OsmiR528 Enhances Cold Stress Tolerance by Repressing Expression of Stress Response-related Transcription Factor Genes in Plant Cells

Background: MicroRNAs participate in many molecular mechanisms and signaling transduction pathways that are associated with plant stress tolerance by repressing expression of their target genes. However, how microRNAs enhance tolerance to low temperature stress in plant cells remains elusive. Object...

Full description

Saved in:
Bibliographic Details
Published inCurrent genomics Vol. 20; no. 2; pp. 100 - 114
Main Authors Tang, Wei, Thompson, Wells A.
Format Journal Article
LanguageEnglish
Published United Arab Emirates Bentham Science Publishers Ltd 01.02.2019
Benham Science Publishers
Bentham Science Publishers
Subjects
Online AccessGet full text
ISSN1389-2029
1875-5488
DOI10.2174/1389202920666190129145439

Cover

Loading…
Abstract Background: MicroRNAs participate in many molecular mechanisms and signaling transduction pathways that are associated with plant stress tolerance by repressing expression of their target genes. However, how microRNAs enhance tolerance to low temperature stress in plant cells remains elusive. Objective: In this investigation, we demonstrated that overexpression of the rice microRNA528 (OsmiR528) increases cell viability, growth rate, antioxidants content, ascorbate peroxidase (APOX) activity, and superoxide dismutase (SOD) activity and decreases ion leakage rate and thiobarbituric acid reactive substances (TBARS) under low temperature stress in Arabidopsis (Arabidopsis thaliana), pine (Pinus elliottii), and rice (Oryza sativa). Methods: To investigate the potential mechanism of OsmiR528 in increasing cold stress tolerance, we examined expression of stress-associated MYB transcription factors OsGAMYB-like1, OsMYBS3, OsMYB4, OsMYB3R-2, OsMYB5, OsMYB59, OsMYB30, OsMYB1R, and OsMYB20 in rice cells by qRT-PCR. Results: Our experiments demonstrated that OsmiR528 decreases expression of transcription factor OsMYB30 by targeting a F-box domain containing protein gene (Os06g06050), which is a positive regulator of OsMYB30. In OsmiR528 transgenic rice, reduced OsMYB30 expression results in increased expression of BMY genes OsBMY2, OsBMY6, and OsBMY10. The transcript levels of the OsBMY2, OsBMY6, and OsBMY10 were elevated by OsMYB30 knockdown, but decreased by Os- MYB30 overexpression in OsmiR528 transgenic cell lines, suggesting that OsmiR528 increases low temperature tolerance by modulating expression of stress response-related transcription factor. Conclusion: Our experiments provide novel information in increasing our understanding in molecular mechanisms of microRNAs-associated low temperature tolerance and are valuable in plant molecular breeding from monocotyledonous, dicotyledonous, and gymnosperm plants.
AbstractList MicroRNAs participate in many molecular mechanisms and signaling trans-duction pathways that are associated with plant stress tolerance by repressing expression of their target genes. However, how microRNAs enhance tolerance to low temperature stress in plant cells remains elusive.BACKGROUNDMicroRNAs participate in many molecular mechanisms and signaling trans-duction pathways that are associated with plant stress tolerance by repressing expression of their target genes. However, how microRNAs enhance tolerance to low temperature stress in plant cells remains elusive.In this investigation, we demonstrated that overexpression of the rice microRNA528 (Os-miR528) increases cell viability, growth rate, antioxidants content, ascorbate peroxidase (APOX) activi-ty, and superoxide dismutase (SOD) activity and decreases ion leakage rate and thiobarbituric acid reac-tive substances (TBARS) under low temperature stress in Arabidopsis (Arabidopsis thaliana), pine (Pi-nus elliottii), and rice (Oryza sativa).OBJECTIVEIn this investigation, we demonstrated that overexpression of the rice microRNA528 (Os-miR528) increases cell viability, growth rate, antioxidants content, ascorbate peroxidase (APOX) activi-ty, and superoxide dismutase (SOD) activity and decreases ion leakage rate and thiobarbituric acid reac-tive substances (TBARS) under low temperature stress in Arabidopsis (Arabidopsis thaliana), pine (Pi-nus elliottii), and rice (Oryza sativa).To investigate the potential mechanism of OsmiR528 in increasing cold stress tolerance, we examined expression of stress-associated MYB transcription factors OsGAMYB-like1, OsMYBS3, OsMYB4, OsMYB3R-2, OsMYB5, OsMYB59, OsMYB30, OsMYB1R, and OsMYB20 in rice cells by qRT-PCR.METHODSTo investigate the potential mechanism of OsmiR528 in increasing cold stress tolerance, we examined expression of stress-associated MYB transcription factors OsGAMYB-like1, OsMYBS3, OsMYB4, OsMYB3R-2, OsMYB5, OsMYB59, OsMYB30, OsMYB1R, and OsMYB20 in rice cells by qRT-PCR.Our experiments demonstrated that OsmiR528 decreases expression of transcription factor OsMYB30 by targeting a F-box domain containing protein gene (Os06g06050), which is a positive regulator of OsMYB30. In OsmiR528 transgenic rice, reduced OsMYB30 expression results in in-creased expression of BMY genes OsBMY2, OsBMY6, and OsBMY10. The transcript levels of the OsBMY2, OsBMY6, and OsBMY10 were elevated by OsMYB30 knockdown, but decreased by Os-MYB30 overexpression in OsmiR528 transgenic cell lines, suggesting that OsmiR528 increases low temperature tolerance by modulating expression of stress response-related transcription factor.RESULTSOur experiments demonstrated that OsmiR528 decreases expression of transcription factor OsMYB30 by targeting a F-box domain containing protein gene (Os06g06050), which is a positive regulator of OsMYB30. In OsmiR528 transgenic rice, reduced OsMYB30 expression results in in-creased expression of BMY genes OsBMY2, OsBMY6, and OsBMY10. The transcript levels of the OsBMY2, OsBMY6, and OsBMY10 were elevated by OsMYB30 knockdown, but decreased by Os-MYB30 overexpression in OsmiR528 transgenic cell lines, suggesting that OsmiR528 increases low temperature tolerance by modulating expression of stress response-related transcription factor.Our experiments provide novel information in increasing our understanding in molecular mechanisms of microRNAs-associated low temperature tolerance and are valuable in plant molecular breeding from monocotyledonous, dicotyledonous, and gymnosperm plants.CONCLUSIONOur experiments provide novel information in increasing our understanding in molecular mechanisms of microRNAs-associated low temperature tolerance and are valuable in plant molecular breeding from monocotyledonous, dicotyledonous, and gymnosperm plants.
MicroRNAs participate in many molecular mechanisms and signaling trans-duction pathways that are associated with plant stress tolerance by repressing expression of their target genes. However, how microRNAs enhance tolerance to low temperature stress in plant cells remains elusive. In this investigation, we demonstrated that overexpression of the rice microRNA528 (Os-miR528) increases cell viability, growth rate, antioxidants content, ascorbate peroxidase (APOX) activi-ty, and superoxide dismutase (SOD) activity and decreases ion leakage rate and thiobarbituric acid reac-tive substances (TBARS) under low temperature stress in Arabidopsis (Arabidopsis thaliana), pine (Pi-nus elliottii), and rice (Oryza sativa). To investigate the potential mechanism of OsmiR528 in increasing cold stress tolerance, we examined expression of stress-associated MYB transcription factors OsGAMYB-like1, OsMYBS3, OsMYB4, OsMYB3R-2, OsMYB5, OsMYB59, OsMYB30, OsMYB1R, and OsMYB20 in rice cells by qRT-PCR. Our experiments demonstrated that OsmiR528 decreases expression of transcription factor OsMYB30 by targeting a F-box domain containing protein gene (Os06g06050), which is a positive regulator of OsMYB30. In OsmiR528 transgenic rice, reduced OsMYB30 expression results in in-creased expression of BMY genes OsBMY2, OsBMY6, and OsBMY10. The transcript levels of the OsBMY2, OsBMY6, and OsBMY10 were elevated by OsMYB30 knockdown, but decreased by Os-MYB30 overexpression in OsmiR528 transgenic cell lines, suggesting that OsmiR528 increases low temperature tolerance by modulating expression of stress response-related transcription factor. Our experiments provide novel information in increasing our understanding in molecular mechanisms of microRNAs-associated low temperature tolerance and are valuable in plant molecular breeding from monocotyledonous, dicotyledonous, and gymnosperm plants.
Background: MicroRNAs participate in many molecular mechanisms and signaling transduction pathways that are associated with plant stress tolerance by repressing expression of their target genes. However, how microRNAs enhance tolerance to low temperature stress in plant cells remains elusive. Objective: In this investigation, we demonstrated that overexpression of the rice microRNA528 (OsmiR528) increases cell viability, growth rate, antioxidants content, ascorbate peroxidase (APOX) activity, and superoxide dismutase (SOD) activity and decreases ion leakage rate and thiobarbituric acid reactive substances (TBARS) under low temperature stress in Arabidopsis (Arabidopsis thaliana), pine (Pinus elliottii), and rice (Oryza sativa). Methods: To investigate the potential mechanism of OsmiR528 in increasing cold stress tolerance, we examined expression of stress-associated MYB transcription factors OsGAMYB-like1, OsMYBS3, OsMYB4, OsMYB3R-2, OsMYB5, OsMYB59, OsMYB30, OsMYB1R, and OsMYB20 in rice cells by qRT-PCR. Results: Our experiments demonstrated that OsmiR528 decreases expression of transcription factor OsMYB30 by targeting a F-box domain containing protein gene (Os06g06050), which is a positive regulator of OsMYB30. In OsmiR528 transgenic rice, reduced OsMYB30 expression results in increased expression of BMY genes OsBMY2, OsBMY6, and OsBMY10. The transcript levels of the OsBMY2, OsBMY6, and OsBMY10 were elevated by OsMYB30 knockdown, but decreased by Os- MYB30 overexpression in OsmiR528 transgenic cell lines, suggesting that OsmiR528 increases low temperature tolerance by modulating expression of stress response-related transcription factor. Conclusion: Our experiments provide novel information in increasing our understanding in molecular mechanisms of microRNAs-associated low temperature tolerance and are valuable in plant molecular breeding from monocotyledonous, dicotyledonous, and gymnosperm plants.
Background: MicroRNAs participate in many molecular mechanisms and signaling transduction pathways that are associated with plant stress tolerance by repressing expression of their target genes. However, how microRNAs enhance tolerance to low temperature stress in plant cells remains elusive. Objective: In this investigation, we demonstrated that overexpression of the rice microRNA528 (OsmiR528) increases cell viability, growth rate, antioxidants content, ascorbate peroxidase (APOX) activity, and superoxide dismutase (SOD) activity and decreases ion leakage rate and thiobarbituric acid reactive substances (TBARS) under low temperature stress in Arabidopsis (Arabidopsis thaliana), pine (Pinus elliottii), and rice (Oryza sativa). Methods: To investigate the potential mechanism of OsmiR528 in increasing cold stress tolerance, we examined expression of stress-associated MYB transcription factors OsGAMYB-like1, OsMYBS3, OsMYB4, OsMYB3R-2, OsMYB5, OsMYB59, OsMYB30, OsMYB1R, and OsMYB20 in rice cells by qRT-PCR. Results: Our experiments demonstrated that OsmiR528 decreases expression of transcription factor OsMYB30 by targeting a F-box domain containing protein gene (Os06g06050), which is a positive regulator of OsMYB30. In OsmiR528 transgenic rice, reduced OsMYB30 expression results in increased expression of BMY genes OsBMY2, OsBMY6, and OsBMY10. The transcript levels of the OsBMY2, OsBMY6, and OsBMY10 were elevated by OsMYB30 knockdown, but decreased by Os- MYB30 overexpression in OsmiR528 transgenic cell lines, suggesting that OsmiR528 increases low temperature tolerance by modulating expression of stress response-related transcription factor. Conclusion: Our experiments provide novel information in increasing our understanding in molecular mechanisms of microRNAs-associated low temperature tolerance and are valuable in plant molecular breeding from monocotyledonous, dicotyledonous, and gymnosperm plants.
Author Wei Tang
Wells A. Thompson
Author_xml – sequence: 1
  givenname: Wei
  surname: Tang
  fullname: Tang, Wei
  organization: College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei Province 434025, China
– sequence: 2
  givenname: Wells A.
  surname: Thompson
  fullname: Thompson, Wells A.
  organization: Program of Cellular and Molecular Biology, Duke University, Durham, NC 27708, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31555061$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiNURD_gLyAjLlwCtpM4zgWEVtuCVKloWc6W40x2XRw72E6X3uF_47DtCiohcbD8yn7mnRl7TrMj6yxk2QuCX1NSl29IwRuKaVqMMdJgQhtSVmXRPMpOCK-rvCo5P0o6cfkMHmenIVxjTDGv8ZPsuCBVVWFGTrKfV2HQq4pytLRbaRUEtHCmQ5-jhxDQ2hnw8zFqb9EKxvlQ2w1aft9LZ5Hr7-EVhNHZALkHIyN0aJ1Cg_J6jDN4LlV0Hl2ATUm0RZ-MtBEtwJjwNHvcSxPg2d1-ln05X64XH_LLq4uPi_eXeVvVLOY9JSBZX1GFQVYtLVXdM1BK1hUlBetqLGsgvJOswVgy3CjKCo67AtNWlb0szrK3e99xagfoFNjopRGj14P0t8JJLf6-sXorNu5GsJryBpfJ4NWdgXffJghRDDqo1IK04KYgKG04KUvKcUJfPkCv3eRtai9RBW1qWtY8Uc__rOhQyv0PJaDZA8q7EDz0B4RgMU-D-Oc0pNh3D2KVjnL-jNScNv_l8GPv0KYH2cohKA1pGg41bGMcxW63EzB5-CoDGFBRKDcIN4KdvEnaxhQrxu0oNmA9COmjVgaEDsH-Ti3m3OLGmWmApOeLKQkRRrmBVCQufgErie6F
CitedBy_id crossref_primary_10_1016_j_plantsci_2020_110608
crossref_primary_10_3390_plants13071016
crossref_primary_10_3390_dna4040038
crossref_primary_10_1093_jxb_erac370
crossref_primary_10_3389_fnut_2022_906227
crossref_primary_10_3390_ijms241914502
crossref_primary_10_1007_s13562_023_00830_8
crossref_primary_10_1093_plphys_kiac208
crossref_primary_10_1186_s12284_022_00575_3
crossref_primary_10_3390_agronomy10121855
crossref_primary_10_3389_fpls_2023_1303651
crossref_primary_10_1111_ppl_14188
crossref_primary_10_1111_ppl_14126
crossref_primary_10_1126_sciadv_abm0660
crossref_primary_10_1111_tpj_16132
crossref_primary_10_1111_nph_19315
crossref_primary_10_1007_s11105_021_01328_0
crossref_primary_10_3390_ijms251810110
crossref_primary_10_1016_j_postharvbio_2022_111872
crossref_primary_10_3389_fgene_2022_870446
crossref_primary_10_1021_acs_jafc_1c01096
crossref_primary_10_1371_journal_pone_0286324
crossref_primary_10_3390_su17020719
crossref_primary_10_3390_ijms21176017
crossref_primary_10_1016_j_envexpbot_2022_105177
crossref_primary_10_1016_j_postharvbio_2023_112420
crossref_primary_10_1111_nph_17635
crossref_primary_10_1186_s12870_022_03723_5
crossref_primary_10_1080_15592324_2021_2004035
Cites_doi 10.1038/nplants.2016.203
10.1007/s00299-006-0228-0
10.1371/journal.pone.0148771
10.1007/s11103-005-0451-z
10.1105/tpc.106.046250
10.1105/tpc.107.054858
10.1186/s12870-014-0207-5
10.1371/journal.pone.0109835
10.1038/srep22980
10.1111/tpj.12866
10.1093/jxb/erq442
10.1016/j.plaphy.2016.03.021
10.1186/s12870-015-0489-2
10.1111/ppl.12069
10.1266/ggs.15-00056
10.1371/journal.pone.0167941
10.1007/s00438-013-0740-1
10.1093/jxb/erl228
10.1016/j.plaphy.2017.01.015
10.1111/pce.12130
10.1093/jxb/erq196
10.1038/srep39373
10.1111/pbi.12533
10.1104/pp.57.3.460
10.1016/j.molp.2018.03.013
10.1007/s11103-013-0156-7
10.1007/s11103-015-0347-5
10.1111/j.1365-313X.2006.02836.x
10.1007/s11033-012-2362-9
10.1016/j.bbrc.2015.07.029
10.1186/s12864-015-1851-3
10.3389/fpls.2015.00208
10.1371/journal.pone.0170578
10.1104/pp.15.00899
10.1016/j.plaphy.2013.10.007
10.1371/journal.pone.0013271
10.1126/science.1234116
10.1016/j.gene.2013.11.034
10.1104/pp.82.4.1169
10.1093/jxb/eru437
10.1371/journal.pbio.1000148
10.1093/pcp/pcq072
10.1105/tpc.111.095232
10.1186/1471-2229-12-18
10.1007/s11105-012-0481-z
10.1186/1471-2164-15-766
10.1016/j.plaphy.2005.05.008
10.1016/j.plaphy.2013.05.025
10.1074/jbc.M605895200
10.1016/j.gene.2013.08.060
10.1104/pp.108.134874
10.1186/s12864-017-3556-2
10.1016/j.devcel.2014.07.004
10.3390/ijms160511398
10.1104/pp.111.192369
10.1371/journal.pone.0136365
10.1104/pp.16.01725
10.3389/fpls.2015.00555
10.1111/tpj.12999
10.1111/j.1365-313X.2006.02980.x
10.3389/fpls.2017.00565
10.1186/1471-2164-10-436
10.1093/jxb/err431
ContentType Journal Article
Copyright Copyright Bentham Science 2019
2019 Bentham Science Publishers 2019
Copyright_xml – notice: Copyright Bentham Science 2019
– notice: 2019 Bentham Science Publishers 2019
DBID AAYXX
CITATION
NPM
7QL
7QO
7QP
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.2174/1389202920666190129145439
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1875-5488
EndPage 114
ExternalDocumentID PMC6728904
31555061
10_2174_1389202920666190129145439
http_www_eurekaselect_com_openurl_content_php_genre_article_issn_1389_2029_volume_20_issue_2_spage_100
Genre Journal Article
GroupedDBID ---
.5.
0R~
29F
2WC
4.4
53G
5GY
AAEGP
ABEEF
ABJNI
ACGFS
ACIWK
ACPRK
ADBBV
AENEX
AFRAH
AFUQM
AGJNZ
ALMA_UNASSIGNED_HOLDINGS
ANTIV
AOIJS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GH2
GX1
HYE
HZ~
IPNFZ
KCGFV
O9-
OK1
P2P
RIG
RPM
TR2
AAYXX
AFHZU
CITATION
NPM
7QL
7QO
7QP
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-b576t-f21ea6f52c0ea5b24c7f6ecca752136d70a7e18da6900a609c26380d302bc4fa3
ISSN 1389-2029
IngestDate Thu Aug 21 13:25:14 EDT 2025
Fri Jul 11 01:04:47 EDT 2025
Mon Jun 30 11:59:59 EDT 2025
Thu Jan 02 22:54:41 EST 2025
Thu Apr 24 23:10:25 EDT 2025
Tue Jul 01 02:59:06 EDT 2025
Tue Aug 27 15:41:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Molecular breeding
Cold stress
Pinus
Gene expression
Transcription factor
MicroRNAs
Language English
License This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b576t-f21ea6f52c0ea5b24c7f6ecca752136d70a7e18da6900a609c26380d302bc4fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6728904
PMID 31555061
PQID 2232972478
PQPubID 2048057
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6728904
proquest_miscellaneous_2298144280
proquest_journals_2232972478
pubmed_primary_31555061
crossref_primary_10_2174_1389202920666190129145439
crossref_citationtrail_10_2174_1389202920666190129145439
benthamscience_primary_http_www_eurekaselect_com_openurl_content_php_genre_article_issn_1389_2029_volume_20_issue_2_spage_100
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 2
  year: 2019
  text: 20190201
  day: 1
PublicationDecade 2010
PublicationPlace United Arab Emirates
PublicationPlace_xml – name: United Arab Emirates
– name: Sharjah
PublicationTitle Current genomics
PublicationTitleAlternate CG
PublicationYear 2019
Publisher Bentham Science Publishers Ltd
Benham Science Publishers
Bentham Science Publishers
Publisher_xml – name: Bentham Science Publishers Ltd
– name: Benham Science Publishers
– name: Bentham Science Publishers
References Tang W. (ref=45) 2005; 43
Sun X. (ref=12) 2015; 6
Sung Z.R. (ref=43) 1976; 57
Wu J. (ref=69) 2017; 3
Saha G. (ref=28) 2016; 104
Chiba Y. (ref=62) 2013; 54
Tang W. (ref=46) 2005; 59
Almeida T. (ref=50) 2013; 73
Lippold F. (ref=27) 2009; 149
Cheah B.H. (ref=35) 2015; 16
Tang W. (ref=42) 2007; 58
Al-Attala M.N. (ref=17) 2014; 84
Lee H.G. (ref=53) 2015; 82
Ma C. (ref=13) 2015; 84
Lv Y. (ref=38) 2017; 173
ref=3
Butelli E. (ref=21) 2012; 24
Maeda S. (ref=4) 2016; 91
Bonthala V.S. (ref=20) 2016; 11
Yuan S. (ref=33) 2015; 169
Yang Y. (ref=2) 2016; 7
Imtiaz M. (ref=25) 2015; 89
Chavez-Hernandez E.C. (ref=34) 2015; 6
Tang W. (ref=47) 2007; 26
Reyes J.L. (ref=66) 2007; 49
Kim J.Y. (ref=8) 2010; 51
Shen X. (ref=15) 2017; 112
Sosa-Valencia G. (ref=14) 2017; 68
Sun Q. (ref=70) 2018; 11
Toki S. (ref=41) 2006; 47
Becana M. (ref=44) 1986; 82
Bai B. (ref=18) 2015; 16
Tombuloglu H. (ref=29) 2013; 288
Mathieu J. (ref=57) 2009; 7
Kim J.J. (ref=6) 2012; 159
Thiebaut F. (ref=37) 2014; 15
Huang Q.X. (ref=55) 2010; 5
Zeng C. (ref=11) 2014; 14
Tang W. (ref=39) 2013; 40
Wang R.K. (ref=61) 2014; 150
Chen Y. (ref=30) 2013; 31
Shimono M. (ref=40) 2007; 19
He Q. (ref=54) 2016; 6
Li H. (ref=31) 2016; 7
Abe H. (ref=48) 1997; 9
Debat H.J. (ref=56) 2014; 9
Devi S.J. (ref=1) 2013; 531
Candar-Cakir B. (ref=65) 2016; 14
Song G. (ref=32) 2017; 18
Raffaele S. (ref=49) 2008; 20
Samad A.F.A. (ref=64) 2017; 8
Kiferle C. (ref=26) 2015; 10
Yang A. (ref=63) 2012; 63
Davey M.W. (ref=23) 2009; 10
Bergonzi S. (ref=51) 2013; 340
Din M. (ref=67) 2014; 535
Peng X. (ref=59) 2015; 15
Gebelin V. (ref=7) 2012; 12
Yan Y. (ref=60) 2014; 30
Kamthan A. (ref=9) 2015; 6
Bredow M. (ref=5) 2016; 11
Hichri I. (ref=24) 2011; 62
Chen H. (ref=10) 2015; 464
Ragupathy R. (ref=36) 2016; 6
Agarwal M. (ref=16) 2006; 281
Xie F. (ref=68) 2015; 66
Yang C. (ref=58) 2013; 36
Cheng L. (ref=52) 2013; 70
Bedon F. (ref=19) 2010; 61
Butt H.I. (ref=22) 2017; 12
References_xml – volume: 3
  start-page: 16203
  year: 2017
  ident: ref=69
  publication-title: Nat Plants
  doi: 10.1038/nplants.2016.203
– volume: 26
  start-page: 115
  year: 2007
  ident: ref=47
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-006-0228-0
– volume: 11
  start-page: e0148771
  year: 2016
  ident: ref=20
  publication-title: PloS One
  doi: 10.1371/journal.pone.0148771
– volume: 59
  start-page: 603
  year: 2005
  ident: ref=46
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-005-0451-z
– ident: ref=3
– volume: 19
  start-page: 2064
  year: 2007
  ident: ref=40
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.046250
– volume: 20
  start-page: 752
  year: 2008
  ident: ref=49
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.054858
– volume: 14
  year: 2014
  ident: ref=11
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-014-0207-5
– volume: 9
  start-page: e109835
  year: 2014
  ident: ref=56
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0109835
– volume: 6
  year: 2016
  ident: ref=54
  publication-title: Sci Rep
  doi: 10.1038/srep22980
– volume: 82
  start-page: 962
  year: 2015
  ident: ref=53
  publication-title: Plant J
  doi: 10.1111/tpj.12866
– volume: 62
  start-page: 2465
  year: 2011
  ident: ref=24
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erq442
– volume: 104
  start-page: 200
  year: 2016
  ident: ref=28
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2016.03.021
– volume: 15
  start-page: 108
  year: 2015
  ident: ref=59
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-015-0489-2
– volume: 6
  start-page: 595
  year: 2015
  ident: ref=12
  publication-title: Frontiers Plant Sci
– volume: 68
  start-page: 2013
  year: 2017
  ident: ref=14
  publication-title: J Exp Bot
– volume: 150
  start-page: 76
  year: 2014
  ident: ref=61
  publication-title: Physiol Plant
  doi: 10.1111/ppl.12069
– volume: 91
  start-page: 97
  year: 2016
  ident: ref=4
  publication-title: Genes Genet Syst
  doi: 10.1266/ggs.15-00056
– volume: 11
  start-page: e0167941
  year: 2016
  ident: ref=5
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0167941
– volume: 288
  start-page: 141
  year: 2013
  ident: ref=29
  publication-title: Mol Genet Genom
  doi: 10.1007/s00438-013-0740-1
– volume: 58
  start-page: 545
  year: 2007
  ident: ref=42
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erl228
– volume: 112
  start-page: 302
  year: 2017
  ident: ref=15
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2017.01.015
– volume: 36
  start-page: 2207
  year: 2013
  ident: ref=58
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12130
– volume: 61
  start-page: 3847
  year: 2010
  ident: ref=19
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erq196
– volume: 6
  start-page: 39373
  year: 2016
  ident: ref=36
  publication-title: Scientific Rep
  doi: 10.1038/srep39373
– volume: 14
  start-page: 1727
  year: 2016
  ident: ref=65
  publication-title: Plant Biotech J
  doi: 10.1111/pbi.12533
– volume: 57
  start-page: 460
  year: 1976
  ident: ref=43
  publication-title: Plant Physiol
  doi: 10.1104/pp.57.3.460
– volume: 11
  start-page: 806
  year: 2018
  ident: ref=70
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2018.03.013
– volume: 84
  start-page: 589
  year: 2014
  ident: ref=17
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-013-0156-7
– volume: 89
  start-page: 1
  year: 2015
  ident: ref=25
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-015-0347-5
– volume: 47
  start-page: 969
  year: 2006
  ident: ref=41
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2006.02836.x
– volume: 40
  start-page: 2723
  year: 2013
  ident: ref=39
  publication-title: Mol Biol Rep
  doi: 10.1007/s11033-012-2362-9
– volume: 464
  start-page: 768
  year: 2015
  ident: ref=10
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2015.07.029
– volume: 16
  start-page: 692
  year: 2015
  ident: ref=35
  publication-title: BMC Genom
  doi: 10.1186/s12864-015-1851-3
– volume: 6
  start-page: 208
  year: 2015
  ident: ref=9
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2015.00208
– volume: 12
  start-page: e0170578
  year: 2017
  ident: ref=22
  publication-title: PloS One
  doi: 10.1371/journal.pone.0170578
– volume: 169
  start-page: 576
  year: 2015
  ident: ref=33
  publication-title: Plant Physiol
  doi: 10.1104/pp.15.00899
– volume: 73
  start-page: 274
  year: 2013
  ident: ref=50
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2013.10.007
– volume: 5
  start-page: e13271
  year: 2010
  ident: ref=55
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0013271
– volume: 7
  start-page: 1231
  year: 2016
  ident: ref=31
  publication-title: Front Plant Sci
– volume: 340
  start-page: 1094
  year: 2013
  ident: ref=51
  publication-title: Science
  doi: 10.1126/science.1234116
– volume: 535
  start-page: 198
  year: 2014
  ident: ref=67
  publication-title: Gene
  doi: 10.1016/j.gene.2013.11.034
– volume: 82
  start-page: 1169
  year: 1986
  ident: ref=44
  publication-title: Plant Physiol
  doi: 10.1104/pp.82.4.1169
– volume: 66
  start-page: 789
  year: 2015
  ident: ref=68
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru437
– volume: 7
  start-page: e1000148
  year: 2009
  ident: ref=57
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000148
– volume: 51
  start-page: 1079
  year: 2010
  ident: ref=8
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcq072
– volume: 24
  start-page: 1242
  year: 2012
  ident: ref=21
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.095232
– volume: 12
  start-page: 18
  year: 2012
  ident: ref=7
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-12-18
– volume: 31
  start-page: 87
  year: 2013
  ident: ref=30
  publication-title: Plant Mol Biol Rep
  doi: 10.1007/s11105-012-0481-z
– volume: 9
  start-page: 1859
  year: 1997
  ident: ref=48
  publication-title: Plant Cell
– volume: 15
  start-page: 766
  year: 2014
  ident: ref=37
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-766
– volume: 43
  start-page: 760
  year: 2005
  ident: ref=45
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2005.05.008
– volume: 54
  start-page: 180
  year: 2013
  ident: ref=62
  publication-title: Plant
– volume: 70
  start-page: 252
  year: 2013
  ident: ref=52
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2013.05.025
– volume: 281
  start-page: 37636
  year: 2006
  ident: ref=16
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M605895200
– volume: 531
  start-page: 15
  year: 2013
  ident: ref=1
  publication-title: Gene
  doi: 10.1016/j.gene.2013.08.060
– volume: 149
  start-page: 1761
  year: 2009
  ident: ref=27
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.134874
– volume: 18
  start-page: 212
  year: 2017
  ident: ref=32
  publication-title: BMC Genom
  doi: 10.1186/s12864-017-3556-2
– volume: 30
  start-page: 437
  year: 2014
  ident: ref=60
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2014.07.004
– volume: 16
  start-page: 11398
  year: 2015
  ident: ref=18
  publication-title: Internat J Mol Sci
  doi: 10.3390/ijms160511398
– volume: 159
  start-page: 461
  year: 2012
  ident: ref=6
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.192369
– volume: 10
  start-page: e0136365
  year: 2015
  ident: ref=26
  publication-title: PloS One
  doi: 10.1371/journal.pone.0136365
– volume: 173
  start-page: 1475
  year: 2017
  ident: ref=38
  publication-title: Plant Physiol
  doi: 10.1104/pp.16.01725
– volume: 6
  start-page: 555
  year: 2015
  ident: ref=34
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2015.00555
– volume: 84
  start-page: 169
  year: 2015
  ident: ref=13
  publication-title: Plant J
  doi: 10.1111/tpj.12999
– volume: 49
  start-page: 592
  year: 2007
  ident: ref=66
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2006.02980.x
– volume: 7
  start-page: 86
  year: 2016
  ident: ref=2
  publication-title: Frontiers Plant Sci
– volume: 8
  start-page: 565
  year: 2017
  ident: ref=64
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.00565
– volume: 10
  start-page: 436
  year: 2009
  ident: ref=23
  publication-title: BMC Genom
  doi: 10.1186/1471-2164-10-436
– volume: 63
  start-page: 2541
  year: 2012
  ident: ref=63
  publication-title: J Exp Bot
  doi: 10.1093/jxb/err431
SSID ssj0020870
Score 2.3342662
Snippet Background: MicroRNAs participate in many molecular mechanisms and signaling transduction pathways that are associated with plant stress tolerance by...
MicroRNAs participate in many molecular mechanisms and signaling trans-duction pathways that are associated with plant stress tolerance by repressing...
SourceID pubmedcentral
proquest
pubmed
crossref
benthamscience
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100
SubjectTerms Antioxidants
Arabidopsis thaliana
Ascorbic acid
Cell lines
Cell viability
Cellular stress response
Cold tolerance
Gene expression
Genes
Growth rate
L-Ascorbate peroxidase
Low temperature
MicroRNAs
miRNA
Molecular modelling
Oryza sativa
Peroxidase
Pine trees
Pinus elliottii
Plant breeding
Plant cells
Plant stress
Rice
Signal transduction
Stress response
Superoxide dismutase
Temperature effects
Temperature tolerance
Thiobarbituric acid
Transcription factors
Title OsmiR528 Enhances Cold Stress Tolerance by Repressing Expression of Stress Response-related Transcription Factor Genes in Plant Cells
URI http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1389-2029&volume=20&issue=2&spage=100
https://www.ncbi.nlm.nih.gov/pubmed/31555061
https://www.proquest.com/docview/2232972478
https://www.proquest.com/docview/2298144280
https://pubmed.ncbi.nlm.nih.gov/PMC6728904
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEAgkEHcKA3kSb1NY4rhx8ghTy4TGJkEr-mbFiUMr2rTqRdWQeOR_c47jpMnK0OAlipzUcXM-H3_HORdC3sScJxlPmBPFaeZwsEGc2NeJI2KeBkGUeKnCfchPZ8HJgH8cdoat1roeXbJSb5Mff4wr-R-pQhvIFaNk_0GyVafQAOcgXziChOF4LRmfL6fjzx0WHnbzEUoP629OUvOlGfRXfzbRCxMRoAzRNh6v-TfMblw4vxqm-KUMFjG-stoxwS3AQs0iVqmUninLY5JUGwdarHW0OjzWk8myTm_LbE-Y-XVa86Pv213pr3q864mCzdCP3VW1OxAY9NTw5niv4T9OK120deevqVUffalcu7ehizawlBywl8K6LmZuDXOsplg9k890R-GjQYV7D9A_do-56QOkOCzyeIf70XaVK7_sn53L3uD0VPa7w_4NcpOBdYGFLz4MK88g5oaiCC63g75NDuyjjq580F1yT8H7hRdhmUuT5-wYL5d9cGukpv-A3LfWCH1XQOshaen8EblV1Ce9eEx-lQCjJcAoAowWmKEVwKi6oFuA0S3A6Cwrb74MMNoAGC0ARg3A6DinBmDUAOwJGfS6_eMTx9btcBRYrysnY56Og6zDElfHHcV4IrIAVYUArugHqXBjob0wjYPIdePAjRIGq4Cb-i5TCc9i_ynZy2e5fk5ooJTH00gxlQoehGHkCqE4Wtk6S4FutsnP5muX8yJJiwlXk5vNRur1Qn-Pl6aqlIS5Lm1ZOomxIFjJej6aSzORpZ3IEvEpUdQSZS0LbMK5NLiUTBpMYrrvNglLKcvEJtXH2i4TuCgRMfJKxLQJq35aDvoaP9ovoSStIlpKYPgsEoyLsE0OqsuwTOC3vzjXszXeE4Ue5yyEIT8rkFc91QebogO8vk1EA5PVDZiCvnklH49MKvpAoKMCf_H3Yb0kd7Z6Y5_srRZr_Qq4_Eq9NjPvN_TL-MM
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OsmiR528+Enhances+Cold+Stress+Tolerance+by+Repressing+Expression+of+Stress+Response-related+Transcription+Factor+Genes+in+Plant+Cells&rft.jtitle=Current+genomics&rft.au=Tang%2C+Wei&rft.au=Thompson%2C+Wells+A&rft.date=2019-02-01&rft.pub=Benham+Science+Publishers&rft.issn=1389-2029&rft.eissn=1875-5488&rft.volume=20&rft.issue=2&rft.spage=100&rft_id=info:doi/10.2174%2F1389202920666190129145439&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-2029&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-2029&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-2029&client=summon