Engineering Cold Stress Tolerance in Crop Plants

Plants respond with changes in their pattern of gene expression and protein products when exposed to low temperatures. Thus ability to adapt has an impact on the distribution and survival of the plant, and on crop yields. Many species of tropical or subtropical origin are injured or killed by non-fr...

Full description

Saved in:
Bibliographic Details
Published inCurrent genomics Vol. 12; no. 1; pp. 30 - 43
Main Authors S. Sanghera, Gulzar, H. Wani, Shabir, Hussain, Wasim, B. Singh, N.
Format Journal Article
LanguageEnglish
Published United Arab Emirates Bentham Science Publishers Ltd 01.03.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plants respond with changes in their pattern of gene expression and protein products when exposed to low temperatures. Thus ability to adapt has an impact on the distribution and survival of the plant, and on crop yields. Many species of tropical or subtropical origin are injured or killed by non-freezing low temperatures, and exhibit various symptoms of chilling injury such as chlorosis, necrosis, or growth retardation. In contrast, chilling tolerant species are able to grow at such cold temperatures. Conventional breeding methods have met with limited success in improving the cold tolerance of important crop plants involving inter-specific or inter-generic hybridization. Recent studies involving full genome profiling/ sequencing, mutational and transgenic plant analyses, have provided a deep insight of the complex transcriptional mechanism that operates under cold stress. The alterations in expression of genes in response to cold temperatures are followed by increases in the levels of hundreds of metabolites, some of which are known to have protective effects against the damaging effects of cold stress. Various low temperature inducible genes have been isolated from plants. Most appear to be involved in tolerance to cold stress and the expression of some of them is regulated by C-repeat binding factor/ dehydration-responsive element binding (CBF/DREB1) transcription factors. Numerous physiological and molecular changes occur during cold acclimation which reveals that the cold resistance is more complex than perceived and involves more than one pathway. The findings summarized in this review have shown potential practical applications for breeding cold tolerance in crop and horticultural plants suitable to temperate geographical locations.
AbstractList Plants respond with changes in their pattern of gene expression and protein products when exposed to low temperatures. Thus ability to adapt has an impact on the distribution and survival of the plant, and on crop yields. Many species of tropical or subtropical origin are injured or killed by non-freezing low temperatures, and exhibit various symptoms of chilling injury such as chlorosis, necrosis, or growth retardation. In contrast, chilling tolerant species are able to grow at such cold temperatures. Conventional breeding methods have met with limited success in improving the cold tolerance of important crop plants involving inter-specific or inter-generic hybridization. Recent studies involving full genome profiling/ sequencing, mutational and transgenic plant analyses, have provided a deep insight of the complex transcriptional mechanism that operates under cold stress. The alterations in expression of genes in response to cold temperatures are followed by increases in the levels of hundreds of metabolites, some of which are known to have protective effects against the damaging effects of cold stress. Various low temperature inducible genes have been isolated from plants. Most appear to be involved in tolerance to cold stress and the expression of some of them is regulated by C-repeat binding factor/ dehydration-responsive element binding (CBF/DREB1) transcription factors. Numerous physiological and molecular changes occur during cold acclimation which reveals that the cold resistance is more complex than perceived and involves more than one pathway. The findings summarized in this review have shown potential practical applications for breeding cold tolerance in crop and horticultural plants suitable to temperate geographical locations.
Plants respond with changes in their pattern of gene expression and protein products when exposed to low temperatures. Thus ability to adapt has an impact on the distribution and survival of the plant, and on crop yields. Many species of tropical or subtropical origin are injured or killed by non-freezing low temperatures, and exhibit various symptoms of chilling injury such as chlorosis, necrosis, or growth retardation. In contrast, chilling tolerant species are able to grow at such cold temperatures. Conventional breeding methods have met with limited success in improving the cold tolerance of important crop plants involving inter-specific or inter-generic hybridization. Recent studies involving full genome profiling/ sequencing, mutational and transgenic plant analyses, have provided a deep insight of the complex transcriptional mechanism that operates under cold stress. The alterations in expression of genes in response to cold temperatures are followed by increases in the levels of hundreds of metabolites, some of which are known to have protective effects against the damaging effects of cold stress. Various low temperature inducible genes have been isolated from plants. Most appear to be involved in tolerance to cold stress and the expression of some of them is regulated by C-repeat binding factor/ dehydration-responsive element binding ( CBF/DREB 1) transcription factors. Numerous physiological and molecular changes occur during cold acclimation which reveals that the cold resistance is more complex than perceived and involves more than one pathway. The findings summarized in this review have shown potential practical applications for breeding cold tolerance in crop and horticultural plants suitable to temperate geographical locations.
Plants respond with changes in their pattern of gene expression and protein products when exposed to low temperatures. Thus ability to adapt has an impact on the distribution and survival of the plant, and on crop yields. Many species of tropical or subtropical origin are injured or killed by non-freezing low temperatures, and exhibit various symptoms of chilling injury such as chlorosis, necrosis, or growth retardation. In contrast, chilling tolerant species are able to grow at such cold temperatures. Conventional breeding methods have met with limited success in improving the cold tolerance of important crop plants involving inter-specific or inter-generic hybridization. Recent studies involving full genome profiling/ sequencing, mutational and transgenic plant analyses, have provided a deep insight of the complex transcriptional mechanism that operates under cold stress. The alterations in expression of genes in response to cold temperatures are followed by increases in the levels of hundreds of metabolites, some of which are known to have protective effects against the damaging effects of cold stress. Various low temperature inducible genes have been isolated from plants. Most appear to be involved in tolerance to cold stress and the expression of some of them is regulated by C-repeat binding factor/ dehydration-responsive element binding (CBF/DREB1) transcription factors. Numerous physiological and molecular changes occur during cold acclimation which reveals that the cold resistance is more complex than perceived and involves more than one pathway. The findings summarized in this review have shown potential practical applications for breeding cold tolerance in crop and horticultural plants suitable to temperate geographical locations.Plants respond with changes in their pattern of gene expression and protein products when exposed to low temperatures. Thus ability to adapt has an impact on the distribution and survival of the plant, and on crop yields. Many species of tropical or subtropical origin are injured or killed by non-freezing low temperatures, and exhibit various symptoms of chilling injury such as chlorosis, necrosis, or growth retardation. In contrast, chilling tolerant species are able to grow at such cold temperatures. Conventional breeding methods have met with limited success in improving the cold tolerance of important crop plants involving inter-specific or inter-generic hybridization. Recent studies involving full genome profiling/ sequencing, mutational and transgenic plant analyses, have provided a deep insight of the complex transcriptional mechanism that operates under cold stress. The alterations in expression of genes in response to cold temperatures are followed by increases in the levels of hundreds of metabolites, some of which are known to have protective effects against the damaging effects of cold stress. Various low temperature inducible genes have been isolated from plants. Most appear to be involved in tolerance to cold stress and the expression of some of them is regulated by C-repeat binding factor/ dehydration-responsive element binding (CBF/DREB1) transcription factors. Numerous physiological and molecular changes occur during cold acclimation which reveals that the cold resistance is more complex than perceived and involves more than one pathway. The findings summarized in this review have shown potential practical applications for breeding cold tolerance in crop and horticultural plants suitable to temperate geographical locations.
Author Gulzar S. Sanghera
Wasim Hussain
N. B. Singh
Shabir H. Wani
AuthorAffiliation 2 Central Institute of Temperate Horticulture, Srinagar, Kashmir, India
3 Department of Plant Breeding and Genetics, COA, Central Agricultural University, Imphal, Manipur, 795 004, India
1 Shere Kashmir University of Agricultural Sciences and Technology of Kashmir, Rice Research and Regional Station, Khudwani, Anantnag, 192102, Kashmir, India
AuthorAffiliation_xml – name: 2 Central Institute of Temperate Horticulture, Srinagar, Kashmir, India
– name: 3 Department of Plant Breeding and Genetics, COA, Central Agricultural University, Imphal, Manipur, 795 004, India
– name: 1 Shere Kashmir University of Agricultural Sciences and Technology of Kashmir, Rice Research and Regional Station, Khudwani, Anantnag, 192102, Kashmir, India
Author_xml – sequence: 1
  givenname: Gulzar
  surname: S. Sanghera
  fullname: S. Sanghera, Gulzar
– sequence: 2
  givenname: Shabir
  surname: H. Wani
  fullname: H. Wani, Shabir
– sequence: 3
  givenname: Wasim
  surname: Hussain
  fullname: Hussain, Wasim
– sequence: 4
  givenname: N.
  surname: B. Singh
  fullname: B. Singh, N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21886453$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v1DAUjFAR_YA_wAHlxinUduLEviChVfmQKhWJcn5ynJeswbGD7XTFlV-OV9ut-JAQJ4-eZ8bPM-fFifMOi-I5Ja8Y7ZpLWgvJCKO0kw1nhHbiUXFGRccr3ghxknEmVJkhT4vzGL8QwojoyJPilFEh2obXZwW5cpNxiMG4qdx4O5SfUsAYy1tvMSinsTSu3AS_lB-tcik-LR6PykZ8dn9eFJ_fXt1u3lfXN-8-bN5cVz3nbao4pe3YMCK1GOQo2pYTzkU_4EAGybuWj8MguO56NtQ96lH3EtVApOA4aN7z-qJ4ffBd1n7OM3QpKAtLMLMK38ErA7_fOLOFyd9BTZkkDc0GL-8Ngv-2Ykwwm6jR5l-gXyMIISihbS3-g9nxHF0jM_PFr0s9bHPMMxPEgaCDjzHgCNoklYzf72gsUAL76uDv6rKU_SE9uv9T9OMg6nMKWzVHbTB39iDdprTAbrcDXAN-VREt6gTaz-AXdGuwGbuUtbBsF5jQBQQVktEWwcTojm9KuPN2nREo28_XDCAuakKoSf0TtyzMdA
CitedBy_id crossref_primary_10_1093_pcp_pcx059
crossref_primary_10_1016_j_scitotenv_2021_147175
crossref_primary_10_1007_s12010_014_0914_2
crossref_primary_10_3390_horticulturae9070751
crossref_primary_10_1007_s11738_016_2075_0
crossref_primary_10_1371_journal_pone_0245494
crossref_primary_10_1371_journal_pone_0279826
crossref_primary_10_1016_j_scienta_2021_110421
crossref_primary_10_1371_journal_pone_0197892
crossref_primary_10_1016_j_scitotenv_2024_173180
crossref_primary_10_1007_s12374_018_0130_7
crossref_primary_10_3389_fpls_2021_765302
crossref_primary_10_1016_j_scienta_2014_01_043
crossref_primary_10_1111_pce_12379
crossref_primary_10_1111_jac_12421
crossref_primary_10_1186_s12864_015_1551_z
crossref_primary_10_3389_fpls_2020_01251
crossref_primary_10_3390_ijms25147614
crossref_primary_10_5010_JPB_2016_43_2_204
crossref_primary_10_1007_s00425_017_2765_x
crossref_primary_10_1093_aobpla_plx025
crossref_primary_10_3923_ijb_2017_1_14
crossref_primary_10_1111_pce_15081
crossref_primary_10_1093_jxb_erv421
crossref_primary_10_1111_ppl_70078
crossref_primary_10_1093_jxb_erac045
crossref_primary_10_3390_agronomy10091255
crossref_primary_10_1007_s10142_023_01014_2
crossref_primary_10_1051_e3sconf_202338903086
crossref_primary_10_1111_mec_16794
crossref_primary_10_1111_plb_13486
crossref_primary_10_1016_j_stress_2024_100685
crossref_primary_10_1080_17429145_2019_1629033
crossref_primary_10_1007_s10725_024_01253_8
crossref_primary_10_1038_s41598_020_71004_y
crossref_primary_10_3389_fpls_2018_00278
crossref_primary_10_1007_s10989_025_10711_4
crossref_primary_10_1016_j_colsurfb_2021_112286
crossref_primary_10_1016_j_sjbs_2016_01_001
crossref_primary_10_1016_j_indcrop_2023_117088
crossref_primary_10_3390_antiox9050454
crossref_primary_10_1093_plphys_kiae461
crossref_primary_10_3390_plants11060812
crossref_primary_10_3389_fpls_2015_00118
crossref_primary_10_1371_journal_pone_0107152
crossref_primary_10_1371_journal_pone_0106069
crossref_primary_10_3390_ijms140611527
crossref_primary_10_1007_s11356_015_4658_5
crossref_primary_10_1016_j_plgene_2021_100316
crossref_primary_10_3390_plants13141885
crossref_primary_10_1016_j_apsoil_2020_103636
crossref_primary_10_1098_rsos_192243
crossref_primary_10_1007_s10681_016_1805_0
crossref_primary_10_14720_abs_62_1_15735
crossref_primary_10_1186_s12864_021_07458_9
crossref_primary_10_1007_s13258_013_0160_y
crossref_primary_10_1016_j_sajb_2023_07_051
crossref_primary_10_7235_hort_2015_14056
crossref_primary_10_3390_ijerph19095296
crossref_primary_10_1007_s10535_016_0648_9
crossref_primary_10_1134_S102144372460675X
crossref_primary_10_1016_j_foreco_2024_121773
crossref_primary_10_1111_gfs_12650
crossref_primary_10_3390_genes8070179
crossref_primary_10_1016_j_indcrop_2020_112949
crossref_primary_10_1371_journal_pone_0132100
crossref_primary_10_1080_13102818_2019_1611386
crossref_primary_10_3390_plants9050591
crossref_primary_10_9787_KJBS_2021_53_4_380
crossref_primary_10_1016_j_scienta_2024_113686
crossref_primary_10_1007_s13205_023_03840_4
crossref_primary_10_1080_17429145_2017_1308568
crossref_primary_10_1270_jsbbs_63_197
crossref_primary_10_1071_FP18258
crossref_primary_10_1007_s11295_014_0716_2
crossref_primary_10_1016_j_bse_2017_12_002
crossref_primary_10_1016_j_stress_2022_100108
crossref_primary_10_1007_s11103_020_01079_8
crossref_primary_10_1016_j_crbiot_2023_100128
crossref_primary_10_1016_j_gene_2018_10_066
crossref_primary_10_1016_j_jplph_2020_153307
crossref_primary_10_1016_j_ygeno_2018_07_009
crossref_primary_10_3390_ijms22147269
crossref_primary_10_1016_j_plaphy_2024_108704
crossref_primary_10_3390_plants11070961
crossref_primary_10_29312_remexca_v13i5_3229
crossref_primary_10_3390_ijms20112771
crossref_primary_10_1016_j_cj_2015_03_008
crossref_primary_10_1007_s11738_019_2924_8
crossref_primary_10_1016_j_postharvbio_2020_111435
crossref_primary_10_1093_pcp_pcs185
crossref_primary_10_1186_s12864_019_6441_3
crossref_primary_10_15407_dopovidi2020_06_092
crossref_primary_10_1007_s00299_014_1670_z
crossref_primary_10_3390_agriculture14101718
crossref_primary_10_1016_j_pbiomolbio_2018_12_002
crossref_primary_10_3390_genes12111818
crossref_primary_10_1007_s00299_014_1655_y
crossref_primary_10_1007_s00425_014_2195_y
crossref_primary_10_1016_j_plaphy_2022_08_024
crossref_primary_10_1111_pce_12329
crossref_primary_10_1371_journal_pone_0236588
crossref_primary_10_1016_j_scienta_2018_04_068
crossref_primary_10_2478_sh_2022_0001
crossref_primary_10_3389_fpls_2017_01643
crossref_primary_10_1093_treephys_tpy014
crossref_primary_10_3389_fpls_2022_1094462
crossref_primary_10_1016_j_stress_2024_100356
crossref_primary_10_14232_abs_2021_65_163_170
crossref_primary_10_1016_j_envexpbot_2014_07_005
crossref_primary_10_1016_j_indcrop_2023_117055
crossref_primary_10_3390_ijms23052537
crossref_primary_10_1186_s12284_020_00383_7
crossref_primary_10_3390_genes11060611
crossref_primary_10_32615_ps_2020_083
crossref_primary_10_3389_fpls_2019_01040
crossref_primary_10_1016_j_jplph_2018_10_022
crossref_primary_10_1016_j_stress_2022_100081
crossref_primary_10_1111_nph_19315
crossref_primary_10_1080_14620316_2024_2438660
crossref_primary_10_3389_fpls_2022_1019709
crossref_primary_10_1016_j_cj_2016_01_010
crossref_primary_10_1242_jeb_244063
crossref_primary_10_1016_j_micres_2020_126589
crossref_primary_10_1007_s12892_019_0292_0
crossref_primary_10_3390_agronomy13030834
crossref_primary_10_5338_KJEA_2017_36_2_19
crossref_primary_10_1007_s12892_024_00260_5
crossref_primary_10_1007_s11033_013_2983_7
crossref_primary_10_3390_plants10061092
crossref_primary_10_1186_s12870_024_04893_0
crossref_primary_10_1016_j_envexpbot_2018_09_026
crossref_primary_10_1186_1471_2164_14_415
crossref_primary_10_1002_fes3_25
crossref_primary_10_3390_molecules24234303
crossref_primary_10_1016_j_envexpbot_2022_105199
crossref_primary_10_3389_fpls_2022_831839
crossref_primary_10_3390_plants10061096
crossref_primary_10_1093_pcp_pcu200
crossref_primary_10_1186_1471_2164_15_671
crossref_primary_10_1371_journal_pone_0188514
crossref_primary_10_3390_agriculture13102019
crossref_primary_10_1007_s10529_020_02967_1
crossref_primary_10_1007_s11032_019_1090_4
crossref_primary_10_3389_fpls_2022_807844
crossref_primary_10_3390_ijms21228441
crossref_primary_10_1111_jse_13042
crossref_primary_10_1016_j_plaphy_2021_06_037
crossref_primary_10_3390_plants10091864
crossref_primary_10_3390_cells14020110
crossref_primary_10_1515_abcsb_2015_0004
crossref_primary_10_3390_insects12060549
crossref_primary_10_5433_1679_0359_2022v43n5p2293
crossref_primary_10_3389_fpls_2018_00302
crossref_primary_10_3390_horticulturae8121205
crossref_primary_10_1007_s11105_019_01137_6
crossref_primary_10_1186_s12870_024_05818_7
crossref_primary_10_1017_S002185961400046X
crossref_primary_10_1134_S1021443720020144
crossref_primary_10_22363_2312_797X_2023_18_4_520_530
crossref_primary_10_1007_s11240_012_0273_z
crossref_primary_10_3389_fpls_2020_00227
crossref_primary_10_1002_tpg2_20402
crossref_primary_10_1111_ppl_12163
crossref_primary_10_1186_s40538_024_00611_y
crossref_primary_10_3103_S0095452721030051
crossref_primary_10_1080_07929978_2014_939828
crossref_primary_10_1556_019_70_2019_01
crossref_primary_10_1002_jpln_201400476
crossref_primary_10_1007_s00344_022_10839_3
crossref_primary_10_1186_s12870_023_04577_1
crossref_primary_10_1371_journal_pone_0161987
crossref_primary_10_3390_agriculture9030067
crossref_primary_10_1111_pce_13887
crossref_primary_10_3390_cimb44060168
crossref_primary_10_1016_j_plantsci_2021_110990
crossref_primary_10_1007_s00344_012_9314_4
crossref_primary_10_3390_molecules27030744
crossref_primary_10_7717_peerj_7153
crossref_primary_10_1007_s12374_018_0330_1
crossref_primary_10_1016_j_scienta_2014_06_032
crossref_primary_10_3390_ijms26031148
crossref_primary_10_2174_0113862073300371240229100613
crossref_primary_10_1007_s11816_023_00851_8
crossref_primary_10_1016_j_plantsci_2019_110375
crossref_primary_10_1007_s11356_017_9948_7
crossref_primary_10_1016_j_envexpbot_2021_104466
crossref_primary_10_3389_fpls_2023_1142562
crossref_primary_10_3389_fpls_2022_852511
crossref_primary_10_1111_pbi_12056
crossref_primary_10_32615_ps_2020_034
crossref_primary_10_1038_s41438_020_00432_8
crossref_primary_10_1371_journal_pone_0235972
crossref_primary_10_1007_s10535_015_0505_2
crossref_primary_10_1080_19315260_2014_881453
crossref_primary_10_3389_fpls_2022_888710
crossref_primary_10_3390_agriculture11060564
crossref_primary_10_1016_j_indcrop_2019_04_056
crossref_primary_10_7717_peerj_5520
crossref_primary_10_1186_1471_2164_14_722
crossref_primary_10_1111_tpj_13774
crossref_primary_10_1111_pbr_13088
crossref_primary_10_1016_j_plaphy_2022_10_032
crossref_primary_10_1139_cjps_2015_0067
crossref_primary_10_1007_s00344_020_10096_2
crossref_primary_10_1111_ppl_12584
crossref_primary_10_3390_cells11223590
crossref_primary_10_1007_s00299_017_2234_9
crossref_primary_10_1007_s12010_014_1345_9
crossref_primary_10_1016_j_agrformet_2017_04_016
crossref_primary_10_3389_fpls_2023_1272255
crossref_primary_10_1104_pp_113_232751
crossref_primary_10_3103_S0095452717050127
crossref_primary_10_3389_fpls_2018_01892
crossref_primary_10_1155_2021_6662769
crossref_primary_10_1186_s12864_019_6111_5
crossref_primary_10_1109_TGRS_2024_3351141
crossref_primary_10_1007_s10725_017_0356_2
crossref_primary_10_1093_pcp_pcz196
crossref_primary_10_1186_s12870_015_0643_x
crossref_primary_10_3389_fpls_2016_01230
crossref_primary_10_1371_journal_pone_0166727
crossref_primary_10_1016_j_bbrc_2015_07_085
crossref_primary_10_1007_s12355_022_01118_2
crossref_primary_10_1016_j_scienta_2023_112102
crossref_primary_10_1155_2022_1092894
crossref_primary_10_3390_genes9100494
crossref_primary_10_1093_jxb_erz157
crossref_primary_10_1111_pbi_14016
crossref_primary_10_3390_plants9020179
crossref_primary_10_1016_j_plaphy_2021_11_027
crossref_primary_10_1093_pcp_pcaa167
crossref_primary_10_1007_s42452_024_06267_5
crossref_primary_10_1016_j_plantsci_2018_11_008
crossref_primary_10_1007_s42977_024_00245_z
crossref_primary_10_1007_s11104_019_04370_w
crossref_primary_10_1016_j_gene_2019_02_097
crossref_primary_10_3390_plants4010112
crossref_primary_10_1016_j_tifs_2014_08_005
crossref_primary_10_1199_tab_0166
crossref_primary_10_1016_j_compbiolchem_2015_09_003
crossref_primary_10_1007_s11540_018_9368_1
crossref_primary_10_3389_fpls_2020_569437
crossref_primary_10_7717_peerj_9787
crossref_primary_10_1007_s00344_015_9511_z
crossref_primary_10_1016_j_plgene_2022_100351
crossref_primary_10_3390_ijms25168933
crossref_primary_10_1007_s10887_020_09184_5
crossref_primary_10_1186_s12870_025_06080_1
crossref_primary_10_3389_fpls_2019_01767
crossref_primary_10_1007_s11738_018_2649_0
crossref_primary_10_1007_s13562_016_0383_5
crossref_primary_10_7235_HORT_20220059
crossref_primary_10_32615_bp_2022_030
crossref_primary_10_1007_s00425_022_04007_w
crossref_primary_10_3390_genes10060446
crossref_primary_10_3390_horticulturae8050429
crossref_primary_10_1007_s42535_021_00235_9
crossref_primary_10_1016_j_jenvman_2022_114794
crossref_primary_10_1007_s42535_022_00402_6
crossref_primary_10_1088_1755_1315_484_1_012085
crossref_primary_10_3389_fpls_2022_837152
crossref_primary_10_3390_horticulturae7100341
crossref_primary_10_3390_genes12111700
crossref_primary_10_31015_jaefs_2023_4_14
crossref_primary_10_3390_plants11233400
crossref_primary_10_1016_j_stress_2024_100704
crossref_primary_10_1186_s12864_017_3871_7
crossref_primary_10_1007_s00425_021_03809_8
crossref_primary_10_1371_journal_pone_0040899
crossref_primary_10_1007_s00425_022_03997_x
crossref_primary_10_3390_nano5020436
crossref_primary_10_1007_s12298_019_00701_4
crossref_primary_10_3390_ijms24033030
crossref_primary_10_1155_2019_7106092
crossref_primary_10_3390_ncrna10060059
crossref_primary_10_1088_1755_1315_775_1_012012
crossref_primary_10_3390_ijms21082695
crossref_primary_10_1007_s13205_020_2106_9
crossref_primary_10_3390_agronomy11050827
crossref_primary_10_3390_life12091410
crossref_primary_10_1186_s12870_014_0207_5
crossref_primary_10_1186_s12870_022_03767_7
crossref_primary_10_1016_j_jplph_2020_153153
crossref_primary_10_1016_j_rhisph_2022_100586
crossref_primary_10_1007_s12223_024_01194_9
crossref_primary_10_3390_plants8120588
crossref_primary_10_1080_00173134_2017_1358763
crossref_primary_10_1111_pce_13811
crossref_primary_10_1371_journal_pone_0132928
crossref_primary_10_3389_fpls_2016_01281
crossref_primary_10_1111_pce_15324
crossref_primary_10_1590_2317_1545v32n2925
crossref_primary_10_3390_ijms161226220
crossref_primary_10_5433_1679_0359_2019v40n3p1011
crossref_primary_10_1186_s12864_024_10613_7
crossref_primary_10_1016_j_gene_2014_09_018
crossref_primary_10_1007_s42398_020_00118_w
crossref_primary_10_1007_s11105_021_01324_4
crossref_primary_10_1155_2017_4327954
crossref_primary_10_4161_gmcr_28774
crossref_primary_10_3390_plants13162315
crossref_primary_10_3390_ijms25179261
crossref_primary_10_1186_s42269_020_00415_8
crossref_primary_10_3390_horticulturae9020207
crossref_primary_10_1093_hr_uhae366
crossref_primary_10_3390_ijms25136885
crossref_primary_10_1007_s11105_019_01167_0
crossref_primary_10_1016_j_jplph_2018_09_009
crossref_primary_10_1071_FP21290
crossref_primary_10_1371_journal_pone_0136993
crossref_primary_10_3389_fpls_2018_00393
crossref_primary_10_3390_genes11101142
crossref_primary_10_3389_fpls_2022_962460
crossref_primary_10_1007_s11676_021_01312_0
crossref_primary_10_1080_13102818_2014_978539
crossref_primary_10_1073_pnas_2306338120
crossref_primary_10_7124_FEEO_v23_1032
crossref_primary_10_1016_j_plgene_2017_06_003
crossref_primary_10_1007_s13353_022_00710_2
crossref_primary_10_1016_j_still_2022_105613
crossref_primary_10_1016_j_plaphy_2018_08_027
crossref_primary_10_3390_genes15010094
crossref_primary_10_1016_j_indcrop_2023_117915
crossref_primary_10_1021_pr4006487
crossref_primary_10_1007_s00425_021_03686_1
crossref_primary_10_3724_SP_J_1006_2022_11003
crossref_primary_10_1080_17518253_2021_1905080
crossref_primary_10_1111_pce_14690
crossref_primary_10_16882_derim_2019_529217
crossref_primary_10_1007_s00122_017_3021_2
crossref_primary_10_17660_eJHS_2023_036
crossref_primary_10_1007_s40003_020_00474_3
crossref_primary_10_1016_j_plaphy_2024_109398
crossref_primary_10_3390_ijms251810093
crossref_primary_10_3389_fenvs_2015_00011
crossref_primary_10_1051_ocl_2021016
crossref_primary_10_3390_ijms25094991
crossref_primary_10_1016_j_scienta_2021_110434
crossref_primary_10_1111_pce_12956
crossref_primary_10_1111_tpj_12509
crossref_primary_10_3389_fpls_2018_00381
crossref_primary_10_3390_microorganisms10010051
crossref_primary_10_1007_s40626_019_00140_2
crossref_primary_10_1007_s00344_013_9325_9
crossref_primary_10_17221_182_2017_PSE
crossref_primary_10_3390_ijms160511398
crossref_primary_10_1074_mcp_M112_022079
crossref_primary_10_1186_1471_2164_13_64
crossref_primary_10_1080_10408398_2017_1322553
crossref_primary_10_1007_s00122_016_2744_9
crossref_primary_10_1038_srep42165
crossref_primary_10_3389_fpls_2019_00129
ContentType Journal Article
Copyright 2011 Bentham Science Publishers Ltd. 2011
Copyright_xml – notice: 2011 Bentham Science Publishers Ltd. 2011
DBID AAYXX
CITATION
NPM
7X8
8FD
FR3
P64
RC3
5PM
DOI 10.2174/138920211794520178
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList

Genetics Abstracts
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1875-5488
EndPage 43
ExternalDocumentID PMC3129041
21886453
10_2174_138920211794520178
http_www_eurekaselect_com_openurl_content_php_genre_article_issn_13892029_volume_12_issue_1_spage_30
Genre Journal Article
GroupedDBID ---
.5.
0R~
29F
2WC
4.4
53G
5GY
AAEGP
ABEEF
ABJNI
ACGFS
ACIWK
ACPRK
ADBBV
AENEX
AFRAH
AFUQM
AGJNZ
ALMA_UNASSIGNED_HOLDINGS
ANTIV
AOIJS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GH2
GX1
HYE
HZ~
IPNFZ
KCGFV
O9-
OK1
P2P
RIG
RPM
TR2
AAYXX
AFHZU
CITATION
NPM
7X8
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-b556t-5116f4209c8d9f86650558bded0d95765fdd85c7b2d3becfcb9ead0985edc5b53
ISSN 1389-2029
1875-5488
IngestDate Thu Aug 21 18:29:23 EDT 2025
Fri Jul 11 11:29:06 EDT 2025
Fri Jul 11 03:26:17 EDT 2025
Thu Jan 02 23:11:21 EST 2025
Tue Jul 01 02:59:04 EDT 2025
Thu Apr 24 23:10:11 EDT 2025
Tue Aug 27 15:42:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cold stress
crop plants
transcription factors
genetic engineering
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b556t-5116f4209c8d9f86650558bded0d95765fdd85c7b2d3becfcb9ead0985edc5b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3129041
PMID 21886453
PQID 887502049
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3129041
proquest_miscellaneous_888101638
proquest_miscellaneous_887502049
pubmed_primary_21886453
crossref_citationtrail_10_2174_138920211794520178
crossref_primary_10_2174_138920211794520178
benthamscience_primary_http_www_eurekaselect_com_openurl_content_php_genre_article_issn_13892029_volume_12_issue_1_spage_30
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United Arab Emirates
PublicationPlace_xml – name: United Arab Emirates
PublicationTitle Current genomics
PublicationTitleAlternate CG
PublicationYear 2011
Publisher Bentham Science Publishers Ltd
Publisher_xml – name: Bentham Science Publishers Ltd
References 20130099 - Plant Physiol. 2010 May;153(1):145-58
19728155 - Mol Biol Rep. 2010 Feb;37(2):961-6
12164808 - Plant J. 2002 Aug;31(3):279-92
14500789 - Plant Physiol. 2003 Oct;133(2):901-9
17541789 - Planta. 2007 Oct;226(5):1097-108
16788067 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10122-7
11024172 - Nucleic Acids Res. 2000 Oct 15;28(20):3926-34
17030626 - Mol Cell Biol. 2006 Dec;26(24):9533-43
12226355 - Plant Physiol. 1996 Aug;111(4):1177-1181
11038526 - Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13404-9
10837265 - Curr Opin Plant Biol. 2000 Jun;3(3):217-23
14673034 - J Exp Bot. 2004 Jan;55(395):213-23
16240171 - Plant Mol Biol. 2005 Aug;58(6):751-62
12114563 - Plant Physiol. 2002 Jul;129(3):1086-94
12228347 - Plant Physiol. 1995 Jan;107(1):125-130
11706173 - Plant Physiol. 2001 Nov;127(3):910-7
9520397 - Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3513-8
9023378 - Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):1035-40
19017109 - J Integr Plant Biol. 2008 Oct;50(10):1223-9
19061521 - BMC Plant Biol. 2008;8:125
16593683 - Proc Natl Acad Sci U S A. 1986 Apr;83(8):2422-6
17168885 - Plant Biotechnol J. 2004 Sep;2(5):381-7
19841686 - Int J Plant Genomics. 2009;2009:583429
11208017 - Plant J. 2001 Feb;25(3):247-59
15831376 - Curr Opin Biotechnol. 2005 Apr;16(2):123-32
10330472 - Plant Cell. 1999 May;11(5):875-86
12165572 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11507-12
12172015 - Plant Cell. 2002 Aug;14(8):1675-90
9707537 - Plant Cell. 1998 Aug;10(8):1391-406
17015446 - J Biol Chem. 2006 Dec 8;281(49):37636-45
15047884 - Plant Cell Physiol. 2004 Mar;45(3):346-50
7632881 - Biopolymers. 1995;37(5):319-38
18524876 - Plant Physiol. 2008 Jun;147(2):446-55
15079051 - Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6309-14
10998189 - Plant J. 2000 Sep;23(6):785-94
10717008 - Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2940-5
21309983 - Plant Biol (Stuttg). 2011 Mar;13(2):362-7
15761207 - Plant Physiol. 2005 Mar;137(3):791-3
17316173 - Plant J. 2007 Mar;49(5):786-99
12456878 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15898-903
10096298 - Nat Biotechnol. 1999 Mar;17(3):287-91
9881163 - Plant J. 1998 Nov;16(4):433-42
15359131 - Mol Cells. 2004 Aug 31;18(1):107-14
17169986 - Nucleic Acids Res. 2007;35(2):506-16
15356392 - Plant Mol Biol. 2004 Mar;54(5):743-53
16667586 - Plant Physiol. 1990 Jul;93(3):1246-52
17384167 - Plant Physiol. 2007 May;144(1):513-23
9869407 - Plant Mol Biol. 1998 Dec;38(6):1011-9
14675437 - Plant J. 2004 Jan;37(1):115-27
19279197 - Plant Physiol. 2009 May;150(1):244-56
16666542 - Plant Physiol. 1989 Jan;89(1):375-80
18621979 - Plant Physiol. 2008 Sep;148(1):304-15
11154304 - Plant Physiol. 2001 Jan;125(1):89-93
8791336 - Curr Opin Biotechnol. 1996 Apr;7(2):161-7
16669782 - Annu Rev Plant Biol. 2006;57:781-803
16668849 - Plant Physiol. 1992 May;99(1):197-202
12232227 - Plant Physiol. 1994 Jun;105(2):601-605
11115886 - Plant Physiol. 2000 Dec;124(4):1697-705
11169177 - Plant J. 2001 Jan;25(1):1-8
10567698 - FEBS Lett. 1999 Nov 19;461(3):205-10
17693452 - Plant Cell Physiol. 2007 Sep;48(9):1319-30
9335051 - Nat Biotechnol. 1997 Oct;15(10):988-91
18365248 - Planta. 2008 Jun;228(1):191-201
15356394 - Plant Mol Biol. 2004 Mar;54(5):767-81
11148289 - Plant Cell. 2000 Dec;12(12):2441-2454
8022259 - Mol Microbiol. 1994 Mar;11(5):811-8
16495045 - Curr Opin Biotechnol. 2006 Apr;17(2):113-22
12675744 - Physiol Plant. 2003 Apr;117(4):540-549
9046588 - Plant Physiol. 1997 Feb;113(2):347-56
12376631 - Plant Physiol. 2002 Oct;130(2):639-48
16121258 - PLoS Genet. 2005 Aug;1(2):e26
12732320 - Curr Opin Biotechnol. 2003 Apr;14(2):194-9
9631040 - Nat Biotechnol. 1996 Aug;14(8):1003-6
15173567 - Plant Physiol. 2004 Jun;135(2):615-21
8434026 - Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1629-33
18757556 - Plant Cell. 2008 Aug;20(8):2117-29
15941401 - Plant J. 2005 Jun;42(6):890-900
11312135 - Curr Opin Plant Biol. 2001 Jun;4(3):241-6
15994234 - Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9966-71
20331973 - Biochem Biophys Res Commun. 2010 Apr 16;394(4):1018-23
19556243 - J Biol Chem. 2009 Aug 28;284(35):23454-60
12586876 - Plant Physiol. 2003 Feb;131(2):516-24
15598798 - Plant Cell. 2005 Jan;17(1):256-67
12154137 - Plant Cell Physiol. 2002 Jul;43(7):751-8
9536054 - Plant Physiol. 1998 Apr;116(4):1367-77
15190366 - Genome. 2004 Jun;47(3):493-500
3621976 - Cryobiology. 1987 Aug;24(4):324-31
15012220 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:571-599
12972040 - Curr Opin Plant Biol. 2003 Oct;6(5):410-7
15634197 - Plant J. 2005 Jan;41(2):195-211
16660124 - Plant Physiol. 1977 Oct;60(4):499-503
15205481 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9873-8
18026957 - Plant Cell Rep. 2008 Mar;27(3):411-24
10712956 - Curr Opin Plant Biol. 2000 Apr;3(2):117-24
9733520 - Plant Physiol. 1998 Sep;118(1):1-8
12481097 - Plant Physiol. 2002 Dec;130(4):2129-41
1421157 - Plant Mol Biol. 1992 Nov;20(3):555-8
9515732 - FEBS Lett. 1998 Feb 27;423(3):324-8
9525853 - Science. 1998 Apr 3;280(5360):104-6
17293435 - Plant Physiol. 2007 Apr;143(4):1739-51
11115899 - Plant Physiol. 2000 Dec;124(4):1854-65
9636231 - Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7799-804
12783337 - Planta. 2003 Jun;217(2):290-8
References_xml – reference: 18621979 - Plant Physiol. 2008 Sep;148(1):304-15
– reference: 19841686 - Int J Plant Genomics. 2009;2009:583429
– reference: 19017109 - J Integr Plant Biol. 2008 Oct;50(10):1223-9
– reference: 17168885 - Plant Biotechnol J. 2004 Sep;2(5):381-7
– reference: 11024172 - Nucleic Acids Res. 2000 Oct 15;28(20):3926-34
– reference: 9881163 - Plant J. 1998 Nov;16(4):433-42
– reference: 10096298 - Nat Biotechnol. 1999 Mar;17(3):287-91
– reference: 9536054 - Plant Physiol. 1998 Apr;116(4):1367-77
– reference: 18365248 - Planta. 2008 Jun;228(1):191-201
– reference: 16593683 - Proc Natl Acad Sci U S A. 1986 Apr;83(8):2422-6
– reference: 14500789 - Plant Physiol. 2003 Oct;133(2):901-9
– reference: 11312135 - Curr Opin Plant Biol. 2001 Jun;4(3):241-6
– reference: 9707537 - Plant Cell. 1998 Aug;10(8):1391-406
– reference: 12972040 - Curr Opin Plant Biol. 2003 Oct;6(5):410-7
– reference: 15356392 - Plant Mol Biol. 2004 Mar;54(5):743-53
– reference: 12172015 - Plant Cell. 2002 Aug;14(8):1675-90
– reference: 9525853 - Science. 1998 Apr 3;280(5360):104-6
– reference: 14675437 - Plant J. 2004 Jan;37(1):115-27
– reference: 16666542 - Plant Physiol. 1989 Jan;89(1):375-80
– reference: 10567698 - FEBS Lett. 1999 Nov 19;461(3):205-10
– reference: 17169986 - Nucleic Acids Res. 2007;35(2):506-16
– reference: 12228347 - Plant Physiol. 1995 Jan;107(1):125-130
– reference: 12226355 - Plant Physiol. 1996 Aug;111(4):1177-1181
– reference: 18757556 - Plant Cell. 2008 Aug;20(8):2117-29
– reference: 16121258 - PLoS Genet. 2005 Aug;1(2):e26
– reference: 9023378 - Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):1035-40
– reference: 15598798 - Plant Cell. 2005 Jan;17(1):256-67
– reference: 11706173 - Plant Physiol. 2001 Nov;127(3):910-7
– reference: 15190366 - Genome. 2004 Jun;47(3):493-500
– reference: 11115886 - Plant Physiol. 2000 Dec;124(4):1697-705
– reference: 11038526 - Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13404-9
– reference: 12232227 - Plant Physiol. 1994 Jun;105(2):601-605
– reference: 9046588 - Plant Physiol. 1997 Feb;113(2):347-56
– reference: 16667586 - Plant Physiol. 1990 Jul;93(3):1246-52
– reference: 16660124 - Plant Physiol. 1977 Oct;60(4):499-503
– reference: 12456878 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15898-903
– reference: 10712956 - Curr Opin Plant Biol. 2000 Apr;3(2):117-24
– reference: 10998189 - Plant J. 2000 Sep;23(6):785-94
– reference: 12154137 - Plant Cell Physiol. 2002 Jul;43(7):751-8
– reference: 8791336 - Curr Opin Biotechnol. 1996 Apr;7(2):161-7
– reference: 20130099 - Plant Physiol. 2010 May;153(1):145-58
– reference: 15941401 - Plant J. 2005 Jun;42(6):890-900
– reference: 9520397 - Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3513-8
– reference: 7632881 - Biopolymers. 1995;37(5):319-38
– reference: 10717008 - Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2940-5
– reference: 9733520 - Plant Physiol. 1998 Sep;118(1):1-8
– reference: 17316173 - Plant J. 2007 Mar;49(5):786-99
– reference: 17384167 - Plant Physiol. 2007 May;144(1):513-23
– reference: 8022259 - Mol Microbiol. 1994 Mar;11(5):811-8
– reference: 17541789 - Planta. 2007 Oct;226(5):1097-108
– reference: 15012220 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:571-599
– reference: 16495045 - Curr Opin Biotechnol. 2006 Apr;17(2):113-22
– reference: 15047884 - Plant Cell Physiol. 2004 Mar;45(3):346-50
– reference: 21309983 - Plant Biol (Stuttg). 2011 Mar;13(2):362-7
– reference: 15761207 - Plant Physiol. 2005 Mar;137(3):791-3
– reference: 19279197 - Plant Physiol. 2009 May;150(1):244-56
– reference: 12481097 - Plant Physiol. 2002 Dec;130(4):2129-41
– reference: 18026957 - Plant Cell Rep. 2008 Mar;27(3):411-24
– reference: 1421157 - Plant Mol Biol. 1992 Nov;20(3):555-8
– reference: 12376631 - Plant Physiol. 2002 Oct;130(2):639-48
– reference: 9636231 - Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7799-804
– reference: 20331973 - Biochem Biophys Res Commun. 2010 Apr 16;394(4):1018-23
– reference: 17030626 - Mol Cell Biol. 2006 Dec;26(24):9533-43
– reference: 9631040 - Nat Biotechnol. 1996 Aug;14(8):1003-6
– reference: 16669782 - Annu Rev Plant Biol. 2006;57:781-803
– reference: 8434026 - Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1629-33
– reference: 15634197 - Plant J. 2005 Jan;41(2):195-211
– reference: 16668849 - Plant Physiol. 1992 May;99(1):197-202
– reference: 9515732 - FEBS Lett. 1998 Feb 27;423(3):324-8
– reference: 12114563 - Plant Physiol. 2002 Jul;129(3):1086-94
– reference: 12164808 - Plant J. 2002 Aug;31(3):279-92
– reference: 15079051 - Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6309-14
– reference: 17293435 - Plant Physiol. 2007 Apr;143(4):1739-51
– reference: 12783337 - Planta. 2003 Jun;217(2):290-8
– reference: 12732320 - Curr Opin Biotechnol. 2003 Apr;14(2):194-9
– reference: 12675744 - Physiol Plant. 2003 Apr;117(4):540-549
– reference: 12165572 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11507-12
– reference: 11208017 - Plant J. 2001 Feb;25(3):247-59
– reference: 14673034 - J Exp Bot. 2004 Jan;55(395):213-23
– reference: 15831376 - Curr Opin Biotechnol. 2005 Apr;16(2):123-32
– reference: 15359131 - Mol Cells. 2004 Aug 31;18(1):107-14
– reference: 11115899 - Plant Physiol. 2000 Dec;124(4):1854-65
– reference: 19556243 - J Biol Chem. 2009 Aug 28;284(35):23454-60
– reference: 9335051 - Nat Biotechnol. 1997 Oct;15(10):988-91
– reference: 12586876 - Plant Physiol. 2003 Feb;131(2):516-24
– reference: 15173567 - Plant Physiol. 2004 Jun;135(2):615-21
– reference: 10837265 - Curr Opin Plant Biol. 2000 Jun;3(3):217-23
– reference: 9869407 - Plant Mol Biol. 1998 Dec;38(6):1011-9
– reference: 10330472 - Plant Cell. 1999 May;11(5):875-86
– reference: 17015446 - J Biol Chem. 2006 Dec 8;281(49):37636-45
– reference: 19728155 - Mol Biol Rep. 2010 Feb;37(2):961-6
– reference: 19061521 - BMC Plant Biol. 2008;8:125
– reference: 17693452 - Plant Cell Physiol. 2007 Sep;48(9):1319-30
– reference: 15994234 - Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9966-71
– reference: 11169177 - Plant J. 2001 Jan;25(1):1-8
– reference: 16788067 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10122-7
– reference: 18524876 - Plant Physiol. 2008 Jun;147(2):446-55
– reference: 11148289 - Plant Cell. 2000 Dec;12(12):2441-2454
– reference: 15205481 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9873-8
– reference: 15356394 - Plant Mol Biol. 2004 Mar;54(5):767-81
– reference: 11154304 - Plant Physiol. 2001 Jan;125(1):89-93
– reference: 16240171 - Plant Mol Biol. 2005 Aug;58(6):751-62
– reference: 3621976 - Cryobiology. 1987 Aug;24(4):324-31
SSID ssj0020870
Score 2.4579005
Snippet Plants respond with changes in their pattern of gene expression and protein products when exposed to low temperatures. Thus ability to adapt has an impact on...
SourceID pubmedcentral
proquest
pubmed
crossref
benthamscience
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 30
Title Engineering Cold Stress Tolerance in Crop Plants
URI http://www.eurekaselect.com/openurl/content.php?genre=article&issn=13892029&volume=12&issue=1&spage=30
https://www.ncbi.nlm.nih.gov/pubmed/21886453
https://www.proquest.com/docview/887502049
https://www.proquest.com/docview/888101638
https://pubmed.ncbi.nlm.nih.gov/PMC3129041
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BERJIIN41L_nArXLxax37iBC0QqIXWjW30dq7UaImjuWHIto_z8yu7dgJVMDFimxnd-Xv2_HMeucbxj6IKJETKT0nSGNBSzcelXnBA3LFjTJ8IWaU7_z9LDq9CL9N-XRbBFFnl9TpcXb927yS_0EVzyGulCX7D8j2jeIJ_I344hERxuNfYTwQEzxCQGWX-VGvl6rUuQC0y7xcF1QsutVs6mUJWmEmEmldDba8_xA57fzQPuVJs7wW5XZ19NIUgCKV53RRDvIamqoSRozgUlSLVd8WDkwv25y1xZ3ldr202191rIxJxIjGwbgmHtlMf48bxgCajyy7dpniHloiQO_IR6eCjADHzkzxngFQxUojhW5HHIVGRHhHDbu7dJfd8zEwoJoVJ9N-U4_vovkxqVHU5cf9DrX4s2niIXuU4nOei1XrbIxdk714Y3fb7MAPOX_CHrcBhP3JsOEpu6PyZ-y-KSn68zlzB5ywiRO24YTdc8Je5DZxwjaceMEuvn45_3zqtFUxnJTzqHbQQ45moe8mWSyTGckVupzHqVTSlQlGj3wmZcyzSerLACfoLEsTtBZuEnMcOU958JId5OtcHTJbYHgYx16kfFeECieqz0WGHil69eEkm0mL3YyfEBRGAkUng8FmswHVlOpKVLpmE-BMgrboG1CmBdWJLuYF6GkC7TQBYhW0yCRgCAWeD5pM4IEmEgSuxbwODshawXqqm7IEDFwJXtiH12JH_X-6sd52t92hDGhV6VOZyNW6qQBfvZzSxpPbbiFtPHx9WeyV4UXfY8cwi01GjOlvIE338ZV8Mdfa7gGtC4fe6z-2-YY92E7Tt-ygLhv1Dv3iOn2vp8IvCh-5XQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+cold+stress+tolerance+in+crop+plants&rft.jtitle=Current+genomics&rft.au=Sanghera%2C+Gulzar+S&rft.au=Wani%2C+Shabir+H&rft.au=Hussain%2C+Wasim&rft.au=Singh%2C+N+B&rft.date=2011-03-01&rft.eissn=1875-5488&rft.volume=12&rft.issue=1&rft.spage=30&rft_id=info:doi/10.2174%2F138920211794520178&rft_id=info%3Apmid%2F21886453&rft.externalDocID=21886453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-2029&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-2029&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-2029&client=summon