Engineering Cold Stress Tolerance in Crop Plants
Plants respond with changes in their pattern of gene expression and protein products when exposed to low temperatures. Thus ability to adapt has an impact on the distribution and survival of the plant, and on crop yields. Many species of tropical or subtropical origin are injured or killed by non-fr...
Saved in:
Published in | Current genomics Vol. 12; no. 1; pp. 30 - 43 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United Arab Emirates
Bentham Science Publishers Ltd
01.03.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plants respond with changes in their pattern of gene expression and protein products when exposed to low temperatures. Thus ability to adapt has an impact on the distribution and survival of the plant, and on crop yields. Many species of tropical or subtropical origin are injured or killed by non-freezing low temperatures, and exhibit various symptoms of chilling injury such as chlorosis, necrosis, or growth retardation. In contrast, chilling tolerant species are able to grow at such cold temperatures. Conventional breeding methods have met with limited success in improving the cold tolerance of important crop plants involving inter-specific or inter-generic hybridization. Recent studies involving full genome profiling/ sequencing, mutational and transgenic plant analyses, have provided a deep insight of the complex transcriptional mechanism that operates under cold stress. The alterations in expression of genes in response to cold temperatures are followed by increases in the levels of hundreds of metabolites, some of which are known to have protective effects against the damaging effects of cold stress. Various low temperature inducible genes have been isolated from plants. Most appear to be involved in tolerance to cold stress and the expression of some of them is regulated by C-repeat binding factor/ dehydration-responsive element binding (CBF/DREB1) transcription factors. Numerous physiological and molecular changes occur during cold acclimation which reveals that the cold resistance is more complex than perceived and involves more than one pathway. The findings summarized in this review have shown potential practical applications for breeding cold tolerance in crop and horticultural plants suitable to temperate geographical locations. |
---|---|
AbstractList | Plants respond with changes in their pattern of gene expression and protein products when exposed to low temperatures. Thus ability to adapt has an impact on the distribution and survival of the plant, and on crop yields. Many species of tropical or subtropical origin are injured or killed by non-freezing low temperatures, and exhibit various symptoms of chilling injury such as chlorosis, necrosis, or growth retardation. In contrast, chilling tolerant species are able to grow at such cold temperatures. Conventional breeding methods have met with limited success in improving the cold tolerance of important crop plants involving inter-specific or inter-generic hybridization. Recent studies involving full genome profiling/ sequencing, mutational and transgenic plant analyses, have provided a deep insight of the complex transcriptional mechanism that operates under cold stress. The alterations in expression of genes in response to cold temperatures are followed by increases in the levels of hundreds of metabolites, some of which are known to have protective effects against the damaging effects of cold stress. Various low temperature inducible genes have been isolated from plants. Most appear to be involved in tolerance to cold stress and the expression of some of them is regulated by C-repeat binding factor/ dehydration-responsive element binding (CBF/DREB1) transcription factors. Numerous physiological and molecular changes occur during cold acclimation which reveals that the cold resistance is more complex than perceived and involves more than one pathway. The findings summarized in this review have shown potential practical applications for breeding cold tolerance in crop and horticultural plants suitable to temperate geographical locations. Plants respond with changes in their pattern of gene expression and protein products when exposed to low temperatures. Thus ability to adapt has an impact on the distribution and survival of the plant, and on crop yields. Many species of tropical or subtropical origin are injured or killed by non-freezing low temperatures, and exhibit various symptoms of chilling injury such as chlorosis, necrosis, or growth retardation. In contrast, chilling tolerant species are able to grow at such cold temperatures. Conventional breeding methods have met with limited success in improving the cold tolerance of important crop plants involving inter-specific or inter-generic hybridization. Recent studies involving full genome profiling/ sequencing, mutational and transgenic plant analyses, have provided a deep insight of the complex transcriptional mechanism that operates under cold stress. The alterations in expression of genes in response to cold temperatures are followed by increases in the levels of hundreds of metabolites, some of which are known to have protective effects against the damaging effects of cold stress. Various low temperature inducible genes have been isolated from plants. Most appear to be involved in tolerance to cold stress and the expression of some of them is regulated by C-repeat binding factor/ dehydration-responsive element binding ( CBF/DREB 1) transcription factors. Numerous physiological and molecular changes occur during cold acclimation which reveals that the cold resistance is more complex than perceived and involves more than one pathway. The findings summarized in this review have shown potential practical applications for breeding cold tolerance in crop and horticultural plants suitable to temperate geographical locations. Plants respond with changes in their pattern of gene expression and protein products when exposed to low temperatures. Thus ability to adapt has an impact on the distribution and survival of the plant, and on crop yields. Many species of tropical or subtropical origin are injured or killed by non-freezing low temperatures, and exhibit various symptoms of chilling injury such as chlorosis, necrosis, or growth retardation. In contrast, chilling tolerant species are able to grow at such cold temperatures. Conventional breeding methods have met with limited success in improving the cold tolerance of important crop plants involving inter-specific or inter-generic hybridization. Recent studies involving full genome profiling/ sequencing, mutational and transgenic plant analyses, have provided a deep insight of the complex transcriptional mechanism that operates under cold stress. The alterations in expression of genes in response to cold temperatures are followed by increases in the levels of hundreds of metabolites, some of which are known to have protective effects against the damaging effects of cold stress. Various low temperature inducible genes have been isolated from plants. Most appear to be involved in tolerance to cold stress and the expression of some of them is regulated by C-repeat binding factor/ dehydration-responsive element binding (CBF/DREB1) transcription factors. Numerous physiological and molecular changes occur during cold acclimation which reveals that the cold resistance is more complex than perceived and involves more than one pathway. The findings summarized in this review have shown potential practical applications for breeding cold tolerance in crop and horticultural plants suitable to temperate geographical locations.Plants respond with changes in their pattern of gene expression and protein products when exposed to low temperatures. Thus ability to adapt has an impact on the distribution and survival of the plant, and on crop yields. Many species of tropical or subtropical origin are injured or killed by non-freezing low temperatures, and exhibit various symptoms of chilling injury such as chlorosis, necrosis, or growth retardation. In contrast, chilling tolerant species are able to grow at such cold temperatures. Conventional breeding methods have met with limited success in improving the cold tolerance of important crop plants involving inter-specific or inter-generic hybridization. Recent studies involving full genome profiling/ sequencing, mutational and transgenic plant analyses, have provided a deep insight of the complex transcriptional mechanism that operates under cold stress. The alterations in expression of genes in response to cold temperatures are followed by increases in the levels of hundreds of metabolites, some of which are known to have protective effects against the damaging effects of cold stress. Various low temperature inducible genes have been isolated from plants. Most appear to be involved in tolerance to cold stress and the expression of some of them is regulated by C-repeat binding factor/ dehydration-responsive element binding (CBF/DREB1) transcription factors. Numerous physiological and molecular changes occur during cold acclimation which reveals that the cold resistance is more complex than perceived and involves more than one pathway. The findings summarized in this review have shown potential practical applications for breeding cold tolerance in crop and horticultural plants suitable to temperate geographical locations. |
Author | Gulzar S. Sanghera Wasim Hussain N. B. Singh Shabir H. Wani |
AuthorAffiliation | 2 Central Institute of Temperate Horticulture, Srinagar, Kashmir, India 3 Department of Plant Breeding and Genetics, COA, Central Agricultural University, Imphal, Manipur, 795 004, India 1 Shere Kashmir University of Agricultural Sciences and Technology of Kashmir, Rice Research and Regional Station, Khudwani, Anantnag, 192102, Kashmir, India |
AuthorAffiliation_xml | – name: 2 Central Institute of Temperate Horticulture, Srinagar, Kashmir, India – name: 3 Department of Plant Breeding and Genetics, COA, Central Agricultural University, Imphal, Manipur, 795 004, India – name: 1 Shere Kashmir University of Agricultural Sciences and Technology of Kashmir, Rice Research and Regional Station, Khudwani, Anantnag, 192102, Kashmir, India |
Author_xml | – sequence: 1 givenname: Gulzar surname: S. Sanghera fullname: S. Sanghera, Gulzar – sequence: 2 givenname: Shabir surname: H. Wani fullname: H. Wani, Shabir – sequence: 3 givenname: Wasim surname: Hussain fullname: Hussain, Wasim – sequence: 4 givenname: N. surname: B. Singh fullname: B. Singh, N. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21886453$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUU1v1DAUjFAR_YA_wAHlxinUduLEviChVfmQKhWJcn5ynJeswbGD7XTFlV-OV9ut-JAQJ4-eZ8bPM-fFifMOi-I5Ja8Y7ZpLWgvJCKO0kw1nhHbiUXFGRccr3ghxknEmVJkhT4vzGL8QwojoyJPilFEh2obXZwW5cpNxiMG4qdx4O5SfUsAYy1tvMSinsTSu3AS_lB-tcik-LR6PykZ8dn9eFJ_fXt1u3lfXN-8-bN5cVz3nbao4pe3YMCK1GOQo2pYTzkU_4EAGybuWj8MguO56NtQ96lH3EtVApOA4aN7z-qJ4ffBd1n7OM3QpKAtLMLMK38ErA7_fOLOFyd9BTZkkDc0GL-8Ngv-2Ykwwm6jR5l-gXyMIISihbS3-g9nxHF0jM_PFr0s9bHPMMxPEgaCDjzHgCNoklYzf72gsUAL76uDv6rKU_SE9uv9T9OMg6nMKWzVHbTB39iDdprTAbrcDXAN-VREt6gTaz-AXdGuwGbuUtbBsF5jQBQQVktEWwcTojm9KuPN2nREo28_XDCAuakKoSf0TtyzMdA |
CitedBy_id | crossref_primary_10_1093_pcp_pcx059 crossref_primary_10_1016_j_scitotenv_2021_147175 crossref_primary_10_1007_s12010_014_0914_2 crossref_primary_10_3390_horticulturae9070751 crossref_primary_10_1007_s11738_016_2075_0 crossref_primary_10_1371_journal_pone_0245494 crossref_primary_10_1371_journal_pone_0279826 crossref_primary_10_1016_j_scienta_2021_110421 crossref_primary_10_1371_journal_pone_0197892 crossref_primary_10_1016_j_scitotenv_2024_173180 crossref_primary_10_1007_s12374_018_0130_7 crossref_primary_10_3389_fpls_2021_765302 crossref_primary_10_1016_j_scienta_2014_01_043 crossref_primary_10_1111_pce_12379 crossref_primary_10_1111_jac_12421 crossref_primary_10_1186_s12864_015_1551_z crossref_primary_10_3389_fpls_2020_01251 crossref_primary_10_3390_ijms25147614 crossref_primary_10_5010_JPB_2016_43_2_204 crossref_primary_10_1007_s00425_017_2765_x crossref_primary_10_1093_aobpla_plx025 crossref_primary_10_3923_ijb_2017_1_14 crossref_primary_10_1111_pce_15081 crossref_primary_10_1093_jxb_erv421 crossref_primary_10_1111_ppl_70078 crossref_primary_10_1093_jxb_erac045 crossref_primary_10_3390_agronomy10091255 crossref_primary_10_1007_s10142_023_01014_2 crossref_primary_10_1051_e3sconf_202338903086 crossref_primary_10_1111_mec_16794 crossref_primary_10_1111_plb_13486 crossref_primary_10_1016_j_stress_2024_100685 crossref_primary_10_1080_17429145_2019_1629033 crossref_primary_10_1007_s10725_024_01253_8 crossref_primary_10_1038_s41598_020_71004_y crossref_primary_10_3389_fpls_2018_00278 crossref_primary_10_1007_s10989_025_10711_4 crossref_primary_10_1016_j_colsurfb_2021_112286 crossref_primary_10_1016_j_sjbs_2016_01_001 crossref_primary_10_1016_j_indcrop_2023_117088 crossref_primary_10_3390_antiox9050454 crossref_primary_10_1093_plphys_kiae461 crossref_primary_10_3390_plants11060812 crossref_primary_10_3389_fpls_2015_00118 crossref_primary_10_1371_journal_pone_0107152 crossref_primary_10_1371_journal_pone_0106069 crossref_primary_10_3390_ijms140611527 crossref_primary_10_1007_s11356_015_4658_5 crossref_primary_10_1016_j_plgene_2021_100316 crossref_primary_10_3390_plants13141885 crossref_primary_10_1016_j_apsoil_2020_103636 crossref_primary_10_1098_rsos_192243 crossref_primary_10_1007_s10681_016_1805_0 crossref_primary_10_14720_abs_62_1_15735 crossref_primary_10_1186_s12864_021_07458_9 crossref_primary_10_1007_s13258_013_0160_y crossref_primary_10_1016_j_sajb_2023_07_051 crossref_primary_10_7235_hort_2015_14056 crossref_primary_10_3390_ijerph19095296 crossref_primary_10_1007_s10535_016_0648_9 crossref_primary_10_1134_S102144372460675X crossref_primary_10_1016_j_foreco_2024_121773 crossref_primary_10_1111_gfs_12650 crossref_primary_10_3390_genes8070179 crossref_primary_10_1016_j_indcrop_2020_112949 crossref_primary_10_1371_journal_pone_0132100 crossref_primary_10_1080_13102818_2019_1611386 crossref_primary_10_3390_plants9050591 crossref_primary_10_9787_KJBS_2021_53_4_380 crossref_primary_10_1016_j_scienta_2024_113686 crossref_primary_10_1007_s13205_023_03840_4 crossref_primary_10_1080_17429145_2017_1308568 crossref_primary_10_1270_jsbbs_63_197 crossref_primary_10_1071_FP18258 crossref_primary_10_1007_s11295_014_0716_2 crossref_primary_10_1016_j_bse_2017_12_002 crossref_primary_10_1016_j_stress_2022_100108 crossref_primary_10_1007_s11103_020_01079_8 crossref_primary_10_1016_j_crbiot_2023_100128 crossref_primary_10_1016_j_gene_2018_10_066 crossref_primary_10_1016_j_jplph_2020_153307 crossref_primary_10_1016_j_ygeno_2018_07_009 crossref_primary_10_3390_ijms22147269 crossref_primary_10_1016_j_plaphy_2024_108704 crossref_primary_10_3390_plants11070961 crossref_primary_10_29312_remexca_v13i5_3229 crossref_primary_10_3390_ijms20112771 crossref_primary_10_1016_j_cj_2015_03_008 crossref_primary_10_1007_s11738_019_2924_8 crossref_primary_10_1016_j_postharvbio_2020_111435 crossref_primary_10_1093_pcp_pcs185 crossref_primary_10_1186_s12864_019_6441_3 crossref_primary_10_15407_dopovidi2020_06_092 crossref_primary_10_1007_s00299_014_1670_z crossref_primary_10_3390_agriculture14101718 crossref_primary_10_1016_j_pbiomolbio_2018_12_002 crossref_primary_10_3390_genes12111818 crossref_primary_10_1007_s00299_014_1655_y crossref_primary_10_1007_s00425_014_2195_y crossref_primary_10_1016_j_plaphy_2022_08_024 crossref_primary_10_1111_pce_12329 crossref_primary_10_1371_journal_pone_0236588 crossref_primary_10_1016_j_scienta_2018_04_068 crossref_primary_10_2478_sh_2022_0001 crossref_primary_10_3389_fpls_2017_01643 crossref_primary_10_1093_treephys_tpy014 crossref_primary_10_3389_fpls_2022_1094462 crossref_primary_10_1016_j_stress_2024_100356 crossref_primary_10_14232_abs_2021_65_163_170 crossref_primary_10_1016_j_envexpbot_2014_07_005 crossref_primary_10_1016_j_indcrop_2023_117055 crossref_primary_10_3390_ijms23052537 crossref_primary_10_1186_s12284_020_00383_7 crossref_primary_10_3390_genes11060611 crossref_primary_10_32615_ps_2020_083 crossref_primary_10_3389_fpls_2019_01040 crossref_primary_10_1016_j_jplph_2018_10_022 crossref_primary_10_1016_j_stress_2022_100081 crossref_primary_10_1111_nph_19315 crossref_primary_10_1080_14620316_2024_2438660 crossref_primary_10_3389_fpls_2022_1019709 crossref_primary_10_1016_j_cj_2016_01_010 crossref_primary_10_1242_jeb_244063 crossref_primary_10_1016_j_micres_2020_126589 crossref_primary_10_1007_s12892_019_0292_0 crossref_primary_10_3390_agronomy13030834 crossref_primary_10_5338_KJEA_2017_36_2_19 crossref_primary_10_1007_s12892_024_00260_5 crossref_primary_10_1007_s11033_013_2983_7 crossref_primary_10_3390_plants10061092 crossref_primary_10_1186_s12870_024_04893_0 crossref_primary_10_1016_j_envexpbot_2018_09_026 crossref_primary_10_1186_1471_2164_14_415 crossref_primary_10_1002_fes3_25 crossref_primary_10_3390_molecules24234303 crossref_primary_10_1016_j_envexpbot_2022_105199 crossref_primary_10_3389_fpls_2022_831839 crossref_primary_10_3390_plants10061096 crossref_primary_10_1093_pcp_pcu200 crossref_primary_10_1186_1471_2164_15_671 crossref_primary_10_1371_journal_pone_0188514 crossref_primary_10_3390_agriculture13102019 crossref_primary_10_1007_s10529_020_02967_1 crossref_primary_10_1007_s11032_019_1090_4 crossref_primary_10_3389_fpls_2022_807844 crossref_primary_10_3390_ijms21228441 crossref_primary_10_1111_jse_13042 crossref_primary_10_1016_j_plaphy_2021_06_037 crossref_primary_10_3390_plants10091864 crossref_primary_10_3390_cells14020110 crossref_primary_10_1515_abcsb_2015_0004 crossref_primary_10_3390_insects12060549 crossref_primary_10_5433_1679_0359_2022v43n5p2293 crossref_primary_10_3389_fpls_2018_00302 crossref_primary_10_3390_horticulturae8121205 crossref_primary_10_1007_s11105_019_01137_6 crossref_primary_10_1186_s12870_024_05818_7 crossref_primary_10_1017_S002185961400046X crossref_primary_10_1134_S1021443720020144 crossref_primary_10_22363_2312_797X_2023_18_4_520_530 crossref_primary_10_1007_s11240_012_0273_z crossref_primary_10_3389_fpls_2020_00227 crossref_primary_10_1002_tpg2_20402 crossref_primary_10_1111_ppl_12163 crossref_primary_10_1186_s40538_024_00611_y crossref_primary_10_3103_S0095452721030051 crossref_primary_10_1080_07929978_2014_939828 crossref_primary_10_1556_019_70_2019_01 crossref_primary_10_1002_jpln_201400476 crossref_primary_10_1007_s00344_022_10839_3 crossref_primary_10_1186_s12870_023_04577_1 crossref_primary_10_1371_journal_pone_0161987 crossref_primary_10_3390_agriculture9030067 crossref_primary_10_1111_pce_13887 crossref_primary_10_3390_cimb44060168 crossref_primary_10_1016_j_plantsci_2021_110990 crossref_primary_10_1007_s00344_012_9314_4 crossref_primary_10_3390_molecules27030744 crossref_primary_10_7717_peerj_7153 crossref_primary_10_1007_s12374_018_0330_1 crossref_primary_10_1016_j_scienta_2014_06_032 crossref_primary_10_3390_ijms26031148 crossref_primary_10_2174_0113862073300371240229100613 crossref_primary_10_1007_s11816_023_00851_8 crossref_primary_10_1016_j_plantsci_2019_110375 crossref_primary_10_1007_s11356_017_9948_7 crossref_primary_10_1016_j_envexpbot_2021_104466 crossref_primary_10_3389_fpls_2023_1142562 crossref_primary_10_3389_fpls_2022_852511 crossref_primary_10_1111_pbi_12056 crossref_primary_10_32615_ps_2020_034 crossref_primary_10_1038_s41438_020_00432_8 crossref_primary_10_1371_journal_pone_0235972 crossref_primary_10_1007_s10535_015_0505_2 crossref_primary_10_1080_19315260_2014_881453 crossref_primary_10_3389_fpls_2022_888710 crossref_primary_10_3390_agriculture11060564 crossref_primary_10_1016_j_indcrop_2019_04_056 crossref_primary_10_7717_peerj_5520 crossref_primary_10_1186_1471_2164_14_722 crossref_primary_10_1111_tpj_13774 crossref_primary_10_1111_pbr_13088 crossref_primary_10_1016_j_plaphy_2022_10_032 crossref_primary_10_1139_cjps_2015_0067 crossref_primary_10_1007_s00344_020_10096_2 crossref_primary_10_1111_ppl_12584 crossref_primary_10_3390_cells11223590 crossref_primary_10_1007_s00299_017_2234_9 crossref_primary_10_1007_s12010_014_1345_9 crossref_primary_10_1016_j_agrformet_2017_04_016 crossref_primary_10_3389_fpls_2023_1272255 crossref_primary_10_1104_pp_113_232751 crossref_primary_10_3103_S0095452717050127 crossref_primary_10_3389_fpls_2018_01892 crossref_primary_10_1155_2021_6662769 crossref_primary_10_1186_s12864_019_6111_5 crossref_primary_10_1109_TGRS_2024_3351141 crossref_primary_10_1007_s10725_017_0356_2 crossref_primary_10_1093_pcp_pcz196 crossref_primary_10_1186_s12870_015_0643_x crossref_primary_10_3389_fpls_2016_01230 crossref_primary_10_1371_journal_pone_0166727 crossref_primary_10_1016_j_bbrc_2015_07_085 crossref_primary_10_1007_s12355_022_01118_2 crossref_primary_10_1016_j_scienta_2023_112102 crossref_primary_10_1155_2022_1092894 crossref_primary_10_3390_genes9100494 crossref_primary_10_1093_jxb_erz157 crossref_primary_10_1111_pbi_14016 crossref_primary_10_3390_plants9020179 crossref_primary_10_1016_j_plaphy_2021_11_027 crossref_primary_10_1093_pcp_pcaa167 crossref_primary_10_1007_s42452_024_06267_5 crossref_primary_10_1016_j_plantsci_2018_11_008 crossref_primary_10_1007_s42977_024_00245_z crossref_primary_10_1007_s11104_019_04370_w crossref_primary_10_1016_j_gene_2019_02_097 crossref_primary_10_3390_plants4010112 crossref_primary_10_1016_j_tifs_2014_08_005 crossref_primary_10_1199_tab_0166 crossref_primary_10_1016_j_compbiolchem_2015_09_003 crossref_primary_10_1007_s11540_018_9368_1 crossref_primary_10_3389_fpls_2020_569437 crossref_primary_10_7717_peerj_9787 crossref_primary_10_1007_s00344_015_9511_z crossref_primary_10_1016_j_plgene_2022_100351 crossref_primary_10_3390_ijms25168933 crossref_primary_10_1007_s10887_020_09184_5 crossref_primary_10_1186_s12870_025_06080_1 crossref_primary_10_3389_fpls_2019_01767 crossref_primary_10_1007_s11738_018_2649_0 crossref_primary_10_1007_s13562_016_0383_5 crossref_primary_10_7235_HORT_20220059 crossref_primary_10_32615_bp_2022_030 crossref_primary_10_1007_s00425_022_04007_w crossref_primary_10_3390_genes10060446 crossref_primary_10_3390_horticulturae8050429 crossref_primary_10_1007_s42535_021_00235_9 crossref_primary_10_1016_j_jenvman_2022_114794 crossref_primary_10_1007_s42535_022_00402_6 crossref_primary_10_1088_1755_1315_484_1_012085 crossref_primary_10_3389_fpls_2022_837152 crossref_primary_10_3390_horticulturae7100341 crossref_primary_10_3390_genes12111700 crossref_primary_10_31015_jaefs_2023_4_14 crossref_primary_10_3390_plants11233400 crossref_primary_10_1016_j_stress_2024_100704 crossref_primary_10_1186_s12864_017_3871_7 crossref_primary_10_1007_s00425_021_03809_8 crossref_primary_10_1371_journal_pone_0040899 crossref_primary_10_1007_s00425_022_03997_x crossref_primary_10_3390_nano5020436 crossref_primary_10_1007_s12298_019_00701_4 crossref_primary_10_3390_ijms24033030 crossref_primary_10_1155_2019_7106092 crossref_primary_10_3390_ncrna10060059 crossref_primary_10_1088_1755_1315_775_1_012012 crossref_primary_10_3390_ijms21082695 crossref_primary_10_1007_s13205_020_2106_9 crossref_primary_10_3390_agronomy11050827 crossref_primary_10_3390_life12091410 crossref_primary_10_1186_s12870_014_0207_5 crossref_primary_10_1186_s12870_022_03767_7 crossref_primary_10_1016_j_jplph_2020_153153 crossref_primary_10_1016_j_rhisph_2022_100586 crossref_primary_10_1007_s12223_024_01194_9 crossref_primary_10_3390_plants8120588 crossref_primary_10_1080_00173134_2017_1358763 crossref_primary_10_1111_pce_13811 crossref_primary_10_1371_journal_pone_0132928 crossref_primary_10_3389_fpls_2016_01281 crossref_primary_10_1111_pce_15324 crossref_primary_10_1590_2317_1545v32n2925 crossref_primary_10_3390_ijms161226220 crossref_primary_10_5433_1679_0359_2019v40n3p1011 crossref_primary_10_1186_s12864_024_10613_7 crossref_primary_10_1016_j_gene_2014_09_018 crossref_primary_10_1007_s42398_020_00118_w crossref_primary_10_1007_s11105_021_01324_4 crossref_primary_10_1155_2017_4327954 crossref_primary_10_4161_gmcr_28774 crossref_primary_10_3390_plants13162315 crossref_primary_10_3390_ijms25179261 crossref_primary_10_1186_s42269_020_00415_8 crossref_primary_10_3390_horticulturae9020207 crossref_primary_10_1093_hr_uhae366 crossref_primary_10_3390_ijms25136885 crossref_primary_10_1007_s11105_019_01167_0 crossref_primary_10_1016_j_jplph_2018_09_009 crossref_primary_10_1071_FP21290 crossref_primary_10_1371_journal_pone_0136993 crossref_primary_10_3389_fpls_2018_00393 crossref_primary_10_3390_genes11101142 crossref_primary_10_3389_fpls_2022_962460 crossref_primary_10_1007_s11676_021_01312_0 crossref_primary_10_1080_13102818_2014_978539 crossref_primary_10_1073_pnas_2306338120 crossref_primary_10_7124_FEEO_v23_1032 crossref_primary_10_1016_j_plgene_2017_06_003 crossref_primary_10_1007_s13353_022_00710_2 crossref_primary_10_1016_j_still_2022_105613 crossref_primary_10_1016_j_plaphy_2018_08_027 crossref_primary_10_3390_genes15010094 crossref_primary_10_1016_j_indcrop_2023_117915 crossref_primary_10_1021_pr4006487 crossref_primary_10_1007_s00425_021_03686_1 crossref_primary_10_3724_SP_J_1006_2022_11003 crossref_primary_10_1080_17518253_2021_1905080 crossref_primary_10_1111_pce_14690 crossref_primary_10_16882_derim_2019_529217 crossref_primary_10_1007_s00122_017_3021_2 crossref_primary_10_17660_eJHS_2023_036 crossref_primary_10_1007_s40003_020_00474_3 crossref_primary_10_1016_j_plaphy_2024_109398 crossref_primary_10_3390_ijms251810093 crossref_primary_10_3389_fenvs_2015_00011 crossref_primary_10_1051_ocl_2021016 crossref_primary_10_3390_ijms25094991 crossref_primary_10_1016_j_scienta_2021_110434 crossref_primary_10_1111_pce_12956 crossref_primary_10_1111_tpj_12509 crossref_primary_10_3389_fpls_2018_00381 crossref_primary_10_3390_microorganisms10010051 crossref_primary_10_1007_s40626_019_00140_2 crossref_primary_10_1007_s00344_013_9325_9 crossref_primary_10_17221_182_2017_PSE crossref_primary_10_3390_ijms160511398 crossref_primary_10_1074_mcp_M112_022079 crossref_primary_10_1186_1471_2164_13_64 crossref_primary_10_1080_10408398_2017_1322553 crossref_primary_10_1007_s00122_016_2744_9 crossref_primary_10_1038_srep42165 crossref_primary_10_3389_fpls_2019_00129 |
ContentType | Journal Article |
Copyright | 2011 Bentham Science Publishers Ltd. 2011 |
Copyright_xml | – notice: 2011 Bentham Science Publishers Ltd. 2011 |
DBID | AAYXX CITATION NPM 7X8 8FD FR3 P64 RC3 5PM |
DOI | 10.2174/138920211794520178 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1875-5488 |
EndPage | 43 |
ExternalDocumentID | PMC3129041 21886453 10_2174_138920211794520178 http_www_eurekaselect_com_openurl_content_php_genre_article_issn_13892029_volume_12_issue_1_spage_30 |
Genre | Journal Article |
GroupedDBID | --- .5. 0R~ 29F 2WC 4.4 53G 5GY AAEGP ABEEF ABJNI ACGFS ACIWK ACPRK ADBBV AENEX AFRAH AFUQM AGJNZ ALMA_UNASSIGNED_HOLDINGS ANTIV AOIJS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P GH2 GX1 HYE HZ~ IPNFZ KCGFV O9- OK1 P2P RIG RPM TR2 AAYXX AFHZU CITATION NPM 7X8 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-b556t-5116f4209c8d9f86650558bded0d95765fdd85c7b2d3becfcb9ead0985edc5b53 |
ISSN | 1389-2029 1875-5488 |
IngestDate | Thu Aug 21 18:29:23 EDT 2025 Fri Jul 11 11:29:06 EDT 2025 Fri Jul 11 03:26:17 EDT 2025 Thu Jan 02 23:11:21 EST 2025 Tue Jul 01 02:59:04 EDT 2025 Thu Apr 24 23:10:11 EDT 2025 Tue Aug 27 15:42:24 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cold stress crop plants transcription factors genetic engineering |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-b556t-5116f4209c8d9f86650558bded0d95765fdd85c7b2d3becfcb9ead0985edc5b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3129041 |
PMID | 21886453 |
PQID | 887502049 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3129041 proquest_miscellaneous_888101638 proquest_miscellaneous_887502049 pubmed_primary_21886453 crossref_citationtrail_10_2174_138920211794520178 crossref_primary_10_2174_138920211794520178 benthamscience_primary_http_www_eurekaselect_com_openurl_content_php_genre_article_issn_13892029_volume_12_issue_1_spage_30 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-01 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United Arab Emirates |
PublicationPlace_xml | – name: United Arab Emirates |
PublicationTitle | Current genomics |
PublicationTitleAlternate | CG |
PublicationYear | 2011 |
Publisher | Bentham Science Publishers Ltd |
Publisher_xml | – name: Bentham Science Publishers Ltd |
References | 20130099 - Plant Physiol. 2010 May;153(1):145-58 19728155 - Mol Biol Rep. 2010 Feb;37(2):961-6 12164808 - Plant J. 2002 Aug;31(3):279-92 14500789 - Plant Physiol. 2003 Oct;133(2):901-9 17541789 - Planta. 2007 Oct;226(5):1097-108 16788067 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10122-7 11024172 - Nucleic Acids Res. 2000 Oct 15;28(20):3926-34 17030626 - Mol Cell Biol. 2006 Dec;26(24):9533-43 12226355 - Plant Physiol. 1996 Aug;111(4):1177-1181 11038526 - Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13404-9 10837265 - Curr Opin Plant Biol. 2000 Jun;3(3):217-23 14673034 - J Exp Bot. 2004 Jan;55(395):213-23 16240171 - Plant Mol Biol. 2005 Aug;58(6):751-62 12114563 - Plant Physiol. 2002 Jul;129(3):1086-94 12228347 - Plant Physiol. 1995 Jan;107(1):125-130 11706173 - Plant Physiol. 2001 Nov;127(3):910-7 9520397 - Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3513-8 9023378 - Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):1035-40 19017109 - J Integr Plant Biol. 2008 Oct;50(10):1223-9 19061521 - BMC Plant Biol. 2008;8:125 16593683 - Proc Natl Acad Sci U S A. 1986 Apr;83(8):2422-6 17168885 - Plant Biotechnol J. 2004 Sep;2(5):381-7 19841686 - Int J Plant Genomics. 2009;2009:583429 11208017 - Plant J. 2001 Feb;25(3):247-59 15831376 - Curr Opin Biotechnol. 2005 Apr;16(2):123-32 10330472 - Plant Cell. 1999 May;11(5):875-86 12165572 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11507-12 12172015 - Plant Cell. 2002 Aug;14(8):1675-90 9707537 - Plant Cell. 1998 Aug;10(8):1391-406 17015446 - J Biol Chem. 2006 Dec 8;281(49):37636-45 15047884 - Plant Cell Physiol. 2004 Mar;45(3):346-50 7632881 - Biopolymers. 1995;37(5):319-38 18524876 - Plant Physiol. 2008 Jun;147(2):446-55 15079051 - Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6309-14 10998189 - Plant J. 2000 Sep;23(6):785-94 10717008 - Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2940-5 21309983 - Plant Biol (Stuttg). 2011 Mar;13(2):362-7 15761207 - Plant Physiol. 2005 Mar;137(3):791-3 17316173 - Plant J. 2007 Mar;49(5):786-99 12456878 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15898-903 10096298 - Nat Biotechnol. 1999 Mar;17(3):287-91 9881163 - Plant J. 1998 Nov;16(4):433-42 15359131 - Mol Cells. 2004 Aug 31;18(1):107-14 17169986 - Nucleic Acids Res. 2007;35(2):506-16 15356392 - Plant Mol Biol. 2004 Mar;54(5):743-53 16667586 - Plant Physiol. 1990 Jul;93(3):1246-52 17384167 - Plant Physiol. 2007 May;144(1):513-23 9869407 - Plant Mol Biol. 1998 Dec;38(6):1011-9 14675437 - Plant J. 2004 Jan;37(1):115-27 19279197 - Plant Physiol. 2009 May;150(1):244-56 16666542 - Plant Physiol. 1989 Jan;89(1):375-80 18621979 - Plant Physiol. 2008 Sep;148(1):304-15 11154304 - Plant Physiol. 2001 Jan;125(1):89-93 8791336 - Curr Opin Biotechnol. 1996 Apr;7(2):161-7 16669782 - Annu Rev Plant Biol. 2006;57:781-803 16668849 - Plant Physiol. 1992 May;99(1):197-202 12232227 - Plant Physiol. 1994 Jun;105(2):601-605 11115886 - Plant Physiol. 2000 Dec;124(4):1697-705 11169177 - Plant J. 2001 Jan;25(1):1-8 10567698 - FEBS Lett. 1999 Nov 19;461(3):205-10 17693452 - Plant Cell Physiol. 2007 Sep;48(9):1319-30 9335051 - Nat Biotechnol. 1997 Oct;15(10):988-91 18365248 - Planta. 2008 Jun;228(1):191-201 15356394 - Plant Mol Biol. 2004 Mar;54(5):767-81 11148289 - Plant Cell. 2000 Dec;12(12):2441-2454 8022259 - Mol Microbiol. 1994 Mar;11(5):811-8 16495045 - Curr Opin Biotechnol. 2006 Apr;17(2):113-22 12675744 - Physiol Plant. 2003 Apr;117(4):540-549 9046588 - Plant Physiol. 1997 Feb;113(2):347-56 12376631 - Plant Physiol. 2002 Oct;130(2):639-48 16121258 - PLoS Genet. 2005 Aug;1(2):e26 12732320 - Curr Opin Biotechnol. 2003 Apr;14(2):194-9 9631040 - Nat Biotechnol. 1996 Aug;14(8):1003-6 15173567 - Plant Physiol. 2004 Jun;135(2):615-21 8434026 - Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1629-33 18757556 - Plant Cell. 2008 Aug;20(8):2117-29 15941401 - Plant J. 2005 Jun;42(6):890-900 11312135 - Curr Opin Plant Biol. 2001 Jun;4(3):241-6 15994234 - Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9966-71 20331973 - Biochem Biophys Res Commun. 2010 Apr 16;394(4):1018-23 19556243 - J Biol Chem. 2009 Aug 28;284(35):23454-60 12586876 - Plant Physiol. 2003 Feb;131(2):516-24 15598798 - Plant Cell. 2005 Jan;17(1):256-67 12154137 - Plant Cell Physiol. 2002 Jul;43(7):751-8 9536054 - Plant Physiol. 1998 Apr;116(4):1367-77 15190366 - Genome. 2004 Jun;47(3):493-500 3621976 - Cryobiology. 1987 Aug;24(4):324-31 15012220 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:571-599 12972040 - Curr Opin Plant Biol. 2003 Oct;6(5):410-7 15634197 - Plant J. 2005 Jan;41(2):195-211 16660124 - Plant Physiol. 1977 Oct;60(4):499-503 15205481 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9873-8 18026957 - Plant Cell Rep. 2008 Mar;27(3):411-24 10712956 - Curr Opin Plant Biol. 2000 Apr;3(2):117-24 9733520 - Plant Physiol. 1998 Sep;118(1):1-8 12481097 - Plant Physiol. 2002 Dec;130(4):2129-41 1421157 - Plant Mol Biol. 1992 Nov;20(3):555-8 9515732 - FEBS Lett. 1998 Feb 27;423(3):324-8 9525853 - Science. 1998 Apr 3;280(5360):104-6 17293435 - Plant Physiol. 2007 Apr;143(4):1739-51 11115899 - Plant Physiol. 2000 Dec;124(4):1854-65 9636231 - Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7799-804 12783337 - Planta. 2003 Jun;217(2):290-8 |
References_xml | – reference: 18621979 - Plant Physiol. 2008 Sep;148(1):304-15 – reference: 19841686 - Int J Plant Genomics. 2009;2009:583429 – reference: 19017109 - J Integr Plant Biol. 2008 Oct;50(10):1223-9 – reference: 17168885 - Plant Biotechnol J. 2004 Sep;2(5):381-7 – reference: 11024172 - Nucleic Acids Res. 2000 Oct 15;28(20):3926-34 – reference: 9881163 - Plant J. 1998 Nov;16(4):433-42 – reference: 10096298 - Nat Biotechnol. 1999 Mar;17(3):287-91 – reference: 9536054 - Plant Physiol. 1998 Apr;116(4):1367-77 – reference: 18365248 - Planta. 2008 Jun;228(1):191-201 – reference: 16593683 - Proc Natl Acad Sci U S A. 1986 Apr;83(8):2422-6 – reference: 14500789 - Plant Physiol. 2003 Oct;133(2):901-9 – reference: 11312135 - Curr Opin Plant Biol. 2001 Jun;4(3):241-6 – reference: 9707537 - Plant Cell. 1998 Aug;10(8):1391-406 – reference: 12972040 - Curr Opin Plant Biol. 2003 Oct;6(5):410-7 – reference: 15356392 - Plant Mol Biol. 2004 Mar;54(5):743-53 – reference: 12172015 - Plant Cell. 2002 Aug;14(8):1675-90 – reference: 9525853 - Science. 1998 Apr 3;280(5360):104-6 – reference: 14675437 - Plant J. 2004 Jan;37(1):115-27 – reference: 16666542 - Plant Physiol. 1989 Jan;89(1):375-80 – reference: 10567698 - FEBS Lett. 1999 Nov 19;461(3):205-10 – reference: 17169986 - Nucleic Acids Res. 2007;35(2):506-16 – reference: 12228347 - Plant Physiol. 1995 Jan;107(1):125-130 – reference: 12226355 - Plant Physiol. 1996 Aug;111(4):1177-1181 – reference: 18757556 - Plant Cell. 2008 Aug;20(8):2117-29 – reference: 16121258 - PLoS Genet. 2005 Aug;1(2):e26 – reference: 9023378 - Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):1035-40 – reference: 15598798 - Plant Cell. 2005 Jan;17(1):256-67 – reference: 11706173 - Plant Physiol. 2001 Nov;127(3):910-7 – reference: 15190366 - Genome. 2004 Jun;47(3):493-500 – reference: 11115886 - Plant Physiol. 2000 Dec;124(4):1697-705 – reference: 11038526 - Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13404-9 – reference: 12232227 - Plant Physiol. 1994 Jun;105(2):601-605 – reference: 9046588 - Plant Physiol. 1997 Feb;113(2):347-56 – reference: 16667586 - Plant Physiol. 1990 Jul;93(3):1246-52 – reference: 16660124 - Plant Physiol. 1977 Oct;60(4):499-503 – reference: 12456878 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15898-903 – reference: 10712956 - Curr Opin Plant Biol. 2000 Apr;3(2):117-24 – reference: 10998189 - Plant J. 2000 Sep;23(6):785-94 – reference: 12154137 - Plant Cell Physiol. 2002 Jul;43(7):751-8 – reference: 8791336 - Curr Opin Biotechnol. 1996 Apr;7(2):161-7 – reference: 20130099 - Plant Physiol. 2010 May;153(1):145-58 – reference: 15941401 - Plant J. 2005 Jun;42(6):890-900 – reference: 9520397 - Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3513-8 – reference: 7632881 - Biopolymers. 1995;37(5):319-38 – reference: 10717008 - Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2940-5 – reference: 9733520 - Plant Physiol. 1998 Sep;118(1):1-8 – reference: 17316173 - Plant J. 2007 Mar;49(5):786-99 – reference: 17384167 - Plant Physiol. 2007 May;144(1):513-23 – reference: 8022259 - Mol Microbiol. 1994 Mar;11(5):811-8 – reference: 17541789 - Planta. 2007 Oct;226(5):1097-108 – reference: 15012220 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:571-599 – reference: 16495045 - Curr Opin Biotechnol. 2006 Apr;17(2):113-22 – reference: 15047884 - Plant Cell Physiol. 2004 Mar;45(3):346-50 – reference: 21309983 - Plant Biol (Stuttg). 2011 Mar;13(2):362-7 – reference: 15761207 - Plant Physiol. 2005 Mar;137(3):791-3 – reference: 19279197 - Plant Physiol. 2009 May;150(1):244-56 – reference: 12481097 - Plant Physiol. 2002 Dec;130(4):2129-41 – reference: 18026957 - Plant Cell Rep. 2008 Mar;27(3):411-24 – reference: 1421157 - Plant Mol Biol. 1992 Nov;20(3):555-8 – reference: 12376631 - Plant Physiol. 2002 Oct;130(2):639-48 – reference: 9636231 - Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7799-804 – reference: 20331973 - Biochem Biophys Res Commun. 2010 Apr 16;394(4):1018-23 – reference: 17030626 - Mol Cell Biol. 2006 Dec;26(24):9533-43 – reference: 9631040 - Nat Biotechnol. 1996 Aug;14(8):1003-6 – reference: 16669782 - Annu Rev Plant Biol. 2006;57:781-803 – reference: 8434026 - Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1629-33 – reference: 15634197 - Plant J. 2005 Jan;41(2):195-211 – reference: 16668849 - Plant Physiol. 1992 May;99(1):197-202 – reference: 9515732 - FEBS Lett. 1998 Feb 27;423(3):324-8 – reference: 12114563 - Plant Physiol. 2002 Jul;129(3):1086-94 – reference: 12164808 - Plant J. 2002 Aug;31(3):279-92 – reference: 15079051 - Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6309-14 – reference: 17293435 - Plant Physiol. 2007 Apr;143(4):1739-51 – reference: 12783337 - Planta. 2003 Jun;217(2):290-8 – reference: 12732320 - Curr Opin Biotechnol. 2003 Apr;14(2):194-9 – reference: 12675744 - Physiol Plant. 2003 Apr;117(4):540-549 – reference: 12165572 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11507-12 – reference: 11208017 - Plant J. 2001 Feb;25(3):247-59 – reference: 14673034 - J Exp Bot. 2004 Jan;55(395):213-23 – reference: 15831376 - Curr Opin Biotechnol. 2005 Apr;16(2):123-32 – reference: 15359131 - Mol Cells. 2004 Aug 31;18(1):107-14 – reference: 11115899 - Plant Physiol. 2000 Dec;124(4):1854-65 – reference: 19556243 - J Biol Chem. 2009 Aug 28;284(35):23454-60 – reference: 9335051 - Nat Biotechnol. 1997 Oct;15(10):988-91 – reference: 12586876 - Plant Physiol. 2003 Feb;131(2):516-24 – reference: 15173567 - Plant Physiol. 2004 Jun;135(2):615-21 – reference: 10837265 - Curr Opin Plant Biol. 2000 Jun;3(3):217-23 – reference: 9869407 - Plant Mol Biol. 1998 Dec;38(6):1011-9 – reference: 10330472 - Plant Cell. 1999 May;11(5):875-86 – reference: 17015446 - J Biol Chem. 2006 Dec 8;281(49):37636-45 – reference: 19728155 - Mol Biol Rep. 2010 Feb;37(2):961-6 – reference: 19061521 - BMC Plant Biol. 2008;8:125 – reference: 17693452 - Plant Cell Physiol. 2007 Sep;48(9):1319-30 – reference: 15994234 - Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9966-71 – reference: 11169177 - Plant J. 2001 Jan;25(1):1-8 – reference: 16788067 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10122-7 – reference: 18524876 - Plant Physiol. 2008 Jun;147(2):446-55 – reference: 11148289 - Plant Cell. 2000 Dec;12(12):2441-2454 – reference: 15205481 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9873-8 – reference: 15356394 - Plant Mol Biol. 2004 Mar;54(5):767-81 – reference: 11154304 - Plant Physiol. 2001 Jan;125(1):89-93 – reference: 16240171 - Plant Mol Biol. 2005 Aug;58(6):751-62 – reference: 3621976 - Cryobiology. 1987 Aug;24(4):324-31 |
SSID | ssj0020870 |
Score | 2.4579005 |
Snippet | Plants respond with changes in their pattern of gene expression and protein products when exposed to low temperatures. Thus ability to adapt has an impact on... |
SourceID | pubmedcentral proquest pubmed crossref benthamscience |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 30 |
Title | Engineering Cold Stress Tolerance in Crop Plants |
URI | http://www.eurekaselect.com/openurl/content.php?genre=article&issn=13892029&volume=12&issue=1&spage=30 https://www.ncbi.nlm.nih.gov/pubmed/21886453 https://www.proquest.com/docview/887502049 https://www.proquest.com/docview/888101638 https://pubmed.ncbi.nlm.nih.gov/PMC3129041 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BERJIIN41L_nArXLxax37iBC0QqIXWjW30dq7UaImjuWHIto_z8yu7dgJVMDFimxnd-Xv2_HMeucbxj6IKJETKT0nSGNBSzcelXnBA3LFjTJ8IWaU7_z9LDq9CL9N-XRbBFFnl9TpcXb927yS_0EVzyGulCX7D8j2jeIJ_I344hERxuNfYTwQEzxCQGWX-VGvl6rUuQC0y7xcF1QsutVs6mUJWmEmEmldDba8_xA57fzQPuVJs7wW5XZ19NIUgCKV53RRDvIamqoSRozgUlSLVd8WDkwv25y1xZ3ldr202191rIxJxIjGwbgmHtlMf48bxgCajyy7dpniHloiQO_IR6eCjADHzkzxngFQxUojhW5HHIVGRHhHDbu7dJfd8zEwoJoVJ9N-U4_vovkxqVHU5cf9DrX4s2niIXuU4nOei1XrbIxdk714Y3fb7MAPOX_CHrcBhP3JsOEpu6PyZ-y-KSn68zlzB5ywiRO24YTdc8Je5DZxwjaceMEuvn45_3zqtFUxnJTzqHbQQ45moe8mWSyTGckVupzHqVTSlQlGj3wmZcyzSerLACfoLEsTtBZuEnMcOU958JId5OtcHTJbYHgYx16kfFeECieqz0WGHil69eEkm0mL3YyfEBRGAkUng8FmswHVlOpKVLpmE-BMgrboG1CmBdWJLuYF6GkC7TQBYhW0yCRgCAWeD5pM4IEmEgSuxbwODshawXqqm7IEDFwJXtiH12JH_X-6sd52t92hDGhV6VOZyNW6qQBfvZzSxpPbbiFtPHx9WeyV4UXfY8cwi01GjOlvIE338ZV8Mdfa7gGtC4fe6z-2-YY92E7Tt-ygLhv1Dv3iOn2vp8IvCh-5XQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+cold+stress+tolerance+in+crop+plants&rft.jtitle=Current+genomics&rft.au=Sanghera%2C+Gulzar+S&rft.au=Wani%2C+Shabir+H&rft.au=Hussain%2C+Wasim&rft.au=Singh%2C+N+B&rft.date=2011-03-01&rft.eissn=1875-5488&rft.volume=12&rft.issue=1&rft.spage=30&rft_id=info:doi/10.2174%2F138920211794520178&rft_id=info%3Apmid%2F21886453&rft.externalDocID=21886453 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-2029&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-2029&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-2029&client=summon |