Pathway analysis of kidney cancer using proteomics and metabolic profiling
Renal cell carcinoma (RCC) is the sixth leading cause of cancer death and is responsible for 11,000 deaths per year in the US. Approximately one-third of patients present with disease which is already metastatic and for which there is currently no adequate treatment, and no biofluid screening tests...
Saved in:
Published in | Molecular cancer Vol. 5; no. 1; p. 64 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
24.11.2006
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Renal cell carcinoma (RCC) is the sixth leading cause of cancer death and is responsible for 11,000 deaths per year in the US. Approximately one-third of patients present with disease which is already metastatic and for which there is currently no adequate treatment, and no biofluid screening tests exist for RCC. In this study, we have undertaken a comprehensive proteomic analysis and subsequently a pathway and network approach to identify biological processes involved in clear cell RCC (ccRCC). We have used these data to investigate urinary markers of RCC which could be applied to high-risk patients, or to those being followed for recurrence, for early diagnosis and treatment, thereby substantially reducing mortality of this disease.
Using 2-dimensional electrophoresis and mass spectrometric analysis, we identified 31 proteins which were differentially expressed with a high degree of significance in ccRCC as compared to adjacent non-malignant tissue, and we confirmed some of these by immunoblotting, immunohistochemistry, and comparison to published transcriptomic data. When evaluated by several pathway and biological process analysis programs, these proteins are demonstrated to be involved with a high degree of confidence (p values < 2.0 E-05) in glycolysis, propanoate metabolism, pyruvate metabolism, urea cycle and arginine/proline metabolism, as well as in the non-metabolic p53 and FAS pathways. In a pilot study using random urine samples from both ccRCC and control patients, we performed metabolic profiling and found that only sorbitol, a component of an alternative glycolysis pathway, is significantly elevated at 5.4-fold in RCC patients as compared to controls.
Extensive pathway and network analysis allowed for the discovery of highly significant pathways from a set of clear cell RCC samples. Knowledge of activation of these processes will lead to novel assays identifying their proteomic and/or metabolomic signatures in biofluids of patient at high risk for this disease; we provide pilot data for such a urinary bioassay. Furthermore, we demonstrate how the knowledge of networks, processes, and pathways altered in kidney cancer may be used to influence the choice of optimal therapy. |
---|---|
AbstractList | Renal cell carcinoma (RCC) is the sixth leading cause of cancer death and is responsible for 11,000 deaths per year in the US. Approximately one-third of patients present with disease which is already metastatic and for which there is currently no adequate treatment, and no biofluid screening tests exist for RCC. In this study, we have undertaken a comprehensive proteomic analysis and subsequently a pathway and network approach to identify biological processes involved in clear cell RCC (ccRCC). We have used these data to investigate urinary markers of RCC which could be applied to high-risk patients, or to those being followed for recurrence, for early diagnosis and treatment, thereby substantially reducing mortality of this disease.
Using 2-dimensional electrophoresis and mass spectrometric analysis, we identified 31 proteins which were differentially expressed with a high degree of significance in ccRCC as compared to adjacent non-malignant tissue, and we confirmed some of these by immunoblotting, immunohistochemistry, and comparison to published transcriptomic data. When evaluated by several pathway and biological process analysis programs, these proteins are demonstrated to be involved with a high degree of confidence (p values < 2.0 E-05) in glycolysis, propanoate metabolism, pyruvate metabolism, urea cycle and arginine/proline metabolism, as well as in the non-metabolic p53 and FAS pathways. In a pilot study using random urine samples from both ccRCC and control patients, we performed metabolic profiling and found that only sorbitol, a component of an alternative glycolysis pathway, is significantly elevated at 5.4-fold in RCC patients as compared to controls.
Extensive pathway and network analysis allowed for the discovery of highly significant pathways from a set of clear cell RCC samples. Knowledge of activation of these processes will lead to novel assays identifying their proteomic and/or metabolomic signatures in biofluids of patient at high risk for this disease; we provide pilot data for such a urinary bioassay. Furthermore, we demonstrate how the knowledge of networks, processes, and pathways altered in kidney cancer may be used to influence the choice of optimal therapy. Renal cell carcinoma (RCC) is the sixth leading cause of cancer death and is responsible for 11,000 deaths per year in the US. Approximately one-third of patients present with disease which is already metastatic and for which there is currently no adequate treatment, and no biofluid screening tests exist for RCC. In this study, we have undertaken a comprehensive proteomic analysis and subsequently a pathway and network approach to identify biological processes involved in clear cell RCC (ccRCC). We have used these data to investigate urinary markers of RCC which could be applied to high-risk patients, or to those being followed for recurrence, for early diagnosis and treatment, thereby substantially reducing mortality of this disease.BACKGROUNDRenal cell carcinoma (RCC) is the sixth leading cause of cancer death and is responsible for 11,000 deaths per year in the US. Approximately one-third of patients present with disease which is already metastatic and for which there is currently no adequate treatment, and no biofluid screening tests exist for RCC. In this study, we have undertaken a comprehensive proteomic analysis and subsequently a pathway and network approach to identify biological processes involved in clear cell RCC (ccRCC). We have used these data to investigate urinary markers of RCC which could be applied to high-risk patients, or to those being followed for recurrence, for early diagnosis and treatment, thereby substantially reducing mortality of this disease.Using 2-dimensional electrophoresis and mass spectrometric analysis, we identified 31 proteins which were differentially expressed with a high degree of significance in ccRCC as compared to adjacent non-malignant tissue, and we confirmed some of these by immunoblotting, immunohistochemistry, and comparison to published transcriptomic data. When evaluated by several pathway and biological process analysis programs, these proteins are demonstrated to be involved with a high degree of confidence (p values < 2.0 E-05) in glycolysis, propanoate metabolism, pyruvate metabolism, urea cycle and arginine/proline metabolism, as well as in the non-metabolic p53 and FAS pathways. In a pilot study using random urine samples from both ccRCC and control patients, we performed metabolic profiling and found that only sorbitol, a component of an alternative glycolysis pathway, is significantly elevated at 5.4-fold in RCC patients as compared to controls.RESULTSUsing 2-dimensional electrophoresis and mass spectrometric analysis, we identified 31 proteins which were differentially expressed with a high degree of significance in ccRCC as compared to adjacent non-malignant tissue, and we confirmed some of these by immunoblotting, immunohistochemistry, and comparison to published transcriptomic data. When evaluated by several pathway and biological process analysis programs, these proteins are demonstrated to be involved with a high degree of confidence (p values < 2.0 E-05) in glycolysis, propanoate metabolism, pyruvate metabolism, urea cycle and arginine/proline metabolism, as well as in the non-metabolic p53 and FAS pathways. In a pilot study using random urine samples from both ccRCC and control patients, we performed metabolic profiling and found that only sorbitol, a component of an alternative glycolysis pathway, is significantly elevated at 5.4-fold in RCC patients as compared to controls.Extensive pathway and network analysis allowed for the discovery of highly significant pathways from a set of clear cell RCC samples. Knowledge of activation of these processes will lead to novel assays identifying their proteomic and/or metabolomic signatures in biofluids of patient at high risk for this disease; we provide pilot data for such a urinary bioassay. Furthermore, we demonstrate how the knowledge of networks, processes, and pathways altered in kidney cancer may be used to influence the choice of optimal therapy.CONCLUSIONExtensive pathway and network analysis allowed for the discovery of highly significant pathways from a set of clear cell RCC samples. Knowledge of activation of these processes will lead to novel assays identifying their proteomic and/or metabolomic signatures in biofluids of patient at high risk for this disease; we provide pilot data for such a urinary bioassay. Furthermore, we demonstrate how the knowledge of networks, processes, and pathways altered in kidney cancer may be used to influence the choice of optimal therapy. BACKGROUND: Renal cell carcinoma (RCC) is the sixth leading cause of cancer death and is responsible for 11,000 deaths per year in the US. Approximately one-third of patients present with disease which is already metastatic and for which there is currently no adequate treatment, and no biofluid screening tests exist for RCC. In this study, we have undertaken a comprehensive proteomic analysis and subsequently a pathway and network approach to identify biological processes involved in clear cell RCC (ccRCC). We have used these data to investigate urinary markers of RCC which could be applied to high-risk patients, or to those being followed for recurrence, for early diagnosis and treatment, thereby substantially reducing mortality of this disease. RESULTS: Using 2-dimensional electrophoresis and mass spectrometric analysis, we identified 31 proteins which were differentially expressed with a high degree of significance in ccRCC as compared to adjacent non-malignant tissue, and we confirmed some of these by immunoblotting, immunohistochemistry, and comparison to published transcriptomic data. When evaluated by several pathway and biological process analysis programs, these proteins are demonstrated to be involved with a high degree of confidence (p values < 2.0 E-05) in glycolysis, propanoate metabolism, pyruvate metabolism, urea cycle and arginine/proline metabolism, as well as in the non-metabolic p53 and FAS pathways. In a pilot study using random urine samples from both ccRCC and control patients, we performed metabolic profiling and found that only sorbitol, a component of an alternative glycolysis pathway, is significantly elevated at 5.4-fold in RCC patients as compared to controls. CONCLUSION: Extensive pathway and network analysis allowed for the discovery of highly significant pathways from a set of clear cell RCC samples. Knowledge of activation of these processes will lead to novel assays identifying their proteomic and/or metabolomic signatures in biofluids of patient at high risk for this disease; we provide pilot data for such a urinary bioassay. Furthermore, we demonstrate how the knowledge of networks, processes, and pathways altered in kidney cancer may be used to influence the choice of optimal therapy. Abstract Background Renal cell carcinoma (RCC) is the sixth leading cause of cancer death and is responsible for 11,000 deaths per year in the US. Approximately one-third of patients present with disease which is already metastatic and for which there is currently no adequate treatment, and no biofluid screening tests exist for RCC. In this study, we have undertaken a comprehensive proteomic analysis and subsequently a pathway and network approach to identify biological processes involved in clear cell RCC (ccRCC). We have used these data to investigate urinary markers of RCC which could be applied to high-risk patients, or to those being followed for recurrence, for early diagnosis and treatment, thereby substantially reducing mortality of this disease. Results Using 2-dimensional electrophoresis and mass spectrometric analysis, we identified 31 proteins which were differentially expressed with a high degree of significance in ccRCC as compared to adjacent non-malignant tissue, and we confirmed some of these by immunoblotting, immunohistochemistry, and comparison to published transcriptomic data. When evaluated by several pathway and biological process analysis programs, these proteins are demonstrated to be involved with a high degree of confidence (p values < 2.0 E-05) in glycolysis, propanoate metabolism, pyruvate metabolism, urea cycle and arginine/proline metabolism, as well as in the non-metabolic p53 and FAS pathways. In a pilot study using random urine samples from both ccRCC and control patients, we performed metabolic profiling and found that only sorbitol, a component of an alternative glycolysis pathway, is significantly elevated at 5.4-fold in RCC patients as compared to controls. Conclusion Extensive pathway and network analysis allowed for the discovery of highly significant pathways from a set of clear cell RCC samples. Knowledge of activation of these processes will lead to novel assays identifying their proteomic and/or metabolomic signatures in biofluids of patient at high risk for this disease; we provide pilot data for such a urinary bioassay. Furthermore, we demonstrate how the knowledge of networks, processes, and pathways altered in kidney cancer may be used to influence the choice of optimal therapy. |
ArticleNumber | 64 |
Author | Valkova, Nelly Weiss, Robert H Fiehn, Oliver Perroud, Bertrand Dhirapong, Amy Lee, Jinoo Lin, Pei-Yin Kültz, Dietmar |
AuthorAffiliation | 2 Animal Science, University of California, Davis, CA, USA 1 Genome Center, University of California, Davis, CA, USA 3 Division of Nephrology, Department of Internal Medicine, University of California, Davis, CA, USA 4 Department of Veterans' Affairs Northern California Health Care System, Mather, CA, USA |
AuthorAffiliation_xml | – name: 1 Genome Center, University of California, Davis, CA, USA – name: 2 Animal Science, University of California, Davis, CA, USA – name: 4 Department of Veterans' Affairs Northern California Health Care System, Mather, CA, USA – name: 3 Division of Nephrology, Department of Internal Medicine, University of California, Davis, CA, USA |
Author_xml | – sequence: 1 givenname: Bertrand surname: Perroud fullname: Perroud, Bertrand – sequence: 2 givenname: Jinoo surname: Lee fullname: Lee, Jinoo – sequence: 3 givenname: Nelly surname: Valkova fullname: Valkova, Nelly – sequence: 4 givenname: Amy surname: Dhirapong fullname: Dhirapong, Amy – sequence: 5 givenname: Pei-Yin surname: Lin fullname: Lin, Pei-Yin – sequence: 6 givenname: Oliver surname: Fiehn fullname: Fiehn, Oliver – sequence: 7 givenname: Dietmar surname: Kültz fullname: Kültz, Dietmar – sequence: 8 givenname: Robert H surname: Weiss fullname: Weiss, Robert H |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17123452$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks9vFCEUx4mpsT_06tHMydvUYfbxYy4mTWNtmyb2UM8EGNhSGViBtdn_XqZba1fTE4Tv533eSx6HaC_EYBB6j7tjjDn9hIHRFsjAW9JSeIUOnh72nt330WHOd12HGWfwBu1jhvsFkP4AXV7LcnsvN40M0m-yy020zQ83BrNptAzapGadXVg2qxSLiZPTuaJjM5kiVfROz4F1viJv0WsrfTbvHs8j9P3sy83peXv17evF6clVqwjjpYUBGAdqe9UrCyNg2i0UAwlcUU0tNVZqRRV0BtRoNOlGNmpTATzUkNrFEbrYesco78QquUmmjYjSiYeHmJZCpuK0NwJTqgbekxFbAGVg4IRzyTAfsJWM8Or6vHWt1moytU8oSfod6W4S3K1Yxl-zmcCD4GQrUC6-INhNdJzEvBcx70UQQaE6Pj4OkeLPtclFTC5r470MJq6zoBwPlC9IBT88n_apy591VuB4C-gUc07G_kU6Mf-X_1vDPwXaFVlcnId1_qWy3-P1xVc |
CitedBy_id | crossref_primary_10_1007_s12272_021_01310_0 crossref_primary_10_1074_mcp_M900168_MCP200 crossref_primary_10_1186_s12885_016_2775_2 crossref_primary_10_1038_s41417_019_0078_x crossref_primary_10_1186_1745_6150_7_44 crossref_primary_10_1021_pr800804d crossref_primary_10_3389_fmolb_2022_837145 crossref_primary_10_3389_fsurg_2022_837848 crossref_primary_10_1002_jbt_21871 crossref_primary_10_1016_j_semnephrol_2019_12_003 crossref_primary_10_1158_0008_5472_CAN_11_3105 crossref_primary_10_1038_cr_2011_149 crossref_primary_10_1007_s13277_014_2694_2 crossref_primary_10_1002_jcb_24022 crossref_primary_10_1038_srep37275 crossref_primary_10_1021_pr100226m crossref_primary_10_1039_c2mb05390j crossref_primary_10_1097_01_XEJ_0000542227_68517_54 crossref_primary_10_1016_j_chemosphere_2019_04_111 crossref_primary_10_1002_pmic_201000236 crossref_primary_10_1080_08830180701402496 crossref_primary_10_1002_pmic_201200016 crossref_primary_10_1007_s11306_014_0659_5 crossref_primary_10_1152_ajprenal_00460_2019 crossref_primary_10_1089_ars_2014_5854 crossref_primary_10_1515_oncologie_2024_0074 crossref_primary_10_1002_elps_201000588 crossref_primary_10_1007_s00432_010_0778_y crossref_primary_10_1007_s11481_009_9156_4 crossref_primary_10_1002_pmic_200700619 crossref_primary_10_1016_j_cmet_2018_04_009 crossref_primary_10_1111_j_1349_7006_2008_00799_x crossref_primary_10_1155_2013_109285 crossref_primary_10_3389_fmed_2021_657313 crossref_primary_10_3724_abbs_2022189 crossref_primary_10_1016_j_yexmp_2016_11_003 crossref_primary_10_1038_cddis_2014_545 crossref_primary_10_18632_oncotarget_380 crossref_primary_10_3892_ijo_2021_5286 crossref_primary_10_1186_gb_2010_11_11_r115 crossref_primary_10_1111_febs_13535 crossref_primary_10_3233_KCA_170014 crossref_primary_10_1007_s10620_008_0665_4 crossref_primary_10_18632_oncotarget_1529 crossref_primary_10_1016_j_jpba_2019_112905 crossref_primary_10_1038_s41388_018_0315_z crossref_primary_10_1155_2020_1932948 crossref_primary_10_1002_mas_20338 crossref_primary_10_1186_s13046_021_02103_5 crossref_primary_10_1586_epr_11_31 crossref_primary_10_3389_fonc_2020_570281 crossref_primary_10_1007_s00216_025_05741_2 crossref_primary_10_1016_j_gene_2015_12_058 crossref_primary_10_1016_j_jbior_2018_09_006 crossref_primary_10_1016_j_foodres_2021_110898 crossref_primary_10_1007_s12291_015_0481_5 crossref_primary_10_2174_0929867324666171006150326 crossref_primary_10_1007_s11306_019_1555_9 crossref_primary_10_2967_jnumed_113_134437 crossref_primary_10_3390_biom9030113 crossref_primary_10_1074_mcp_M800252_MCP200 crossref_primary_10_3390_diseases4010007 crossref_primary_10_1371_journal_pmed_1003786 crossref_primary_10_1007_s00216_018_1059_x crossref_primary_10_1093_toxsci_kfn159 crossref_primary_10_1186_1476_4598_8_20 crossref_primary_10_1016_j_tranon_2017_06_002 crossref_primary_10_1373_clinchem_2012_184598 crossref_primary_10_1093_bioinformatics_btt285 crossref_primary_10_1111_j_1442_2042_2012_03221_x crossref_primary_10_1093_bib_bbae498 crossref_primary_10_1016_j_bbrep_2022_101318 crossref_primary_10_1186_s12885_017_3184_x crossref_primary_10_1089_scd_2007_0022 crossref_primary_10_1002_prca_200601048 crossref_primary_10_1093_qjmed_hcp071 crossref_primary_10_1038_s42003_024_06114_8 crossref_primary_10_1007_s00345_007_0199_y crossref_primary_10_1590_S1677_5538_IBJU_2013_01_11 crossref_primary_10_1111_j_1476_5829_2012_00325_x crossref_primary_10_3389_fonc_2019_00761 crossref_primary_10_1016_j_canlet_2017_10_031 crossref_primary_10_1021_pr500750z crossref_primary_10_1186_1476_4598_6_16 crossref_primary_10_1093_bioinformatics_btr269 crossref_primary_10_1002_pmic_201000485 crossref_primary_10_1186_gb_2008_9_12_r179 crossref_primary_10_1371_journal_pone_0071654 crossref_primary_10_1021_acs_jproteome_0c00663 crossref_primary_10_1038_bjc_2015_322 crossref_primary_10_1186_s12920_020_00827_5 crossref_primary_10_1002_pmic_201200204 crossref_primary_10_1177_1010428317719780 crossref_primary_10_1016_j_clinbiochem_2012_11_029 crossref_primary_10_1039_C4MB00300D crossref_primary_10_1155_2020_5974350 crossref_primary_10_6000_2292_2598_2019_07_02_3 crossref_primary_10_1016_j_bmc_2021_116129 crossref_primary_10_1158_0008_5472_CAN_14_1703 crossref_primary_10_1155_2015_313740 crossref_primary_10_1016_j_drudis_2024_103980 crossref_primary_10_1016_j_fct_2009_02_003 crossref_primary_10_1111_jcmm_13132 crossref_primary_10_3390_ijms18020294 crossref_primary_10_1371_journal_pone_0021867 crossref_primary_10_3389_fendo_2024_1429159 crossref_primary_10_1002_jso_21831 crossref_primary_10_4065_mcp_2009_0709 crossref_primary_10_1021_pr2005555 crossref_primary_10_1186_s12864_015_1768_x crossref_primary_10_1534_g3_118_200297 crossref_primary_10_1186_s40001_021_00482_1 crossref_primary_10_3389_fonc_2019_00957 crossref_primary_10_1002_jssc_201400044 crossref_primary_10_3390_cancers16010022 crossref_primary_10_1038_nrneph_2017_59 crossref_primary_10_1080_15287394_2010_511545 crossref_primary_10_18632_oncotarget_9615 crossref_primary_10_1016_j_trsl_2016_07_018 crossref_primary_10_1002_pmic_200700415 crossref_primary_10_1021_acs_chemrestox_6b00187 crossref_primary_10_1074_mcp_M700273_MCP200 crossref_primary_10_4155_bio_11_326 crossref_primary_10_1080_10618600_2012_738614 crossref_primary_10_1016_j_jpba_2020_113752 crossref_primary_10_1158_0008_5472_CAN_11_3266 crossref_primary_10_18632_oncoscience_128 crossref_primary_10_3390_cells11193078 crossref_primary_10_1021_acs_jproteome_6b00875 crossref_primary_10_1371_journal_pone_0010696 crossref_primary_10_1517_17460441003716796 crossref_primary_10_1038_s41467_023_37211_7 crossref_primary_10_1016_j_ab_2007_01_028 crossref_primary_10_1586_14789450_5_1_29 crossref_primary_10_3389_fmolb_2021_763902 crossref_primary_10_15252_embj_201386874 crossref_primary_10_3892_ol_2016_5485 crossref_primary_10_1016_j_isci_2024_110357 crossref_primary_10_1111_jcmm_15536 crossref_primary_10_3389_fonc_2023_1164266 crossref_primary_10_1016_j_transci_2021_103079 crossref_primary_10_1039_C7MB00462A crossref_primary_10_1038_nrneph_2011_152 crossref_primary_10_1038_bjc_2014_24 crossref_primary_10_1158_1055_9965_EPI_13_0584 crossref_primary_10_1021_acs_jmedchem_9b00598 crossref_primary_10_1007_s00467_016_3439_9 crossref_primary_10_1093_annonc_mdw241 crossref_primary_10_1152_ajprenal_00722_2009 crossref_primary_10_3109_1061186X_2012_736998 crossref_primary_10_1016_j_aca_2018_01_055 crossref_primary_10_1017_cts_2022_18 crossref_primary_10_3390_metabo13020299 crossref_primary_10_1038_emboj_2011_158 crossref_primary_10_1002_prca_200900157 crossref_primary_10_1586_14737159_2015_1028372 crossref_primary_10_18632_aging_102407 crossref_primary_10_1186_s12859_018_2157_7 crossref_primary_10_1371_journal_pone_0170453 crossref_primary_10_1016_j_semnephrol_2018_01_006 crossref_primary_10_1016_j_trac_2013_12_007 crossref_primary_10_1007_s11306_014_0758_3 crossref_primary_10_1111_j_1752_8062_2012_00437_x crossref_primary_10_1021_pr101161u crossref_primary_10_1002_jbt_23807 crossref_primary_10_1517_17425255_3_4_527 crossref_primary_10_1165_rcmb_2008_0353OC crossref_primary_10_1186_s12014_020_09291_w crossref_primary_10_1007_s11306_011_0319_y |
Cites_doi | 10.1093/emboj/18.5.1223 10.1001/jama.281.17.1628 10.1074/mcp.M500091-MCP200 10.1038/sj.ki.5000065 10.1007/s004320050175 10.1126/science.123.3191.309 10.1002/1615-9861(200205)2:5<561::AID-PROT561>3.0.CO;2-K 10.1016/S0898-6568(03)00136-0 10.1097/01.ju.0000154351.37249.f0 10.1152/ajpcell.1998.274.6.C1521 10.1002/pmic.200401134 10.1007/978-1-4615-5871-2_52 10.1002/1097-0215(20001015)88:2<191::AID-IJC7>3.0.CO;2-A 10.1023/A:1022494613613 10.1016/S0140-6736(06)68228-7 10.1007/s11306-005-1102-8 10.1073/pnas.95.4.1511 10.1681/ASN.2004070530 10.1073/pnas.80.4.901 10.1016/j.cell.2004.12.040 10.1097/01.ju.0000152354.08057.2a 10.1002/pmic.200401309 10.1073/pnas.171209998 10.1016/S1535-6108(03)00308-8 10.1093/nar/gki078 10.1016/j.exphem.2005.03.009 10.1007/s00262-006-0122-1 10.1073/pnas.84.6.1718 10.1002/pmic.200300464 |
ContentType | Journal Article |
Copyright | Copyright © 2006 Perroud et al; licensee BioMed Central Ltd. 2006 Perroud et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Copyright © 2006 Perroud et al; licensee BioMed Central Ltd. 2006 Perroud et al; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1186/1476-4598-5-64 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1476-4598 |
EndPage | 64 |
ExternalDocumentID | oai_doaj_org_article_166b9825d1f44be498588a71891fa758 PMC1665458 oai_biomedcentral_com_1476_4598_5_64 17123452 10_1186_1476_4598_5_64 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: 1R21CA 91259-01A1 – fundername: NIEHS NIH HHS grantid: P42 ES004699 – fundername: NIDDK NIH HHS grantid: R01 DK059470 – fundername: NIDDK NIH HHS grantid: R01DK59470 – fundername: NIEHS NIH HHS grantid: 2P42ES04699 |
GroupedDBID | --- 0R~ 123 29M 2VQ 2WC 4.4 53G 5VS AAFWJ AAJSJ AASML AAYXX ABDBF ACGFO ACGFS ACIHN ACIWK ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BFQNJ BMC C6C CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HH5 HYE IAO IHR INH INR IPNFZ ITC KQ8 M48 M~E O5R O5S OK1 OVT P2P PGMZT PZZ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS W2D WOQ WOW XSB -A0 ACRMQ ADINQ C24 CGR CUY CVF ECM EIF FRP NPM 7X8 ABVAZ AFGXO AFNRJ 5PM |
ID | FETCH-LOGICAL-b578t-4947846f2b2bf4d41603b74a48b6c6f6efacb6b40e4bdec50d7dce74a19f6e6f3 |
IEDL.DBID | RBZ |
ISSN | 1476-4598 |
IngestDate | Wed Aug 27 01:31:18 EDT 2025 Thu Aug 21 17:54:55 EDT 2025 Wed May 22 07:11:55 EDT 2024 Fri Jul 11 00:46:10 EDT 2025 Thu Jan 02 22:07:06 EST 2025 Thu Apr 24 22:55:46 EDT 2025 Tue Jul 01 04:34:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b578t-4947846f2b2bf4d41603b74a48b6c6f6efacb6b40e4bdec50d7dce74a19f6e6f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1186/1476-4598-5-64 |
PMID | 17123452 |
PQID | 68196835 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_166b9825d1f44be498588a71891fa758 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1665458 biomedcentral_primary_oai_biomedcentral_com_1476_4598_5_64 proquest_miscellaneous_68196835 pubmed_primary_17123452 crossref_primary_10_1186_1476_4598_5_64 crossref_citationtrail_10_1186_1476_4598_5_64 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-11-24 |
PublicationDateYYYYMMDD | 2006-11-24 |
PublicationDate_xml | – month: 11 year: 2006 text: 2006-11-24 day: 24 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Molecular cancer |
PublicationTitleAlternate | Mol Cancer |
PublicationYear | 2006 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | Y Fan (196_CR12) 2003; 2 WH Chow (196_CR2) 1999; 281 RH Weiss (196_CR10) 2003; 4 F Thanner (196_CR20) 2005; 25 Y Dong (196_CR17) 2003; 16 WK Han (196_CR6) 2005; 16 C Gao (196_CR9) 2000; 88 RH Weiss (196_CR5) 2005 S Kress (196_CR13) 1998; 124 N Valkova (196_CR7) 2005; 4 SP Mathupala (196_CR24) 1997; 29 O WARBURG (196_CR31) 1956; 123 T Bando (196_CR30) 1997; 17 RH Weiss (196_CR33) 1998; 274 O Shvarts (196_CR3) 2005; 173 JB German (196_CR26) 2005; 1 JE Pawlowski (196_CR14) 2000; 20 RH Weiss (196_CR1) 2006; 69 HL Kim (196_CR4) 2005; 173 M Asada (196_CR11) 1999; 18 L Tremolada (196_CR22) 2005; 5 I Beuvink (196_CR16) 2005; 120 SM Bagnasco (196_CR27) 1987; 84 KM Bohren (196_CR29) 1997; 414 H Schepers (196_CR8) 2005; 33 C Falkensammer (196_CR15) 2006; 55 R Lichtenfels (196_CR19) 2002; 2 H Mi (196_CR35) 2005; 33 H Ashrafian (196_CR32) 2006; 367 N Valkova (196_CR34) 2006 JT Feng (196_CR21) 2005; 5 RD Unwin (196_CR23) 2003; 3 J Jeffery (196_CR28) 1983; 80 H Shim (196_CR25) 1998; 95 M Takahashi (196_CR18) 2001; 98 15711252 - J Urol. 2005 Mar;173(3):725-8 9696694 - Am J Physiol. 1998 Jun;274(6 Pt 1):C1521-9 16680201 - Metabolomics. 2005 Mar;1(1):3-9 15744000 - J Am Soc Nephrol. 2005 Apr;16(4):1126-34 9692838 - J Cancer Res Clin Oncol. 1998;124(6):315-20 9387094 - J Bioenerg Biomembr. 1997 Aug;29(4):339-43 15797377 - Cell. 2005 Mar 25;120(6):747-59 14706334 - Cancer Cell. 2003 Dec;4(6):425-9 16033076 - Anticancer Res. 2005 May-Jun;25(3A):1649-53 15608197 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D284-8 9465046 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1511-6 11205254 - Anticancer Res. 2000 Nov-Dec;20(6B):4243-55 14636896 - Cell Signal. 2004 Feb;16(2):263-9 3104902 - Proc Natl Acad Sci U S A. 1987 Mar;84(6):1718-20 15682460 - Proteomics. 2005 Feb;5(3):788-95 6405381 - Proc Natl Acad Sci U S A. 1983 Feb;80(4):901-5 15872312 - Mol Cell Proteomics. 2005 Jul;4(7):1009-18 16810557 - Cancer Immunol Immunother. 2006 Oct;55(10):1228-37 12939467 - Mol Cancer Ther. 2003 Aug;2(8):773-82 11987130 - Proteomics. 2002 May;2(5):561-70 10235157 - JAMA. 1999 May 5;281(17):1628-31 12923786 - Proteomics. 2003 Aug;3(8):1620-32 13298683 - Science. 1956 Feb 24;123(3191):309-14 16408110 - Kidney Int. 2006 Jan;69(2):224-32 16713411 - Biochim Biophys Acta. 2006 Jun;1764(6):1007-20 9059651 - Adv Exp Med Biol. 1997;414:455-64 10064589 - EMBO J. 1999 Mar 1;18(5):1223-34 15911090 - Exp Hematol. 2005 Jun;33(6):660-70 15821467 - J Urol. 2005 May;173(5):1496-501 11493696 - Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9754-9 9413170 - Anticancer Res. 1997 Sep-Oct;17(5A):3345-8 16488806 - Lancet. 2006 Feb 18;367(9510):618-21 17162001 - J Urol. 2007 Jan;177(1):63-8; discussion 68-9 16240287 - Proteomics. 2005 Nov;5(17):4581-8 11004667 - Int J Cancer. 2000 Oct 15;88(2):191-4 |
References_xml | – volume: 18 start-page: 1223 year: 1999 ident: 196_CR11 publication-title: EMBO J doi: 10.1093/emboj/18.5.1223 – volume: 281 start-page: 1628 year: 1999 ident: 196_CR2 publication-title: JAMA doi: 10.1001/jama.281.17.1628 – volume: 4 start-page: 1009 year: 2005 ident: 196_CR7 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M500091-MCP200 – volume: 69 start-page: 224 year: 2006 ident: 196_CR1 publication-title: Kidney Int doi: 10.1038/sj.ki.5000065 – volume: 2 start-page: 773 year: 2003 ident: 196_CR12 publication-title: Mol Cancer Ther – volume: 124 start-page: 315 year: 1998 ident: 196_CR13 publication-title: J Cancer Res Clin Oncol doi: 10.1007/s004320050175 – volume: 123 start-page: 309 year: 1956 ident: 196_CR31 publication-title: Science doi: 10.1126/science.123.3191.309 – volume: 2 start-page: 561 year: 2002 ident: 196_CR19 publication-title: Proteomics doi: 10.1002/1615-9861(200205)2:5<561::AID-PROT561>3.0.CO;2-K – volume: 16 start-page: 263 year: 2003 ident: 196_CR17 publication-title: Cell Signal doi: 10.1016/S0898-6568(03)00136-0 – volume: 173 start-page: 1496 year: 2005 ident: 196_CR4 publication-title: J Urol doi: 10.1097/01.ju.0000154351.37249.f0 – volume: 274 start-page: C1521 year: 1998 ident: 196_CR33 publication-title: Am J Physiol doi: 10.1152/ajpcell.1998.274.6.C1521 – volume: 5 start-page: 788 year: 2005 ident: 196_CR22 publication-title: Proteomics doi: 10.1002/pmic.200401134 – volume: 414 start-page: 455 year: 1997 ident: 196_CR29 publication-title: Adv Exp Med Biol doi: 10.1007/978-1-4615-5871-2_52 – volume: 88 start-page: 191 year: 2000 ident: 196_CR9 publication-title: Int J Cancer doi: 10.1002/1097-0215(20001015)88:2<191::AID-IJC7>3.0.CO;2-A – volume: 29 start-page: 339 year: 1997 ident: 196_CR24 publication-title: J Bioenerg Biomembr doi: 10.1023/A:1022494613613 – volume: 367 start-page: 618 year: 2006 ident: 196_CR32 publication-title: Lancet doi: 10.1016/S0140-6736(06)68228-7 – volume-title: J Urol year: 2005 ident: 196_CR5 – volume: 20 start-page: 4243 year: 2000 ident: 196_CR14 publication-title: Anticancer Res – volume: 1 start-page: 3 year: 2005 ident: 196_CR26 publication-title: Metabolomics doi: 10.1007/s11306-005-1102-8 – volume-title: Biochim Biophys Acta year: 2006 ident: 196_CR34 – volume: 17 start-page: 3345 year: 1997 ident: 196_CR30 publication-title: Anticancer Res – volume: 95 start-page: 1511 year: 1998 ident: 196_CR25 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.95.4.1511 – volume: 16 start-page: 1126 year: 2005 ident: 196_CR6 publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2004070530 – volume: 80 start-page: 901 year: 1983 ident: 196_CR28 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.80.4.901 – volume: 120 start-page: 747 year: 2005 ident: 196_CR16 publication-title: Cell doi: 10.1016/j.cell.2004.12.040 – volume: 173 start-page: 725 year: 2005 ident: 196_CR3 publication-title: J Urol doi: 10.1097/01.ju.0000152354.08057.2a – volume: 5 start-page: 4581 year: 2005 ident: 196_CR21 publication-title: Proteomics doi: 10.1002/pmic.200401309 – volume: 98 start-page: 9754 year: 2001 ident: 196_CR18 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.171209998 – volume: 4 start-page: 425 year: 2003 ident: 196_CR10 publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00308-8 – volume: 25 start-page: 1649 year: 2005 ident: 196_CR20 publication-title: Anticancer Res – volume: 33 start-page: D284 year: 2005 ident: 196_CR35 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki078 – volume: 33 start-page: 660 year: 2005 ident: 196_CR8 publication-title: Exp Hematol doi: 10.1016/j.exphem.2005.03.009 – volume: 55 start-page: 1228 year: 2006 ident: 196_CR15 publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-006-0122-1 – volume: 84 start-page: 1718 year: 1987 ident: 196_CR27 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.84.6.1718 – volume: 3 start-page: 1620 year: 2003 ident: 196_CR23 publication-title: Proteomics doi: 10.1002/pmic.200300464 – reference: 15911090 - Exp Hematol. 2005 Jun;33(6):660-70 – reference: 12939467 - Mol Cancer Ther. 2003 Aug;2(8):773-82 – reference: 16680201 - Metabolomics. 2005 Mar;1(1):3-9 – reference: 9465046 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1511-6 – reference: 11493696 - Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9754-9 – reference: 15682460 - Proteomics. 2005 Feb;5(3):788-95 – reference: 15797377 - Cell. 2005 Mar 25;120(6):747-59 – reference: 9692838 - J Cancer Res Clin Oncol. 1998;124(6):315-20 – reference: 12923786 - Proteomics. 2003 Aug;3(8):1620-32 – reference: 14636896 - Cell Signal. 2004 Feb;16(2):263-9 – reference: 10064589 - EMBO J. 1999 Mar 1;18(5):1223-34 – reference: 9059651 - Adv Exp Med Biol. 1997;414:455-64 – reference: 11205254 - Anticancer Res. 2000 Nov-Dec;20(6B):4243-55 – reference: 16033076 - Anticancer Res. 2005 May-Jun;25(3A):1649-53 – reference: 6405381 - Proc Natl Acad Sci U S A. 1983 Feb;80(4):901-5 – reference: 15821467 - J Urol. 2005 May;173(5):1496-501 – reference: 16240287 - Proteomics. 2005 Nov;5(17):4581-8 – reference: 11004667 - Int J Cancer. 2000 Oct 15;88(2):191-4 – reference: 15608197 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D284-8 – reference: 9387094 - J Bioenerg Biomembr. 1997 Aug;29(4):339-43 – reference: 16810557 - Cancer Immunol Immunother. 2006 Oct;55(10):1228-37 – reference: 15744000 - J Am Soc Nephrol. 2005 Apr;16(4):1126-34 – reference: 16488806 - Lancet. 2006 Feb 18;367(9510):618-21 – reference: 9696694 - Am J Physiol. 1998 Jun;274(6 Pt 1):C1521-9 – reference: 15872312 - Mol Cell Proteomics. 2005 Jul;4(7):1009-18 – reference: 9413170 - Anticancer Res. 1997 Sep-Oct;17(5A):3345-8 – reference: 16408110 - Kidney Int. 2006 Jan;69(2):224-32 – reference: 10235157 - JAMA. 1999 May 5;281(17):1628-31 – reference: 11987130 - Proteomics. 2002 May;2(5):561-70 – reference: 15711252 - J Urol. 2005 Mar;173(3):725-8 – reference: 3104902 - Proc Natl Acad Sci U S A. 1987 Mar;84(6):1718-20 – reference: 16713411 - Biochim Biophys Acta. 2006 Jun;1764(6):1007-20 – reference: 13298683 - Science. 1956 Feb 24;123(3191):309-14 – reference: 14706334 - Cancer Cell. 2003 Dec;4(6):425-9 – reference: 17162001 - J Urol. 2007 Jan;177(1):63-8; discussion 68-9 |
SSID | ssj0017874 |
Score | 2.278863 |
Snippet | Renal cell carcinoma (RCC) is the sixth leading cause of cancer death and is responsible for 11,000 deaths per year in the US. Approximately one-third of... BACKGROUND: Renal cell carcinoma (RCC) is the sixth leading cause of cancer death and is responsible for 11,000 deaths per year in the US. Approximately... Abstract Background Renal cell carcinoma (RCC) is the sixth leading cause of cancer death and is responsible for 11,000 deaths per year in the US.... |
SourceID | doaj pubmedcentral biomedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 64 |
SubjectTerms | Adult Aged Biomarkers, Tumor - analysis Biomarkers, Tumor - urine Carcinoma, Renal Cell - metabolism Carcinoma, Renal Cell - pathology Electrophoresis, Gel, Two-Dimensional Female Gene Expression Profiling Heat-Shock Proteins - metabolism HSP27 Heat-Shock Proteins Humans Kidney Neoplasms - metabolism Kidney Neoplasms - pathology Male Mass Spectrometry Neoplasm Proteins - analysis Neoplasm Proteins - metabolism Neoplasm Proteins - urine Proteomics - methods Pyruvate Kinase - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA6lUHEjtvUx1kcWgqvQyXhyMulOxVIKLV1Y6C7kNXrxOlfaW-T-e08yc2unKm7cJgcmyflO8mWSfIex17SI1U30KEI0ThBCkGIu1AIizch10s6UZBMnp3h0DscX6uJWqq98J2yQBx4Gbl8iekPbmCg7AJ_AtKptHc2oRnaOyG6efWnNW2-mxvMDgmE5TwaNApRpR7lG2eL-TZlQAu--c59Plqei4v8n6nn3BuWtJenwIXswckn-bujDNttI_Q7bGrJLrnbYvZPx3HyXHZ8R0fvhVtyNGiR80fGvs9inFQ_Z75c8X4D_zItsQ36ofEWmkX9LSwLJfBb4kNubTB6x88OPnz4ciTGLgvAUjUsBBjSRjK7xTb6UBzmvtNfgoPUYsMPUueDRQ53AxxRUHTV1iwykoUrs3j5mm_2iT08Z18YE1HUyjoheJBfUKjjvUoh1kCbFih1MBtN-HxQzbNawntZQONnsCZs9YZVFqJhYj7wNoz55TpMxt2Wf0uJv9m9u7Nff-Zvl--zISWtKAeHMjjiz_8JZxV6tYWApAvOxiuvT4vrKIpEqJCJbsScDKH41RxMvANVUTE_gMmnJtKaffSka3zJnhVbts__R9D12v_w4klI08JxtLi-v0wuiUkv_skTNTyNTGx0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCNQLggJtePqAxMkQh4kflRACRFVVWsSBlXqz_Eq76pKF3a1g_33HTpYlbblxjSfKxJ7JfJOx5yPkJQaxsgpOMB-0ZWghAn3OlwwCfpHLKK3OZBOjL-JwDEfH9fFm_1M_gYtrU7vEJzWeT1___rl6jw7_Lju8Em84SMGg1orVTMBNcgujkkxsBiPYVBTQMHOFeS3bN3C8ev-lk-_TQcDKff2vA6OX91T-FaQO7pG7PbqkHzpzuE9uxHaH3O74Jlc75M6or6Q_IEdfEfr9sitq-64kdNbQs0lo44r6ZAlzmrbEn9DcyCEdXV6gaKDf4xLNZjrxtGP7RpGHZHzw-dunQ9bzKjCH_rlkoEEi7GgqV6VtepCYpp0EC8oJLxoRG-udcFBGcCH6ugwSXwsFuMZB0bx9RLbaWRv3CJVaeyHLqC1Cv8CVLmtvnY0-lJ7rGAqyP5hM86ProWFSV-vhCDqYSSth0kqY2ggoCFvPvPF9x_JEnDE1OXNR4or8qz_y6-f8S_JjWsiBNvnCbH5iepc1XAinMYEOvAFwEbSqlbIYyzVvLKZZBXmxNgODPpkKLbaNs_OFEQizBELbgux2RrFRRyJSgLoqiByYy0CT4Ug7Oc1dv3niia7V4_-h-hOynX8lcc4qeEq2lvPz-AzB1dI9z15zASQQImY priority: 102 providerName: Scholars Portal |
Title | Pathway analysis of kidney cancer using proteomics and metabolic profiling |
URI | https://www.ncbi.nlm.nih.gov/pubmed/17123452 https://www.proquest.com/docview/68196835 http://dx.doi.org/10.1186/1476-4598-5-64 https://pubmed.ncbi.nlm.nih.gov/PMC1665458 https://doaj.org/article/166b9825d1f44be498588a71891fa758 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKxAXBOXR5bH4gMTJIg4Tx-a2RVTVSouQoFLFxfIrdMWSrdqt0P57xk62JVs4cckhniiOZyb-xmN_A_CaJrGiDE5yH7TlZCGSfM4XHAP9kYtYW52LTcw-yaNjnJ5UJ9frHVsZfKHkW4G15FhpxSsu8TbslkjhXIrLD75d5QvI7HL-eCPb0zPefH7rXPtiMB1l1v6_Qc3tHZN_TEGHD-B-jx3ZpFP2Q7gV2z2401WTXO_B3VmfJ38E088E7H7ZNbM95whbNuzHPLRxzXzS8zlLG96_s0zTkA4mX5BoYD_jioxiMfesq-VNIo_h-PDj1w9HvK-awB1534qjxppARVO6Mm3Cw1RH2tVoUTnpZSNjY72TDouILkRfFaGmzyIBoalRNu-ewE67bOM-sFprL-siakvALgili8pbZ6MPhRc6hhG8HwymOesYMkzirB62kPuYpAmTNGEqI3EEfDPyxvd85KksxsLkuETJG_JvruQ37_mX5EFS5KA3-QaZlekd0ggpnabwOIgG0UXUqlLK0kytRWMpiBrBq40ZGPK4lEaxbVxeXhhJIEoScB3B084orrtTEw7AqhxBPTCXQU-GLe38NHN6i1QFulLP_mdEn8O9vEAkBC_xBeyszi_jS4JMKzeG3clk-mU6zksOdJ2hGmcP-g3EShed |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEY8LgvIKr_qAxMkQBz9ibhRRLaVbcWiliovlV8qKbRZtt0L77xk7SWlaOHGNJ4o9nvF8jj3fALzCIFZWwUnqg7YULUSiz_mS8oArchmV1bnYxHRfTg757pE46imFUi7MyVAU1qdBL99cTEKf55V7uDDW-Xst3zKuJOVC11RQya_DDSWEyqlc29_ODxTQLvMB8yDb8zdeff9S4vt8FK8yrf_fsOjlK5UXYtTOPbjbg0vyoev7fbgW20242ZWbXG_CrWl_kP4Adr8i8vtl18T2pCRk0ZAfs9DGNel0QtKN-GOSeRxS5vIpigZyEldoNfOZJ12xbxR5CIc7nw4-TmhfVoE6dM8V5ZorRB1N5ap0S4-nQtNOcctrJ71sZGysd9LxMnIXohdlUDgsFGAaG2Xz7hFstIs2PgGitPZSlVFbRH6B1boU3jobfSg90zEU8H6kTPOzo9AwidR63IJTa9JMmDQTRhjJC6CD5o3vCctT3Yy5yRuXWl6Rf30uP3znX5LbaSJHvckPFstj09uXYVI6jfvnwBrOXeS6FnVtMZRr1ljcZRWwNZiBQZdM5yy2jYuzUyMRZUlEtgU87oziT3cUAgUuqgLUyFxGPRm3tLPvmfSbpTLRon76PxrdgtuTg-me2fu8_-UZ3Ml_kxijFX8OG6vlWXyB-GrlXmbP-Q0lcCS2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEVUvCMpry6M-IHEyjYMfMTcKrEqhVYWoVHGx_EpZdZuttluh_feMnaQ0LZy4RfFEsT0zmc_xeD6AVxjEijI4SX3QlqKFSPQ5X1Ae8ItcRGV1JpvY25c7h3z3SBx1-U_pLMxpTwrr06Dnb64eQp_mLzde-JOts1C3Dl_JLcaVpFzoigoq-W24o4RQic3g2_aPyx0FNMy8w9zLdgUcbz5_7eT7dBCwcl3_v4HR6zmVV4LU-D7c69Aled-awwO4FZt1uNvyTS7XYXWv20l_CLsHCP1-2SWxXVUSMqvJySQ0cUnaSSEpJf6Y5EIO6ejyOYoGchoXaDbTiSct2zeKPILD8afvH3Zox6tAHfrngnLNFcKOunRlStPjiWnaKW555aSXtYy19U46XkTuQvSiCAqHhQJMY6Os3z6GlWbWxKdAlNZeqiJqi9AvsEoXwltnow-FZzqGEbwbTKY5a2tomFTVetiCujVJEyZpwggj-QhoP_PGdxXLE3HG1OSVSyVvyL--lO_f8y_J7aTIQW_yjdn82HQua5iUTuMCOrCacxe5rkRVWYzlmtUWl1kj2OzNwKBPpo0W28TZxbmRCLMkQtsRPGmN4k93FCIFLsoRqIG5DHoybGkmP3PVb5Z4okW18T8zugmrBx_H5uvn_S_PYC3_TWKMlvw5rCzmF_EF4quFe5kd5zee0CSB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathway+analysis+of+kidney+cancer+using+proteomics+and+metabolic+profiling&rft.jtitle=Molecular+cancer&rft.au=Fiehn+Oliver&rft.au=Lin+Pei-Yin&rft.au=Dhirapong+Amy&rft.au=Valkova+Nelly&rft.date=2006-11-24&rft.pub=BMC&rft.issn=1476-4598&rft.eissn=1476-4598&rft.volume=5&rft.issue=1&rft.spage=64&rft_id=info:doi/10.1186%2F1476-4598-5-64&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_166b9825d1f44be498588a71891fa758 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-4598&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-4598&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-4598&client=summon |