Serum cytokine biomarker panels for discriminating pancreatic cancer from benign pancreatic disease
We investigated whether combinations of serum cytokines, used with logistic disease predictor models, could facilitate the detection of pancreatic ductal adenocarcinoma (PDAC). The serum levels of 27 cytokines were measured in 241 subjects, 127 with PDAC, 49 with chronic pancreatitis, 20 with benign...
Saved in:
Published in | Molecular cancer Vol. 13; no. 1; p. 114 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
20.05.2014
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We investigated whether combinations of serum cytokines, used with logistic disease predictor models, could facilitate the detection of pancreatic ductal adenocarcinoma (PDAC).
The serum levels of 27 cytokines were measured in 241 subjects, 127 with PDAC, 49 with chronic pancreatitis, 20 with benign biliary obstruction and 45 healthy controls. Samples were split randomly into independent training and test sets. Cytokine biomarker panels were selected by identifying the top performing cytokines in best fit logistic regression models during multiple rounds of resampling from the training dataset. Disease prediction by logistic models, built using the resulting cytokine panels, was evaluated with training and test sets and further examined using resampled performance evaluation.
For the discrimination of PDAC patients from patients with benign disease, a panel of IP-10, IL-6, PDGF plus CA19-9 offered improved diagnostic performance over CA19-9 alone in the training (AUC 0.838 vs. 0.678) and independent test set (AUC 0.884 vs. 0.798). For the discrimination of PDAC from CP, a panel of IL-8, CA19-9, IL-6 and IP-10 offered improved diagnostic performance over CA19-9 alone with the training (AUC 0.880 vs. 0.758) and test set (AUC 0.912 vs. 0.848). Finally, for the discrimination of PDAC in the presence of jaundice from benign controls with jaundice, a panel of IP-10, IL-8, IL-1b and PDGF demonstrated improvement over CA19-9 in the training (AUC 0.810 vs. 0.614) and test set (AUC 0.857 vs. 0.659).
These findings support the potential role for cytokine panels in the discrimination of PDAC from patients with benign pancreatic diseases and warrant additional study. |
---|---|
AbstractList | We investigated whether combinations of serum cytokines, used with logistic disease predictor models, could facilitate the detection of pancreatic ductal adenocarcinoma (PDAC). The serum levels of 27 cytokines were measured in 241 subjects, 127 with PDAC, 49 with chronic pancreatitis, 20 with benign biliary obstruction and 45 healthy controls. Samples were split randomly into independent training and test sets. Cytokine biomarker panels were selected by identifying the top performing cytokines in best fit logistic regression models during multiple rounds of resampling from the training dataset. Disease prediction by logistic models, built using the resulting cytokine panels, was evaluated with training and test sets and further examined using resampled performance evaluation. For the discrimination of PDAC patients from patients with benign disease, a panel of IP-10, IL-6, PDGF plus CA19-9 offered improved diagnostic performance over CA19-9 alone in the training (AUC 0.838 vs. 0.678) and independent test set (AUC 0.884 vs. 0.798). For the discrimination of PDAC from CP, a panel of IL-8, CA19-9, IL-6 and IP-10 offered improved diagnostic performance over CA19-9 alone with the training (AUC 0.880 vs. 0.758) and test set (AUC 0.912 vs. 0.848). Finally, for the discrimination of PDAC in the presence of jaundice from benign controls with jaundice, a panel of IP-10, IL-8, IL-1b and PDGF demonstrated improvement over CA19-9 in the training (AUC 0.810 vs. 0.614) and test set (AUC 0.857 vs. 0.659). These findings support the potential role for cytokine panels in the discrimination of PDAC from patients with benign pancreatic diseases and warrant additional study. Doc number: 114 Abstract Background: We investigated whether combinations of serum cytokines, used with logistic disease predictor models, could facilitate the detection of pancreatic ductal adenocarcinoma (PDAC). Methods: The serum levels of 27 cytokines were measured in 241 subjects, 127 with PDAC, 49 with chronic pancreatitis, 20 with benign biliary obstruction and 45 healthy controls. Samples were split randomly into independent training and test sets. Cytokine biomarker panels were selected by identifying the top performing cytokines in best fit logistic regression models during multiple rounds of resampling from the training dataset. Disease prediction by logistic models, built using the resulting cytokine panels, was evaluated with training and test sets and further examined using resampled performance evaluation. Results: For the discrimination of PDAC patients from patients with benign disease, a panel of IP-10, IL-6, PDGF plus CA19-9 offered improved diagnostic performance over CA19-9 alone in the training (AUC 0.838 vs. 0.678) and independent test set (AUC 0.884 vs. 0.798). For the discrimination of PDAC from CP, a panel of IL-8, CA19-9, IL-6 and IP-10 offered improved diagnostic performance over CA19-9 alone with the training (AUC 0.880 vs. 0.758) and test set (AUC 0.912 vs. 0.848). Finally, for the discrimination of PDAC in the presence of jaundice from benign controls with jaundice, a panel of IP-10, IL-8, IL-1b and PDGF demonstrated improvement over CA19-9 in the training (AUC 0.810 vs. 0.614) and test set (AUC 0.857 vs. 0.659). Conclusions: These findings support the potential role for cytokine panels in the discrimination of PDAC from patients with benign pancreatic diseases and warrant additional study. Background: We investigated whether combinations of serum cytokines, used with logistic disease predictor models, could facilitate the detection of pancreatic ductal adenocarcinoma (PDAC). Methods: The serum levels of 27 cytokines were measured in 241 subjects, 127 with PDAC, 49 with chronic pancreatitis, 20 with benign biliary obstruction and 45 healthy controls. Samples were split randomly into independent training and test sets. Cytokine biomarker panels were selected by identifying the top performing cytokines in best fit logistic regression models during multiple rounds of resampling from the training dataset. Disease prediction by logistic models, built using the resulting cytokine panels, was evaluated with training and test sets and further examined using resampled performance evaluation. Results: For the discrimination of PDAC patients from patients with benign disease, a panel of IP-10, IL-6, PDGF plus CA19-9 offered improved diagnostic performance over CA19-9 alone in the training (AUC 0.838 vs. 0.678) and independent test set (AUC 0.884 vs. 0.798). For the discrimination of PDAC from CP, a panel of IL-8, CA19-9, IL-6 and IP-10 offered improved diagnostic performance over CA19-9 alone with the training (AUC 0.880 vs. 0.758) and test set (AUC 0.912 vs. 0.848). Finally, for the discrimination of PDAC in the presence of jaundice from benign controls with jaundice, a panel of IP-10, IL-8, IL-1b and PDGF demonstrated improvement over CA19-9 in the training (AUC 0.810 vs. 0.614) and test set (AUC 0.857 vs. 0.659). Conclusions: These findings support the potential role for cytokine panels in the discrimination of PDAC from patients with benign pancreatic diseases and warrant additional study. We investigated whether combinations of serum cytokines, used with logistic disease predictor models, could facilitate the detection of pancreatic ductal adenocarcinoma (PDAC). The serum levels of 27 cytokines were measured in 241 subjects, 127 with PDAC, 49 with chronic pancreatitis, 20 with benign biliary obstruction and 45 healthy controls. Samples were split randomly into independent training and test sets. Cytokine biomarker panels were selected by identifying the top performing cytokines in best fit logistic regression models during multiple rounds of resampling from the training dataset. Disease prediction by logistic models, built using the resulting cytokine panels, was evaluated with training and test sets and further examined using resampled performance evaluation. For the discrimination of PDAC patients from patients with benign disease, a panel of IP-10, IL-6, PDGF plus CA19-9 offered improved diagnostic performance over CA19-9 alone in the training (AUC 0.838 vs. 0.678) and independent test set (AUC 0.884 vs. 0.798). For the discrimination of PDAC from CP, a panel of IL-8, CA19-9, IL-6 and IP-10 offered improved diagnostic performance over CA19-9 alone with the training (AUC 0.880 vs. 0.758) and test set (AUC 0.912 vs. 0.848). Finally, for the discrimination of PDAC in the presence of jaundice from benign controls with jaundice, a panel of IP-10, IL-8, IL-1b and PDGF demonstrated improvement over CA19-9 in the training (AUC 0.810 vs. 0.614) and test set (AUC 0.857 vs. 0.659). These findings support the potential role for cytokine panels in the discrimination of PDAC from patients with benign pancreatic diseases and warrant additional study. We investigated whether combinations of serum cytokines, used with logistic disease predictor models, could facilitate the detection of pancreatic ductal adenocarcinoma (PDAC).BACKGROUNDWe investigated whether combinations of serum cytokines, used with logistic disease predictor models, could facilitate the detection of pancreatic ductal adenocarcinoma (PDAC).The serum levels of 27 cytokines were measured in 241 subjects, 127 with PDAC, 49 with chronic pancreatitis, 20 with benign biliary obstruction and 45 healthy controls. Samples were split randomly into independent training and test sets. Cytokine biomarker panels were selected by identifying the top performing cytokines in best fit logistic regression models during multiple rounds of resampling from the training dataset. Disease prediction by logistic models, built using the resulting cytokine panels, was evaluated with training and test sets and further examined using resampled performance evaluation.METHODSThe serum levels of 27 cytokines were measured in 241 subjects, 127 with PDAC, 49 with chronic pancreatitis, 20 with benign biliary obstruction and 45 healthy controls. Samples were split randomly into independent training and test sets. Cytokine biomarker panels were selected by identifying the top performing cytokines in best fit logistic regression models during multiple rounds of resampling from the training dataset. Disease prediction by logistic models, built using the resulting cytokine panels, was evaluated with training and test sets and further examined using resampled performance evaluation.For the discrimination of PDAC patients from patients with benign disease, a panel of IP-10, IL-6, PDGF plus CA19-9 offered improved diagnostic performance over CA19-9 alone in the training (AUC 0.838 vs. 0.678) and independent test set (AUC 0.884 vs. 0.798). For the discrimination of PDAC from CP, a panel of IL-8, CA19-9, IL-6 and IP-10 offered improved diagnostic performance over CA19-9 alone with the training (AUC 0.880 vs. 0.758) and test set (AUC 0.912 vs. 0.848). Finally, for the discrimination of PDAC in the presence of jaundice from benign controls with jaundice, a panel of IP-10, IL-8, IL-1b and PDGF demonstrated improvement over CA19-9 in the training (AUC 0.810 vs. 0.614) and test set (AUC 0.857 vs. 0.659).RESULTSFor the discrimination of PDAC patients from patients with benign disease, a panel of IP-10, IL-6, PDGF plus CA19-9 offered improved diagnostic performance over CA19-9 alone in the training (AUC 0.838 vs. 0.678) and independent test set (AUC 0.884 vs. 0.798). For the discrimination of PDAC from CP, a panel of IL-8, CA19-9, IL-6 and IP-10 offered improved diagnostic performance over CA19-9 alone with the training (AUC 0.880 vs. 0.758) and test set (AUC 0.912 vs. 0.848). Finally, for the discrimination of PDAC in the presence of jaundice from benign controls with jaundice, a panel of IP-10, IL-8, IL-1b and PDGF demonstrated improvement over CA19-9 in the training (AUC 0.810 vs. 0.614) and test set (AUC 0.857 vs. 0.659).These findings support the potential role for cytokine panels in the discrimination of PDAC from patients with benign pancreatic diseases and warrant additional study.CONCLUSIONSThese findings support the potential role for cytokine panels in the discrimination of PDAC from patients with benign pancreatic diseases and warrant additional study. Background We investigated whether combinations of serum cytokines, used with logistic disease predictor models, could facilitate the detection of pancreatic ductal adenocarcinoma (PDAC). Methods The serum levels of 27 cytokines were measured in 241 subjects, 127 with PDAC, 49 with chronic pancreatitis, 20 with benign biliary obstruction and 45 healthy controls. Samples were split randomly into independent training and test sets. Cytokine biomarker panels were selected by identifying the top performing cytokines in best fit logistic regression models during multiple rounds of resampling from the training dataset. Disease prediction by logistic models, built using the resulting cytokine panels, was evaluated with training and test sets and further examined using resampled performance evaluation. Results For the discrimination of PDAC patients from patients with benign disease, a panel of IP-10, IL-6, PDGF plus CA19-9 offered improved diagnostic performance over CA19-9 alone in the training (AUC 0.838 vs. 0.678) and independent test set (AUC 0.884 vs. 0.798). For the discrimination of PDAC from CP, a panel of IL-8, CA19-9, IL-6 and IP-10 offered improved diagnostic performance over CA19-9 alone with the training (AUC 0.880 vs. 0.758) and test set (AUC 0.912 vs. 0.848). Finally, for the discrimination of PDAC in the presence of jaundice from benign controls with jaundice, a panel of IP-10, IL-8, IL-1b and PDGF demonstrated improvement over CA19-9 in the training (AUC 0.810 vs. 0.614) and test set (AUC 0.857 vs. 0.659). Conclusions These findings support the potential role for cytokine panels in the discrimination of PDAC from patients with benign pancreatic diseases and warrant additional study. Keywords: Pancreatic cancer, Biomarker, Cytokine, CA19-9, IP-10, IL-8 and PDGF |
ArticleNumber | 114 |
Audience | Academic |
Author | Jenkinson, Claire Tang, Joseph Shaw, Victoria E Lane, Brian Halloran, Christopher M Sutton, Robert Costello, Eithne Greenhalf, William Neoptolemos, John P Cox, Trevor |
AuthorAffiliation | 1 NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool and Broadgreen University Hospital NHS Trust, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, UK |
AuthorAffiliation_xml | – name: 1 NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool and Broadgreen University Hospital NHS Trust, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, UK |
Author_xml | – sequence: 1 givenname: Victoria E surname: Shaw fullname: Shaw, Victoria E – sequence: 2 givenname: Brian surname: Lane fullname: Lane, Brian – sequence: 3 givenname: Claire surname: Jenkinson fullname: Jenkinson, Claire – sequence: 4 givenname: Trevor surname: Cox fullname: Cox, Trevor – sequence: 5 givenname: William surname: Greenhalf fullname: Greenhalf, William – sequence: 6 givenname: Christopher M surname: Halloran fullname: Halloran, Christopher M – sequence: 7 givenname: Joseph surname: Tang fullname: Tang, Joseph – sequence: 8 givenname: Robert surname: Sutton fullname: Sutton, Robert – sequence: 9 givenname: John P surname: Neoptolemos fullname: Neoptolemos, John P – sequence: 10 givenname: Eithne surname: Costello fullname: Costello, Eithne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24884871$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks-L1DAUx4OsuD_07kkKXrx0TdIkTS_CMrirsOBBPYc0fRmz2yZj0gr735sw6zizjCA99PHe93358sk7Ryc-eEDoNcGXhEjxnrBW1Ix3siZNTQh7hs52rZO9-hSdp3SHMWlly16gU8qkZLIlZ8h8hbhMlXmYw73zUPUuTDreQ6w22sOYKhtiNbhkopuc17Pz6zIxEXJtKpPLrLUxTFUP3q39_jTvgU7wEj23ekzw6vF_gb5ff_y2-lTffrn5vLq6rXsu2Vy3jEnLO9tSrQetuQY5CMMJwZ1ouME9lmA6Yc0g9SA5L11OQMiu1X0vbHOBPmx9N0s_wWDAz1GPapOj6_iggnbqcOLdD7UOvxTDDWVcZIPV1qBQOG5wODFhUgWyKpAVaVR-g-zy7jFGDD8XSLOaMj8Yxww0LEkRzjCljaDkP6QN7ZhguEjfPpHehSX6zDOrqKSy6zj-q1rrEZTzNuScppiqK950gtG2Kwkvj6jyN8DkTD4x63L_YOHNPtkdkT93lAV4KzAxpBTB7iQEq3KqxzCJJyvGzflsQkHrxn8v_gYNuuzJ |
CitedBy_id | crossref_primary_10_12998_wjcc_v8_i6_1108 crossref_primary_10_1016_j_molonc_2016_07_001 crossref_primary_10_3390_biomedicines12102344 crossref_primary_10_1159_000381283 crossref_primary_10_3390_cancers14030853 crossref_primary_10_1016_j_ebiom_2021_103802 crossref_primary_10_1097_JP9_0000000000000152 crossref_primary_10_1016_j_cca_2025_120237 crossref_primary_10_1042_BCJ20220521 crossref_primary_10_3390_cancers14235993 crossref_primary_10_1002_jso_24940 crossref_primary_10_18632_oncotarget_17463 crossref_primary_10_1016_j_celrep_2019_01_080 crossref_primary_10_1016_j_pan_2021_01_006 crossref_primary_10_3390_biomedicines12122840 crossref_primary_10_1038_s41388_021_01920_4 crossref_primary_10_1186_s13046_024_03166_w crossref_primary_10_1097_MPA_0000000000000590 crossref_primary_10_1002_cam4_1824 crossref_primary_10_12688_f1000research_11371_1 crossref_primary_10_1200_JCO_2017_77_6658 crossref_primary_10_3390_biom14020239 crossref_primary_10_1016_j_pan_2023_07_004 crossref_primary_10_1021_acs_chemrev_5b00321 crossref_primary_10_1053_j_gastro_2022_07_047 crossref_primary_10_12677_ACM_2021_115294 crossref_primary_10_15252_emmm_201708741 crossref_primary_10_1371_journal_pone_0221169 crossref_primary_10_1007_s10238_015_0401_2 crossref_primary_10_1016_j_pan_2022_08_001 crossref_primary_10_1586_17474124_2015_965145 crossref_primary_10_1016_j_pan_2019_11_008 crossref_primary_10_14309_ctg_0000000000000468 crossref_primary_10_1186_s12885_023_10653_4 crossref_primary_10_18632_oncotarget_24654 crossref_primary_10_1007_s10620_020_06700_w crossref_primary_10_1016_j_pan_2018_11_002 crossref_primary_10_1016_j_pan_2017_03_003 crossref_primary_10_1080_09513590_2016_1269740 crossref_primary_10_1080_17474124_2017_1271323 crossref_primary_10_4236_abb_2018_96018 crossref_primary_10_1038_s41392_024_01848_7 crossref_primary_10_1139_gen_2017_0074 crossref_primary_10_1016_j_bios_2021_113148 crossref_primary_10_1371_journal_pone_0154016 crossref_primary_10_1016_j_lfs_2023_122276 crossref_primary_10_18632_oncotarget_20324 crossref_primary_10_3748_wjg_v21_i40_11387 crossref_primary_10_1002_rcm_8580 crossref_primary_10_18632_oncotarget_25212 crossref_primary_10_3748_wjg_v27_i26_4045 crossref_primary_10_3389_fmed_2021_788869 crossref_primary_10_1016_j_gie_2022_04_1342 crossref_primary_10_1016_j_ctrv_2021_102193 crossref_primary_10_1016_j_xgen_2024_100561 crossref_primary_10_1038_s41598_021_85052_5 |
Cites_doi | 10.1159/000323479 10.1007/s10620-011-1709-8 10.1038/bjc.2013.150 10.1189/jlb.0306212 10.1245/s10434-009-0411-y 10.1186/1471-2105-12-77 10.1042/cs0960083 10.3748/wjg.v18.i10.1123 10.1016/S1470-2045(12)70582-X 10.1198/106186005X59630 10.1038/nrgastro.2012.119 10.1021/pr800451h 10.1245/ASO.2006.08.011 10.1371/journal.pone.0034151 10.1002/pmic.201200101 10.1158/0008-5472.CAN-10-0987 10.1158/0008-5472.CAN-11-2883 10.1093/bioinformatics/bti623 10.1002/jso.23192 10.1002/cncr.20672 10.1371/journal.pmed.0050123 10.1097/MPA.0b013e3182546e13 10.1159/000140961 10.1186/1756-9966-27-63 10.1245/s10434-009-0408-6 10.1021/pr101148r 10.1097/MPA.0b013e31816d8185 10.1016/j.jim.2008.10.002 10.1093/carcin/bgp272 10.3233/CBM-2005-1601 10.3389/fimmu.2012.00175 10.1198/016214502753479248 10.1016/S1072-7515(99)00075-7 10.1158/1078-0432.CCR-10-0248 10.1038/nrgastro.2010.214 10.1016/j.cyto.2009.11.010 10.3892/ol.2011.300 10.1200/JCO.2006.08.2644 10.1038/sj.bjc.6605764 10.1016/S1359-6101(01)00016-8 10.1159/000212083 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 BioMed Central Ltd. 2014 Shaw et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Copyright © 2014 Shaw et al.; licensee BioMed Central Ltd. 2014 Shaw et al.; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2014 BioMed Central Ltd. – notice: 2014 Shaw et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. – notice: Copyright © 2014 Shaw et al.; licensee BioMed Central Ltd. 2014 Shaw et al.; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TO 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 7T5 5PM |
DOI | 10.1186/1476-4598-13-114 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Immunology Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Immunology Abstracts |
DatabaseTitleList | Publicly Available Content Database AIDS and Cancer Research Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1476-4598 |
EndPage | 114 |
ExternalDocumentID | PMC4032456 oai_biomedcentral_com_1476_4598_13_114 3314273881 A539642794 24884871 10_1186_1476_4598_13_114 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Cancer Research UK grantid: 15957 – fundername: Cancer Research UK grantid: 8968 – fundername: Cancer Research UK grantid: 16791 – fundername: Cancer Research UK grantid: A12790 |
GroupedDBID | --- 0R~ 123 29M 2WC 4.4 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HH5 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PZZ RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM PJZUB PPXIY PMFND 3V. 7TO 7XB 8FK AZQEC DWQXO H94 K9. PKEHL PQEST PQUKI PRINS 7X8 7T5 -A0 ABVAZ ACRMQ ADINQ AFGXO AFNRJ C24 FRP 5PM |
ID | FETCH-LOGICAL-b584t-7448f59f72aadaa5ae8d6c51109635c0b08ec96fcd8ad855963551e6897abb6f3 |
IEDL.DBID | RBZ |
ISSN | 1476-4598 |
IngestDate | Thu Aug 21 14:23:57 EDT 2025 Wed May 22 07:13:09 EDT 2024 Mon Jul 21 11:03:56 EDT 2025 Fri Jul 11 15:30:19 EDT 2025 Fri Jul 25 04:47:55 EDT 2025 Tue Jun 17 22:05:23 EDT 2025 Tue Jun 10 21:03:00 EDT 2025 Mon Jul 21 06:05:51 EDT 2025 Tue Jul 01 04:34:46 EDT 2025 Thu Apr 24 23:05:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b584t-7448f59f72aadaa5ae8d6c51109635c0b08ec96fcd8ad855963551e6897abb6f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://dx.doi.org/10.1186/1476-4598-13-114 |
PMID | 24884871 |
PQID | 1528289950 |
PQPubID | 42702 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4032456 biomedcentral_primary_oai_biomedcentral_com_1476_4598_13_114 proquest_miscellaneous_1540223621 proquest_miscellaneous_1532946401 proquest_journals_1528289950 gale_infotracmisc_A539642794 gale_infotracacademiconefile_A539642794 pubmed_primary_24884871 crossref_primary_10_1186_1476_4598_13_114 crossref_citationtrail_10_1186_1476_4598_13_114 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-20 |
PublicationDateYYYYMMDD | 2014-05-20 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Molecular cancer |
PublicationTitleAlternate | Mol Cancer |
PublicationYear | 2014 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | A Xue (1313_CR24) 2010; 103 X Yang (1313_CR36) 2006; 80 E Costello (1313_CR1) 2012; 9 AS Bauer (1313_CR17) 2012; 7 S Tonack (1313_CR18) 2009; 9 A Evans (1313_CR20) 2012; 3 X Robin (1313_CR45) 2011; 12 F Hussain (1313_CR30) 2010; 49 C Wingren (1313_CR12) 2012; 72 SO Dima (1313_CR31) 2012; 41 K Mei (1313_CR35) 2008; 27 JM Winter (1313_CR6) 2013; 107 S Tonack (1313_CR27) 2013; 108 RA Smith (1313_CR10) 2008; 25 GR Varadhachary (1313_CR42) 2006; 13 RE Brand (1313_CR15) 2011; 17 Y Chen (1313_CR28) 2012; 18 HJ Zeh (1313_CR40) 2005; 1 X Blanchet (1313_CR19) 2012; 3 R Bartsch (1313_CR38) 2006; 26 BE Lippitz (1313_CR39) 2013; 14 C von Ritter (1313_CR11) 1997; 17 VM Faca (1313_CR14) 2008; 5 MA Choti (1313_CR43) 2009; 16 G Bellone (1313_CR32) 2005; 25 Y Toiyama (1313_CR33) 2012; 40 MP Callery (1313_CR44) 2009; 16 AJ Schetter (1313_CR21) 2010; 31 S Pan (1313_CR16) 2011; 10 MT Joergensen (1313_CR23) 2010; 30 S Dudoit (1313_CR22) 2002; 97 M Liu (1313_CR34) 2011; 2 F Chowdhury (1313_CR41) 2009; 340 HD Park (1313_CR13) 2012; 12 S Hamada (1313_CR9) 2011; 11 L Yan (1313_CR26) 2009; 8 GY Locker (1313_CR4) 2006; 24 MD Barber (1313_CR37) 1999; 96 D Wong (1313_CR5) 2008; 37 E Costello (1313_CR2) 2011; 8 S Singh (1313_CR8) 2011; 56 T Sing (1313_CR46) 2005; 21 B Ebrahimi (1313_CR25) 2004; 101 K Xie (1313_CR29) 2001; 12 KJ Martin (1313_CR3) 2010; 70 SF Sener (1313_CR7) 1999; 189 T Hothorn (1313_CR47) 2005; 14 |
References_xml | – volume: 11 start-page: 14 issue: Suppl 2 year: 2011 ident: 1313_CR9 publication-title: Pancreatology doi: 10.1159/000323479 – volume: 56 start-page: 2491 year: 2011 ident: 1313_CR8 publication-title: Dig Dis Sci doi: 10.1007/s10620-011-1709-8 – volume: 108 start-page: 1846 year: 2013 ident: 1313_CR27 publication-title: Br J Cancer doi: 10.1038/bjc.2013.150 – volume: 40 start-page: 560 year: 2012 ident: 1313_CR33 publication-title: Int J Oncol – volume: 80 start-page: 1434 year: 2006 ident: 1313_CR36 publication-title: J Leukoc Biol doi: 10.1189/jlb.0306212 – volume: 25 start-page: 3287 year: 2005 ident: 1313_CR32 publication-title: Anticancer Res – volume: 16 start-page: 1734 year: 2009 ident: 1313_CR43 publication-title: Ann Surg Oncol doi: 10.1245/s10434-009-0411-y – volume: 12 start-page: 77 year: 2011 ident: 1313_CR45 publication-title: BMC Bioinforma doi: 10.1186/1471-2105-12-77 – volume: 96 start-page: 83 year: 1999 ident: 1313_CR37 publication-title: Clin Sci (Lond) doi: 10.1042/cs0960083 – volume: 30 start-page: 587 year: 2010 ident: 1313_CR23 publication-title: Anticancer Res – volume: 18 start-page: 1123 year: 2012 ident: 1313_CR28 publication-title: World J Gastroenterol doi: 10.3748/wjg.v18.i10.1123 – volume: 14 start-page: e218 year: 2013 ident: 1313_CR39 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(12)70582-X – volume: 14 start-page: 675 year: 2005 ident: 1313_CR47 publication-title: J Comput Graph Stat doi: 10.1198/106186005X59630 – volume: 9 start-page: 435 year: 2012 ident: 1313_CR1 publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2012.119 – volume: 8 start-page: 142 year: 2009 ident: 1313_CR26 publication-title: J Proteome Res doi: 10.1021/pr800451h – volume: 13 start-page: 1035 year: 2006 ident: 1313_CR42 publication-title: Ann Surg Oncol doi: 10.1245/ASO.2006.08.011 – volume: 7 start-page: e34151 year: 2012 ident: 1313_CR17 publication-title: PLoS One doi: 10.1371/journal.pone.0034151 – volume: 12 start-page: 3590 year: 2012 ident: 1313_CR13 publication-title: Proteomics doi: 10.1002/pmic.201200101 – volume: 70 start-page: 5203 year: 2010 ident: 1313_CR3 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-10-0987 – volume: 72 start-page: 2481 year: 2012 ident: 1313_CR12 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-2883 – volume: 21 start-page: 3940 year: 2005 ident: 1313_CR46 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti623 – volume: 107 start-page: 15 year: 2013 ident: 1313_CR6 publication-title: J Surg Oncol doi: 10.1002/jso.23192 – volume: 101 start-page: 2727 year: 2004 ident: 1313_CR25 publication-title: Cancer doi: 10.1002/cncr.20672 – volume: 5 start-page: e123 year: 2008 ident: 1313_CR14 publication-title: PLoS Med doi: 10.1371/journal.pmed.0050123 – volume: 41 start-page: 1001 year: 2012 ident: 1313_CR31 publication-title: Pancreas doi: 10.1097/MPA.0b013e3182546e13 – volume: 25 start-page: 226 year: 2008 ident: 1313_CR10 publication-title: Dig Surg doi: 10.1159/000140961 – volume: 27 start-page: 63 year: 2008 ident: 1313_CR35 publication-title: J Exp Clin Cancer Res doi: 10.1186/1756-9966-27-63 – volume: 16 start-page: 1727 year: 2009 ident: 1313_CR44 publication-title: Ann Surg Oncol doi: 10.1245/s10434-009-0408-6 – volume: 10 start-page: 2359 year: 2011 ident: 1313_CR16 publication-title: J Proteome Res doi: 10.1021/pr101148r – volume: 37 start-page: 269 year: 2008 ident: 1313_CR5 publication-title: Pancreas doi: 10.1097/MPA.0b013e31816d8185 – volume: 340 start-page: 55 year: 2009 ident: 1313_CR41 publication-title: J Immunol Methods doi: 10.1016/j.jim.2008.10.002 – volume: 31 start-page: 37 year: 2010 ident: 1313_CR21 publication-title: Carcinogenesis doi: 10.1093/carcin/bgp272 – volume: 3 start-page: 270 year: 2012 ident: 1313_CR20 publication-title: Front Physiol – volume: 1 start-page: 259 year: 2005 ident: 1313_CR40 publication-title: Cancer Biomark doi: 10.3233/CBM-2005-1601 – volume: 3 start-page: 175 year: 2012 ident: 1313_CR19 publication-title: Front Immunol doi: 10.3389/fimmu.2012.00175 – volume: 97 start-page: 77 year: 2002 ident: 1313_CR22 publication-title: J Am Stat Assoc doi: 10.1198/016214502753479248 – volume: 189 start-page: 1 year: 1999 ident: 1313_CR7 publication-title: J Am Coll Surg doi: 10.1016/S1072-7515(99)00075-7 – volume: 17 start-page: 805 year: 2011 ident: 1313_CR15 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-10-0248 – volume: 8 start-page: 71 year: 2011 ident: 1313_CR2 publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2010.214 – volume: 17 start-page: 2931 year: 1997 ident: 1313_CR11 publication-title: Anticancer Res – volume: 49 start-page: 134 year: 2010 ident: 1313_CR30 publication-title: Cytokine doi: 10.1016/j.cyto.2009.11.010 – volume: 2 start-page: 583 year: 2011 ident: 1313_CR34 publication-title: Oncol Lett doi: 10.3892/ol.2011.300 – volume: 24 start-page: 5313 year: 2006 ident: 1313_CR4 publication-title: J Clin Oncol doi: 10.1200/JCO.2006.08.2644 – volume: 26 start-page: 3187 year: 2006 ident: 1313_CR38 publication-title: Anticancer Res – volume: 103 start-page: 391 year: 2010 ident: 1313_CR24 publication-title: Br J Cancer doi: 10.1038/sj.bjc.6605764 – volume: 12 start-page: 375 year: 2001 ident: 1313_CR29 publication-title: Cytokine Growth Factor Rev doi: 10.1016/S1359-6101(01)00016-8 – volume: 9 start-page: 567 year: 2009 ident: 1313_CR18 publication-title: Pancreatology doi: 10.1159/000212083 |
SSID | ssj0017874 |
Score | 2.3259249 |
Snippet | We investigated whether combinations of serum cytokines, used with logistic disease predictor models, could facilitate the detection of pancreatic ductal... Background We investigated whether combinations of serum cytokines, used with logistic disease predictor models, could facilitate the detection of pancreatic... Doc number: 114 Abstract Background: We investigated whether combinations of serum cytokines, used with logistic disease predictor models, could facilitate the... Background: We investigated whether combinations of serum cytokines, used with logistic disease predictor models, could facilitate the detection of pancreatic... BACKGROUND: We investigated whether combinations of serum cytokines, used with logistic disease predictor models, could facilitate the detection of pancreatic... |
SourceID | pubmedcentral biomedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 114 |
SubjectTerms | Accuracy Adult Aged Analysis Antigens Antigens, Tumor-Associated, Carbohydrate - blood Antigens, Tumor-Associated, Carbohydrate - genetics Biomarkers Biomarkers - blood Biomedical research Carcinoma, Pancreatic Ductal - blood Carcinoma, Pancreatic Ductal - diagnosis Carcinoma, Pancreatic Ductal - genetics Carcinoma, Pancreatic Ductal - pathology Case-Control Studies Cholestasis - blood Cholestasis - diagnosis Cholestasis - genetics Cholestasis - pathology Classification Confidence intervals Cytokines Cytokines - blood Cytokines - genetics Diagnosis, Differential Disease Female Gene Expression Humans Logistic Models Logistics Male Medical research Medicine, Experimental Middle Aged Pancreas Pancreas - metabolism Pancreas - pathology Pancreatic cancer Pancreatic Neoplasms - blood Pancreatic Neoplasms - diagnosis Pancreatic Neoplasms - genetics Pancreatic Neoplasms - pathology Pancreatitis, Chronic - blood Pancreatitis, Chronic - diagnosis Pancreatitis, Chronic - genetics Pancreatitis, Chronic - pathology Patients Platelet-Derived Growth Factor - genetics Platelet-Derived Growth Factor - metabolism |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEA56ovgiev5aPSWCID6Ebdo0aUCQQzwO4XzyYN9CMk318Oyee7sP998706br5tB73Um6bWcy833NZIaxt9pYanoEwnbIdFTRVgJRayFC0YIBVHMc-qecfNXHp-rLol6kD26XKa1y8omDo26XQN_I5xhnBnJQFx8vfgvqGkW7q6mFxm12h0qXkVWbxZZwSTRGNW1NNnouldFC1RZpUyWkvH7G_TwLTdcd9E6EyrMnd8LR0UP2IOFIfjgq_hG7Fft9dnfsLHm1z-6dpD3zxwzQHWx-cbhaL3_iD5xuhnJyVhwdAUZGjrCV0-HcscEXpUGTZESTwIHMYsXpGAoPsT_73u9K0_7OE3Z69Pnbp2ORWiuIgIhjLQyysq62nSm9b72vfWxaDTWVH0UEAkUomghWd9A2vm2QdRAukVE31vgQdFc9ZXv9so_PGUdOZEMAkKWRSkqNkM5TYIQOmRSSzRn7kL1ldzGW0XBU2DqXoL4dKcmRkpys6Mj0jM0npThIZcupe8a5G-hLo_8x4_12xvRf_x_7jvTsaDXjVcGnQwn4aFQXyx3WlUWGhk5rxg6ykbgKIRdPluKSF7h0f212xt5sxTSTMtv6uNzQmKq0SiPNvWkMsvwSoQaOeTYa3_bJSvTASDpRYjKzzF5zLunPfgx1xFVR0bb3i5tv_SW7jyBRUcZEWRywvfVqE18hEFuH18Nq-wNnEDHn priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB-kovgitX6trRJBEB_WbnazyQYspYilCOeTB30LSTarxXNPzzvw_ntn9uN6KVdfb5Ld28xM5vcjmRmAN1JpanrkU90g0xFZXaSIWrPUZbVXHtUcuv4pky_yYio-X5aX1-nRwwL-2UntqJ_UdDF7__f3-hQd_qRz-Eoec6FkKkqNdKhIOXW1votxSVE_g4m4PlNA0xTjQeWOWVQWGK0ZATy_kfw-i2LWzZ17K3TF1yq34tT5PjwcACY76y3iEdwJ7QHc61tOrg_g_mQ4TH8MHveJ1U_m18v5D_yB0Z-hyzoLhjsEhkyGeJZR1m7f-YvuR5Okh5meebKXBaP8FOZCe_Wt3ZYOBz9PYHr-6evHi3TouZA6hCLLVCFda0rdqNza2trShqqWvqS6pAhNfOayKngtG19Xtq6QjhBg4UFWWlnnZFM8hb123obnwJAsaee857nignOJWM9SxPQNUixkoQl8iFbZ_OrraxiqeB1L0PkM6cuQvgwvKJc6geNRKcYP9cyprcbMdLymkjtmvNvMGN91-9i3pGdDhodP9XbIVsBPo4JZ5qwsNFI33M0SOIpGonv6WDxaihmt2yBo6phumSXweiOmmXTlrQ3zFY0pci0k8t__jUH6nyMGwTHPeuPbfNlozAmoyCyjZY4l7dX3rsC4yAo6D39x6zMP4QECR0G3KPLsCPaWi1V4ieBs6V51PvcP-mo0Sw priority: 102 providerName: Scholars Portal |
Title | Serum cytokine biomarker panels for discriminating pancreatic cancer from benign pancreatic disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24884871 https://www.proquest.com/docview/1528289950 https://www.proquest.com/docview/1532946401 https://www.proquest.com/docview/1540223621 http://dx.doi.org/10.1186/1476-4598-13-114 https://pubmed.ncbi.nlm.nih.gov/PMC4032456 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9NAEB70DsUX0fNX9SwrCOJDuGyy2U3Al57ccRR6iHpQfFmSzUYPz1Rq-3D_vd_kR23K6YsvLXRm0yazu_N9ndkZotfaZNz0yAVZBaajwjIOgFrDoAhLZxzM7Jv-KbNzfXahpvNk_qdMzk4EX6b6SCqjA5VkIDtxILln9X6kQOiYmR9_2UQMMPGaCHKv3Yckb7jCztn2q4FL2t2YtzzTMGtyyw2dPqD7HX4Uk9bgD-mWrw_oTttR8vqA7s66WPkjctgG1j-Eu14tvuMDwT-Gc3GWAhsAPKIAXBV8KLdt7MXpzyxpUaQTjqfDUvDxE1H4-vJrvS3t4jqP6eL05PP7s6BrqRAUQBqrwICNVUlWmSjPyzxPcp-W2iVcdhTIw4VFmHqX6cqVaV6mYBuMR6TXaWbyotBV_IT26kXtn5EAF8qKwjkZGamk1IByOTtEV4FBgWSO6N3gKdufbfkMywWthxKsLctGsmwkK2M-Kj2io94o1nXlyrlrxpVtaEuqbxjxdjOi_66_675hO1texbiqy7vDCLg1rodlJ0mcgZlhsxrR4UATq88Nxf1Msd3q_2WBiRoim4QjerUR80jOaKv9Ys06cZQpDXr7Lx2w-wgQAzpP28m3ubMIOy_IJiRmMC0Hj3koqS-_NfXDVRhzuPv5_xnoBd0DeFScSRGFh7S3Wq79SwC0VTGm22ZuxrQ_mUw_TfF-fHL-4eO4-bsDrzOVjpu1-xvHEDrO |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh4XBIXCQgEjgRCHaOPEcRIJhCqg2tJuT63Um0kcBypKtmx3hfZP8Rv5Jo9lU0FvvWbsPDzjmfnieRC91HHKTY-sl5ZAOsovQg9eq-_lfmFjCza7un_K-ECPjtTn4-h4jX53uTAcVtnpxFpRFxPL_8iHsDM1OIj892c_Pe4axaerXQuNRiz23OIXINv5u92P4O-rINj5dPhh5LVdBbwcxnbmxQAkZZSWcZBlRZZFmUsKbSOuvAnja_3cT5xNdWmLJCsSONxskqXTSRpnea7LEPe9RtdheH0Ge_HxEuBJCL_qjkITPZQq1p6KUsC00JPyYk79ac8UXjQIKxaxH625Yv527tKd1m8V242g3aM1V23QjaaT5WKDbo7bM_r7ZKF-5j-EXcwm33FB8MtwDNBUQPHAEgu4yYKTgZuGYhx2zZTGe7XCshhOBae9iNxVJ1-rVWp7nvSAjq5k0TdpvZpU7hEJYLA0z62VQSyVlBouZMaG2JZAbgC3A3rbW2Vz1pTtMFxIu0-BfBlmkmEmGRlyivaAhh1TjG3LpHO3jlNTw6VE_2PGm-WM7ln_H_ua-WxYe-CuNmuTIPBpXIfLbEdhCkQIJTmgrd5I7HrbJ3eSYlqtc27-7pEBvViSeSZH0lVuMucxYZAqDVh92RgF1w6uDcY8bIRv-WUBND5ALihxTyx7y9ynVCff6rrlyg_5mP3x5a_-nG6NDsf7Zn_3YO8J3YaDqjhaI_C3aH02nbuncAJn-bN65wn6ctVb_Q8mBG8m |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYqUFEvqNBXWh6uVKnqYZt92V5LXIAS0QeoqoqEerHsWW9BhA1KkwP_npl9RDGivfQWZWaTtccef5_GM8PYO6k0NT2CSFfIdPK4zCJErXHk4hIUoJl90z_l5FQen-VfzsV5lx5NuTDXfVNYoEFPPy4noY8bz40f4Gp4U1bthi_kMMmVjHKhkQ5lUUJdrVeVEIr6Gfw4-LWIKeDSbGLMvXYftHzgF-5lv4-DQ-u-6146u8J7lUsH1egpW-8QJt9vl8QGe-TrTfa47Tl5u8nWTrpo-jMG6Cjm1xxuZ5Mr_ILTy9BtnSlHF4FnJkdAyyltt239RRekSdLiTODt3HFKUOHO15e_62VpF_l5zs5GRz8Pj6Ou6ULkEIvMIoV8rRK6Uqm1pbXC-qKUIKgwKWITiF1ceNCygrKwZYF8hBBL4mWhlXVOVtkLtlJPav-KcWRL2jmAJFVJniQSwZ6lIxMq5FhIQwdsL5hlc9MW2DBU8jqUoOENGcmQkUySUTL1gA17oxjoCppTX42xaYhNIR944sPiif6__q77nuxsaJ_TkrNdugIOjSpmmX2RaeRu6M4GbCvQxP0JobhfKabzD38MoqaG6op4wN4uxPQk3Xmr_WROOlmqc4kE-F86yP9TBCGo87JdfIuRpeibkY6iRAXLMpjmUFJfXjQVxvM4o4D46_8z0C5b-_5pZL59Pv36hj1BpJnTtYs03mIrs-ncbyOam7mdZpPeAR46RTE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Serum+cytokine+biomarker+panels+for+discriminating+pancreatic+cancer+from+benign+pancreatic+disease&rft.jtitle=Molecular+cancer&rft.au=Shaw%2C+Victoria+E&rft.au=Lane%2C+Brian&rft.au=Jenkinson%2C+Claire&rft.au=Cox%2C+Trevor&rft.date=2014-05-20&rft.eissn=1476-4598&rft.volume=13&rft.spage=114&rft_id=info:doi/10.1186%2F1476-4598-13-114&rft_id=info%3Apmid%2F24884871&rft.externalDocID=24884871 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-4598&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-4598&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-4598&client=summon |