical base liquids. For CuO-ethylene glycol suspensions at 5 vol.%, MWNT-ethylene glycol at 1 vol.%, MWNT-water at 1.5 vol.%, and MWNT-synthetic engine oil at 2 vol.%, thermal conductivity is enhanced by 22.4, 12.4, 17, and 30%, respectively. For Cu-water at 0.1 vol.%, thermal conductivity is increased by 23.8%. The thermal conductivity improvement for CuO and CNT nanofluids is approximately linear with the volume fraction. On the other hand, a strong dependence of thermal conductivity on the measured time is observed for Cu-water nanofluid. The system performance of a 10-RT water chiller (air conditioner) subject to MWNT/water nanofluid is experimentally investigated. The system is tested at the standard water chiller rating condition in the range of the flow rate from 60 to 140 L/min. In spite of the static measurement of thermal conductivity of nanofluid shows only 1.3% increase at room temperature relative to the base fluid at volume fraction of 0.001 (0.1 vol.%), it is observed that a 4.2% increase of cooling capacity and a small decrease of power consumption about 0.8% occur for the nanofluid system at a flow rate of 100 L/min. This result clearly indicates that the enhancement of cooling capacity is not just related to thermal conductivity alone. Dynamic effect, such as nanoparticle dispersion may effectively augment the system performance. It is also found that the dynamic dispersion is comparatively effective at lower flow rate regime, e.g., transition or laminar flow and becomes less effective at higher flow rate regime. Test results show that the coefficient of performance of the water chiller is increased by 5.15% relative to that without nanofluid.
AbstractList In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide (CuO), and multi-walled carbon nanotube (MWNT) are investigated using both physical mixing method (two-step method) and chemical reduction method (one-step method). The chemical reduction method is, however, used only for nanofluid containing Cu nanoparticle in water. The thermal conductivities of the nanofluids are measured by a modified transient hot wire method. Experimental results show that nanofluids with low concentration of Cu, CuO, or carbon nanotube (CNT) have considerably higher thermal conductivity than identical base liquids. For CuO-ethylene glycol suspensions at 5 vol.%, MWNT-ethylene glycol at 1 vol.%, MWNT-water at 1.5 vol.%, and MWNT-synthetic engine oil at 2 vol.%, thermal conductivity is enhanced by 22.4, 12.4, 17, and 30%, respectively. For Cu-water at 0.1 vol.%, thermal conductivity is increased by 23.8%. The thermal conductivity improvement for CuO and CNT nanofluids is approximately linear with the volume fraction. On the other hand, a strong dependence of thermal conductivity on the measured time is observed for Cu-water nanofluid. The system performance of a 10-RT water chiller (air conditioner) subject to MWNT/water nanofluid is experimentally investigated. The system is tested at the standard water chiller rating condition in the range of the flow rate from 60 to 140 L/min. In spite of the static measurement of thermal conductivity of nanofluid shows only 1.3% increase at room temperature relative to the base fluid at volume fraction of 0.001 (0.1 vol.%), it is observed that a 4.2% increase of cooling capacity and a small decrease of power consumption about 0.8% occur for the nanofluid system at a flow rate of 100 L/min. This result clearly indicates that the enhancement of cooling capacity is not just related to thermal conductivity alone. Dynamic effect, such as nanoparticle dispersion may effectively augment the system performance. It is also found that the dynamic dispersion is comparatively effective at lower flow rate regime, e.g., transition or laminar flow and becomes less effective at higher flow rate regime. Test results show that the coefficient of performance of the water chiller is increased by 5.15% relative to that without nanofluid.
Abstract In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide (CuO), and multi-walled carbon nanotube (MWNT) are investigated using both physical mixing method (two-step method) and chemical reduction method (one-step method). The chemical reduction method is, however, used only for nanofluid containing Cu nanoparticle in water. The thermal conductivities of the nanofluids are measured by a modified transient hot wire method. Experimental results show that nanofluids with low concentration of Cu, CuO, or carbon nanotube (CNT) have considerably higher thermal conductivity than identical base liquids. For CuO-ethylene glycol suspensions at 5 vol.%, MWNT-ethylene glycol at 1 vol.%, MWNT-water at 1.5 vol.%, and MWNT-synthetic engine oil at 2 vol.%, thermal conductivity is enhanced by 22.4, 12.4, 17, and 30%, respectively. For Cu-water at 0.1 vol.%, thermal conductivity is increased by 23.8%. The thermal conductivity improvement for CuO and CNT nanofluids is approximately linear with the volume fraction. On the other hand, a strong dependence of thermal conductivity on the measured time is observed for Cu-water nanofluid. The system performance of a 10-RT water chiller (air conditioner) subject to MWNT/water nanofluid is experimentally investigated. The system is tested at the standard water chiller rating condition in the range of the flow rate from 60 to 140 L/min. In spite of the static measurement of thermal conductivity of nanofluid shows only 1.3% increase at room temperature relative to the base fluid at volume fraction of 0.001 (0.1 vol.%), it is observed that a 4.2% increase of cooling capacity and a small decrease of power consumption about 0.8% occur for the nanofluid system at a flow rate of 100 L/min. This result clearly indicates that the enhancement of cooling capacity is not just related to thermal conductivity alone. Dynamic effect, such as nanoparticle dispersion may effectively augment the system performance. It is also found that the dynamic dispersion is comparatively effective at lower flow rate regime, e.g., transition or laminar flow and becomes less effective at higher flow rate regime. Test results show that the coefficient of performance of the water chiller is increased by 5.15% relative to that without nanofluid.
In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide (CuO), and multi-walled carbon nanotube (MWNT) are investigated using both physical mixing method (two-step method) and chemical reduction method (one-step method). The chemical reduction method is, however, used only for nanofluid containing Cu nanoparticle in water. The thermal conductivities of the nanofluids are measured by a modified transient hot wire method. Experimental results show that nanofluids with low concentration of Cu, CuO, or carbon nanotube (CNT) have considerably higher thermal conductivity than identical base liquids. For CuO-ethylene glycol suspensions at 5 vol.%, MWNT-ethylene glycol at 1 vol.%, MWNT-water at 1.5 vol.%, and MWNT-synthetic engine oil at 2 vol.%, thermal conductivity is enhanced by 22.4, 12.4, 17, and 30%, respectively. For Cu-water at 0.1 vol.%, thermal conductivity is increased by 23.8%. The thermal conductivity improvement for CuO and CNT nanofluids is approximately linear with the volume fraction. On the other hand, a strong dependence of thermal conductivity on the measured time is observed for Cu-water nanofluid. The system performance of a 10-RT water chiller (air conditioner) subject to MWNT/water nanofluid is experimentally investigated. The system is tested at the standard water chiller rating condition in the range of the flow rate from 60 to 140 L/min. In spite of the static measurement of thermal conductivity of nanofluid shows only 1.3% increase at room temperature relative to the base fluid at volume fraction of 0.001 (0.1 vol.%), it is observed that a 4.2% increase of cooling capacity and a small decrease of power consumption about 0.8% occur for the nanofluid system at a flow rate of 100 L/min. This result clearly indicates that the enhancement of cooling capacity is not just related to thermal conductivity alone. Dynamic effect, such as nanoparticle dispersion may effectively augment the system performance. It is also found that the dynamic dispersion is comparatively effective at lower flow rate regime, e.g., transition or laminar flow and becomes less effective at higher flow rate regime. Test results show that the coefficient of performance of the water chiller is increased by 5.15% relative to that without nanofluid. In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide (CuO), and multi-walled carbon nanotube (MWNT) are investigated using both physical mixing method (two-step method) and chemical reduction method (one-step method). The chemical reduction method is, however, used only for nanofluid containing Cu nanoparticle in water. The thermal conductivities of the nanofluids are measured by a modified transient hot wire method. Experimental results show that nanofluids with low concentration of Cu, CuO, or carbon nanotube (CNT) have considerably higher thermal conductivity than identical base liquids. For CuO-ethylene glycol suspensions at 5 vol.%, MWNT-ethylene glycol at 1 vol.%, MWNT-water at 1.5 vol.%, and MWNT-synthetic engine oil at 2 vol.%, thermal conductivity is enhanced by 22.4, 12.4, 17, and 30%, respectively. For Cu-water at 0.1 vol.%, thermal conductivity is increased by 23.8%. The thermal conductivity improvement for CuO and CNT nanofluids is approximately linear with the volume fraction. On the other hand, a strong dependence of thermal conductivity on the measured time is observed for Cu-water nanofluid. The system performance of a 10-RT water chiller (air conditioner) subject to MWNT/water nanofluid is experimentally investigated. The system is tested at the standard water chiller rating condition in the range of the flow rate from 60 to 140 L/min. In spite of the static measurement of thermal conductivity of nanofluid shows only 1.3% increase at room temperature relative to the base fluid at volume fraction of 0.001 (0.1 vol.%), it is observed that a 4.2% increase of cooling capacity and a small decrease of power consumption about 0.8% occur for the nanofluid system at a flow rate of 100 L/min. This result clearly indicates that the enhancement of cooling capacity is not just related to thermal conductivity alone. Dynamic effect, such as nanoparticle dispersion may effectively augment the system performance. It is also found that the dynamic dispersion is comparatively effective at lower flow rate regime, e.g., transition or laminar flow and becomes less effective at higher flow rate regime. Test results show that the coefficient of performance of the water chiller is increased by 5.15% relative to that without nanofluid.
ArticleNumber 297
Author Wang, ChiChuan
Liu, MinSheng
Lin, Mark ChingCheng
AuthorAffiliation 3 Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan
1 Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
2 Material & Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
AuthorAffiliation_xml – name: 3 Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan
– name: 1 Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
– name: 2 Material & Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
Author_xml – sequence: 1
  givenname: MinSheng
  surname: Liu
  fullname: Liu, MinSheng
  organization: Green Energy & Environment Research Laboratories, Industrial Technology Research Institute
– sequence: 2
  givenname: Mark ChingCheng
  surname: Lin
  fullname: Lin, Mark ChingCheng
  organization: Material & Chemical Research Laboratories, Industrial Technology Research Institute
– sequence: 3
  givenname: ChiChuan
  surname: Wang
  fullname: Wang, ChiChuan
  email: ccwang@mail.nctu.edu.tw
  organization: Department of Mechanical Engineering, National Chiao Tung University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21711787$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNURD_gzA1F4sCly8ZO7DgXJFi1pVKhlyK4WeOP7HqV2IvttOoP4f_i3ZRlt6IcrBnPvPN4bM9xdmCd1Vn2GhXvEWJ0igihE1zTH5NkmvpZdrSNHOz4h9lxCMuiqOqipi-yQ4xqhGpWH2W_zuwCrNS9tjHkrs3jQvseulw6qwYZza2JRof8zsRFPhtO07o-zcGqXIIXzuYWrIuD0Bun7QajwiYNq1VnJESTNAn75fvXm-kdRO3_CvOUgnwMyoXpumTDfYi6f5k9b6EL-tWDPcm-nZ_dzD5Prq4vLmcfryaCMBonrCqIohJoiRpSUZp83ZQYCYUEkZilDa1pgUWFmlJDKbTAhLC2pES1ukHlSXY5cpWDJV9504O_5w4M3wScn3Pw0chOc2Caagw1VQmHcQWF0gIaJpSSwCqcWB9G1moQvVYyPaiHbg-6n7FmwefulqeGUUnLBPg0AoRxTwD2M9L1fP3FfP3FPJmmTpB3D11493PQIfLeBKm7Dqx2Q-CsrnDDyrJKyrePlEs3eJuem6fpwCVpKsKS6s3urbbd_JmgJJiOAuldCF63Wwkq-HpG_9EieVQhTdwMSrqV6f5TV4x1IZ1g59rvNPxEyW_9-_zl
CitedBy_id crossref_primary_10_1007_s10765_024_03488_z
crossref_primary_10_1016_j_colsurfa_2021_126720
crossref_primary_10_1115_1_4025502
crossref_primary_10_1002_adma_202205098
crossref_primary_10_1016_j_rser_2021_111573
crossref_primary_10_1002_mma_6481
crossref_primary_10_1080_00295450_2022_2053927
crossref_primary_10_1007_s11356_024_32556_y
crossref_primary_10_1115_1_4053930
crossref_primary_10_1016_j_colsurfa_2017_10_085
crossref_primary_10_1016_j_matchemphys_2020_123102
crossref_primary_10_1088_1742_6596_1569_3_032038
crossref_primary_10_1016_j_tsep_2022_101276
crossref_primary_10_1007_s11661_015_3295_4
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121149
crossref_primary_10_1016_j_jallcom_2021_160513
crossref_primary_10_1021_acs_jpcc_7b10020
crossref_primary_10_1016_j_carbon_2018_11_060
crossref_primary_10_1016_j_icheatmasstransfer_2015_05_002
crossref_primary_10_1016_j_applthermaleng_2023_120449
crossref_primary_10_3390_nano12061033
crossref_primary_10_1002_nme_4510
crossref_primary_10_1016_j_apt_2018_10_001
crossref_primary_10_1016_j_physa_2019_122159
crossref_primary_10_1016_j_renene_2020_08_119
crossref_primary_10_1016_j_icheatmasstransfer_2015_09_001
crossref_primary_10_3390_en14123550
crossref_primary_10_1016_j_polymertesting_2021_107231
crossref_primary_10_1111_jace_17445
crossref_primary_10_1002_bkcs_11410
crossref_primary_10_1002_zamm_202300573
crossref_primary_10_1007_s10973_019_08838_w
crossref_primary_10_3390_nano12203628
crossref_primary_10_1039_C8FD00236C
crossref_primary_10_1016_j_surfcoat_2023_129465
crossref_primary_10_1016_j_jcrysgro_2022_127063
crossref_primary_10_1016_j_ijft_2021_100065
crossref_primary_10_1016_j_jics_2021_100037
crossref_primary_10_1002_adem_202100403
crossref_primary_10_1016_j_applthermaleng_2023_121375
crossref_primary_10_1080_08916152_2025_2449956
crossref_primary_10_1002_adem_202301165
crossref_primary_10_1016_j_microrel_2016_06_016
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120391
crossref_primary_10_1088_1402_4896_acf4cf
crossref_primary_10_1108_ILT_08_2016_0176
crossref_primary_10_1016_j_ijthermalsci_2014_04_019
crossref_primary_10_1007_s13204_021_01791_x
crossref_primary_10_3390_catal10010034
crossref_primary_10_1021_jp401271c
crossref_primary_10_1080_00986445_2013_782291
crossref_primary_10_3390_pr12040834
crossref_primary_10_1016_j_ijthermalsci_2013_11_017
crossref_primary_10_1007_s10891_021_02401_x
crossref_primary_10_1002_adts_202301221
crossref_primary_10_1007_s10973_016_5548_x
crossref_primary_10_1016_j_tca_2018_06_008
crossref_primary_10_1016_j_rser_2014_05_017
crossref_primary_10_1016_j_jallcom_2021_158783
crossref_primary_10_1016_j_applthermaleng_2016_09_024
crossref_primary_10_1016_j_molliq_2017_02_015
crossref_primary_10_1088_1742_6596_953_1_012058
crossref_primary_10_1109_TMTT_2018_2804980
crossref_primary_10_1016_j_jtice_2018_06_003
crossref_primary_10_1016_j_mtadv_2023_100412
crossref_primary_10_1063_5_0078037
crossref_primary_10_3740_MRSK_2017_27_4_221
crossref_primary_10_1016_j_applthermaleng_2023_121757
crossref_primary_10_1016_j_polymertesting_2020_106744
crossref_primary_10_1080_08916152_2021_1919243
crossref_primary_10_1016_j_molliq_2019_111780
crossref_primary_10_1038_srep04039
crossref_primary_10_1177_1687814016673569
crossref_primary_10_1016_j_cplett_2013_01_044
crossref_primary_10_1016_j_rser_2017_05_192
crossref_primary_10_3390_nano11061628
crossref_primary_10_1088_1742_6596_953_1_012063
crossref_primary_10_1002_cctc_202201610
crossref_primary_10_1007_s11172_022_3630_z
crossref_primary_10_1016_j_applthermaleng_2016_07_026
crossref_primary_10_1080_01457632_2014_935214
crossref_primary_10_1021_acsnano_1c02932
crossref_primary_10_1016_j_cis_2021_102452
crossref_primary_10_1016_j_molliq_2019_02_102
crossref_primary_10_1016_j_molliq_2020_113476
crossref_primary_10_1016_j_molliq_2023_122104
crossref_primary_10_1080_10407782_2022_2083862
crossref_primary_10_1007_s00231_023_03345_z
crossref_primary_10_1016_j_powtec_2017_04_061
crossref_primary_10_1016_j_powtec_2023_118508
crossref_primary_10_1007_s10973_018_7986_0
crossref_primary_10_3934_energy_2019_4_527
crossref_primary_10_1115_1_4034936
crossref_primary_10_1016_j_icheatmasstransfer_2015_08_015
crossref_primary_10_1016_j_jics_2022_100461
crossref_primary_10_1016_j_physe_2023_115830
crossref_primary_10_3390_en16093768
crossref_primary_10_1002_htj_22498
crossref_primary_10_1016_j_applthermaleng_2021_117627
crossref_primary_10_1016_j_jcrysgro_2018_10_010
crossref_primary_10_3390_nano10102004
crossref_primary_10_1016_j_physe_2016_08_020
crossref_primary_10_1016_j_apenergy_2016_11_017
crossref_primary_10_1016_j_ijmecsci_2017_02_020
crossref_primary_10_1016_j_inoche_2025_114141
crossref_primary_10_1007_s10973_015_5104_0
crossref_primary_10_1016_j_apsusc_2020_145325
crossref_primary_10_1088_2631_8695_ab9716
crossref_primary_10_1049_mnl_2017_0029
crossref_primary_10_1016_j_ijrefrig_2022_09_022
crossref_primary_10_1016_j_applthermaleng_2016_10_008
crossref_primary_10_1007_s40789_023_00573_w
crossref_primary_10_1016_j_apsusc_2019_03_306
crossref_primary_10_1016_j_powtec_2017_12_046
crossref_primary_10_1016_j_jclepro_2020_120408
crossref_primary_10_1016_j_egyr_2022_02_087
crossref_primary_10_1016_j_rser_2015_10_042
crossref_primary_10_1016_j_csite_2024_105315
crossref_primary_10_1016_j_icheatmasstransfer_2016_12_010
crossref_primary_10_1016_j_icheatmasstransfer_2022_106114
crossref_primary_10_1002_htj_21829
crossref_primary_10_1016_j_microrel_2021_114407
crossref_primary_10_1021_acsaem_1c01230
crossref_primary_10_1007_s00231_013_1226_8
crossref_primary_10_1016_j_applthermaleng_2019_114398
crossref_primary_10_1039_C7RA10406E
crossref_primary_10_4028_p_gdl41l
crossref_primary_10_3390_ma14237224
crossref_primary_10_1063_1_4768454
crossref_primary_10_1002_masy_201700011
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121367
crossref_primary_10_1016_j_cep_2023_109477
crossref_primary_10_1021_jp3059432
crossref_primary_10_1007_s11664_019_07753_y
crossref_primary_10_1007_s13204_012_0078_8
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123796
crossref_primary_10_1016_j_rser_2016_03_027
crossref_primary_10_1016_j_plana_2024_100070
crossref_primary_10_1007_s11082_023_04892_9
crossref_primary_10_1016_j_expthermflusci_2017_02_018
crossref_primary_10_1016_j_matchemphys_2021_125525
crossref_primary_10_1016_j_jtice_2015_03_037
crossref_primary_10_3390_app13064070
crossref_primary_10_3390_polym7071221
crossref_primary_10_1080_15567036_2024_2402440
crossref_primary_10_1016_j_icheatmasstransfer_2017_03_001
crossref_primary_10_1007_s00339_014_8902_5
crossref_primary_10_1016_j_rser_2017_10_064
crossref_primary_10_1021_acssuschemeng_9b01814
crossref_primary_10_1515_meceng_2017_0007
crossref_primary_10_1016_j_icheatmasstransfer_2014_07_003
crossref_primary_10_1016_j_matpr_2021_02_660
crossref_primary_10_1039_D1MA00927C
crossref_primary_10_1088_1742_6596_1450_1_012087
crossref_primary_10_1007_s11277_024_11568_4
crossref_primary_10_1016_j_nanoen_2021_105871
crossref_primary_10_1039_c3ta14550f
crossref_primary_10_4028_www_scientific_net_AMM_548_549_118
Cites_doi 10.1016/j.ijheatfluidflow.2006.04.006
10.1016/j.rser.2010.03.017
10.1063/1.1613374
10.1016/j.powtec.2009.09.016
10.1016/j.icheatmasstransfer.2005.05.005
10.1016/j.carbon.2007.01.001
10.1016/j.expthermflusci.2006.06.009
10.1016/j.powtec.2009.07.025
10.1016/j.ijheatmasstransfer.2006.02.012
10.1016/j.ijheatmasstransfer.2008.06.032
10.1002/ceat.200500184
10.1016/j.icheatmasstransfer.2009.10.004
10.1016/j.ces.2009.04.004
10.2174/157341310797574989
10.1080/01457630701850851
10.1103/PhysRevLett.93.144301
10.1063/1.1756684
10.1016/S0142-727X(99)00067-3
10.1115/1.2825978
10.1063/1.1408272
10.1007/s11671-010-9638-6
10.1016/j.ijheatmasstransfer.2005.07.009
10.1007/s10404-009-0524-4
10.1016/j.ijthermalsci.2008.11.012
10.1080/01457630701850778
10.1063/1.2834370
10.1155/2010/172085
ContentType Journal Article
Copyright Liu et al; licensee Springer. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The Author(s) 2011
Copyright ©2011 Liu et al; licensee Springer. 2011 Liu et al; licensee Springer.
Copyright_xml – notice: Liu et al; licensee Springer. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: The Author(s) 2011
– notice: Copyright ©2011 Liu et al; licensee Springer. 2011 Liu et al; licensee Springer.
DBID C6C
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1186/1556-276X-6-297
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed



MEDLINE - Academic

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-276X
EndPage 297
ExternalDocumentID oai_doaj_org_article_a8e6e2a76d2b4224a0deba98bddca842
PMC3211363
oai_biomedcentral_com_1556_276X_6_297
3807174671
21711787
10_1186_1556_276X_6_297
Genre Journal Article
GroupedDBID -A0
.4S
.86
.DC
0R~
123
29M
2VQ
2WC
4.4
40G
5VS
6NX
8FE
8FG
8FH
AAFWJ
ABJCF
ABMNI
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADINQ
ADRAZ
AEGXH
AENEX
AEUYN
AFGCZ
AFKRA
AFPKN
AFRAH
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARCSS
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BGNMA
BHPHI
C1A
C24
C6C
CAG
CCPQU
COF
CS3
D1I
DU5
EBS
EDO
EJD
F5P
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
HYE
HZ~
I09
IPNFZ
IZQ
KB.
KDC
KQ8
LK8
M48
M4Y
M7P
MM.
M~E
NU0
O5R
O5S
O9-
OK1
P2P
PDBOC
PGMZT
PIMPY
PROAC
RIG
RNS
RPM
RPX
RSV
SCM
SDH
SOJ
TR2
TSK
TUS
U2A
~KM
AAYXX
CITATION
OVT
PHGZM
PHGZT
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
PUEGO
AAJSJ
AAKKN
AAYZJ
ACACY
AFGXO
AHBXF
5PM
ID FETCH-LOGICAL-b586t-8405d6ca63195466d6ce9321bd1b5c28e9367602b4193ea3beb2558f365dfe913
IEDL.DBID M48
ISSN 1556-276X
1931-7573
IngestDate Wed Aug 27 01:28:11 EDT 2025
Thu Aug 21 14:01:44 EDT 2025
Wed May 22 07:17:11 EDT 2024
Fri Sep 05 04:25:55 EDT 2025
Fri Jul 25 11:07:13 EDT 2025
Thu Apr 03 07:07:53 EDT 2025
Tue Jul 01 03:54:04 EDT 2025
Thu Apr 24 23:04:34 EDT 2025
Fri Feb 21 02:34:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Thermal Conductivity Ratio
Base Fluid
Heat Transfer Performance
Thermal Conductivity Enhancement
Cooling Capacity
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b586t-8405d6ca63195466d6ce9321bd1b5c28e9367602b4193ea3beb2558f365dfe913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1556-276X-6-297
PMID 21711787
PQID 1712359458
PQPubID 2034687
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_a8e6e2a76d2b4224a0deba98bddca842
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3211363
biomedcentral_primary_oai_biomedcentral_com_1556_276X_6_297
proquest_miscellaneous_874298334
proquest_journals_1712359458
pubmed_primary_21711787
crossref_primary_10_1186_1556_276X_6_297
crossref_citationtrail_10_1186_1556_276X_6_297
springer_journals_10_1186_1556_276X_6_297
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20110405
PublicationDateYYYYMMDD 2011-04-05
PublicationDate_xml – month: 4
  year: 2011
  text: 20110405
  day: 5
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Heidelberg
PublicationTitle Nanoscale research letters
PublicationTitleAbbrev Nanoscale Res Lett
PublicationTitleAlternate Nanoscale Res Lett
PublicationYear 2011
Publisher Springer New York
Springer Nature B.V
BioMed Central Ltd
Springer
SpringerOpen
Publisher_xml – name: Springer New York
– name: Springer Nature B.V
– name: BioMed Central Ltd
– name: Springer
– name: SpringerOpen
References Li, Zhou, Tung, Eric, Xi (CR5) 2009; 196
Ding, Alias, Wen, Williams (CR24) 2006; 49
Wensel, Wright, Thomas, Douglas, Mannhalter, Cross, Hong, Kellar, Smith, Roy (CR27) 2008; 92
Xuan, Li (CR14) 2000; 21
Wang, Fan (CR18) 2010; 5
Liu, Lin, Huang, Wang (CR6) 2006; 29
Liu, Lin, Huang, Wang (CR7) 2005; 32
Jiang, Wang (CR16) 2010; 6
Meibodi, Vafaie-Sefti, Rashidi, Amrollahi, Tabasi, Kalal (CR19) 2010; 37
Behzadmehr, Saffar-Avval, Galanis (CR26) 2007; 28
Xie, Lee, Youn, Choi (CR12) 2003; 94
Yu, Xie, Chen, Li (CR15) 2010; 197
Jiang, Ding, Peng (CR20) 2009; 48
Zhou, Wang, Peng, Du, Yang (CR23) 2010; 2010
Choi (CR2) 2008; 29
Hwang, Jang, Choi (CR4) 2009; 52
Liu, Lin, Liaw, Hu, Wang (CR10) 2009; 115
Pantzali, Mouza, Paras (CR21) 2009; 64
Lee, Choi, Li, Eastman (CR11) 1999; 121
Kumar, Patel, Kumar, Sundararajan, Pradeep, Das (CR17) 2004; 93
Jang, Choi (CR29) 2004; 84
Liu, Lin, Tsai, Wang (CR8) 2006; 49
Choi, Zhang, Yu, Lockwood, Grulke (CR13) 2001; 79
Paul, Chopkar, Manna, Das (CR9) 2010; 14
Zhang, Gu, Fujii (CR25) 2007; 31
Ozerinc, Kakac, Yazicioglu (CR22) 2010; 8
Choi, Siginer, Wang (CR1) 1995
Yu, France, Routbort, Choi (CR3) 2008; 29
Lu, Fei, Xin, Wang, Li, Guan (CR28) 2007; 45
YJ Li (211_CR5) 2009; 196
Y Xuan (211_CR14) 2000; 21
ME Meibodi (211_CR19) 2010; 37
LP Zhou (211_CR23) 2010; 2010
SUS Choi (211_CR2) 2008; 29
A Behzadmehr (211_CR26) 2007; 28
LQ Wang (211_CR18) 2010; 5
W Yu (211_CR3) 2008; 29
MS Liu (211_CR8) 2006; 49
MN Pantzali (211_CR21) 2009; 64
MS Liu (211_CR6) 2006; 29
Y Ding (211_CR24) 2006; 49
MS Liu (211_CR10) 2009; 115
WT Jiang (211_CR20) 2009; 48
SUS Choi (211_CR1) 1995
S Lee (211_CR11) 1999; 121
J Wensel (211_CR27) 2008; 92
W Jiang (211_CR16) 2010; 6
DH Kumar (211_CR17) 2004; 93
MS Liu (211_CR7) 2005; 32
G Paul (211_CR9) 2010; 14
W Yu (211_CR15) 2010; 197
SP Jang (211_CR29) 2004; 84
S Ozerinc (211_CR22) 2010; 8
HF Lu (211_CR28) 2007; 45
SUS Choi (211_CR13) 2001; 79
KS Hwang (211_CR4) 2009; 52
HQ Xie (211_CR12) 2003; 94
X Zhang (211_CR25) 2007; 31
15524799 - Phys Rev Lett. 2004 Oct 1;93(14):144301
20676214 - Nanoscale Res Lett. 2010 May 22;5(8):1241-52
References_xml – volume: 28
  start-page: 211
  year: 2007
  ident: CR26
  article-title: Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2006.04.006
– volume: 14
  start-page: 1913
  year: 2010
  ident: CR9
  article-title: Techniques for measuring the thermal conductivity of nanofluids: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2010.03.017
– volume: 115
  start-page: 581
  year: 2009
  ident: CR10
  article-title: Performance augmentation of a water chiller system using nanofluids
  publication-title: ASHRAE Trans
– volume: 94
  start-page: 4967
  year: 2003
  ident: CR12
  article-title: Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities
  publication-title: J Appl Phys
  doi: 10.1063/1.1613374
– volume: 197
  start-page: 218
  year: 2010
  ident: CR15
  article-title: Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2009.09.016
– volume: 32
  start-page: 1202
  year: 2005
  ident: CR7
  article-title: Enhancement of thermal conductivity with carbon nanotube for nanofluids
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2005.05.005
– volume: 45
  start-page: 936
  year: 2007
  ident: CR28
  article-title: Synthesis and lubricating performance of a carbon nanotube seeded miniemulsion
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.01.001
– volume: 31
  start-page: 593
  year: 2007
  ident: CR25
  article-title: Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2006.06.009
– volume: 196
  start-page: 89
  year: 2009
  ident: CR5
  article-title: A review on development of nanofluid preparation and characterization
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2009.07.025
– volume: 49
  start-page: 3028
  year: 2006
  ident: CR8
  article-title: Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2006.02.012
– start-page: 99
  year: 1995
  ident: CR1
  article-title: Enhancing thermal conductivity of fluids with nanoparticles
  publication-title: Developments and Applications of Non-Newtonian Flows. FED-vol. 231/MD-vol. 66
– volume: 52
  start-page: 193
  year: 2009
  ident: CR4
  article-title: Flow and convective heat transfer characteristics of water-based Al O nanofluids in fully developed laminar flow regime
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2008.06.032
– volume: 29
  start-page: 72
  year: 2006
  ident: CR6
  article-title: Enhancement of thermal conductivity with CuO for nanofluids
  publication-title: Chem Eng Technol
  doi: 10.1002/ceat.200500184
– volume: 37
  start-page: 319
  year: 2010
  ident: CR19
  article-title: The role of different parameters on the stability and thermal conductivity of carbon nanotube/water nanofluids
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2009.10.004
– volume: 64
  start-page: 3290
  year: 2009
  ident: CR21
  article-title: Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE)
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2009.04.004
– volume: 6
  start-page: 512
  year: 2010
  ident: CR16
  article-title: Copper nanofluids: synthesis and thermal conductivity
  publication-title: Curr Nanosci
  doi: 10.2174/157341310797574989
– volume: 29
  start-page: 432
  year: 2008
  ident: CR3
  article-title: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements
  publication-title: Heat Transf Eng
  doi: 10.1080/01457630701850851
– volume: 93
  start-page: 144301
  year: 2004
  ident: CR17
  article-title: Model for heat conduction in nanofluids
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.93.144301
– volume: 84
  start-page: 4316
  year: 2004
  ident: CR29
  article-title: Role of Brownian motion in the enhanced thermal conductivity of nanofluids
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1756684
– volume: 21
  start-page: 58
  year: 2000
  ident: CR14
  article-title: Heat transfer enhancement of nanofluids
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/S0142-727X(99)00067-3
– volume: 121
  start-page: 280
  year: 1999
  ident: CR11
  article-title: Measuring thermal conductivity of fluids containing oxide nanoparticles
  publication-title: J Heat Transf
  doi: 10.1115/1.2825978
– volume: 79
  start-page: 2252
  year: 2001
  ident: CR13
  article-title: Anomalous thermal conductivity enhancement in nanotube suspensions
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1408272
– volume: 5
  start-page: 1241
  year: 2010
  ident: CR18
  article-title: Nanofluids research: key issues
  publication-title: Nanoscale Res Lett
  doi: 10.1007/s11671-010-9638-6
– volume: 49
  start-page: 240
  year: 2006
  ident: CR24
  article-title: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2005.07.009
– volume: 8
  start-page: 145
  year: 2010
  ident: CR22
  article-title: Enhanced thermal conductivity of nanofluids: a state-of-the-art review
  publication-title: Microfluid Nanofluid
  doi: 10.1007/s10404-009-0524-4
– volume: 2010
  start-page: 172085
  year: 2010
  ident: CR23
  article-title: On the specific heat capacity of CuO nanofluid
  publication-title: Adv Mech Eng
– volume: 48
  start-page: 1108
  year: 2009
  ident: CR20
  article-title: Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2008.11.012
– volume: 29
  start-page: 429
  year: 2008
  ident: CR2
  article-title: Nanofluids: a new fluid of scientific research and innovative applications
  publication-title: Heat Transf Eng
  doi: 10.1080/01457630701850778
– volume: 92
  start-page: 023110
  year: 2008
  ident: CR27
  article-title: Enhanced thermal conductivity by aggregation in heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2834370
– volume: 79
  start-page: 2252
  year: 2001
  ident: 211_CR13
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1408272
– volume: 31
  start-page: 593
  year: 2007
  ident: 211_CR25
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2006.06.009
– volume: 32
  start-page: 1202
  year: 2005
  ident: 211_CR7
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2005.05.005
– volume: 84
  start-page: 4316
  year: 2004
  ident: 211_CR29
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1756684
– volume: 94
  start-page: 4967
  year: 2003
  ident: 211_CR12
  publication-title: J Appl Phys
  doi: 10.1063/1.1613374
– volume: 29
  start-page: 432
  year: 2008
  ident: 211_CR3
  publication-title: Heat Transf Eng
  doi: 10.1080/01457630701850851
– volume: 197
  start-page: 218
  year: 2010
  ident: 211_CR15
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2009.09.016
– volume: 92
  start-page: 023110
  year: 2008
  ident: 211_CR27
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2834370
– volume: 21
  start-page: 58
  year: 2000
  ident: 211_CR14
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/S0142-727X(99)00067-3
– start-page: 99
  volume-title: Developments and Applications of Non-Newtonian Flows. FED-vol. 231/MD-vol. 66
  year: 1995
  ident: 211_CR1
– volume: 48
  start-page: 1108
  year: 2009
  ident: 211_CR20
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2008.11.012
– volume: 8
  start-page: 145
  year: 2010
  ident: 211_CR22
  publication-title: Microfluid Nanofluid
  doi: 10.1007/s10404-009-0524-4
– volume: 37
  start-page: 319
  year: 2010
  ident: 211_CR19
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2009.10.004
– volume: 14
  start-page: 1913
  year: 2010
  ident: 211_CR9
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2010.03.017
– volume: 5
  start-page: 1241
  year: 2010
  ident: 211_CR18
  publication-title: Nanoscale Research Letters
  doi: 10.1007/s11671-010-9638-6
– volume: 49
  start-page: 240
  year: 2006
  ident: 211_CR24
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2005.07.009
– volume: 196
  start-page: 89
  year: 2009
  ident: 211_CR5
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2009.07.025
– volume: 28
  start-page: 211
  year: 2007
  ident: 211_CR26
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2006.04.006
– volume: 52
  start-page: 193
  year: 2009
  ident: 211_CR4
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2008.06.032
– volume: 115
  start-page: 581
  year: 2009
  ident: 211_CR10
  publication-title: ASHRAE Trans
– volume: 93
  start-page: 144301
  year: 2004
  ident: 211_CR17
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.93.144301
– volume: 29
  start-page: 72
  year: 2006
  ident: 211_CR6
  publication-title: Chem Eng Technol
  doi: 10.1002/ceat.200500184
– volume: 49
  start-page: 3028
  year: 2006
  ident: 211_CR8
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2006.02.012
– volume: 45
  start-page: 936
  year: 2007
  ident: 211_CR28
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.01.001
– volume: 121
  start-page: 280
  year: 1999
  ident: 211_CR11
  publication-title: J Heat Transf
  doi: 10.1115/1.2825978
– volume: 6
  start-page: 512
  year: 2010
  ident: 211_CR16
  publication-title: Curr Nanosci
  doi: 10.2174/157341310797574989
– volume: 64
  start-page: 3290
  year: 2009
  ident: 211_CR21
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2009.04.004
– volume: 29
  start-page: 429
  year: 2008
  ident: 211_CR2
  publication-title: Heat Transf Eng
  doi: 10.1080/01457630701850778
– volume: 2010
  start-page: 172085
  year: 2010
  ident: 211_CR23
  publication-title: Adv Mech Eng
  doi: 10.1155/2010/172085
– reference: 20676214 - Nanoscale Res Lett. 2010 May 22;5(8):1241-52
– reference: 15524799 - Phys Rev Lett. 2004 Oct 1;93(14):144301
SSID ssj0047076
Score 2.3833954
Snippet In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide (CuO),...
Abstract In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide...
SourceID doaj
pubmedcentral
biomedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 297
SubjectTerms Carbon
Chemical reduction
Chemistry and Materials Science
Cooling
Copper
Flow rates
Laminar flow
Materials Science
Molecular Medicine
Nano Express
Nanochemistry
Nanofluids
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Power consumption
Thermal conductivity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkU5AMHkGo2juNHxAmqVhUS5dKKvVl27KiVtg7ah_pL-n8Z28myoUVcOETOZuKs4xl7ZuLxNwi9s4z6zsWwckU5qcFmJk3JHLEtl1XrYEDlKN9TcXJef53z-U6qrxgTluGBc8fNjPLCV0YKV9ka9I0pnbemUda51qg6zb6g80ZnKs_BtSxTWjmwTiiRXLIB1IcqMQMFKkglxZxAEbGeJhvdFxP9lGD877I9b4dQ_rGOmtTT8SP0cLAr8ef8Po_RPR-eoAc7aINP0c1RuIg8TpvacN_haPtdQSVwiSPqa0wjAX4zjp9m8eHmAI7vB9gEh1uztH3AwYR-vbE-nXSLzaVbJfLOInh87Lcfp2eza7Bhl79vxEAyOF-M-8cXUGYQ6Wfo_Pjo7PCEDFkZiOVKrAl4hNyJ1ggWweKEgHMPRiC1jlreVgp-CClK4Bb0vjfMgu_OueqY4K7zDWXP0V7og3-JMKvisiyzMTKndlTZlraNEaLsgIGVEwX6NOGN_pkROHTExJ5SYHjqyFkdOauhaGSBPo6c1O0AeB7zbix0cnyUuF3h_bbC-E9_vfVLFI1Jg9IFEF09iK7-l-gWaH8ULD3MHCtNZdy93NRcFQhvyTDm40KOCb7frLSSYEUoxuoCvchiuG0IeJiUwiRcIDkR0ElLp5RweZFgxYGHlAlWoA-jKO-06u5uePU_uuE1up8_1Nek5Ptob73c-Ddg6a3t2zSofwGQV1In
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4k1KQT5wAKlm4zh2HHFAtNqqQmJBqBV7s-zYaSstSdmH-kv4v8zksd3QwmHlbBxnvZ7xeMYz_oaQN07wUHoMK9dcshR0ZpbHwjNXyCwpPEyoNsp3qo5P088zOes23JZdWGUvExtB7esC98jHPMNTnXkq9cfLXwyzRqF3tUuhcZfsgAjWckR2DibTb997WZxmcZNeDrQUzjKZiQ7ch2s1hoVUsSRTMwYFYj4NDrzPB-tUA-d_mw56M5TyL39qs0wdPSQPOv2SfmoZ4hG5E6rH5P4W6uAT8ntSnSOtm8NttC4p6oA_oRGYxoj-iukkwH6muEVLD9f78Pm6T23laWEXrq5oZat6tXahuSjn6wu_bKq3nOH42i8_pifjK9BlF9cPUqiytL2J58jnULZg0k_J6dHk5PCYddkZmJNarRhYhtKrwiqBoHFKwXUAZZA7z50sEg1fVKbixKUw-sEKBza8lLoUSvoy5Fw8I6OqrsILQkWC7lnhMEIn9Vy7ghe5VSougYCJVxH5MKCNuWyROAxiYw9rgGUMUtYgZQ0UeRaR9z0lTdEBn2P-jblpDCCtbjZ4u2nQ_9I_Hz1A1hh0qLlRL85MN_eN1UGFxGbKw2CAymRjH5zNtfO-sDpNIrLXM5bpJMjSXPN7ROimGuY-OnRsFer10ugMtAktRBqR5y0bbjoClibnIIwjkg0YdNDTYU11cd7AiwMNuVAiIu96Vt7q1e3DsPv_f_CS3Gu34lMWyz0yWi3W4RXociv3upuwfwD3VEmO
  priority: 102
  providerName: ProQuest
– databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  dbid: 40G
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKucCh4k1KQT5wAKmhcfyMOEHVUiFRLq3Ym2XHDq20OGh3I34J_5exkyybdjlwWDmbsXetzIw9k5n5jNBrS4lvXEwrV4TnDGzmvCqoy23NZVk7UKg-y_dcnF2yzzM-20FkrIVJ2e5jSDKt1EmtlTiCjU_kpRSzHJpK3kF3I5ZYFGpWfBoXXybBLx8QfLYMulHVPp9sRgmzf5uheTtf8kbQNO1Fpw_Q3mBE4g891x-iHR8eofsb0IKP0e-TcBUZmirYcNvgaOj9gEHg_0aI13hmBDjJOL6HxcfdIXy-HmITHK7NwrYBBxPaVWd9umjm3bVbJvJGxDv-7Jdv5xdHv8BgXfztiIFkcH8zFovPoe0Ro5-gy9OTi-OzfDiCIbdciVUO7h93ojaCRmQ4IeDag8VHrCOW16WCL0KKorQMDEFvqAVHnXPVUMFd4ytCn6Ld0Ab_HGFaxhgstTENhzmibE3qyghRNMC00okMvZ_wRv_s4TZ0BMCeUkAsdOSsjpzV0FQyQ-9GTup6QDePh2zMdfJylLg94M16wPhP_-z6MYrGZELpRrv4rgcF10Z54UsjhYOHAXaRKZy3plLWudooVmboYBQsPSwTS01kLFWuGFcZwmsyKHiM2pjg226plQSTQVHKMvSsF8P1RMCdJARW3AzJiYBOZjqlhOurhCEOPCRU0Ay9HUV5Y1bbH8P-f_R9ge71L99ZXvADtLtadP4lWG8r-yrp6x8g4kHL
  priority: 102
  providerName: Springer Nature
Title Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system
URI https://link.springer.com/article/10.1186/1556-276X-6-297
https://www.ncbi.nlm.nih.gov/pubmed/21711787
https://www.proquest.com/docview/1712359458
https://www.proquest.com/docview/874298334
http://dx.doi.org/10.1186/1556-276X-6-297
https://pubmed.ncbi.nlm.nih.gov/PMC3211363
https://doaj.org/article/a8e6e2a76d2b4224a0deba98bddca842
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0KLtBQ6IdwNl5QMHkJo2jh9xhBBqV9tWSF0Q6oq9WXbs0EpLAvsQ8CH8L2Mnu920y4lD7CRjJ5Znxp7x2DMIvTKUuNL6beWS8JiBzBznCbWxKXiWFhYYqtnlOxRnI_ZhzMfX4YDaDpxtVO18PKnRdHLw68fv98Dw7wLDS3EIU6KI00yMY8jybAvtwLQkPImfs5VJgWVJiDS3Ktz6-dnwgRtn3yedKSt49t8kjt7eVXnDtBpmrJMH6H4rauKjhjYeojuueoTurTkgfIz-DKpLj_Zwzg3XJfbi4DeoBFqydwTrI0uAKo39ai3uL_bh-riPdWVxoaemrnClq3q-MC7clJPFlZ0F8Jpd3H_2_Mvw4vAniLXT64IYQBo3L_2R8gnkjV_pJ2h0Mrjon8VtoIbYcCnmMSiJ3IpCC-r9xwkB9w7kQmIsMbxIJTyITCSpYSAuOk0NqPOcy5IKbkuXE_oUbVd15XYRpqm31FLjN-swS6QpSJFrIZISEJhaEaG3Hdyo741TDuXdZHchwLHKY1Z5zCrI8ixCB0tMqqL1ge5DcUxU0IWkuF3h9arC8k__LHrsSaPToPCinn5V7TCgtHTCpToTFjoDpCedWGd0Lo21hZYsjdDekrDUkhcUyfyB5pxxGSG8AsMw4G07unL1YqZkBoKFpJRF6FlDhquGgNJJCIzLEco6BNppaRdSXV0GT-OAQ0IFjdCbJSmvtWpzNzz_LwS9QHebRXsWJ3wPbc-nC_cSpL656aEtlpxCKk8g3TkeDD99hqe-6PfCOgqkp2PSCzwP6Sg9-gspnV37
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOiDeBAj6ABFLDxnH8iBBCtGy1pe2CUCv2ZuzYoZWWpOxDFT-Ev8FvZJzHdkMLtx5WzmbirDczHn-TGc8g9MxQ4nLrw8olYWECmDlMI2pDkzERZxYmVB3lO-SDw-TDiI1W0O92L4wPq2x1YqWobZn5d-Q9IvyuzjRh8u3Jj9BXjfLe1baERi0Wu-7nKZhs0zc774G_z-N4u3-wNQibqgKhYZLPQrBomOWZ5tQnO-Mcjh2AGGIsMSyLJXzhgkexSQDbOE0N2J6MyZxyZnOXEgr3vYLWAGakMIvWNvvDT59b3Z-IqCpnBz1JKJigTTIhInkPFm4exoKPQmh8jqnOBvtxZ12sygdchHnPh27-5b-tlsXtm-hGg2fxu1oAb6EVV9xG15eyHN5Bv_rFkZetajMdLnPsMed36ASmuM8268tXgL2O_SthvDXfgM_HDawLizM9MWWBC12Us7lx1UE-nh_baUVecr772-5_GR70TgE7T84uxEDSuD7p962Poa2TV99Fh5fCt3totSgL9wBhGnt3MDU-IiixRJqMZKnmPMqBgbHlAXrd4Y06qTN_KJ-Lu0sBEVWes8pzVkGTigC9ajmpsibRuq_3MVaVwSX5-Q4vFh3aX_rnpZteNDoDqk6Uk2-q0TVKS8ddrAW38DAAounIOqNTaazNtEziAK23gqUajTVVZ_MrQHhBBl3jHUi6cOV8qqQA9CIpTQJ0vxbDxUDAsiUElH-AREdAOyPtUorjoyqdOfCQUE4D9LIV5aVRXfwYHv7_HzxFVwcH-3tqb2e4-whdq90ASRixdbQ6m8zdY8CRM_OkmbwYfb1sffEHlfWFQw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqdhOABcScwwA8ggbTQOI4vEUKIba02BmVCm-ibsWOHTSrJ6EUTH8LP8HUc57I1bPC2h8ppTpy6OcfnknND6JmhxOXWh5VLwsIEdOYwjagNTcZEnFnYUHWU74hvHyTvx2y8gn63uTA-rLLliRWjtmXm35H3ifBZnWnCZD9vwiL2toZvj3-EvoOU97S27TRqEtl1P0_AfJu92dkCXD-P4-Fgf3M7bDoMhIZJPg_BumGWZ5pTX_iMczh2oNAQY4lhWSzhCxc8ik0Ceo7T1IAdypjMKWc2dymhcN8raFWAVJQ9tLoxGO19buVAIqKqtR3MJKFggjaFhYjkfRDiPIwFH4cw-HpTnWT7SUdGVq0ELtJ_z4dx_uXLrUTk8Ca60ei2-F1NjLfQiituo-tLFQ_voF-D4tDTWZVYh8sce_3zO0wCs9xXnvWtLMB2x_71MN5crMPn0zrWhcWZnpqywIUuyvnCuOognyyO7KwCLzni_W0_fhnt909Aj56eXYgBpHF90uewT2CsC1nfRQeXgrd7qFeUhXuAMI29a5gaHx2UWCJNRrJUcx7lgMDY8gC97uBGHddVQJSvy92FALkqj1nlMatgSEWAXrWYVFlTdN33_pioyviS_PyEF6cT2l_656UbnjQ6C6pOlNNvquE7SkvHXawFt_AwQF3TkXVGp9JYm2mZxAFaawlLNdxrps72WoDwKRj4jncm6cKVi5mSAjQZSWkSoPs1GZ4uBKxcQkAQBEh0CLSz0i6kODqsSpsDDgnlNEAvW1JeWtXFj-Hh___BU3QV-IT6sDPafYSu1R6BJIzYGurNpwv3GFTKuXnS7F2Mvl42u_gDuVaJbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancements+of+thermal+conductivities+with+Cu%2C+CuO%2C+and+carbon+nanotube+nanofluids+and+application+of+MWNT%2Fwater+nanofluid+on+a+water+chiller+system&rft.jtitle=Nanoscale+research+letters&rft.au=Liu%2C+MinSheng&rft.au=Lin%2C+Mark&rft.au=Wang%2C+ChiChuan&rft.date=2011-04-05&rft.pub=BioMed+Central+Ltd&rft.issn=1556-276X&rft.eissn=1556-276X&rft.volume=6&rft.issue=1&rft.spage=297&rft.epage=297&rft_id=info:doi/10.1186%2F1556-276X-6-297&rft.externalDBID=n%2Fa&rft.externalDocID=oai_biomedcentral_com_1556_276X_6_297
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-276X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-276X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-276X&client=summon