OsmiR528 Enhances Cold Stress Tolerance by Repressing Expression of Stress Response-related Transcription Factor Genes in Plant Cells
Background: MicroRNAs participate in many molecular mechanisms and signaling transduction pathways that are associated with plant stress tolerance by repressing expression of their target genes. However, how microRNAs enhance tolerance to low temperature stress in plant cells remains elusive. Object...
Saved in:
Published in | Current genomics Vol. 20; no. 2; pp. 100 - 114 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United Arab Emirates
Bentham Science Publishers Ltd
01.02.2019
Benham Science Publishers Bentham Science Publishers |
Subjects | |
Online Access | Get full text |
ISSN | 1389-2029 1875-5488 |
DOI | 10.2174/1389202920666190129145439 |
Cover
Loading…
Abstract | Background: MicroRNAs participate in many molecular mechanisms and signaling transduction pathways that are associated with plant stress tolerance by repressing expression of their target genes. However, how microRNAs enhance tolerance to low temperature stress in plant cells remains elusive.
Objective: In this investigation, we demonstrated that overexpression of the rice microRNA528 (OsmiR528) increases cell viability, growth rate, antioxidants content, ascorbate peroxidase (APOX) activity, and superoxide dismutase (SOD) activity and decreases ion leakage rate and thiobarbituric acid reactive substances (TBARS) under low temperature stress in Arabidopsis (Arabidopsis thaliana), pine (Pinus elliottii), and rice (Oryza sativa).
Methods: To investigate the potential mechanism of OsmiR528 in increasing cold stress tolerance, we examined expression of stress-associated MYB transcription factors OsGAMYB-like1, OsMYBS3, OsMYB4, OsMYB3R-2, OsMYB5, OsMYB59, OsMYB30, OsMYB1R, and OsMYB20 in rice cells by qRT-PCR.
Results: Our experiments demonstrated that OsmiR528 decreases expression of transcription factor OsMYB30 by targeting a F-box domain containing protein gene (Os06g06050), which is a positive regulator of OsMYB30. In OsmiR528 transgenic rice, reduced OsMYB30 expression results in increased expression of BMY genes OsBMY2, OsBMY6, and OsBMY10. The transcript levels of the OsBMY2, OsBMY6, and OsBMY10 were elevated by OsMYB30 knockdown, but decreased by Os- MYB30 overexpression in OsmiR528 transgenic cell lines, suggesting that OsmiR528 increases low temperature tolerance by modulating expression of stress response-related transcription factor.
Conclusion: Our experiments provide novel information in increasing our understanding in molecular mechanisms of microRNAs-associated low temperature tolerance and are valuable in plant molecular breeding from monocotyledonous, dicotyledonous, and gymnosperm plants. |
---|---|
AbstractList | MicroRNAs participate in many molecular mechanisms and signaling trans-duction pathways that are associated with plant stress tolerance by repressing expression of their target genes. However, how microRNAs enhance tolerance to low temperature stress in plant cells remains elusive.BACKGROUNDMicroRNAs participate in many molecular mechanisms and signaling trans-duction pathways that are associated with plant stress tolerance by repressing expression of their target genes. However, how microRNAs enhance tolerance to low temperature stress in plant cells remains elusive.In this investigation, we demonstrated that overexpression of the rice microRNA528 (Os-miR528) increases cell viability, growth rate, antioxidants content, ascorbate peroxidase (APOX) activi-ty, and superoxide dismutase (SOD) activity and decreases ion leakage rate and thiobarbituric acid reac-tive substances (TBARS) under low temperature stress in Arabidopsis (Arabidopsis thaliana), pine (Pi-nus elliottii), and rice (Oryza sativa).OBJECTIVEIn this investigation, we demonstrated that overexpression of the rice microRNA528 (Os-miR528) increases cell viability, growth rate, antioxidants content, ascorbate peroxidase (APOX) activi-ty, and superoxide dismutase (SOD) activity and decreases ion leakage rate and thiobarbituric acid reac-tive substances (TBARS) under low temperature stress in Arabidopsis (Arabidopsis thaliana), pine (Pi-nus elliottii), and rice (Oryza sativa).To investigate the potential mechanism of OsmiR528 in increasing cold stress tolerance, we examined expression of stress-associated MYB transcription factors OsGAMYB-like1, OsMYBS3, OsMYB4, OsMYB3R-2, OsMYB5, OsMYB59, OsMYB30, OsMYB1R, and OsMYB20 in rice cells by qRT-PCR.METHODSTo investigate the potential mechanism of OsmiR528 in increasing cold stress tolerance, we examined expression of stress-associated MYB transcription factors OsGAMYB-like1, OsMYBS3, OsMYB4, OsMYB3R-2, OsMYB5, OsMYB59, OsMYB30, OsMYB1R, and OsMYB20 in rice cells by qRT-PCR.Our experiments demonstrated that OsmiR528 decreases expression of transcription factor OsMYB30 by targeting a F-box domain containing protein gene (Os06g06050), which is a positive regulator of OsMYB30. In OsmiR528 transgenic rice, reduced OsMYB30 expression results in in-creased expression of BMY genes OsBMY2, OsBMY6, and OsBMY10. The transcript levels of the OsBMY2, OsBMY6, and OsBMY10 were elevated by OsMYB30 knockdown, but decreased by Os-MYB30 overexpression in OsmiR528 transgenic cell lines, suggesting that OsmiR528 increases low temperature tolerance by modulating expression of stress response-related transcription factor.RESULTSOur experiments demonstrated that OsmiR528 decreases expression of transcription factor OsMYB30 by targeting a F-box domain containing protein gene (Os06g06050), which is a positive regulator of OsMYB30. In OsmiR528 transgenic rice, reduced OsMYB30 expression results in in-creased expression of BMY genes OsBMY2, OsBMY6, and OsBMY10. The transcript levels of the OsBMY2, OsBMY6, and OsBMY10 were elevated by OsMYB30 knockdown, but decreased by Os-MYB30 overexpression in OsmiR528 transgenic cell lines, suggesting that OsmiR528 increases low temperature tolerance by modulating expression of stress response-related transcription factor.Our experiments provide novel information in increasing our understanding in molecular mechanisms of microRNAs-associated low temperature tolerance and are valuable in plant molecular breeding from monocotyledonous, dicotyledonous, and gymnosperm plants.CONCLUSIONOur experiments provide novel information in increasing our understanding in molecular mechanisms of microRNAs-associated low temperature tolerance and are valuable in plant molecular breeding from monocotyledonous, dicotyledonous, and gymnosperm plants. MicroRNAs participate in many molecular mechanisms and signaling trans-duction pathways that are associated with plant stress tolerance by repressing expression of their target genes. However, how microRNAs enhance tolerance to low temperature stress in plant cells remains elusive. In this investigation, we demonstrated that overexpression of the rice microRNA528 (Os-miR528) increases cell viability, growth rate, antioxidants content, ascorbate peroxidase (APOX) activi-ty, and superoxide dismutase (SOD) activity and decreases ion leakage rate and thiobarbituric acid reac-tive substances (TBARS) under low temperature stress in Arabidopsis (Arabidopsis thaliana), pine (Pi-nus elliottii), and rice (Oryza sativa). To investigate the potential mechanism of OsmiR528 in increasing cold stress tolerance, we examined expression of stress-associated MYB transcription factors OsGAMYB-like1, OsMYBS3, OsMYB4, OsMYB3R-2, OsMYB5, OsMYB59, OsMYB30, OsMYB1R, and OsMYB20 in rice cells by qRT-PCR. Our experiments demonstrated that OsmiR528 decreases expression of transcription factor OsMYB30 by targeting a F-box domain containing protein gene (Os06g06050), which is a positive regulator of OsMYB30. In OsmiR528 transgenic rice, reduced OsMYB30 expression results in in-creased expression of BMY genes OsBMY2, OsBMY6, and OsBMY10. The transcript levels of the OsBMY2, OsBMY6, and OsBMY10 were elevated by OsMYB30 knockdown, but decreased by Os-MYB30 overexpression in OsmiR528 transgenic cell lines, suggesting that OsmiR528 increases low temperature tolerance by modulating expression of stress response-related transcription factor. Our experiments provide novel information in increasing our understanding in molecular mechanisms of microRNAs-associated low temperature tolerance and are valuable in plant molecular breeding from monocotyledonous, dicotyledonous, and gymnosperm plants. Background: MicroRNAs participate in many molecular mechanisms and signaling transduction pathways that are associated with plant stress tolerance by repressing expression of their target genes. However, how microRNAs enhance tolerance to low temperature stress in plant cells remains elusive. Objective: In this investigation, we demonstrated that overexpression of the rice microRNA528 (OsmiR528) increases cell viability, growth rate, antioxidants content, ascorbate peroxidase (APOX) activity, and superoxide dismutase (SOD) activity and decreases ion leakage rate and thiobarbituric acid reactive substances (TBARS) under low temperature stress in Arabidopsis (Arabidopsis thaliana), pine (Pinus elliottii), and rice (Oryza sativa). Methods: To investigate the potential mechanism of OsmiR528 in increasing cold stress tolerance, we examined expression of stress-associated MYB transcription factors OsGAMYB-like1, OsMYBS3, OsMYB4, OsMYB3R-2, OsMYB5, OsMYB59, OsMYB30, OsMYB1R, and OsMYB20 in rice cells by qRT-PCR. Results: Our experiments demonstrated that OsmiR528 decreases expression of transcription factor OsMYB30 by targeting a F-box domain containing protein gene (Os06g06050), which is a positive regulator of OsMYB30. In OsmiR528 transgenic rice, reduced OsMYB30 expression results in increased expression of BMY genes OsBMY2, OsBMY6, and OsBMY10. The transcript levels of the OsBMY2, OsBMY6, and OsBMY10 were elevated by OsMYB30 knockdown, but decreased by Os- MYB30 overexpression in OsmiR528 transgenic cell lines, suggesting that OsmiR528 increases low temperature tolerance by modulating expression of stress response-related transcription factor. Conclusion: Our experiments provide novel information in increasing our understanding in molecular mechanisms of microRNAs-associated low temperature tolerance and are valuable in plant molecular breeding from monocotyledonous, dicotyledonous, and gymnosperm plants. Background: MicroRNAs participate in many molecular mechanisms and signaling transduction pathways that are associated with plant stress tolerance by repressing expression of their target genes. However, how microRNAs enhance tolerance to low temperature stress in plant cells remains elusive. Objective: In this investigation, we demonstrated that overexpression of the rice microRNA528 (OsmiR528) increases cell viability, growth rate, antioxidants content, ascorbate peroxidase (APOX) activity, and superoxide dismutase (SOD) activity and decreases ion leakage rate and thiobarbituric acid reactive substances (TBARS) under low temperature stress in Arabidopsis (Arabidopsis thaliana), pine (Pinus elliottii), and rice (Oryza sativa). Methods: To investigate the potential mechanism of OsmiR528 in increasing cold stress tolerance, we examined expression of stress-associated MYB transcription factors OsGAMYB-like1, OsMYBS3, OsMYB4, OsMYB3R-2, OsMYB5, OsMYB59, OsMYB30, OsMYB1R, and OsMYB20 in rice cells by qRT-PCR. Results: Our experiments demonstrated that OsmiR528 decreases expression of transcription factor OsMYB30 by targeting a F-box domain containing protein gene (Os06g06050), which is a positive regulator of OsMYB30. In OsmiR528 transgenic rice, reduced OsMYB30 expression results in increased expression of BMY genes OsBMY2, OsBMY6, and OsBMY10. The transcript levels of the OsBMY2, OsBMY6, and OsBMY10 were elevated by OsMYB30 knockdown, but decreased by Os- MYB30 overexpression in OsmiR528 transgenic cell lines, suggesting that OsmiR528 increases low temperature tolerance by modulating expression of stress response-related transcription factor. Conclusion: Our experiments provide novel information in increasing our understanding in molecular mechanisms of microRNAs-associated low temperature tolerance and are valuable in plant molecular breeding from monocotyledonous, dicotyledonous, and gymnosperm plants. |
Author | Wei Tang Wells A. Thompson |
Author_xml | – sequence: 1 givenname: Wei surname: Tang fullname: Tang, Wei organization: College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei Province 434025, China – sequence: 2 givenname: Wells A. surname: Thompson fullname: Thompson, Wells A. organization: Program of Cellular and Molecular Biology, Duke University, Durham, NC 27708, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31555061$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhiNURD_gLyAjLlwCtpM4zgWEVtuCVKloWc6W40x2XRw72E6X3uF_47DtCiohcbD8yn7mnRl7TrMj6yxk2QuCX1NSl29IwRuKaVqMMdJgQhtSVmXRPMpOCK-rvCo5P0o6cfkMHmenIVxjTDGv8ZPsuCBVVWFGTrKfV2HQq4pytLRbaRUEtHCmQ5-jhxDQ2hnw8zFqb9EKxvlQ2w1aft9LZ5Hr7-EVhNHZALkHIyN0aJ1Cg_J6jDN4LlV0Hl2ATUm0RZ-MtBEtwJjwNHvcSxPg2d1-ln05X64XH_LLq4uPi_eXeVvVLOY9JSBZX1GFQVYtLVXdM1BK1hUlBetqLGsgvJOswVgy3CjKCo67AtNWlb0szrK3e99xagfoFNjopRGj14P0t8JJLf6-sXorNu5GsJryBpfJ4NWdgXffJghRDDqo1IK04KYgKG04KUvKcUJfPkCv3eRtai9RBW1qWtY8Uc__rOhQyv0PJaDZA8q7EDz0B4RgMU-D-Oc0pNh3D2KVjnL-jNScNv_l8GPv0KYH2cohKA1pGg41bGMcxW63EzB5-CoDGFBRKDcIN4KdvEnaxhQrxu0oNmA9COmjVgaEDsH-Ti3m3OLGmWmApOeLKQkRRrmBVCQufgErie6F |
CitedBy_id | crossref_primary_10_1016_j_plantsci_2020_110608 crossref_primary_10_3390_plants13071016 crossref_primary_10_3390_dna4040038 crossref_primary_10_1093_jxb_erac370 crossref_primary_10_3389_fnut_2022_906227 crossref_primary_10_3390_ijms241914502 crossref_primary_10_1007_s13562_023_00830_8 crossref_primary_10_1093_plphys_kiac208 crossref_primary_10_1186_s12284_022_00575_3 crossref_primary_10_3390_agronomy10121855 crossref_primary_10_3389_fpls_2023_1303651 crossref_primary_10_1111_ppl_14188 crossref_primary_10_1111_ppl_14126 crossref_primary_10_1126_sciadv_abm0660 crossref_primary_10_1111_tpj_16132 crossref_primary_10_1111_nph_19315 crossref_primary_10_1007_s11105_021_01328_0 crossref_primary_10_3390_ijms251810110 crossref_primary_10_1016_j_postharvbio_2022_111872 crossref_primary_10_3389_fgene_2022_870446 crossref_primary_10_1021_acs_jafc_1c01096 crossref_primary_10_1371_journal_pone_0286324 crossref_primary_10_3390_su17020719 crossref_primary_10_3390_ijms21176017 crossref_primary_10_1016_j_envexpbot_2022_105177 crossref_primary_10_1016_j_postharvbio_2023_112420 crossref_primary_10_1111_nph_17635 crossref_primary_10_1186_s12870_022_03723_5 crossref_primary_10_1080_15592324_2021_2004035 |
Cites_doi | 10.1038/nplants.2016.203 10.1007/s00299-006-0228-0 10.1371/journal.pone.0148771 10.1007/s11103-005-0451-z 10.1105/tpc.106.046250 10.1105/tpc.107.054858 10.1186/s12870-014-0207-5 10.1371/journal.pone.0109835 10.1038/srep22980 10.1111/tpj.12866 10.1093/jxb/erq442 10.1016/j.plaphy.2016.03.021 10.1186/s12870-015-0489-2 10.1111/ppl.12069 10.1266/ggs.15-00056 10.1371/journal.pone.0167941 10.1007/s00438-013-0740-1 10.1093/jxb/erl228 10.1016/j.plaphy.2017.01.015 10.1111/pce.12130 10.1093/jxb/erq196 10.1038/srep39373 10.1111/pbi.12533 10.1104/pp.57.3.460 10.1016/j.molp.2018.03.013 10.1007/s11103-013-0156-7 10.1007/s11103-015-0347-5 10.1111/j.1365-313X.2006.02836.x 10.1007/s11033-012-2362-9 10.1016/j.bbrc.2015.07.029 10.1186/s12864-015-1851-3 10.3389/fpls.2015.00208 10.1371/journal.pone.0170578 10.1104/pp.15.00899 10.1016/j.plaphy.2013.10.007 10.1371/journal.pone.0013271 10.1126/science.1234116 10.1016/j.gene.2013.11.034 10.1104/pp.82.4.1169 10.1093/jxb/eru437 10.1371/journal.pbio.1000148 10.1093/pcp/pcq072 10.1105/tpc.111.095232 10.1186/1471-2229-12-18 10.1007/s11105-012-0481-z 10.1186/1471-2164-15-766 10.1016/j.plaphy.2005.05.008 10.1016/j.plaphy.2013.05.025 10.1074/jbc.M605895200 10.1016/j.gene.2013.08.060 10.1104/pp.108.134874 10.1186/s12864-017-3556-2 10.1016/j.devcel.2014.07.004 10.3390/ijms160511398 10.1104/pp.111.192369 10.1371/journal.pone.0136365 10.1104/pp.16.01725 10.3389/fpls.2015.00555 10.1111/tpj.12999 10.1111/j.1365-313X.2006.02980.x 10.3389/fpls.2017.00565 10.1186/1471-2164-10-436 10.1093/jxb/err431 |
ContentType | Journal Article |
Copyright | Copyright Bentham Science 2019 2019 Bentham Science Publishers 2019 |
Copyright_xml | – notice: Copyright Bentham Science 2019 – notice: 2019 Bentham Science Publishers 2019 |
DBID | AAYXX CITATION NPM 7QL 7QO 7QP 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.2174/1389202920666190129145439 |
DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1875-5488 |
EndPage | 114 |
ExternalDocumentID | PMC6728904 31555061 10_2174_1389202920666190129145439 http_www_eurekaselect_com_openurl_content_php_genre_article_issn_1389_2029_volume_20_issue_2_spage_100 |
Genre | Journal Article |
GroupedDBID | --- .5. 0R~ 29F 2WC 4.4 53G 5GY AAEGP ABEEF ABJNI ACGFS ACIWK ACPRK ADBBV AENEX AFRAH AFUQM AGJNZ ALMA_UNASSIGNED_HOLDINGS ANTIV AOIJS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P GH2 GX1 HYE HZ~ IPNFZ KCGFV O9- OK1 P2P RIG RPM TR2 AAYXX AFHZU CITATION NPM 7QL 7QO 7QP 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-b576t-f21ea6f52c0ea5b24c7f6ecca752136d70a7e18da6900a609c26380d302bc4fa3 |
ISSN | 1389-2029 |
IngestDate | Thu Aug 21 13:25:14 EDT 2025 Fri Jul 11 01:04:47 EDT 2025 Mon Jun 30 11:59:59 EDT 2025 Thu Jan 02 22:54:41 EST 2025 Thu Apr 24 23:10:25 EDT 2025 Tue Jul 01 02:59:06 EDT 2025 Tue Aug 27 15:41:42 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Molecular breeding Cold stress Pinus Gene expression Transcription factor MicroRNAs |
Language | English |
License | This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-b576t-f21ea6f52c0ea5b24c7f6ecca752136d70a7e18da6900a609c26380d302bc4fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6728904 |
PMID | 31555061 |
PQID | 2232972478 |
PQPubID | 2048057 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6728904 proquest_miscellaneous_2298144280 proquest_journals_2232972478 pubmed_primary_31555061 crossref_primary_10_2174_1389202920666190129145439 crossref_citationtrail_10_2174_1389202920666190129145439 benthamscience_primary_http_www_eurekaselect_com_openurl_content_php_genre_article_issn_1389_2029_volume_20_issue_2_spage_100 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 2 year: 2019 text: 20190201 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | United Arab Emirates |
PublicationPlace_xml | – name: United Arab Emirates – name: Sharjah |
PublicationTitle | Current genomics |
PublicationTitleAlternate | CG |
PublicationYear | 2019 |
Publisher | Bentham Science Publishers Ltd Benham Science Publishers Bentham Science Publishers |
Publisher_xml | – name: Bentham Science Publishers Ltd – name: Benham Science Publishers – name: Bentham Science Publishers |
References | Tang W. (ref=45) 2005; 43 Sun X. (ref=12) 2015; 6 Sung Z.R. (ref=43) 1976; 57 Wu J. (ref=69) 2017; 3 Saha G. (ref=28) 2016; 104 Chiba Y. (ref=62) 2013; 54 Tang W. (ref=46) 2005; 59 Almeida T. (ref=50) 2013; 73 Lippold F. (ref=27) 2009; 149 Cheah B.H. (ref=35) 2015; 16 Tang W. (ref=42) 2007; 58 Al-Attala M.N. (ref=17) 2014; 84 Lee H.G. (ref=53) 2015; 82 Ma C. (ref=13) 2015; 84 Lv Y. (ref=38) 2017; 173 ref=3 Butelli E. (ref=21) 2012; 24 Maeda S. (ref=4) 2016; 91 Bonthala V.S. (ref=20) 2016; 11 Yuan S. (ref=33) 2015; 169 Yang Y. (ref=2) 2016; 7 Imtiaz M. (ref=25) 2015; 89 Chavez-Hernandez E.C. (ref=34) 2015; 6 Tang W. (ref=47) 2007; 26 Reyes J.L. (ref=66) 2007; 49 Kim J.Y. (ref=8) 2010; 51 Shen X. (ref=15) 2017; 112 Sosa-Valencia G. (ref=14) 2017; 68 Sun Q. (ref=70) 2018; 11 Toki S. (ref=41) 2006; 47 Becana M. (ref=44) 1986; 82 Bai B. (ref=18) 2015; 16 Tombuloglu H. (ref=29) 2013; 288 Mathieu J. (ref=57) 2009; 7 Kim J.J. (ref=6) 2012; 159 Thiebaut F. (ref=37) 2014; 15 Huang Q.X. (ref=55) 2010; 5 Zeng C. (ref=11) 2014; 14 Tang W. (ref=39) 2013; 40 Wang R.K. (ref=61) 2014; 150 Chen Y. (ref=30) 2013; 31 Shimono M. (ref=40) 2007; 19 He Q. (ref=54) 2016; 6 Li H. (ref=31) 2016; 7 Abe H. (ref=48) 1997; 9 Debat H.J. (ref=56) 2014; 9 Devi S.J. (ref=1) 2013; 531 Candar-Cakir B. (ref=65) 2016; 14 Song G. (ref=32) 2017; 18 Raffaele S. (ref=49) 2008; 20 Samad A.F.A. (ref=64) 2017; 8 Kiferle C. (ref=26) 2015; 10 Yang A. (ref=63) 2012; 63 Davey M.W. (ref=23) 2009; 10 Bergonzi S. (ref=51) 2013; 340 Din M. (ref=67) 2014; 535 Peng X. (ref=59) 2015; 15 Gebelin V. (ref=7) 2012; 12 Yan Y. (ref=60) 2014; 30 Kamthan A. (ref=9) 2015; 6 Bredow M. (ref=5) 2016; 11 Hichri I. (ref=24) 2011; 62 Chen H. (ref=10) 2015; 464 Ragupathy R. (ref=36) 2016; 6 Agarwal M. (ref=16) 2006; 281 Xie F. (ref=68) 2015; 66 Yang C. (ref=58) 2013; 36 Cheng L. (ref=52) 2013; 70 Bedon F. (ref=19) 2010; 61 Butt H.I. (ref=22) 2017; 12 |
References_xml | – volume: 3 start-page: 16203 year: 2017 ident: ref=69 publication-title: Nat Plants doi: 10.1038/nplants.2016.203 – volume: 26 start-page: 115 year: 2007 ident: ref=47 publication-title: Plant Cell Rep doi: 10.1007/s00299-006-0228-0 – volume: 11 start-page: e0148771 year: 2016 ident: ref=20 publication-title: PloS One doi: 10.1371/journal.pone.0148771 – volume: 59 start-page: 603 year: 2005 ident: ref=46 publication-title: Plant Mol Biol doi: 10.1007/s11103-005-0451-z – ident: ref=3 – volume: 19 start-page: 2064 year: 2007 ident: ref=40 publication-title: Plant Cell doi: 10.1105/tpc.106.046250 – volume: 20 start-page: 752 year: 2008 ident: ref=49 publication-title: Plant Cell doi: 10.1105/tpc.107.054858 – volume: 14 year: 2014 ident: ref=11 publication-title: BMC Plant Biol doi: 10.1186/s12870-014-0207-5 – volume: 9 start-page: e109835 year: 2014 ident: ref=56 publication-title: PLoS One doi: 10.1371/journal.pone.0109835 – volume: 6 year: 2016 ident: ref=54 publication-title: Sci Rep doi: 10.1038/srep22980 – volume: 82 start-page: 962 year: 2015 ident: ref=53 publication-title: Plant J doi: 10.1111/tpj.12866 – volume: 62 start-page: 2465 year: 2011 ident: ref=24 publication-title: J Exp Bot doi: 10.1093/jxb/erq442 – volume: 104 start-page: 200 year: 2016 ident: ref=28 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2016.03.021 – volume: 15 start-page: 108 year: 2015 ident: ref=59 publication-title: BMC Plant Biol doi: 10.1186/s12870-015-0489-2 – volume: 6 start-page: 595 year: 2015 ident: ref=12 publication-title: Frontiers Plant Sci – volume: 68 start-page: 2013 year: 2017 ident: ref=14 publication-title: J Exp Bot – volume: 150 start-page: 76 year: 2014 ident: ref=61 publication-title: Physiol Plant doi: 10.1111/ppl.12069 – volume: 91 start-page: 97 year: 2016 ident: ref=4 publication-title: Genes Genet Syst doi: 10.1266/ggs.15-00056 – volume: 11 start-page: e0167941 year: 2016 ident: ref=5 publication-title: PLoS One doi: 10.1371/journal.pone.0167941 – volume: 288 start-page: 141 year: 2013 ident: ref=29 publication-title: Mol Genet Genom doi: 10.1007/s00438-013-0740-1 – volume: 58 start-page: 545 year: 2007 ident: ref=42 publication-title: J Exp Bot doi: 10.1093/jxb/erl228 – volume: 112 start-page: 302 year: 2017 ident: ref=15 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2017.01.015 – volume: 36 start-page: 2207 year: 2013 ident: ref=58 publication-title: Plant Cell Environ doi: 10.1111/pce.12130 – volume: 61 start-page: 3847 year: 2010 ident: ref=19 publication-title: J Exp Bot doi: 10.1093/jxb/erq196 – volume: 6 start-page: 39373 year: 2016 ident: ref=36 publication-title: Scientific Rep doi: 10.1038/srep39373 – volume: 14 start-page: 1727 year: 2016 ident: ref=65 publication-title: Plant Biotech J doi: 10.1111/pbi.12533 – volume: 57 start-page: 460 year: 1976 ident: ref=43 publication-title: Plant Physiol doi: 10.1104/pp.57.3.460 – volume: 11 start-page: 806 year: 2018 ident: ref=70 publication-title: Mol Plant doi: 10.1016/j.molp.2018.03.013 – volume: 84 start-page: 589 year: 2014 ident: ref=17 publication-title: Plant Mol Biol doi: 10.1007/s11103-013-0156-7 – volume: 89 start-page: 1 year: 2015 ident: ref=25 publication-title: Plant Mol Biol doi: 10.1007/s11103-015-0347-5 – volume: 47 start-page: 969 year: 2006 ident: ref=41 publication-title: Plant J doi: 10.1111/j.1365-313X.2006.02836.x – volume: 40 start-page: 2723 year: 2013 ident: ref=39 publication-title: Mol Biol Rep doi: 10.1007/s11033-012-2362-9 – volume: 464 start-page: 768 year: 2015 ident: ref=10 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2015.07.029 – volume: 16 start-page: 692 year: 2015 ident: ref=35 publication-title: BMC Genom doi: 10.1186/s12864-015-1851-3 – volume: 6 start-page: 208 year: 2015 ident: ref=9 publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00208 – volume: 12 start-page: e0170578 year: 2017 ident: ref=22 publication-title: PloS One doi: 10.1371/journal.pone.0170578 – volume: 169 start-page: 576 year: 2015 ident: ref=33 publication-title: Plant Physiol doi: 10.1104/pp.15.00899 – volume: 73 start-page: 274 year: 2013 ident: ref=50 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2013.10.007 – volume: 5 start-page: e13271 year: 2010 ident: ref=55 publication-title: PLoS One doi: 10.1371/journal.pone.0013271 – volume: 7 start-page: 1231 year: 2016 ident: ref=31 publication-title: Front Plant Sci – volume: 340 start-page: 1094 year: 2013 ident: ref=51 publication-title: Science doi: 10.1126/science.1234116 – volume: 535 start-page: 198 year: 2014 ident: ref=67 publication-title: Gene doi: 10.1016/j.gene.2013.11.034 – volume: 82 start-page: 1169 year: 1986 ident: ref=44 publication-title: Plant Physiol doi: 10.1104/pp.82.4.1169 – volume: 66 start-page: 789 year: 2015 ident: ref=68 publication-title: J Exp Bot doi: 10.1093/jxb/eru437 – volume: 7 start-page: e1000148 year: 2009 ident: ref=57 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1000148 – volume: 51 start-page: 1079 year: 2010 ident: ref=8 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcq072 – volume: 24 start-page: 1242 year: 2012 ident: ref=21 publication-title: Plant Cell doi: 10.1105/tpc.111.095232 – volume: 12 start-page: 18 year: 2012 ident: ref=7 publication-title: BMC Plant Biol doi: 10.1186/1471-2229-12-18 – volume: 31 start-page: 87 year: 2013 ident: ref=30 publication-title: Plant Mol Biol Rep doi: 10.1007/s11105-012-0481-z – volume: 9 start-page: 1859 year: 1997 ident: ref=48 publication-title: Plant Cell – volume: 15 start-page: 766 year: 2014 ident: ref=37 publication-title: BMC Genomics doi: 10.1186/1471-2164-15-766 – volume: 43 start-page: 760 year: 2005 ident: ref=45 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2005.05.008 – volume: 54 start-page: 180 year: 2013 ident: ref=62 publication-title: Plant – volume: 70 start-page: 252 year: 2013 ident: ref=52 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2013.05.025 – volume: 281 start-page: 37636 year: 2006 ident: ref=16 publication-title: J Biol Chem doi: 10.1074/jbc.M605895200 – volume: 531 start-page: 15 year: 2013 ident: ref=1 publication-title: Gene doi: 10.1016/j.gene.2013.08.060 – volume: 149 start-page: 1761 year: 2009 ident: ref=27 publication-title: Plant Physiol doi: 10.1104/pp.108.134874 – volume: 18 start-page: 212 year: 2017 ident: ref=32 publication-title: BMC Genom doi: 10.1186/s12864-017-3556-2 – volume: 30 start-page: 437 year: 2014 ident: ref=60 publication-title: Dev Cell doi: 10.1016/j.devcel.2014.07.004 – volume: 16 start-page: 11398 year: 2015 ident: ref=18 publication-title: Internat J Mol Sci doi: 10.3390/ijms160511398 – volume: 159 start-page: 461 year: 2012 ident: ref=6 publication-title: Plant Physiol doi: 10.1104/pp.111.192369 – volume: 10 start-page: e0136365 year: 2015 ident: ref=26 publication-title: PloS One doi: 10.1371/journal.pone.0136365 – volume: 173 start-page: 1475 year: 2017 ident: ref=38 publication-title: Plant Physiol doi: 10.1104/pp.16.01725 – volume: 6 start-page: 555 year: 2015 ident: ref=34 publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00555 – volume: 84 start-page: 169 year: 2015 ident: ref=13 publication-title: Plant J doi: 10.1111/tpj.12999 – volume: 49 start-page: 592 year: 2007 ident: ref=66 publication-title: Plant J doi: 10.1111/j.1365-313X.2006.02980.x – volume: 7 start-page: 86 year: 2016 ident: ref=2 publication-title: Frontiers Plant Sci – volume: 8 start-page: 565 year: 2017 ident: ref=64 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00565 – volume: 10 start-page: 436 year: 2009 ident: ref=23 publication-title: BMC Genom doi: 10.1186/1471-2164-10-436 – volume: 63 start-page: 2541 year: 2012 ident: ref=63 publication-title: J Exp Bot doi: 10.1093/jxb/err431 |
SSID | ssj0020870 |
Score | 2.3342662 |
Snippet | Background: MicroRNAs participate in many molecular mechanisms and signaling transduction pathways that are associated with plant stress tolerance by... MicroRNAs participate in many molecular mechanisms and signaling trans-duction pathways that are associated with plant stress tolerance by repressing... |
SourceID | pubmedcentral proquest pubmed crossref benthamscience |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100 |
SubjectTerms | Antioxidants Arabidopsis thaliana Ascorbic acid Cell lines Cell viability Cellular stress response Cold tolerance Gene expression Genes Growth rate L-Ascorbate peroxidase Low temperature MicroRNAs miRNA Molecular modelling Oryza sativa Peroxidase Pine trees Pinus elliottii Plant breeding Plant cells Plant stress Rice Signal transduction Stress response Superoxide dismutase Temperature effects Temperature tolerance Thiobarbituric acid Transcription factors |
Title | OsmiR528 Enhances Cold Stress Tolerance by Repressing Expression of Stress Response-related Transcription Factor Genes in Plant Cells |
URI | http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1389-2029&volume=20&issue=2&spage=100 https://www.ncbi.nlm.nih.gov/pubmed/31555061 https://www.proquest.com/docview/2232972478 https://www.proquest.com/docview/2298144280 https://pubmed.ncbi.nlm.nih.gov/PMC6728904 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEAgkEHcKA3kSb1NY4rhx8ghTy4TGJkEr-mbFiUMr2rTqRdWQeOR_c47jpMnK0OAlipzUcXM-H3_HORdC3sScJxlPmBPFaeZwsEGc2NeJI2KeBkGUeKnCfchPZ8HJgH8cdoat1roeXbJSb5Mff4wr-R-pQhvIFaNk_0GyVafQAOcgXziChOF4LRmfL6fjzx0WHnbzEUoP629OUvOlGfRXfzbRCxMRoAzRNh6v-TfMblw4vxqm-KUMFjG-stoxwS3AQs0iVqmUninLY5JUGwdarHW0OjzWk8myTm_LbE-Y-XVa86Pv213pr3q864mCzdCP3VW1OxAY9NTw5niv4T9OK120deevqVUffalcu7ehizawlBywl8K6LmZuDXOsplg9k890R-GjQYV7D9A_do-56QOkOCzyeIf70XaVK7_sn53L3uD0VPa7w_4NcpOBdYGFLz4MK88g5oaiCC63g75NDuyjjq580F1yT8H7hRdhmUuT5-wYL5d9cGukpv-A3LfWCH1XQOshaen8EblV1Ce9eEx-lQCjJcAoAowWmKEVwKi6oFuA0S3A6Cwrb74MMNoAGC0ARg3A6DinBmDUAOwJGfS6_eMTx9btcBRYrysnY56Og6zDElfHHcV4IrIAVYUArugHqXBjob0wjYPIdePAjRIGq4Cb-i5TCc9i_ynZy2e5fk5ooJTH00gxlQoehGHkCqE4Wtk6S4FutsnP5muX8yJJiwlXk5vNRur1Qn-Pl6aqlIS5Lm1ZOomxIFjJej6aSzORpZ3IEvEpUdQSZS0LbMK5NLiUTBpMYrrvNglLKcvEJtXH2i4TuCgRMfJKxLQJq35aDvoaP9ovoSStIlpKYPgsEoyLsE0OqsuwTOC3vzjXszXeE4Ue5yyEIT8rkFc91QebogO8vk1EA5PVDZiCvnklH49MKvpAoKMCf_H3Yb0kd7Z6Y5_srRZr_Qq4_Eq9NjPvN_TL-MM |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OsmiR528+Enhances+Cold+Stress+Tolerance+by+Repressing+Expression+of+Stress+Response-related+Transcription+Factor+Genes+in+Plant+Cells&rft.jtitle=Current+genomics&rft.au=Tang%2C+Wei&rft.au=Thompson%2C+Wells+A&rft.date=2019-02-01&rft.pub=Benham+Science+Publishers&rft.issn=1389-2029&rft.eissn=1875-5488&rft.volume=20&rft.issue=2&rft.spage=100&rft_id=info:doi/10.2174%2F1389202920666190129145439&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-2029&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-2029&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-2029&client=summon |