Ensuring machine learning for healthcare works for all

Even when prospective randomised controlled trials are performed, they are subject to numerous opportunities for bias—and even outright conflict of interest—which can impact the quality and transferability of results.15 16 The burdens of medicine’s failures in evidentiary quality and applicability a...

Full description

Saved in:
Bibliographic Details
Published inBMJ health & care informatics Vol. 27; no. 3; p. e100237
Main Authors McCoy, Liam G, Banja, John D, Ghassemi, Marzyeh, Celi, Leo Anthony
Format Journal Article
LanguageEnglish
Published England BMJ Publishing Group Ltd 24.11.2020
BMJ Publishing Group LTD
BMJ Publishing Group
Subjects
Online AccessGet full text
ISSN2632-1009
2632-1009
DOI10.1136/bmjhci-2020-100237

Cover

Loading…
Abstract Even when prospective randomised controlled trials are performed, they are subject to numerous opportunities for bias—and even outright conflict of interest—which can impact the quality and transferability of results.15 16 The burdens of medicine’s failures in evidentiary quality and applicability are not borne equally.11 17–19 The historical and ongoing omission in research of certain groups, including women and underserved populations, has skewed our understanding of health and disease.11 The concerns that exist regarding the generation of algorithms on racially biased datasets17 are unfortunately far from being new, but represent a continuation of a long-standing history of minority groups being under-represented or entirely unrepresented in foundational clinical research.11 18 The Framingham study, for example, generated its cardiovascular risk scores from an overwhelmingly white and male population, and has subsequently been inaccurate when uncritically used on black populations.19 Similarly, women have been and continue to be heavily under-represented in clinical trials.11 20 21 These problems extend to the global health context as well, as the trials used to inform clinical practice guidelines around the world tend to be conducted on a demographically restricted group of patients in high-income countries (mainly white males in the USA)11 These issues are compounded by structural biases in medical education,22 and the biases of the healthcare providers tasked with interpreting and implementing this medical knowledge in the clinical context.23 Can MLHC help, or will it harm? Models that are trained uncritically on databases embedded with societal biases and disparities will end up learning, amplifying and propagating those biases and disparities under the guise of algorithmic pseudo-objectivity.2 17 24 25 Similarly, gaps in quality of care will be widened by the development and use of tools that are only beneficial to a certain population—such as a melanoma detection algorithm trained on a dataset containing mostly images of light toned skin.26 Concerns also exist around patient privacy and safeguarding sensitive data (particularly for vulnerable groups such as HIV positive patients).27 Finally, there are structural concerns related to the possibility that the information technology prerequisites for implementing MLHC will only be available to already privileged groups.5 7 Yet, and as recent scholarship has indicated, the potential for MLHC to counter biases in healthcare is considerable.3 28 Data science methods can be used to audit healthcare datasets and processes, deriving insights and exposing implicit biases so they might be directly investigated and addressed.1 3 29 While much has been made of the ‘black box’ characteristics of AI, it may be argued that human decision making in general is no more explainable.30 31 This is particularly true in the context of the sort of implicit gender and racial biases that influence physicians' decisions but are unlikely to be consciously admitted.23 As checklist studies in healthcare have demonstrated,32 it may be possible to reduce these biases through the use of standardised prompts and clinical decision support tools that move clinical decisions closer to the data—and further from the biasing subjective evaluations. At the structural level, there is hope that AI will drive down the costs of care, increasing access for groups that have been traditionally underserved, and enabling greater levels of patient autonomy for self-management.4 5 Further, MLHC technologies may be able to address issues of disparity in the clinical research pipeline.33 Improvements in the use and analysis of electronic health records and mobile health technology herald the possibility of mobilising massive amounts of healthcare data from across domestic and global populations. Embracing it must not lead subsequently to the neglect of the role played by other structural factors such as economic inequities36 and implicit physician bias.23 No simple set of data-focused technical interventions alone can effectively deal with complex sociopolitical environments and structural inequity,37 and simple ‘race correction’ methods can be deeply problematic.38 The potential for ‘big data’ synthetic clinical trials, for example, must come as a supplement to and not a replacement for efforts to improve the diversity of clinical trial recruitment.
AbstractList Even when prospective randomised controlled trials are performed, they are subject to numerous opportunities for bias—and even outright conflict of interest—which can impact the quality and transferability of results.15 16 The burdens of medicine’s failures in evidentiary quality and applicability are not borne equally.11 17–19 The historical and ongoing omission in research of certain groups, including women and underserved populations, has skewed our understanding of health and disease.11 The concerns that exist regarding the generation of algorithms on racially biased datasets17 are unfortunately far from being new, but represent a continuation of a long-standing history of minority groups being under-represented or entirely unrepresented in foundational clinical research.11 18 The Framingham study, for example, generated its cardiovascular risk scores from an overwhelmingly white and male population, and has subsequently been inaccurate when uncritically used on black populations.19 Similarly, women have been and continue to be heavily under-represented in clinical trials.11 20 21 These problems extend to the global health context as well, as the trials used to inform clinical practice guidelines around the world tend to be conducted on a demographically restricted group of patients in high-income countries (mainly white males in the USA)11 These issues are compounded by structural biases in medical education,22 and the biases of the healthcare providers tasked with interpreting and implementing this medical knowledge in the clinical context.23 Can MLHC help, or will it harm? Models that are trained uncritically on databases embedded with societal biases and disparities will end up learning, amplifying and propagating those biases and disparities under the guise of algorithmic pseudo-objectivity.2 17 24 25 Similarly, gaps in quality of care will be widened by the development and use of tools that are only beneficial to a certain population—such as a melanoma detection algorithm trained on a dataset containing mostly images of light toned skin.26 Concerns also exist around patient privacy and safeguarding sensitive data (particularly for vulnerable groups such as HIV positive patients).27 Finally, there are structural concerns related to the possibility that the information technology prerequisites for implementing MLHC will only be available to already privileged groups.5 7 Yet, and as recent scholarship has indicated, the potential for MLHC to counter biases in healthcare is considerable.3 28 Data science methods can be used to audit healthcare datasets and processes, deriving insights and exposing implicit biases so they might be directly investigated and addressed.1 3 29 While much has been made of the ‘black box’ characteristics of AI, it may be argued that human decision making in general is no more explainable.30 31 This is particularly true in the context of the sort of implicit gender and racial biases that influence physicians' decisions but are unlikely to be consciously admitted.23 As checklist studies in healthcare have demonstrated,32 it may be possible to reduce these biases through the use of standardised prompts and clinical decision support tools that move clinical decisions closer to the data—and further from the biasing subjective evaluations. At the structural level, there is hope that AI will drive down the costs of care, increasing access for groups that have been traditionally underserved, and enabling greater levels of patient autonomy for self-management.4 5 Further, MLHC technologies may be able to address issues of disparity in the clinical research pipeline.33 Improvements in the use and analysis of electronic health records and mobile health technology herald the possibility of mobilising massive amounts of healthcare data from across domestic and global populations. Embracing it must not lead subsequently to the neglect of the role played by other structural factors such as economic inequities36 and implicit physician bias.23 No simple set of data-focused technical interventions alone can effectively deal with complex sociopolitical environments and structural inequity,37 and simple ‘race correction’ methods can be deeply problematic.38 The potential for ‘big data’ synthetic clinical trials, for example, must come as a supplement to and not a replacement for efforts to improve the diversity of clinical trial recruitment.
Author Banja, John D
Ghassemi, Marzyeh
McCoy, Liam G
Celi, Leo Anthony
AuthorAffiliation 6 Vector Institute for Artificial Intelligence , Toronto , Ontario , Canada
1 Temerty Faculty of Medicine , University of Toronto , Toronto , Ontario , Canada
3 Emory Center for Ethics , Emory University , Atlanta , Georgia , USA
7 Laboratory for Computational Physiology , Massachusetts Institute of Technology , Cambridge , Massachusetts , USA
2 Institute of Health Policy, Management and Evaluation , University of Toronto , Toronto , Ontario , Canada
4 Department of Computer Science , University of Toronto , Toronto , Ontario , Canada
9 Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , Massachusetts , United States
5 Department of Medicine , University of Toronto , Toronto , Ontario , Canada
8 Division of Pulmonary, Critical Care and Sleep Medicine , Beth Israel Deaconess Medical Center , Boston , Massachusetts , USA
AuthorAffiliation_xml – name: 6 Vector Institute for Artificial Intelligence , Toronto , Ontario , Canada
– name: 4 Department of Computer Science , University of Toronto , Toronto , Ontario , Canada
– name: 3 Emory Center for Ethics , Emory University , Atlanta , Georgia , USA
– name: 7 Laboratory for Computational Physiology , Massachusetts Institute of Technology , Cambridge , Massachusetts , USA
– name: 5 Department of Medicine , University of Toronto , Toronto , Ontario , Canada
– name: 9 Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , Massachusetts , United States
– name: 2 Institute of Health Policy, Management and Evaluation , University of Toronto , Toronto , Ontario , Canada
– name: 8 Division of Pulmonary, Critical Care and Sleep Medicine , Beth Israel Deaconess Medical Center , Boston , Massachusetts , USA
– name: 1 Temerty Faculty of Medicine , University of Toronto , Toronto , Ontario , Canada
Author_xml – sequence: 1
  givenname: Liam G
  surname: McCoy
  fullname: McCoy, Liam G
  email: liam.mccoy@mail.utoronto.ca
  organization: Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
– sequence: 2
  givenname: John D
  surname: Banja
  fullname: Banja, John D
  organization: Emory Center for Ethics, Emory University, Atlanta, Georgia, USA
– sequence: 3
  givenname: Marzyeh
  surname: Ghassemi
  fullname: Ghassemi, Marzyeh
  organization: Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
– sequence: 4
  givenname: Leo Anthony
  orcidid: 0000-0001-6712-6626
  surname: Celi
  fullname: Celi, Leo Anthony
  organization: Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33234535$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1TAQhSNUREvpC7BAV2LDJsX_TjZIqCpQqRIbWFsTZ3zjixMXOxfE2-M0bWm7qFjZnvnO0dg-L6uDKU5YVa8pOaWUq_fduBusrxlhpKaEMK6fVUdMcbac2oN7-8PqJOcdKQwTQnH9ojrknHEhuTyq1PmU98lP280IdvATbgJCmpaCi2kzIIR5sJBw8zumH_m6CCG8qp47CBlPbtbj6vun829nX-rLr58vzj5e1p3UfK41VUQ71jCmKCIodIxJiVQBCmDEOaACXS9ahg4s9o1TVPZOlCY67oAfVxerbx9hZ66SHyH9MRG8uS7EtDWQZm8DGgDJbCewtVqLVoq2a0lvm-IuSae0LF4fVq-rfTdib3GaE4QHpg87kx_MNv4yWjUt0aoYvLsxSPHnHvNsRp8thgATxn02TChBW6I0K-jbR-gu7tNUnsqUB6Ba0obwQr25P9HdKLffU4BmBWyKOSd0xvoZZh-XAX0wlJglDGYNg1nCYNYwFCl7JL11f1JUr6LS-z_-9B9_d8MnBH8BLFDU5A
CitedBy_id crossref_primary_10_1136_bmjopen_2021_051925
crossref_primary_10_1515_cclm_2024_1090
crossref_primary_10_1016_j_xcrm_2023_101230
crossref_primary_10_1038_s41598_022_12833_x
crossref_primary_10_1136_bmjhci_2021_100323
crossref_primary_10_7861_clinmed_2022_0325
crossref_primary_10_1186_s12911_024_02543_x
crossref_primary_10_1053_j_semnuclmed_2021_11_011
crossref_primary_10_1136_bmjhci_2022_100617
crossref_primary_10_1080_21681163_2023_2299093
crossref_primary_10_1016_j_ijin_2022_05_002
crossref_primary_10_1016_j_hlpt_2023_100788
crossref_primary_10_3389_fped_2024_1404600
crossref_primary_10_1371_journal_pdig_0000003
crossref_primary_10_1186_s12909_024_06048_z
crossref_primary_10_1007_s13193_023_01784_y
crossref_primary_10_1038_s41467_023_38569_4
Cites_doi 10.1038/s41591-019-0649-2
10.1371/journal.pmed.1001918
10.1186/s12939-019-0954-x
10.1056/NEJMp1915891
10.1371/journal.pone.0204937
10.7554/eLife.45183
10.1371/journal.pctr.0010009
10.1038/543623e
10.1371/journal.pone.0132321
10.1007/s13347-018-0330-6
10.1093/aje/kwj069
10.1093/jla/laz001
10.1177/1077558712468491
10.1126/science.aax2342
10.1016/j.mayocp.2013.05.012
10.2105/AJPH.2005.080762
10.1056/NEJMms2004740
10.1007/s11606-013-2441-1
10.1001/jama.2018.2521
10.1038/s41591-019-0548-6
10.1001/jamanetworkopen.2019.13436
10.1093/aje/kwv254
10.1186/s12910-020-0457-8
10.1001/amajethics.2019.167
10.22459/CAEPR38.11.2016
10.1145/3368555.3384448
10.7249/RR1744
10.7551/mitpress/9780262034173.003.0005
10.1142/9789811232701_0022
ContentType Journal Article
Copyright Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
2020 Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2020
Copyright_xml – notice: Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: 2020 Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2020
DBID 9YT
ACMMV
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88C
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M0T
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1136/bmjhci-2020-100237
DatabaseName BMJ Open Access Journals (Free internet resource, activated by CARLI)
BMJ Journals:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Healthcare Administration Database (ProQuest)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Academic Middle East (New)
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: ACMMV
  name: BMJ Journals:Open Access
  url: https://journals.bmj.com/
  sourceTypes: Publisher
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2632-1009
ExternalDocumentID oai_doaj_org_article_aa52cb4e9c7749549b90dc8fd450b675
PMC7689076
33234535
10_1136_bmjhci_2020_100237
bmjhci
Genre Journal Article
Commentary
GrantInformation_xml – fundername: National Institute of Biomedical Imaging and Bioengineering
  grantid: EB017205
  funderid: http://dx.doi.org/10.13039/100000070
– fundername: NIBIB NIH HHS
  grantid: R56 EB017205
– fundername: NIBIB NIH HHS
  grantid: R01 EB017205
– fundername: ;
  grantid: EB017205
GroupedDBID 7RV
7X7
8C1
8FI
8FJ
9YT
ABUWG
ACMMV
ADBBV
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
FYUFA
GROUPED_DOAJ
HMCUK
M0T
M~E
NAPCQ
OK1
PHGZT
RMJ
RPM
UKHRP
AAYXX
CITATION
PHGZM
PJZUB
PPXIY
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-b573t-71607f282261eea6ef2255e16ae4a20ffa14efd492efaced8f615df44a2ef3fa3
IEDL.DBID 9YT
ISSN 2632-1009
IngestDate Wed Aug 27 01:29:48 EDT 2025
Thu Aug 21 18:43:20 EDT 2025
Wed Jul 30 11:03:33 EDT 2025
Sat Jul 26 00:35:36 EDT 2025
Mon Jul 21 06:01:46 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Wed Jul 30 23:53:38 EDT 2025
Thu Apr 24 22:49:55 EDT 2025
Thu Apr 24 22:50:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords patient care
health care
medical informatics
Language English
License This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b573t-71607f282261eea6ef2255e16ae4a20ffa14efd492efaced8f615df44a2ef3fa3
Notes SourceType-Scholarly Journals-1
ObjectType-Commentary-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6712-6626
OpenAccessLink http://dx.doi.org/10.1136/bmjhci-2020-100237
PMID 33234535
PQID 2551751803
PQPubID 5160720
ParticipantIDs doaj_primary_oai_doaj_org_article_aa52cb4e9c7749549b90dc8fd450b675
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7689076
proquest_miscellaneous_2464190672
proquest_journals_2551751803
pubmed_primary_33234535
crossref_citationtrail_10_1136_bmjhci_2020_100237
crossref_primary_10_1136_bmjhci_2020_100237
bmj_primary_10_1136_bmjhci_2020_100237
bmj_journals_10_1136_bmjhci_2020_100237
PublicationCentury 2000
PublicationDate 2020-11-24
PublicationDateYYYYMMDD 2020-11-24
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-24
  day: 24
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: BMA House, Tavistock Square, London, WC1H 9JR
PublicationTitle BMJ health & care informatics
PublicationTitleAbbrev BMJ Health Care Inform
PublicationTitleAlternate BMJ Health Care Inform
PublicationYear 2020
Publisher BMJ Publishing Group Ltd
BMJ Publishing Group LTD
BMJ Publishing Group
Publisher_xml – name: BMJ Publishing Group Ltd
– name: BMJ Publishing Group LTD
– name: BMJ Publishing Group
References Nolen (R22) 2020; 382
Chen, Joshi, Ghassemi (R28) 2020; 26
Gijsberts, Groenewegen, Hoefer (R19) 2015; 10
Smith, Street, Volk (R13) 2013; 70
Vyas, Eisenstein, Jones (R38) 2020; 383
Herrera-Perez, Haslam, Crain (R10) 2019; 8
Phillips, Marsden, Jaffe (R26) 2019; 2
Kleinberg, Ludwig, Mullainathan (R29) 2018; 10
Hernán, Robins (R35) 2016; 183
Drake (R41) 2017; 543
Yakerson (R21) 2019; 18
Chapman, Kaatz, Carnes (R23) 2013; 28
Rothwell (R16) 2006; 1
Zerilli, Knott, Maclaurin (R31) 2019; 32
(R34) 2019
Prasad, Vandross, Toomey (R14) 2013; 88
Ienca, Ferretti, Hurst (R8) 2018; 13
Chen, Szolovits, Ghassemi (R3) 2019; 21
Chokshi, Income (R36) 2018; 319
Wiens, Saria, Sendak (R39) 2019; 25
Geneviève, Martani, Shaw, Elger (R17) 2020; 21
Obermeyer, Powers, Vogeli (R2) 2019; 366
Armstrong, Ravenell, McMurphy (R42) 2007; 97
Gluud (R15) 2006; 163
Oh, Galanter, Thakur (R11) 2015; 12
Chen, Joshi, Ghassemi 2020; 26
Kleinberg, Ludwig, Mullainathan 2018; 10
Rothwell 2006; 1
Ienca, Ferretti, Hurst 2018; 13
Smith, Street, Volk 2013; 70
Chokshi, Income 2018; 319
Nolen 2020; 382
Chen, Szolovits, Ghassemi 2019; 21
Phillips, Marsden, Jaffe 2019; 2
Hernán, Robins 2016; 183
Geneviève, Martani, Shaw, Elger 2020; 21
Yakerson 2019; 18
Zerilli, Knott, Maclaurin 2019; 32
Herrera-Perez, Haslam, Crain 2019; 8
Chapman, Kaatz, Carnes 2013; 28
Gijsberts, Groenewegen, Hoefer 2015; 10
2019
Drake 2017; 543
Gluud 2006; 163
Armstrong, Ravenell, McMurphy 2007; 97
Oh, Galanter, Thakur 2015; 12
Prasad, Vandross, Toomey 2013; 88
Wiens, Saria, Sendak 2019; 25
Obermeyer, Powers, Vogeli 2019; 366
Vyas, Eisenstein, Jones 2020; 383
2025072913324658000_27.3.e100237.13
2025072913324658000_27.3.e100237.35
2025072913324658000_27.3.e100237.14
2025072913324658000_27.3.e100237.11
2025072913324658000_27.3.e100237.33
2025072913324658000_27.3.e100237.12
Zerilli (2025072913324658000_27.3.e100237.31) 2019; 32
2025072913324658000_27.3.e100237.34
2025072913324658000_27.3.e100237.10
2025072913324658000_27.3.e100237.32
2025072913324658000_27.3.e100237.30
Phillips (2025072913324658000_27.3.e100237.26) 2019; 2
2025072913324658000_27.3.e100237.19
Geneviève (2025072913324658000_27.3.e100237.17) 2020; 21
2025072913324658000_27.3.e100237.39
2025072913324658000_27.3.e100237.18
2025072913324658000_27.3.e100237.15
2025072913324658000_27.3.e100237.37
2025072913324658000_27.3.e100237.16
2025072913324658000_27.3.e100237.24
2025072913324658000_27.3.e100237.25
2025072913324658000_27.3.e100237.44
2025072913324658000_27.3.e100237.23
2025072913324658000_27.3.e100237.20
2025072913324658000_27.3.e100237.42
2025072913324658000_27.3.e100237.21
Nolen (2025072913324658000_27.3.e100237.22) 2020; 382
2025072913324658000_27.3.e100237.43
2025072913324658000_27.3.e100237.40
Kleinberg (2025072913324658000_27.3.e100237.29) 2018; 10
Chen (2025072913324658000_27.3.e100237.3) 2019; 21
2025072913324658000_27.3.e100237.1
2025072913324658000_27.3.e100237.28
Vyas (2025072913324658000_27.3.e100237.38) 2020; 383
2025072913324658000_27.3.e100237.2
2025072913324658000_27.3.e100237.27
2025072913324658000_27.3.e100237.5
2025072913324658000_27.3.e100237.4
2025072913324658000_27.3.e100237.7
2025072913324658000_27.3.e100237.6
Ienca (2025072913324658000_27.3.e100237.8) 2018; 13
2025072913324658000_27.3.e100237.9
Chokshi (2025072913324658000_27.3.e100237.36) 2018; 319
Drake (2025072913324658000_27.3.e100237.41) 2017; 543
References_xml – volume: 21
  start-page: 167
  year: 2019
  ident: R3
  article-title: Can AI help reduce disparities in general medical and mental health care?
  publication-title: AMA J Ethics
– volume: 26
  start-page: 16
  year: 2020
  ident: R28
  article-title: Treating health disparities with artificial intelligence
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0649-2
– year: 2019
  ident: R34
  article-title: The “all of us” research program
  publication-title: N Engl J Med
– volume: 12
  year: 2015
  ident: R11
  article-title: Diversity in clinical and biomedical research: a promise yet to be fulfilled
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001918
– volume: 18
  year: 2019
  ident: R21
  article-title: Women in clinical trials: a review of policy development and health equity in the Canadian context
  publication-title: Int J Equity Health
  doi: 10.1186/s12939-019-0954-x
– volume: 382
  start-page: 2489
  year: 2020
  ident: R22
  article-title: How medical education is missing the bull's-eye
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1915891
– volume: 13
  year: 2018
  ident: R8
  article-title: Considerations for ethics review of big data health research: a scoping review
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0204937
– volume: 8
  year: 2019
  ident: R10
  article-title: A comprehensive review of randomized clinical trials in three medical journals reveals 396 medical reversals
  publication-title: Elife
  doi: 10.7554/eLife.45183
– volume: 1
  year: 2006
  ident: R16
  article-title: Factors that can affect the external validity of randomised controlled trials
  publication-title: PLoS Clin Trials
  doi: 10.1371/journal.pctr.0010009
– volume: 543
  year: 2017
  ident: R41
  article-title: Diversity: boost diversity in biomedical research
  publication-title: Nature
  doi: 10.1038/543623e
– volume: 10
  year: 2015
  ident: R19
  article-title: Race/Ethnic differences in the associations of the Framingham risk factors with carotid IMT and cardiovascular events
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0132321
– volume: 32
  start-page: 661
  year: 2019
  ident: R31
  article-title: Transparency in algorithmic and human decision-making: is there a double standard?
  publication-title: Philos Technol
  doi: 10.1007/s13347-018-0330-6
– volume: 163
  start-page: 493
  year: 2006
  ident: R15
  article-title: Bias in clinical intervention research
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwj069
– volume: 10
  start-page: 113
  year: 2018
  ident: R29
  article-title: Discrimination in the age of algorithms
  publication-title: J Leg Anal
  doi: 10.1093/jla/laz001
– volume: 70
  start-page: 3S
  year: 2013
  ident: R13
  article-title: Differing levels of clinical evidence: exploring communication challenges in shared decision making. Introduction
  publication-title: Med Care Res Rev
  doi: 10.1177/1077558712468491
– volume: 366
  start-page: 447
  year: 2019
  ident: R2
  article-title: Dissecting racial bias in an algorithm used to manage the health of populations
  publication-title: Science
  doi: 10.1126/science.aax2342
– volume: 88
  start-page: 790
  year: 2013
  ident: R14
  article-title: A decade of reversal: an analysis of 146 contradicted medical practices
  publication-title: Mayo Clin Proc
  doi: 10.1016/j.mayocp.2013.05.012
– volume: 97
  start-page: 1283
  year: 2007
  ident: R42
  article-title: Racial/Ethnic differences in physician distrust in the United States
  publication-title: Am J Public Health
  doi: 10.2105/AJPH.2005.080762
– volume: 383
  start-page: 874
  year: 2020
  ident: R38
  article-title: Hidden in plain sight - reconsidering the use of race correction in clinical algorithms
  publication-title: N Engl J Med
  doi: 10.1056/NEJMms2004740
– volume: 28
  start-page: 1504
  year: 2013
  ident: R23
  article-title: Physicians and implicit bias: how doctors may unwittingly perpetuate health care disparities
  publication-title: J Gen Intern Med
  doi: 10.1007/s11606-013-2441-1
– volume: 319
  start-page: 1312
  year: 2018
  ident: R36
  article-title: Income, poverty, and health inequality
  publication-title: JAMA
  doi: 10.1001/jama.2018.2521
– volume: 25
  start-page: 1337
  year: 2019
  ident: R39
  article-title: Do no harm: a roadmap for responsible machine learning for health care
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0548-6
– volume: 2
  year: 2019
  ident: R26
  article-title: Assessment of accuracy of an artificial intelligence algorithm to detect melanoma in images of skin lesions
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.13436
– volume: 183
  start-page: 758
  year: 2016
  ident: R35
  article-title: Using big data to emulate a target trial when a randomized trial is not available
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwv254
– volume: 21
  year: 2020
  ident: R17
  article-title: Structural racism in precision medicine: leaving no one behind
  publication-title: BMC Med Ethics
  doi: 10.1186/s12910-020-0457-8
– volume: 97
  start-page: 1283
  year: 2007
  article-title: Racial/Ethnic differences in physician distrust in the United States
  publication-title: Am J Public Health
  doi: 10.2105/AJPH.2005.080762
– volume: 21
  start-page: 167
  year: 2019
  article-title: Can AI help reduce disparities in general medical and mental health care?
  publication-title: AMA J Ethics
– volume: 163
  start-page: 493
  year: 2006
  article-title: Bias in clinical intervention research
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwj069
– volume: 2
  year: 2019
  article-title: Assessment of accuracy of an artificial intelligence algorithm to detect melanoma in images of skin lesions
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.13436
– volume: 13
  year: 2018
  article-title: Considerations for ethics review of big data health research: a scoping review
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0204937
– volume: 88
  start-page: 790
  year: 2013
  article-title: A decade of reversal: an analysis of 146 contradicted medical practices
  publication-title: Mayo Clin Proc
  doi: 10.1016/j.mayocp.2013.05.012
– volume: 1
  year: 2006
  article-title: Factors that can affect the external validity of randomised controlled trials
  publication-title: PLoS Clin Trials
  doi: 10.1371/journal.pctr.0010009
– volume: 21
  year: 2020
  article-title: Structural racism in precision medicine: leaving no one behind
  publication-title: BMC Med Ethics
  doi: 10.1186/s12910-020-0457-8
– volume: 32
  start-page: 661
  year: 2019
  article-title: Transparency in algorithmic and human decision-making: is there a double standard?
  publication-title: Philos Technol
  doi: 10.1007/s13347-018-0330-6
– volume: 366
  start-page: 447
  year: 2019
  article-title: Dissecting racial bias in an algorithm used to manage the health of populations
  publication-title: Science
  doi: 10.1126/science.aax2342
– volume: 319
  start-page: 1312
  year: 2018
  article-title: Income, poverty, and health inequality
  publication-title: JAMA
  doi: 10.1001/jama.2018.2521
– volume: 10
  year: 2015
  article-title: Race/Ethnic differences in the associations of the Framingham risk factors with carotid IMT and cardiovascular events
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0132321
– volume: 183
  start-page: 758
  year: 2016
  article-title: Using big data to emulate a target trial when a randomized trial is not available
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwv254
– volume: 25
  start-page: 1337
  year: 2019
  article-title: Do no harm: a roadmap for responsible machine learning for health care
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0548-6
– volume: 543
  year: 2017
  article-title: Diversity: boost diversity in biomedical research
  publication-title: Nature
  doi: 10.1038/543623e
– volume: 12
  year: 2015
  article-title: Diversity in clinical and biomedical research: a promise yet to be fulfilled
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001918
– volume: 18
  year: 2019
  article-title: Women in clinical trials: a review of policy development and health equity in the Canadian context
  publication-title: Int J Equity Health
  doi: 10.1186/s12939-019-0954-x
– volume: 8
  year: 2019
  article-title: A comprehensive review of randomized clinical trials in three medical journals reveals 396 medical reversals
  publication-title: Elife
  doi: 10.7554/eLife.45183
– volume: 382
  start-page: 2489
  year: 2020
  article-title: How medical education is missing the bull's-eye
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1915891
– year: 2019
  article-title: The “all of us” research program
  publication-title: N Engl J Med
– volume: 28
  start-page: 1504
  year: 2013
  article-title: Physicians and implicit bias: how doctors may unwittingly perpetuate health care disparities
  publication-title: J Gen Intern Med
  doi: 10.1007/s11606-013-2441-1
– volume: 26
  start-page: 16
  year: 2020
  article-title: Treating health disparities with artificial intelligence
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0649-2
– volume: 10
  start-page: 113
  year: 2018
  article-title: Discrimination in the age of algorithms
  publication-title: J Leg Anal
  doi: 10.1093/jla/laz001
– volume: 70
  start-page: 3S
  year: 2013
  article-title: Differing levels of clinical evidence: exploring communication challenges in shared decision making. Introduction
  publication-title: Med Care Res Rev
  doi: 10.1177/1077558712468491
– volume: 383
  start-page: 874
  year: 2020
  article-title: Hidden in plain sight - reconsidering the use of race correction in clinical algorithms
  publication-title: N Engl J Med
  doi: 10.1056/NEJMms2004740
– ident: 2025072913324658000_27.3.e100237.13
  doi: 10.1177/1077558712468491
– ident: 2025072913324658000_27.3.e100237.20
– volume: 21
  start-page: 167
  year: 2019
  ident: 2025072913324658000_27.3.e100237.3
  article-title: Can AI help reduce disparities in general medical and mental health care?
  publication-title: AMA J Ethics
  doi: 10.1001/amajethics.2019.167
– ident: 2025072913324658000_27.3.e100237.18
– ident: 2025072913324658000_27.3.e100237.14
  doi: 10.1016/j.mayocp.2013.05.012
– volume: 13
  year: 2018
  ident: 2025072913324658000_27.3.e100237.8
  article-title: Considerations for ethics review of big data health research: a scoping review
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0204937
– ident: 2025072913324658000_27.3.e100237.43
  doi: 10.22459/CAEPR38.11.2016
– ident: 2025072913324658000_27.3.e100237.1
  doi: 10.1145/3368555.3384448
– ident: 2025072913324658000_27.3.e100237.5
– ident: 2025072913324658000_27.3.e100237.21
  doi: 10.1186/s12939-019-0954-x
– ident: 2025072913324658000_27.3.e100237.37
– ident: 2025072913324658000_27.3.e100237.24
  doi: 10.7249/RR1744
– ident: 2025072913324658000_27.3.e100237.7
– volume: 543
  year: 2017
  ident: 2025072913324658000_27.3.e100237.41
  article-title: Diversity: boost diversity in biomedical research
  publication-title: Nature
  doi: 10.1038/543623e
– volume: 319
  start-page: 1312
  year: 2018
  ident: 2025072913324658000_27.3.e100237.36
  article-title: Income, poverty, and health inequality
  publication-title: JAMA
  doi: 10.1001/jama.2018.2521
– ident: 2025072913324658000_27.3.e100237.9
– ident: 2025072913324658000_27.3.e100237.28
  doi: 10.1038/s41591-019-0649-2
– volume: 32
  start-page: 661
  year: 2019
  ident: 2025072913324658000_27.3.e100237.31
  article-title: Transparency in algorithmic and human decision-making: is there a double standard?
  publication-title: Philos Technol
  doi: 10.1007/s13347-018-0330-6
– ident: 2025072913324658000_27.3.e100237.33
– ident: 2025072913324658000_27.3.e100237.12
– volume: 383
  start-page: 874
  year: 2020
  ident: 2025072913324658000_27.3.e100237.38
  article-title: Hidden in plain sight - reconsidering the use of race correction in clinical algorithms
  publication-title: N Engl J Med
  doi: 10.1056/NEJMms2004740
– ident: 2025072913324658000_27.3.e100237.11
  doi: 10.1371/journal.pmed.1001918
– volume: 2
  year: 2019
  ident: 2025072913324658000_27.3.e100237.26
  article-title: Assessment of accuracy of an artificial intelligence algorithm to detect melanoma in images of skin lesions
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.13436
– ident: 2025072913324658000_27.3.e100237.35
  doi: 10.1093/aje/kwv254
– ident: 2025072913324658000_27.3.e100237.2
  doi: 10.1126/science.aax2342
– ident: 2025072913324658000_27.3.e100237.44
– ident: 2025072913324658000_27.3.e100237.19
  doi: 10.1371/journal.pone.0132321
– ident: 2025072913324658000_27.3.e100237.10
  doi: 10.7554/eLife.45183
– ident: 2025072913324658000_27.3.e100237.4
– ident: 2025072913324658000_27.3.e100237.23
  doi: 10.1007/s11606-013-2441-1
– ident: 2025072913324658000_27.3.e100237.39
  doi: 10.1038/s41591-019-0548-6
– ident: 2025072913324658000_27.3.e100237.27
  doi: 10.7551/mitpress/9780262034173.003.0005
– ident: 2025072913324658000_27.3.e100237.6
– ident: 2025072913324658000_27.3.e100237.42
  doi: 10.2105/AJPH.2005.080762
– ident: 2025072913324658000_27.3.e100237.34
– ident: 2025072913324658000_27.3.e100237.32
– ident: 2025072913324658000_27.3.e100237.30
– ident: 2025072913324658000_27.3.e100237.25
  doi: 10.1142/9789811232701_0022
– volume: 382
  start-page: 2489
  year: 2020
  ident: 2025072913324658000_27.3.e100237.22
  article-title: How medical education is missing the bull's-eye
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1915891
– ident: 2025072913324658000_27.3.e100237.15
  doi: 10.1093/aje/kwj069
– volume: 10
  start-page: 113
  year: 2018
  ident: 2025072913324658000_27.3.e100237.29
  article-title: Discrimination in the age of algorithms
  publication-title: J Leg Anal
  doi: 10.1093/jla/laz001
– ident: 2025072913324658000_27.3.e100237.16
  doi: 10.1371/journal.pctr.0010009
– ident: 2025072913324658000_27.3.e100237.40
– volume: 21
  year: 2020
  ident: 2025072913324658000_27.3.e100237.17
  article-title: Structural racism in precision medicine: leaving no one behind
  publication-title: BMC Med Ethics
  doi: 10.1186/s12910-020-0457-8
SSID ssj0002244637
Score 2.2923188
Snippet Even when prospective randomised controlled trials are performed, they are subject to numerous opportunities for bias—and even outright conflict of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
bmj
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e100237
SubjectTerms Artificial intelligence
Bias
Big Data
Clinical practice guidelines
Clinical trials
Commentary
Delivery of Health Care - methods
Delivery of Health Care - standards
health care
Health disparities
Health informatics
Humans
Information technology
Machine learning
Machine Learning - standards
medical informatics
patient care
Patients
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwsC8QovBQnBgCLi2LGTEVCrioGJSt0iOzlTqjZFtPx_zk4aGoQKA6t9TuzP5_i7-HxHyCUrpFYs4YGMtP1bpXWQIK0N8DMIuD9FtMidg-yT6A_44zAerqT6sj5hVXjgCrhbpeIo1xzSHImKPZPSaVjkiSl4HGpku_bri3veijE1dkFd0MxhcnlLholbPR2P8ldUCjSXbNhRm_h8Ewtb-5EL2_8T1_zuMrmyB_V2yHZNHv27qtO7ZAPKPSK65dzdNfSnzjES_DoTxIuPhNQfNQ5evvXBmrtCNZnsk0Gv-_zQD-psCIGOJVsgeiKUxnp9CgqgBBhcijFQoYCrKDRGUQ4ISxqBUTkUiUGyUhiOlWCYUeyAdMpZCUfElzKhBg2FIjZofSGaDGKdJoiugaRg1CPXiExWa_M8c4YCE1mFYWYxzCoMPXJlJd-qyBhrBekS5iyvo4_bJBiTtW1umjZ_ecO9nb1G0sbNdgWoTVmtTdlv2uSR0-Xcfw0fYab2dCpkHrloqnEZ2rMVVcLsA2W44MithIw8clipStMTxiLGY4YPly0lanW1XVO-jlyobzQG01CK4_8Y2wnZqrSfBhE_JZ3F-wecIaNa6HO3eD4BR88bTw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKvfRStaKlaSkKEmoPKCKOX8mpahEIceBUpL1FdjxmqZYsZZf_3xnHG7oIrbja48Qez9jf2OMZxg6FN86KWhamcnRa5VxRI6wtcBkE3J8q7rvoIHupz6_kxURN0oHbIrlVrtbEuFD7eUdn5McIfTldEZTix93fgrJG0e1qSqGxxV5T6DIyvszEjGcsuD1JLczqrYzQx-72z7S7QdFAo4mCj1L68y0sXNuVYvD-5xDnU8fJ_3ais3fsbYKQ-c9hzt-zV9DvMH3aL-KLw_w2ukdCnvJBXOcIS_Pp6OaVkyfWIhba2ewDuzo7_X1yXqScCIVTRiyRh7o0gXw_NQewGgIqpAKuLUhblSFYLiF42VQQbAe-DghZfJBYCUEEKz6y7X7ewyeWG1PzgOaCVwFtMN_VApRr6kbJALUXPGPfkTNtkulFG80FoduBhy3xsB14mLFvRHk3xMfYSMhXbG67FIOcUmHMNrY5Gtu85A-_aPZGSoqeHQvm99dtUsbWWlV1TkLTIfile07XlDh-ZJsqHVpQGdtbzf3j8B8FMGMHYzUqI92w2B7mD0gjtUSEpU2Vsd1BVMaeCFEJqQR-3KwJ0VpX12v6m2kM-I0mYVMa_Xlzt76wN4Nc86KSe2x7ef8AXxExLd1-VIt_IA0SkQ
  priority: 102
  providerName: ProQuest
Title Ensuring machine learning for healthcare works for all
URI https://informatics.bmj.com/content/27/3/e100237.full
https://www.ncbi.nlm.nih.gov/pubmed/33234535
https://www.proquest.com/docview/2551751803
https://www.proquest.com/docview/2464190672
https://pubmed.ncbi.nlm.nih.gov/PMC7689076
https://doaj.org/article/aa52cb4e9c7749549b90dc8fd450b675
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xuPRSUfWVAlEqVfRAo8bxKznCahGqBEIVoO0pspNxl2oJiF3-P2Mnm3arFeKSSPY4sT_PZGbsyRjgC2-0NbwQqc6tX62yNi3IrE3pM4ikn3LW1CFA9lydXokfEznZgG_rd_AZV9_t7Z9pfUOzSX6OzxfK9SZs-6Qs3tUqf10OKyqkjITievlnzNqmpEGocEUHhVT96-zL_8Mk_9E7JzvwujcYk6Nuht_ABrZvQY3befi_MLkNwZCY9Kc__E7ICE2mQ1BX4uOu5qHQzGbv4OpkfDk6TfsTEFIrNV8QYirTzkd6KoZoFDoSP4lMGRQmz5wzTKBrRJmjMzU2hSMDpXGCKtFxZ_h72GrvWvwIidYFc-QcNNKRx9XUBUdpy6KUwmHRcBbBV0Km6jl4XgXngKuqw7DyGFYdhhEceMr7LhvGs4RsCXNV9xnH_cEXs2fbHA5tXvKGYz97A6XPlR0KiIGqXvQqY2ReW4FlTaau39W0ZUbjJ9hkZslfimBvOfd_h08wM78jlfEIPg_VJHp-P8W0ePdINEIJsqeUziP40LHK0BPOcy4kp4frFSZa6epqTXszDem9yQEsM60-vRTmXXjVcThLc7EHW4uHR9wnS2lhY9jUE03XYsTiICwxbB-Nzs6u6X48Pr_4GYc1iDgscj0BJFcSUw
linkProvider BMJ Publishing Group Ltd
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcNSWA1xQEa9AgSDxOKCo8SN2ckAISqstLT21Um_BTsbdom227W6F-Cm-kbHzKIvQikuv9jixxzOeGc94BuCVqLU1IpeJ5tbfVlmb5KTWJnQMIsknzuoqBMgeqNGR_HKcHa_Ar_4tjA-r7M_EcFDX08rfkW-S6su8iyAVH84vEl81yntX-xIaLVns4c8fZLLN3u9-pv19zfnO9uHWKOmqCiQ202JOs1Cpdj56UjFEo9ARSWfIlEFpeOqcYRJdLQuOzlRY546Efu0kdaITzgj67irckkJon6s_32LDnQ6JQ6mE7t_mCLVpz76Pq1MiRTLSfLJTX259lRoXpGAoFvAvDffvQM0_JN_OOtztVNb4Y0tj92AFm_ugtptZeOEYn4VwTIy7-hMnManB8XgIK4t95NcsNJrJ5AEc3Qi2HsJaM23wMcRa58yReVJnjmy-usoFZrbIi0w6zGvBInhLmCk7HpqVwTwRqmxxWHocli0OI3jjIc_bfBxLAVmP5rLqcp770huTpWPeDWP-5w-f_O4NkD5bd2iYXp6UHfOXxmS8shKLipRt71e1RUrrJ7RlqSWLLYKNfu-vl39N8BG8HLqJ-b1HxzQ4vSIYqSRpdErzCB61pDLMRAguZCbo43qBiBamutjTnI5DgnEyQYtUqyfLp_UCbo8Ov-6X-7sHe0_hTkvjLOFyA9bml1f4jLS1uX0eWCSGbzfNk78B9o9RPA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RUJcEIhXoECQeBxQtPEjdnJACGhXLUUVByrtLdjJuFu0zZbuVoi_xq9j7DzKIrTi0qvtJM54Ht_Y4xmA56LW1ohcJppbv1tlbZITrE1IDSLZJ87qKgTIHqq9I_lxkk024Fd_F8aHVfY6MSjqel75PfIRQV_mjwhSMXJdWMTnnfHbs--JryDlT1r7chotixzgzx_kvi3e7O_QWr_gfLz75cNe0lUYSGymxZJmpFLtfCSlYohGoSP2zpApg9Lw1DnDJLpaFhydqbDOHQGA2knqRCecEfTeTbimBZlNkiU90cP-DplGqYTu7-kINbKn36bVCbElOWw-8akvvb5JjSsWMRQO-Bfa_Tto8w8rOL4FNzv4Gr9r-e02bGBzB9Ruswi3HePTEJqJcVeL4jgmSBxPhxCz2EeBLUKjmc3uwtGVUOsebDXzBh9ArHXOHLkqdebI_6urXGBmi7zIpMO8FiyCV0SZspOnRRlcFaHKloalp2HZ0jCCl37kWZubY-1A1pO5rLr8574Mx2ztM6-HZ_7nC-_96g0jfebu0DA_Py47RVAak_HKSiwqAt7-jNUWKf0_kS1LLXlvEWz3a3_5-5fMH8GzoZsUgT_dMQ3OL2iMVJLQndI8gvstqwwzEYILmQl6uV5hopWprvY0J9OQbJzc0SLV6uH6aT2F6ySN5af9w4NHcKNlcZZwuQ1by_MLfEzAbWmfBAmJ4etVi-Rv83FVng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensuring+machine+learning+for+healthcare+works+for+all&rft.jtitle=BMJ+health+%26+care+informatics&rft.au=McCoy%2C+Liam+G&rft.au=Banja%2C+John+D&rft.au=Ghassemi%2C+Marzyeh&rft.au=Celi%2C+Leo+Anthony&rft.date=2020-11-24&rft.pub=BMJ+Publishing+Group+LTD&rft.eissn=2632-1009&rft.volume=27&rft.issue=3&rft.spage=e100237&rft_id=info:doi/10.1136%2Fbmjhci-2020-100237&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-1009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-1009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-1009&client=summon