AI enabled suicide prediction tools: a qualitative narrative review

Background: Suicide poses a significant health burden worldwide. In many cases, people at risk of suicide do not engage with their doctor or community due to concerns about stigmatisation and forced medical treatment; worse still, people with mental illness (who form a majority of people who die fro...

Full description

Saved in:
Bibliographic Details
Published inBMJ health & care informatics Vol. 27; no. 3; p. e100175
Main Authors D’Hotman, Daniel, Loh, Erwin
Format Journal Article
LanguageEnglish
Published London BMJ Publishing Group Ltd 09.10.2020
BMJ Publishing Group LTD
BMJ Publishing Group
Subjects
Online AccessGet full text
ISSN2632-1009
2632-1009
DOI10.1136/bmjhci-2020-100175

Cover

Loading…
Abstract Background: Suicide poses a significant health burden worldwide. In many cases, people at risk of suicide do not engage with their doctor or community due to concerns about stigmatisation and forced medical treatment; worse still, people with mental illness (who form a majority of people who die from suicide) may have poor insight into their mental state, and not self-identify as being at risk. These issues are exacerbated by the fact that doctors have difficulty in identifying those at risk of suicide when they do present to medical services. Advances in artificial intelligence (AI) present opportunities for the development of novel tools for predicting suicide.Method: We searched Google Scholar and PubMed for articles relating to suicide prediction using artificial intelligence from 2017 onwards.Conclusions: This paper presents a qualitative narrative review of research focusing on two categories of suicide prediction tools: medical suicide prediction and social suicide prediction. Initial evidence is promising: AI-driven suicide prediction could improve our capacity to identify those at risk of suicide, and, potentially, save lives. Medical suicide prediction may be relatively uncontroversial when it pays respect to ethical and legal principles; however, further research is required to determine the validity of these tools in different contexts. Social suicide prediction offers an exciting opportunity to help identify suicide risk among those who do not engage with traditional health services. Yet, efforts by private companies such as Facebook to use online data for suicide prediction should be the subject of independent review and oversight to confirm safety, effectiveness and ethical permissibility.
AbstractList Background: Suicide poses a significant health burden worldwide. In many cases, people at risk of suicide do not engage with their doctor or community due to concerns about stigmatisation and forced medical treatment; worse still, people with mental illness (who form a majority of people who die from suicide) may have poor insight into their mental state, and not self-identify as being at risk. These issues are exacerbated by the fact that doctors have difficulty in identifying those at risk of suicide when they do present to medical services. Advances in artificial intelligence (AI) present opportunities for the development of novel tools for predicting suicide.Method: We searched Google Scholar and PubMed for articles relating to suicide prediction using artificial intelligence from 2017 onwards.Conclusions: This paper presents a qualitative narrative review of research focusing on two categories of suicide prediction tools: medical suicide prediction and social suicide prediction. Initial evidence is promising: AI-driven suicide prediction could improve our capacity to identify those at risk of suicide, and, potentially, save lives. Medical suicide prediction may be relatively uncontroversial when it pays respect to ethical and legal principles; however, further research is required to determine the validity of these tools in different contexts. Social suicide prediction offers an exciting opportunity to help identify suicide risk among those who do not engage with traditional health services. Yet, efforts by private companies such as Facebook to use online data for suicide prediction should be the subject of independent review and oversight to confirm safety, effectiveness and ethical permissibility.
Background: Suicide poses a significant health burden worldwide. In many cases, people at risk of suicide do not engage with their doctor or community due to concerns about stigmatisation and forced medical treatment; worse still, people with mental illness (who form a majority of people who die from suicide) may have poor insight into their mental state, and not self-identify as being at risk. These issues are exacerbated by the fact that doctors have difficulty in identifying those at risk of suicide when they do present to medical services. Advances in artificial intelligence (AI) present opportunities for the development of novel tools for predicting suicide.Method: We searched Google Scholar and PubMed for articles relating to suicide prediction using artificial intelligence from 2017 onwards.Conclusions: This paper presents a qualitative narrative review of research focusing on two categories of suicide prediction tools: medical suicide prediction and social suicide prediction. Initial evidence is promising: AI-driven suicide prediction could improve our capacity to identify those at risk of suicide, and, potentially, save lives. Medical suicide prediction may be relatively uncontroversial when it pays respect to ethical and legal principles; however, further research is required to determine the validity of these tools in different contexts. Social suicide prediction offers an exciting opportunity to help identify suicide risk among those who do not engage with traditional health services. Yet, efforts by private companies such as Facebook to use online data for suicide prediction should be the subject of independent review and oversight to confirm safety, effectiveness and ethical permissibility.Background: Suicide poses a significant health burden worldwide. In many cases, people at risk of suicide do not engage with their doctor or community due to concerns about stigmatisation and forced medical treatment; worse still, people with mental illness (who form a majority of people who die from suicide) may have poor insight into their mental state, and not self-identify as being at risk. These issues are exacerbated by the fact that doctors have difficulty in identifying those at risk of suicide when they do present to medical services. Advances in artificial intelligence (AI) present opportunities for the development of novel tools for predicting suicide.Method: We searched Google Scholar and PubMed for articles relating to suicide prediction using artificial intelligence from 2017 onwards.Conclusions: This paper presents a qualitative narrative review of research focusing on two categories of suicide prediction tools: medical suicide prediction and social suicide prediction. Initial evidence is promising: AI-driven suicide prediction could improve our capacity to identify those at risk of suicide, and, potentially, save lives. Medical suicide prediction may be relatively uncontroversial when it pays respect to ethical and legal principles; however, further research is required to determine the validity of these tools in different contexts. Social suicide prediction offers an exciting opportunity to help identify suicide risk among those who do not engage with traditional health services. Yet, efforts by private companies such as Facebook to use online data for suicide prediction should be the subject of independent review and oversight to confirm safety, effectiveness and ethical permissibility.
Background: Suicide poses a significant health burden worldwide. In many cases, people at risk of suicide do not engage with their doctor or community due to concerns about stigmatisation and forced medical treatment; worse still, people with mental illness (who form a majority of people who die from suicide) may have poor insight into their mental state, and not self-identify as being at risk. These issues are exacerbated by the fact that doctors have difficulty in identifying those at risk of suicide when they do present to medical services. Advances in artificial intelligence (AI) present opportunities for the development of novel tools for predicting suicide. Method: We searched Google Scholar and PubMed for articles relating to suicide prediction using artificial intelligence from 2017 onwards. Conclusions: This paper presents a qualitative narrative review of research focusing on two categories of suicide prediction tools: medical suicide prediction and social suicide prediction. Initial evidence is promising: AI-driven suicide prediction could improve our capacity to identify those at risk of suicide, and, potentially, save lives. Medical suicide prediction may be relatively uncontroversial when it pays respect to ethical and legal principles; however, further research is required to determine the validity of these tools in different contexts. Social suicide prediction offers an exciting opportunity to help identify suicide risk among those who do not engage with traditional health services. Yet, efforts by private companies such as Facebook to use online data for suicide prediction should be the subject of independent review and oversight to confirm safety, effectiveness and ethical permissibility.
Background: Suicide poses a significant health burden worldwide. In many cases, people at risk of suicide do not engage with their doctor or community due to concerns about stigmatisation and forced medical treatment; worse still, people with mental illness (who form a majority of people who die from suicide) may have poor insight into their mental state, and not self-identify as being at risk. These issues are exacerbated by the fact that doctors have difficulty in identifying those at risk of suicide when they do present to medical services. Advances in artificial intelligence (AI) present opportunities for the development of novel tools for predicting suicide. Method: We searched Google Scholar and PubMed for articles relating to suicide prediction using artificial intelligence from 2017 onwards. Conclusions: This paper presents a qualitative narrative review of research focusing on two categories of suicide prediction tools: medical suicide prediction and social suicide prediction. Initial evidence is promising: AI-driven suicide prediction could improve our capacity to identify those at risk of suicide, and, potentially, save lives. Medical suicide prediction may be relatively uncontroversial when it pays respect to ethical and legal principles; however, further research is required to determine the validity of these tools in different contexts. Social suicide prediction offers an exciting opportunity to help identify suicide risk among those who do not engage with traditional health services. Yet, efforts by private companies such as Facebook to use online data for suicide prediction should be the subject of independent review and oversight to confirm safety, effectiveness and ethical permissibility.
Author Loh, Erwin
D’Hotman, Daniel
AuthorAffiliation 3 Group Chief Medical Officer , St Vincent's Health Australia Ltd , East Melbourne , Victoria , Australia
2 Monash Centre for Health Research and Implementation , Monash University , Clayton , Victoria , Australia
1 Oxford Uehiro Centre for Practical Ethics , University of Oxford , Oxford , United Kingdom
AuthorAffiliation_xml – name: 3 Group Chief Medical Officer , St Vincent's Health Australia Ltd , East Melbourne , Victoria , Australia
– name: 1 Oxford Uehiro Centre for Practical Ethics , University of Oxford , Oxford , United Kingdom
– name: 2 Monash Centre for Health Research and Implementation , Monash University , Clayton , Victoria , Australia
Author_xml – sequence: 1
  givenname: Daniel
  surname: D’Hotman
  fullname: D’Hotman, Daniel
  email: daniel.dhotman@philosophy.ox.ac.uk
  organization: Oxford Uehiro Centre for Practical Ethics, University of Oxford, Oxford, United Kingdom
– sequence: 2
  givenname: Erwin
  orcidid: 0000-0001-7157-0826
  surname: Loh
  fullname: Loh, Erwin
  organization: Group Chief Medical Officer, St Vincent's Health Australia Ltd, East Melbourne, Victoria, Australia
BookMark eNqNUU1P3DAUtCpQoZQ_0FOkXnoJ9XfiHiqhVaErIXGBs-XYz-BVNl7sZKv--zqEfsABVbLkZ7-Zsd_MO3QwxAEQ-kDwGSFMfu62m3sbaooprgnGpBFv0DGVjM4ndfBPfYROc95gjCnlXLLmLTpiDLOmrGO0Ol9XMJiuB1flKdjgoNolcMGOIQ7VGGOfv1SmephMH0Yzhj1Ug0lpqRLsA_x4jw696TOcPu0n6Pbi283qe311fblenV_VnRB4rI3kpGuVxJI5yhtGMXdArPSSeEUdtg4UaXgriZCCAyGKtY56gj2nvvOCnaD1ouui2ehdCluTfupogn68iOlOmzQG24MWXimBG9MYwbnwsnOGYOk61xLVcWWL1tdFazd1W3AWhjGZ_pno884Q7vVd3OtGcMUFKwKfngRSfJggj3obsoW-NwPEKevidflCq7gq0I8voJs4paFYpakQJTlK8IxqF5RNMecEXttHw-P8fug1wXoOXi_B6zl4vQRfqPQF9fccr5LqhVR6_4c_-4v_M8ArhF8bis4G
CitedBy_id crossref_primary_10_2196_63126
crossref_primary_10_1007_s13347_022_00599_z
crossref_primary_10_3390_ijerph192013001
crossref_primary_10_7759_cureus_62139
crossref_primary_10_1080_21507740_2023_2292494
crossref_primary_10_7759_cureus_27225
crossref_primary_10_1080_15265161_2021_1926583
crossref_primary_10_1007_s40596_024_02043_0
crossref_primary_10_1080_15265161_2021_1928793
crossref_primary_10_1089_tmr_2023_0020
crossref_primary_10_1192_j_eurpsy_2022_8
crossref_primary_10_3233_PRM_230038
crossref_primary_10_1038_s41598_025_90718_5
crossref_primary_10_2196_34514
crossref_primary_10_2196_26811
crossref_primary_10_3389_fpsyt_2022_990370
crossref_primary_10_1186_s12888_022_04140_6
crossref_primary_10_1007_s00146_024_01998_w
crossref_primary_10_1080_00332747_2023_2291945
Cites_doi 10.1038/d41586-017-08307-0
10.1016/j.invent.2015.03.005
10.1038/s41537-018-0070-8
10.3390/ijerph16224581
10.3390/a13010007
10.1192/bjo.2018.88
10.1371/journal.pone.0216591
10.1111/sltb.12312
10.1136/bmjqs-2015-004489
10.1016/j.eurpsy.2018.08.004
10.1177/2167702617691560
10.1111/j.1467-8721.2009.01613.x
10.1016/j.psychres.2018.01.045
10.1136/leader-2018-000071
10.2196/15901
10.1038/mp.2016.110
10.1111/sltb.12330
10.30773/pi.2019.06.19
10.2196/10144
10.1016/j.jad.2015.05.057
10.1155/2018/6157249
10.1192/bjp.bp.107.040113
10.1038/s41562-017-0234-y
10.1016/j.ijmedinf.2019.103973
10.3390/ijerph16081451
10.2196/mental.5475
10.1503/cmaj.109-5549
10.1111/sltb.12370
10.1016/j.jadohealth.2015.04.026
10.1140/epjds/s13688-017-0110-z
10.1056/NEJMra1902944
10.1007/s11606-014-2767-3
10.1177/1178222618792860
10.1016/j.amjmed.2017.10.035
10.1037/bul0000084
10.1192/bjp.2018.105
10.1037/vio0000146
10.1007/s13347-018-0336-0
10.7326/M19-0366
10.1371/journal.pone.0217639
10.1111/jcpp.12916
10.1109/JBHI.2020.2988393
10.1145/2678025.2701395
10.1609/icwsm.v8i1.14574
10.1145/2700171.2791026
10.18653/v1/D17-1322
10.3115/v1/W15-1201
10.1145/3308558.3313698
10.3115/v1/W15-1206
10.3115/v1/W14-3207
10.3115/v1/W15-1202
10.1145/2858036.2858207
10.1155/2018/2380650
10.18653/v1/W16-0311
10.3115/v1/W15-1207
10.18653/v1/W17-3110
10.18653/v1/E17-1015
10.1016/j.psychres.2017.06.015
10.1145/2858036.2858246
ContentType Journal Article
Copyright Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
2020 Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2020
Copyright_xml – notice: Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: 2020 Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2020
DBID 9YT
ACMMV
AAYXX
CITATION
3V.
7RV
7X7
7XB
88C
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M0T
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1136/bmjhci-2020-100175
DatabaseName BMJ Open Access Journals
BMJ Journals:Open Access
CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Healthcare Administration Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

ProQuest One Academic Middle East (New)


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ACMMV
  name: BMJ Journals:Open Access
  url: https://journals.bmj.com/
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2632-1009
ExternalDocumentID oai_doaj_org_article_5f99507a7a5445f6bda106dbd819b49c
PMC7549453
10_1136_bmjhci_2020_100175
bmjhci
GrantInformation_xml – fundername: Rhodes Scholarships
  grantid: Australia-at-large (2019)
  funderid: http://dx.doi.org/10.13039/501100000697
– fundername: ;
  grantid: Australia-at-large (2019)
GroupedDBID 7RV
7X7
8C1
8FI
8FJ
9YT
ABUWG
ACMMV
ADBBV
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
FYUFA
GROUPED_DOAJ
HMCUK
M0T
M~E
NAPCQ
OK1
PHGZT
RMJ
RPM
UKHRP
AAYXX
CITATION
PHGZM
PJZUB
PPXIY
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-b550t-a641b896063d2473204de1c6f61f92d0cde91748615654e11938d2f10f42fbf53
IEDL.DBID 9YT
ISSN 2632-1009
IngestDate Wed Aug 27 01:31:12 EDT 2025
Thu Aug 21 13:50:46 EDT 2025
Fri Jul 11 12:15:00 EDT 2025
Sat Jul 26 00:45:49 EDT 2025
Thu Jul 31 00:05:58 EDT 2025
Thu Apr 24 23:08:12 EDT 2025
Thu Apr 24 22:50:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b550t-a641b896063d2473204de1c6f61f92d0cde91748615654e11938d2f10f42fbf53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7157-0826
OpenAccessLink http://dx.doi.org/10.1136/bmjhci-2020-100175
PMID 33037037
PQID 2551752109
PQPubID 5160720
ParticipantIDs doaj_primary_oai_doaj_org_article_5f99507a7a5445f6bda106dbd819b49c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7549453
proquest_miscellaneous_2449958949
proquest_journals_2551752109
crossref_citationtrail_10_1136_bmjhci_2020_100175
crossref_primary_10_1136_bmjhci_2020_100175
bmj_primary_10_1136_bmjhci_2020_100175
bmj_journals_10_1136_bmjhci_2020_100175
PublicationCentury 2000
PublicationDate 2020-10-09
PublicationDateYYYYMMDD 2020-10-09
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: BMA House, Tavistock Square, London, WC1H 9JR
PublicationTitle BMJ health & care informatics
PublicationTitleAbbrev BMJ Health Care Inform
PublicationYear 2020
Publisher BMJ Publishing Group Ltd
BMJ Publishing Group LTD
BMJ Publishing Group
Publisher_xml – name: BMJ Publishing Group Ltd
– name: BMJ Publishing Group LTD
– name: BMJ Publishing Group
References Marks (R3) 2019
Ammerman, Jacobucci, McCloskey (R61) 2018; 8
Padrez, Ungar, Schwartz (R27) 2016; 25
Nock (R58) 2009; 18
Sheehan, Dubke, Corrigan (R4) 2017; 256
McHugh, Corderoy, Ryan (R32) 2019; 5
Lim, Wong, McIntyre (R59) 2019; 16
Ryu, Lee, Lee (R10) 2019; 16
Loh (R11) 2018; 2
O'Dea, Wan, Batterham (R17) 2015; 2
Walker, Thornton, De Choudhury (R49) 2015; 57
Abraham, Buvanaswari, Rathakrishnan (R63) 2019; 16
Kalmady, Greiner, Agrawal (R40) 2019; 5
Chung, Pennebaker (R42) 2007; 1
Bryan, Butner, Sinclair (R19) 2018; 48
Bhat, Goldman-Mellor (R57) 2017
Xu, Zhang, Li (R39) 2019; 132
Vogel (R77) 2018; 190
Ammerman, Jacobucci, Kleiman (R60) 2018; 48
Lovejoy, Buch, Maruthappu (R35) 2019; 55
Haines-Delmont, Chahal, Bruen (R65) 2020; 8
Burke, Jacobucci, Ammerman (R62) 2018; 262
Miller, Brown (R6) 2018; 131
Karmakar, Luo, Tran (R64) 2016; 3
Gomes de Andrade, Pawson, Muriello (R68) 2018; 31
Karstoft, Statnikov, Andersen (R41) 2015; 184
Fazel, Runeson, Ropper (R1) 2020; 382
DelPozo-Banos, John, Petkov (R8) 2018; 5
Reardon (R14) 2017; 64
Nock, Borges, Bromet (R26) 2008; 192
Ji, Yu, Fung (R31) 2018; 2018
Franklin, Ribeiro, Fox (R25) 2017; 143
Yates, Cohan, Goharian (R45) 2017
Walsh, Ribeiro, Franklin (R56) 2018; 59
Barnett, Torous, Ethics (R69) 2019; 170
Tiffin, Paton (R34) 2018; 213
Zhao, Zhang, Wang (R37) 2019; 14
Coppersmith, Leary, Crutchley (R24) 2018; 10
Walsh, Ribeiro, Franklin (R9) 2017; 5
Jung, Park, Kim (R55) 2019; 14
Franklin, Ribeiro, Fox (R2) 2017; 143
Ahmedani, Simon, Stewart (R5) 2014; 29
Kessler, Stein, Petukhova (R7) 2017; 22
Pestian, Sorter, Connolly (R22) 2017; 47
Lin, Nagamine, Yang (R28) 2020; 24
Just, Pan, Cherkassky (R29) 2017; 1
Tadesse, Lin, Xu (R30) 2020; 13
Reece, Danforth (R38) 2017; 6
Reece, Danforth 2017; 6
McHugh, Corderoy, Ryan 2019; 5
Lovejoy, Buch, Maruthappu 2019; 55
Sheehan, Dubke, Corrigan 2017; 256
Ahmedani, Simon, Stewart 2014; 29
Ammerman, Jacobucci, Kleiman 2018; 48
Lin, Nagamine, Yang 2020; 24
Karstoft, Statnikov, Andersen 2015; 184
Ji, Yu, Fung 2018; 2018
Burke, Jacobucci, Ammerman 2018; 262
O'Dea, Wan, Batterham 2015; 2
Yates, Cohan, Goharian 2017
Vogel 2018; 190
Xu, Zhang, Li 2019; 132
Bryan, Butner, Sinclair 2018; 48
Bhat, Goldman-Mellor 2017
Loh 2018; 2
Haines-Delmont, Chahal, Bruen 2020; 8
Reardon 2017; 64
Ammerman, Jacobucci, McCloskey 2018; 8
Kalmady, Greiner, Agrawal 2019; 5
Barnett, Torous, Ethics 2019; 170
Kessler, Stein, Petukhova 2017; 22
Pestian, Sorter, Connolly 2017; 47
Nock 2009; 18
Walker, Thornton, De Choudhury 2015; 57
Gomes de Andrade, Pawson, Muriello 2018; 31
DelPozo-Banos, John, Petkov 2018; 5
Tadesse, Lin, Xu 2020; 13
Zhao, Zhang, Wang 2019; 14
Lim, Wong, McIntyre 2019; 16
Nock, Borges, Bromet 2008; 192
Ryu, Lee, Lee 2019; 16
Chung, Pennebaker 2007; 1
Coppersmith, Leary, Crutchley 2018; 10
Walsh, Ribeiro, Franklin 2018; 59
Jung, Park, Kim 2019; 14
Padrez, Ungar, Schwartz 2016; 25
Fazel, Runeson, Ropper 2020; 382
Walsh, Ribeiro, Franklin 2017; 5
Franklin, Ribeiro, Fox 2017; 143
Just, Pan, Cherkassky 2017; 1
Tiffin, Paton 2018; 213
Abraham, Buvanaswari, Rathakrishnan 2019; 16
Karmakar, Luo, Tran 2016; 3
Marks 2019
Miller, Brown 2018; 131
Sheehan (2025072913363425000_27.3.e100175.4) 2017; 256
Walker (2025072913363425000_27.3.e100175.49) 2015; 57
Ahmedani (2025072913363425000_27.3.e100175.5) 2014; 29
2025072913363425000_27.3.e100175.43
Haines-Delmont (2025072913363425000_27.3.e100175.65) 2020; 8
Franklin (2025072913363425000_27.3.e100175.2) 2017; 143
2025072913363425000_27.3.e100175.45
2025072913363425000_27.3.e100175.44
Jung (2025072913363425000_27.3.e100175.55) 2019; 14
2025072913363425000_27.3.e100175.47
2025072913363425000_27.3.e100175.46
2025072913363425000_27.3.e100175.48
Ammerman (2025072913363425000_27.3.e100175.60) 2018; 48
Tadesse (2025072913363425000_27.3.e100175.30) 2020; 13
Ryu (2025072913363425000_27.3.e100175.10) 2019; 16
Bryan (2025072913363425000_27.3.e100175.19) 2018; 48
Coppersmith (2025072913363425000_27.3.e100175.24) 2018; 10
Just (2025072913363425000_27.3.e100175.29) 2017; 1
Abraham (2025072913363425000_27.3.e100175.63) 2019; 16
2025072913363425000_27.3.e100175.50
2025072913363425000_27.3.e100175.52
2025072913363425000_27.3.e100175.51
O'Dea (2025072913363425000_27.3.e100175.17) 2015; 2
2025072913363425000_27.3.e100175.54
2025072913363425000_27.3.e100175.53
2025072913363425000_27.3.e100175.12
2025072913363425000_27.3.e100175.14
2025072913363425000_27.3.e100175.58
DelPozo-Banos (2025072913363425000_27.3.e100175.8) 2018; 5
2025072913363425000_27.3.e100175.13
2025072913363425000_27.3.e100175.57
2025072913363425000_27.3.e100175.16
Gomes de Andrade (2025072913363425000_27.3.e100175.68) 2018; 31
2025072913363425000_27.3.e100175.15
2025072913363425000_27.3.e100175.18
Reece (2025072913363425000_27.3.e100175.38) 2017; 6
Xu (2025072913363425000_27.3.e100175.39) 2019; 132
Kessler (2025072913363425000_27.3.e100175.7) 2017; 22
Zhao (2025072913363425000_27.3.e100175.37) 2019; 14
Tiffin (2025072913363425000_27.3.e100175.34) 2018; 213
Lin (2025072913363425000_27.3.e100175.28) 2020; 24
2025072913363425000_27.3.e100175.21
2025072913363425000_27.3.e100175.20
2025072913363425000_27.3.e100175.23
2025072913363425000_27.3.e100175.67
2025072913363425000_27.3.e100175.66
2025072913363425000_27.3.e100175.27
2025072913363425000_27.3.e100175.26
Barnett (2025072913363425000_27.3.e100175.69) 2019; 170
Walsh (2025072913363425000_27.3.e100175.56) 2018; 59
Karstoft (2025072913363425000_27.3.e100175.41) 2015; 184
Chung (2025072913363425000_27.3.e100175.42) 2007; 1
Pestian (2025072913363425000_27.3.e100175.22) 2017; 47
2025072913363425000_27.3.e100175.70
2025072913363425000_27.3.e100175.72
2025072913363425000_27.3.e100175.71
2025072913363425000_27.3.e100175.74
2025072913363425000_27.3.e100175.73
Lovejoy (2025072913363425000_27.3.e100175.35) 2019; 55
2025072913363425000_27.3.e100175.76
2025072913363425000_27.3.e100175.31
2025072913363425000_27.3.e100175.75
2025072913363425000_27.3.e100175.78
2025072913363425000_27.3.e100175.33
2025072913363425000_27.3.e100175.77
Franklin (2025072913363425000_27.3.e100175.25) 2017; 143
McHugh (2025072913363425000_27.3.e100175.32) 2019; 5
2025072913363425000_27.3.e100175.36
Fazel (2025072913363425000_27.3.e100175.1) 2020; 382
Walsh (2025072913363425000_27.3.e100175.9) 2017; 5
2025072913363425000_27.3.e100175.6
Kalmady (2025072913363425000_27.3.e100175.40) 2019; 5
Lim (2025072913363425000_27.3.e100175.59) 2019; 16
Karmakar (2025072913363425000_27.3.e100175.64) 2016; 3
2025072913363425000_27.3.e100175.3
Burke (2025072913363425000_27.3.e100175.62) 2018; 262
Loh (2025072913363425000_27.3.e100175.11) 2018; 2
Ammerman (2025072913363425000_27.3.e100175.61) 2018; 8
References_xml – volume: 64
  year: 2017
  ident: R14
  article-title: AI algorithms to prevent suicide gain traction
  publication-title: Nature
  doi: 10.1038/d41586-017-08307-0
– volume: 2
  start-page: 183
  year: 2015
  ident: R17
  article-title: Detecting suicidality on Twitter
  publication-title: Internet Interv
  doi: 10.1016/j.invent.2015.03.005
– volume: 5
  start-page: 2
  year: 2019
  ident: R40
  article-title: Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning
  publication-title: NPJ Schizophr
  doi: 10.1038/s41537-018-0070-8
– volume: 16
  year: 2019
  ident: R59
  article-title: Global lifetime and 12-month prevalence of suicidal behavior, deliberate self-harm and non-suicidal self-injury in children and adolescents between 1989 and 2018: a meta-analysis
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph16224581
– volume: 13
  year: 2020
  ident: R30
  article-title: Detection of suicide ideation in social media forums using deep learning
  publication-title: Algorithms
  doi: 10.3390/a13010007
– volume: 5
  year: 2019
  ident: R32
  article-title: Association between suicidal ideation and suicide: meta-analyses of odds ratios, sensitivity, specificity and positive predictive value
  publication-title: BJPsych Open
  doi: 10.1192/bjo.2018.88
– volume: 14
  year: 2019
  ident: R37
  article-title: See your mental state from your walk: recognizing anxiety and depression through Kinect-recorded gait data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0216591
– volume: 47
  start-page: 112
  year: 2017
  ident: R22
  article-title: A machine learning approach to identifying the thought markers of suicidal subjects: a prospective multicenter trial
  publication-title: Suicide Life Threat Behav
  doi: 10.1111/sltb.12312
– volume: 25
  start-page: 414
  year: 2016
  ident: R27
  article-title: Linking social media and medical record data: a study of adults presenting to an academic, urban emergency department
  publication-title: BMJ Qual Saf
  doi: 10.1136/bmjqs-2015-004489
– volume: 55
  start-page: 1
  year: 2019
  ident: R35
  article-title: Technology and mental health: the role of artificial intelligence
  publication-title: Eur Psychiatry
  doi: 10.1016/j.eurpsy.2018.08.004
– volume: 256
  start-page: 40
  year: 2017
  ident: R4
  article-title: The specificity of public stigma: a comparison of suicide and depression-related stigma
  publication-title: Psychiatry Res
– volume: 5
  start-page: 457
  year: 2017
  ident: R9
  article-title: Predicting risk of suicide attempts over time through machine learning
  publication-title: Clin Psychol Sci
  doi: 10.1177/2167702617691560
– volume: 18
  start-page: 78
  year: 2009
  ident: R58
  article-title: Why do people hurt themselves? new insights into the nature and functions of self-injury
  publication-title: Curr Dir Psychol Sci
  doi: 10.1111/j.1467-8721.2009.01613.x
– volume: 262
  start-page: 175
  year: 2018
  ident: R62
  article-title: Identifying the relative importance of non-suicidal self-injury features in classifying suicidal ideation, plans, and behavior using exploratory data mining
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2018.01.045
– volume: 2
  start-page: 59
  year: 2018
  ident: R11
  article-title: Medicine and the rise of the robots: a qualitative review of recent advances of artificial intelligence in health
  publication-title: Leader
  doi: 10.1136/leader-2018-000071
– volume: 8
  start-page: e15901
  year: 2020
  ident: R65
  article-title: Testing suicide risk prediction algorithms using phone measurements with patients in acute mental health settings: feasibility study
  publication-title: JMIR Mhealth Uhealth
  doi: 10.2196/15901
– volume: 22
  start-page: 544
  year: 2017
  ident: R7
  article-title: Predicting suicides after outpatient mental health visits in the army study to assess risk and resilience in Servicemembers (army STARRS)
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2016.110
– volume: 48
  start-page: 31
  year: 2018
  ident: R60
  article-title: The relationship between nonsuicidal self‐injury age of onset and severity of self‐harm
  publication-title: Suicide Life Threat Behav
  doi: 10.1111/sltb.12330
– volume: 16
  start-page: 588
  year: 2019
  ident: R10
  article-title: Detection of suicide attempters among suicide ideators using machine learning
  publication-title: Psychiatry Investig
  doi: 10.30773/pi.2019.06.19
– volume: 5
  year: 2018
  ident: R8
  article-title: Using neural networks with routine health records to identify suicide risk: feasibility study
  publication-title: JMIR Ment Health
  doi: 10.2196/10144
– volume: 143
  start-page: 187
  year: 2017
  ident: R25
  article-title: Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research
  publication-title: Psychol Bull
– year: 2019
  ident: R3
  article-title: Artificial intelligence based suicide prediction
  publication-title: Yale J Health Policy Law Ethics
– volume: 184
  start-page: 170
  year: 2015
  ident: R41
  article-title: Early identification of posttraumatic stress following military deployment: application of machine learning methods to a prospective study of Danish soldiers
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2015.05.057
– volume: 2018
  start-page: 1
  year: 2018
  ident: R31
  article-title: Supervised learning for suicidal ideation detection in online user content
  publication-title: Complexity
  doi: 10.1155/2018/6157249
– year: 2017
  ident: R57
  article-title: Predicting adolescent suicide attempts with neural networks
  publication-title: ArXiv Prepr
– year: 2017
  ident: R45
  article-title: Depression and self-harm risk assessment in online forums
  publication-title: ArXiv Prepr
– volume: 192
  start-page: 98
  year: 2008
  ident: R26
  article-title: Cross-national prevalence and risk factors for suicidal ideation, plans and attempts
  publication-title: Br J Psychiatry
  doi: 10.1192/bjp.bp.107.040113
– volume: 1
  start-page: 911
  year: 2017
  ident: R29
  article-title: Machine learning of neural representations of suicide and emotion concepts identifies suicidal youth
  publication-title: Nat Hum Behav
  doi: 10.1038/s41562-017-0234-y
– volume: 132
  year: 2019
  ident: R39
  article-title: Individualized prediction of depressive disorder in the elderly: a multitask deep learning approach
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2019.103973
– volume: 16
  year: 2019
  ident: R63
  article-title: A meta-analysis of the rates of suicide ideation, attempts and deaths in people with epilepsy
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph16081451
– volume: 3
  year: 2016
  ident: R64
  article-title: Predicting risk of suicide attempt using history of physical illnesses from electronic medical records
  publication-title: JMIR Ment Health
  doi: 10.2196/mental.5475
– volume: 190
  year: 2018
  ident: R77
  article-title: AI opens new frontier for suicide prevention
  publication-title: CMAJ
  doi: 10.1503/cmaj.109-5549
– volume: 48
  start-page: 413
  year: 2018
  ident: R19
  article-title: Predictors of emerging suicide death among military personnel on social media networks
  publication-title: Suicide Life Threat Behav
  doi: 10.1111/sltb.12370
– volume: 57
  start-page: 157
  year: 2015
  ident: R49
  article-title: Facebook use and disordered eating in college-aged women
  publication-title: J Adolesc Health
  doi: 10.1016/j.jadohealth.2015.04.026
– volume: 6
  start-page: 15
  year: 2017
  ident: R38
  article-title: Instagram photos reveal predictive markers of depression
  publication-title: EPJ Data Sci
  doi: 10.1140/epjds/s13688-017-0110-z
– volume: 382
  start-page: 266
  year: 2020
  ident: R1
  article-title: Suicide
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1902944
– volume: 29
  start-page: 870
  year: 2014
  ident: R5
  article-title: Health care contacts in the year before suicide death
  publication-title: J Gen Intern Med
  doi: 10.1007/s11606-014-2767-3
– volume: 10
  year: 2018
  ident: R24
  article-title: Natural language processing of social media as screening for suicide risk
  publication-title: Biomed Inform Insights
  doi: 10.1177/1178222618792860
– volume: 131
  start-page: 129
  year: 2018
  ident: R6
  article-title: Artificial intelligence in medical practice: the question to the answer?
  publication-title: Am J Med
  doi: 10.1016/j.amjmed.2017.10.035
– volume: 143
  start-page: 187
  year: 2017
  ident: R2
  article-title: Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research
  publication-title: Psychol Bull
  doi: 10.1037/bul0000084
– volume: 213
  start-page: 509
  year: 2018
  ident: R34
  article-title: Rise of the machines? machine learning approaches and mental health: opportunities and challenges
  publication-title: Br J Psychiatry
  doi: 10.1192/bjp.2018.105
– volume: 8
  start-page: 515
  year: 2018
  ident: R61
  article-title: Using exploratory data mining to identify important correlates of nonsuicidal self-injury frequency
  publication-title: Psychol Violence
  doi: 10.1037/vio0000146
– volume: 31
  start-page: 669
  year: 2018
  ident: R68
  article-title: Ethics and artificial intelligence: suicide prevention on facebook
  publication-title: Philos Technol
  doi: 10.1007/s13347-018-0336-0
– volume: 170
  start-page: 565
  year: 2019
  ident: R69
  article-title: Ethics, transparency, and public health at the intersection of innovation and Facebook's suicide prevention efforts
  publication-title: Ann Intern Med
  doi: 10.7326/M19-0366
– volume: 14
  year: 2019
  ident: R55
  article-title: Prediction models for high risk of suicide in Korean adolescents using machine learning techniques
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0217639
– volume: 1
  start-page: 343
  year: 2007
  ident: R42
  article-title: The psychological functions of function words
  publication-title: Soc Commun
– volume: 59
  start-page: 1261
  year: 2018
  ident: R56
  article-title: Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning
  publication-title: J Child Psychol Psychiatry
  doi: 10.1111/jcpp.12916
– volume: 24
  start-page: 1907
  year: 2020
  ident: R28
  article-title: Machine learning based suicide ideation prediction for military personnel
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.2988393
– volume: 382
  start-page: 266
  year: 2020
  article-title: Suicide
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1902944
– volume: 143
  start-page: 187
  year: 2017
  article-title: Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research
  publication-title: Psychol Bull
  doi: 10.1037/bul0000084
– volume: 2
  start-page: 59
  year: 2018
  article-title: Medicine and the rise of the robots: a qualitative review of recent advances of artificial intelligence in health
  publication-title: Leader
  doi: 10.1136/leader-2018-000071
– volume: 5
  year: 2019
  article-title: Association between suicidal ideation and suicide: meta-analyses of odds ratios, sensitivity, specificity and positive predictive value
  publication-title: BJPsych Open
  doi: 10.1192/bjo.2018.88
– volume: 55
  start-page: 1
  year: 2019
  article-title: Technology and mental health: the role of artificial intelligence
  publication-title: Eur Psychiatry
  doi: 10.1016/j.eurpsy.2018.08.004
– volume: 59
  start-page: 1261
  year: 2018
  article-title: Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning
  publication-title: J Child Psychol Psychiatry
  doi: 10.1111/jcpp.12916
– volume: 14
  year: 2019
  article-title: Prediction models for high risk of suicide in Korean adolescents using machine learning techniques
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0217639
– volume: 16
  start-page: 588
  year: 2019
  article-title: Detection of suicide attempters among suicide ideators using machine learning
  publication-title: Psychiatry Investig
  doi: 10.30773/pi.2019.06.19
– volume: 6
  start-page: 15
  year: 2017
  article-title: Instagram photos reveal predictive markers of depression
  publication-title: EPJ Data Sci
  doi: 10.1140/epjds/s13688-017-0110-z
– volume: 143
  start-page: 187
  year: 2017
  article-title: Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research
  publication-title: Psychol Bull
– volume: 192
  start-page: 98
  year: 2008
  article-title: Cross-national prevalence and risk factors for suicidal ideation, plans and attempts
  publication-title: Br J Psychiatry
  doi: 10.1192/bjp.bp.107.040113
– year: 2017
  article-title: Depression and self-harm risk assessment in online forums
  publication-title: ArXiv Prepr
– year: 2017
  article-title: Predicting adolescent suicide attempts with neural networks
  publication-title: ArXiv Prepr
– volume: 190
  year: 2018
  article-title: AI opens new frontier for suicide prevention
  publication-title: CMAJ
  doi: 10.1503/cmaj.109-5549
– volume: 13
  year: 2020
  article-title: Detection of suicide ideation in social media forums using deep learning
  publication-title: Algorithms
  doi: 10.3390/a13010007
– volume: 2018
  start-page: 1
  year: 2018
  article-title: Supervised learning for suicidal ideation detection in online user content
  publication-title: Complexity
  doi: 10.1155/2018/6157249
– volume: 48
  start-page: 413
  year: 2018
  article-title: Predictors of emerging suicide death among military personnel on social media networks
  publication-title: Suicide Life Threat Behav
  doi: 10.1111/sltb.12370
– volume: 25
  start-page: 414
  year: 2016
  article-title: Linking social media and medical record data: a study of adults presenting to an academic, urban emergency department
  publication-title: BMJ Qual Saf
  doi: 10.1136/bmjqs-2015-004489
– volume: 256
  start-page: 40
  year: 2017
  article-title: The specificity of public stigma: a comparison of suicide and depression-related stigma
  publication-title: Psychiatry Res
– volume: 213
  start-page: 509
  year: 2018
  article-title: Rise of the machines? machine learning approaches and mental health: opportunities and challenges
  publication-title: Br J Psychiatry
  doi: 10.1192/bjp.2018.105
– volume: 132
  year: 2019
  article-title: Individualized prediction of depressive disorder in the elderly: a multitask deep learning approach
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2019.103973
– volume: 262
  start-page: 175
  year: 2018
  article-title: Identifying the relative importance of non-suicidal self-injury features in classifying suicidal ideation, plans, and behavior using exploratory data mining
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2018.01.045
– volume: 8
  start-page: e15901
  year: 2020
  article-title: Testing suicide risk prediction algorithms using phone measurements with patients in acute mental health settings: feasibility study
  publication-title: JMIR Mhealth Uhealth
  doi: 10.2196/15901
– volume: 10
  year: 2018
  article-title: Natural language processing of social media as screening for suicide risk
  publication-title: Biomed Inform Insights
  doi: 10.1177/1178222618792860
– volume: 1
  start-page: 911
  year: 2017
  article-title: Machine learning of neural representations of suicide and emotion concepts identifies suicidal youth
  publication-title: Nat Hum Behav
  doi: 10.1038/s41562-017-0234-y
– volume: 184
  start-page: 170
  year: 2015
  article-title: Early identification of posttraumatic stress following military deployment: application of machine learning methods to a prospective study of Danish soldiers
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2015.05.057
– volume: 16
  year: 2019
  article-title: A meta-analysis of the rates of suicide ideation, attempts and deaths in people with epilepsy
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph16081451
– volume: 31
  start-page: 669
  year: 2018
  article-title: Ethics and artificial intelligence: suicide prevention on facebook
  publication-title: Philos Technol
  doi: 10.1007/s13347-018-0336-0
– volume: 2
  start-page: 183
  year: 2015
  article-title: Detecting suicidality on Twitter
  publication-title: Internet Interv
  doi: 10.1016/j.invent.2015.03.005
– volume: 24
  start-page: 1907
  year: 2020
  article-title: Machine learning based suicide ideation prediction for military personnel
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.2988393
– volume: 47
  start-page: 112
  year: 2017
  article-title: A machine learning approach to identifying the thought markers of suicidal subjects: a prospective multicenter trial
  publication-title: Suicide Life Threat Behav
  doi: 10.1111/sltb.12312
– volume: 5
  start-page: 2
  year: 2019
  article-title: Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning
  publication-title: NPJ Schizophr
  doi: 10.1038/s41537-018-0070-8
– volume: 48
  start-page: 31
  year: 2018
  article-title: The relationship between nonsuicidal self‐injury age of onset and severity of self‐harm
  publication-title: Suicide Life Threat Behav
  doi: 10.1111/sltb.12330
– volume: 5
  year: 2018
  article-title: Using neural networks with routine health records to identify suicide risk: feasibility study
  publication-title: JMIR Ment Health
  doi: 10.2196/10144
– volume: 131
  start-page: 129
  year: 2018
  article-title: Artificial intelligence in medical practice: the question to the answer?
  publication-title: Am J Med
  doi: 10.1016/j.amjmed.2017.10.035
– volume: 64
  year: 2017
  article-title: AI algorithms to prevent suicide gain traction
  publication-title: Nature
  doi: 10.1038/d41586-017-08307-0
– volume: 22
  start-page: 544
  year: 2017
  article-title: Predicting suicides after outpatient mental health visits in the army study to assess risk and resilience in Servicemembers (army STARRS)
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2016.110
– volume: 18
  start-page: 78
  year: 2009
  article-title: Why do people hurt themselves? new insights into the nature and functions of self-injury
  publication-title: Curr Dir Psychol Sci
  doi: 10.1111/j.1467-8721.2009.01613.x
– volume: 16
  year: 2019
  article-title: Global lifetime and 12-month prevalence of suicidal behavior, deliberate self-harm and non-suicidal self-injury in children and adolescents between 1989 and 2018: a meta-analysis
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph16224581
– volume: 5
  start-page: 457
  year: 2017
  article-title: Predicting risk of suicide attempts over time through machine learning
  publication-title: Clin Psychol Sci
  doi: 10.1177/2167702617691560
– volume: 1
  start-page: 343
  year: 2007
  article-title: The psychological functions of function words
  publication-title: Soc Commun
– volume: 57
  start-page: 157
  year: 2015
  article-title: Facebook use and disordered eating in college-aged women
  publication-title: J Adolesc Health
  doi: 10.1016/j.jadohealth.2015.04.026
– volume: 8
  start-page: 515
  year: 2018
  article-title: Using exploratory data mining to identify important correlates of nonsuicidal self-injury frequency
  publication-title: Psychol Violence
  doi: 10.1037/vio0000146
– volume: 29
  start-page: 870
  year: 2014
  article-title: Health care contacts in the year before suicide death
  publication-title: J Gen Intern Med
  doi: 10.1007/s11606-014-2767-3
– year: 2019
  article-title: Artificial intelligence based suicide prediction
  publication-title: Yale J Health Policy Law Ethics
– volume: 170
  start-page: 565
  year: 2019
  article-title: Ethics, transparency, and public health at the intersection of innovation and Facebook's suicide prevention efforts
  publication-title: Ann Intern Med
  doi: 10.7326/M19-0366
– volume: 14
  year: 2019
  article-title: See your mental state from your walk: recognizing anxiety and depression through Kinect-recorded gait data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0216591
– volume: 3
  year: 2016
  article-title: Predicting risk of suicide attempt using history of physical illnesses from electronic medical records
  publication-title: JMIR Ment Health
  doi: 10.2196/mental.5475
– volume: 48
  start-page: 413
  year: 2018
  ident: 2025072913363425000_27.3.e100175.19
  article-title: Predictors of emerging suicide death among military personnel on social media networks
  publication-title: Suicide Life Threat Behav
  doi: 10.1111/sltb.12370
– ident: 2025072913363425000_27.3.e100175.13
– ident: 2025072913363425000_27.3.e100175.36
– ident: 2025072913363425000_27.3.e100175.77
  doi: 10.1503/cmaj.109-5549
– volume: 2
  start-page: 183
  year: 2015
  ident: 2025072913363425000_27.3.e100175.17
  article-title: Detecting suicidality on Twitter
  publication-title: Internet Interv
  doi: 10.1016/j.invent.2015.03.005
– volume: 16
  year: 2019
  ident: 2025072913363425000_27.3.e100175.59
  article-title: Global lifetime and 12-month prevalence of suicidal behavior, deliberate self-harm and non-suicidal self-injury in children and adolescents between 1989 and 2018: a meta-analysis
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph16224581
– volume: 6
  start-page: 15
  year: 2017
  ident: 2025072913363425000_27.3.e100175.38
  article-title: Instagram photos reveal predictive markers of depression
  publication-title: EPJ Data Sci
  doi: 10.1140/epjds/s13688-017-0110-z
– volume: 382
  start-page: 266
  year: 2020
  ident: 2025072913363425000_27.3.e100175.1
  article-title: Suicide
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1902944
– ident: 2025072913363425000_27.3.e100175.3
– volume: 29
  start-page: 870
  year: 2014
  ident: 2025072913363425000_27.3.e100175.5
  article-title: Health care contacts in the year before suicide death
  publication-title: J Gen Intern Med
  doi: 10.1007/s11606-014-2767-3
– ident: 2025072913363425000_27.3.e100175.71
– ident: 2025072913363425000_27.3.e100175.78
– ident: 2025072913363425000_27.3.e100175.21
  doi: 10.1145/2678025.2701395
– volume: 5
  year: 2019
  ident: 2025072913363425000_27.3.e100175.32
  article-title: Association between suicidal ideation and suicide: meta-analyses of odds ratios, sensitivity, specificity and positive predictive value
  publication-title: BJPsych Open
  doi: 10.1192/bjo.2018.88
– ident: 2025072913363425000_27.3.e100175.44
  doi: 10.1609/icwsm.v8i1.14574
– ident: 2025072913363425000_27.3.e100175.16
  doi: 10.1145/2700171.2791026
– volume: 31
  start-page: 669
  year: 2018
  ident: 2025072913363425000_27.3.e100175.68
  article-title: Ethics and artificial intelligence: suicide prevention on facebook
  publication-title: Philos Technol
  doi: 10.1007/s13347-018-0336-0
– volume: 16
  start-page: 588
  year: 2019
  ident: 2025072913363425000_27.3.e100175.10
  article-title: Detection of suicide attempters among suicide ideators using machine learning
  publication-title: Psychiatry Investig
  doi: 10.30773/pi.2019.06.19
– volume: 2
  start-page: 59
  year: 2018
  ident: 2025072913363425000_27.3.e100175.11
  article-title: Medicine and the rise of the robots: a qualitative review of recent advances of artificial intelligence in health
  publication-title: Leader
  doi: 10.1136/leader-2018-000071
– volume: 55
  start-page: 1
  year: 2019
  ident: 2025072913363425000_27.3.e100175.35
  article-title: Technology and mental health: the role of artificial intelligence
  publication-title: Eur Psychiatry
  doi: 10.1016/j.eurpsy.2018.08.004
– volume: 14
  year: 2019
  ident: 2025072913363425000_27.3.e100175.55
  article-title: Prediction models for high risk of suicide in Korean adolescents using machine learning techniques
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0217639
– ident: 2025072913363425000_27.3.e100175.45
  doi: 10.18653/v1/D17-1322
– volume: 213
  start-page: 509
  year: 2018
  ident: 2025072913363425000_27.3.e100175.34
  article-title: Rise of the machines? machine learning approaches and mental health: opportunities and challenges
  publication-title: Br J Psychiatry
  doi: 10.1192/bjp.2018.105
– ident: 2025072913363425000_27.3.e100175.53
  doi: 10.3115/v1/W15-1201
– volume: 57
  start-page: 157
  year: 2015
  ident: 2025072913363425000_27.3.e100175.49
  article-title: Facebook use and disordered eating in college-aged women
  publication-title: J Adolesc Health
  doi: 10.1016/j.jadohealth.2015.04.026
– volume: 48
  start-page: 31
  year: 2018
  ident: 2025072913363425000_27.3.e100175.60
  article-title: The relationship between nonsuicidal self‐injury age of onset and severity of self‐harm
  publication-title: Suicide Life Threat Behav
  doi: 10.1111/sltb.12330
– volume: 170
  start-page: 565
  year: 2019
  ident: 2025072913363425000_27.3.e100175.69
  article-title: Ethics, transparency, and public health at the intersection of innovation and Facebook's suicide prevention efforts
  publication-title: Ann Intern Med
  doi: 10.7326/M19-0366
– ident: 2025072913363425000_27.3.e100175.12
– ident: 2025072913363425000_27.3.e100175.70
– ident: 2025072913363425000_27.3.e100175.33
– ident: 2025072913363425000_27.3.e100175.23
  doi: 10.1145/3308558.3313698
– ident: 2025072913363425000_27.3.e100175.74
– ident: 2025072913363425000_27.3.e100175.75
– volume: 59
  start-page: 1261
  year: 2018
  ident: 2025072913363425000_27.3.e100175.56
  article-title: Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning
  publication-title: J Child Psychol Psychiatry
  doi: 10.1111/jcpp.12916
– volume: 10
  year: 2018
  ident: 2025072913363425000_27.3.e100175.24
  article-title: Natural language processing of social media as screening for suicide risk
  publication-title: Biomed Inform Insights
  doi: 10.1177/1178222618792860
– volume: 143
  start-page: 187
  year: 2017
  ident: 2025072913363425000_27.3.e100175.25
  article-title: Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research
  publication-title: Psychol Bull
  doi: 10.1037/bul0000084
– volume: 8
  start-page: 515
  year: 2018
  ident: 2025072913363425000_27.3.e100175.61
  article-title: Using exploratory data mining to identify important correlates of nonsuicidal self-injury frequency
  publication-title: Psychol Violence
  doi: 10.1037/vio0000146
– ident: 2025072913363425000_27.3.e100175.43
– ident: 2025072913363425000_27.3.e100175.47
  doi: 10.3115/v1/W15-1206
– ident: 2025072913363425000_27.3.e100175.15
– volume: 5
  start-page: 2
  year: 2019
  ident: 2025072913363425000_27.3.e100175.40
  article-title: Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning
  publication-title: NPJ Schizophr
  doi: 10.1038/s41537-018-0070-8
– ident: 2025072913363425000_27.3.e100175.51
  doi: 10.3115/v1/W14-3207
– ident: 2025072913363425000_27.3.e100175.26
  doi: 10.1192/bjp.bp.107.040113
– ident: 2025072913363425000_27.3.e100175.14
  doi: 10.1038/d41586-017-08307-0
– ident: 2025072913363425000_27.3.e100175.48
  doi: 10.3115/v1/W15-1202
– ident: 2025072913363425000_27.3.e100175.58
  doi: 10.1111/j.1467-8721.2009.01613.x
– volume: 1
  start-page: 343
  year: 2007
  ident: 2025072913363425000_27.3.e100175.42
  article-title: The psychological functions of function words
  publication-title: Soc Commun
– volume: 8
  start-page: e15901
  year: 2020
  ident: 2025072913363425000_27.3.e100175.65
  article-title: Testing suicide risk prediction algorithms using phone measurements with patients in acute mental health settings: feasibility study
  publication-title: JMIR Mhealth Uhealth
  doi: 10.2196/15901
– ident: 2025072913363425000_27.3.e100175.18
  doi: 10.1145/2858036.2858207
– ident: 2025072913363425000_27.3.e100175.31
  doi: 10.1155/2018/2380650
– volume: 143
  start-page: 187
  year: 2017
  ident: 2025072913363425000_27.3.e100175.2
  article-title: Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research
  publication-title: Psychol Bull
  doi: 10.1037/bul0000084
– ident: 2025072913363425000_27.3.e100175.73
– ident: 2025072913363425000_27.3.e100175.76
– ident: 2025072913363425000_27.3.e100175.57
– ident: 2025072913363425000_27.3.e100175.20
  doi: 10.18653/v1/W16-0311
– ident: 2025072913363425000_27.3.e100175.46
  doi: 10.3115/v1/W15-1207
– volume: 24
  start-page: 1907
  year: 2020
  ident: 2025072913363425000_27.3.e100175.28
  article-title: Machine learning based suicide ideation prediction for military personnel
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.2988393
– volume: 1
  start-page: 911
  year: 2017
  ident: 2025072913363425000_27.3.e100175.29
  article-title: Machine learning of neural representations of suicide and emotion concepts identifies suicidal youth
  publication-title: Nat Hum Behav
  doi: 10.1038/s41562-017-0234-y
– volume: 262
  start-page: 175
  year: 2018
  ident: 2025072913363425000_27.3.e100175.62
  article-title: Identifying the relative importance of non-suicidal self-injury features in classifying suicidal ideation, plans, and behavior using exploratory data mining
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2018.01.045
– ident: 2025072913363425000_27.3.e100175.67
– volume: 5
  start-page: 457
  year: 2017
  ident: 2025072913363425000_27.3.e100175.9
  article-title: Predicting risk of suicide attempts over time through machine learning
  publication-title: Clin Psychol Sci
  doi: 10.1177/2167702617691560
– volume: 47
  start-page: 112
  year: 2017
  ident: 2025072913363425000_27.3.e100175.22
  article-title: A machine learning approach to identifying the thought markers of suicidal subjects: a prospective multicenter trial
  publication-title: Suicide Life Threat Behav
  doi: 10.1111/sltb.12312
– ident: 2025072913363425000_27.3.e100175.52
  doi: 10.18653/v1/W17-3110
– volume: 16
  year: 2019
  ident: 2025072913363425000_27.3.e100175.63
  article-title: A meta-analysis of the rates of suicide ideation, attempts and deaths in people with epilepsy
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph16081451
– ident: 2025072913363425000_27.3.e100175.27
  doi: 10.1136/bmjqs-2015-004489
– ident: 2025072913363425000_27.3.e100175.6
  doi: 10.1016/j.amjmed.2017.10.035
– volume: 14
  year: 2019
  ident: 2025072913363425000_27.3.e100175.37
  article-title: See your mental state from your walk: recognizing anxiety and depression through Kinect-recorded gait data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0216591
– ident: 2025072913363425000_27.3.e100175.72
– volume: 132
  year: 2019
  ident: 2025072913363425000_27.3.e100175.39
  article-title: Individualized prediction of depressive disorder in the elderly: a multitask deep learning approach
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2019.103973
– volume: 22
  start-page: 544
  year: 2017
  ident: 2025072913363425000_27.3.e100175.7
  article-title: Predicting suicides after outpatient mental health visits in the army study to assess risk and resilience in Servicemembers (army STARRS)
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2016.110
– ident: 2025072913363425000_27.3.e100175.54
  doi: 10.18653/v1/E17-1015
– volume: 3
  year: 2016
  ident: 2025072913363425000_27.3.e100175.64
  article-title: Predicting risk of suicide attempt using history of physical illnesses from electronic medical records
  publication-title: JMIR Ment Health
  doi: 10.2196/mental.5475
– volume: 184
  start-page: 170
  year: 2015
  ident: 2025072913363425000_27.3.e100175.41
  article-title: Early identification of posttraumatic stress following military deployment: application of machine learning methods to a prospective study of Danish soldiers
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2015.05.057
– volume: 256
  start-page: 40
  year: 2017
  ident: 2025072913363425000_27.3.e100175.4
  article-title: The specificity of public stigma: a comparison of suicide and depression-related stigma
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2017.06.015
– volume: 5
  year: 2018
  ident: 2025072913363425000_27.3.e100175.8
  article-title: Using neural networks with routine health records to identify suicide risk: feasibility study
  publication-title: JMIR Ment Health
  doi: 10.2196/10144
– volume: 13
  year: 2020
  ident: 2025072913363425000_27.3.e100175.30
  article-title: Detection of suicide ideation in social media forums using deep learning
  publication-title: Algorithms
  doi: 10.3390/a13010007
– ident: 2025072913363425000_27.3.e100175.50
  doi: 10.1145/2858036.2858246
– ident: 2025072913363425000_27.3.e100175.66
SSID ssj0002244637
Score 2.296346
SecondaryResourceType review_article
Snippet Background: Suicide poses a significant health burden worldwide. In many cases, people at risk of suicide do not engage with their doctor or community due to...
Background: Suicide poses a significant health burden worldwide. In many cases, people at risk of suicide do not engage with their doctor or community due to...
SourceID doaj
pubmedcentral
proquest
crossref
bmj
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e100175
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Big Data
Datasets
Electronic health records
health care
Health informatics
information science
Machine learning
medical informatics
Medical records
Neural networks
patient care
Review
Risk factors
Social networks
Suicides & suicide attempts
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwsCAaJ8yUgIBhSRxI4TsxVEVRiYqNQtsmNbFEGC2vT_cxenpVmAgdU-J_H5HN-T794RchEarPuGBU1Y5gJeZCaQqQawEjkB7pHBbEyMtngWozF_miSTtVJfGBPm6YG94m4SJyX4LCpVSBvjhDYKUIzRBo4yzWWBf18489bA1FtD6gIwh6XLLBkmbvTH22sxBaMAuIS8QxhYuAmNnfOooe3v-JrdSMm1o2e4Q7Zbn5EO_Lfukg1b7pH7wSO1TeKTofPFtJgaSz9neO2CqqZ1Vb3Pb6miPmuyofempZp5om_qM1b2yXj48HI_CtqKCIEGJFEHSvBIZwg6mIl5yuKQGxsVwonIydiEhbEAv3gGbopIuI3AO8tM7KLQ8dhpl7AD0iur0h4SiszvNg61tAo2caoyjr5QyKNCCm6Z7ZMr0E7eWvQ8b8ACE7nXY456zL0e--QSJT89O8aPgtFS1XnRMpBjIYz3H8dcr8b85Q13uIIrSeTObhrAovLWovLfLKpPTpbr_z19QF7wfMDHsk_OV92wFfF-RZW2WoAMB_iYZJKDTNqxm84HdXvK6WtD6p0CUOcJO_qPGRyTrdbOg1CekF49W9hT8J1qfdZsky_M3RLY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUKXLhUoFKxLSBXQu2hijaJHTvmgmBVBD30VKS9Rf5kF9Fk2Y__z0zi3SWXVa_JRNkdj-P37Jk3hFymDvu-YUMTVoaE29IlShogK1kQAI8cVmNitsUfcf_If4-LcdxwW8S0yvU3sf1Qu8biHvkQoC-sdEBQ1PXsNcGuUXi6Glto7JEDlC7DlC45lps9FlieuGByXSvDxND8e57YKYQGkCZUH8L0wj242FuVWvH-HuLs50u-W4DujsjHiBzpTTfUx-SDrz-R0c0D9W35k6OL1dROnaezOR6-oMPpsmleFldU0652shX5prWed3LftKtbOSGPd7_-ju6T2BchMcAnlokWPDMlUg_mci5ZnnLnMyuCyILKXWqdBxLGSwArouAePMNKl4csDTwPJhTsM9mvm9qfEor67z5PjfIaprLUJUdElPLMKsE98wPyA7xTxbheVC1lYKLq_FihH6vOjwPyHS1nnUbGTsNs7erKRh1ybIfxsvOZn5tn_ucNtziCG0tU0G4vNPOnKk7IqghKARbWUqMcURDGaWDHzjiASIYrOyBn6_Hf_v1tEA7It81tmJB4yqJr36zAhgOJLErFwUb24qb3g_p36umklfaWQNd5wb7sfvlXchgjOEnVGdlfzlf-HLDR0ly0E-ANqCAKJQ
  priority: 102
  providerName: ProQuest
Title AI enabled suicide prediction tools: a qualitative narrative review
URI https://informatics.bmj.com/content/27/3/e100175.full
https://www.proquest.com/docview/2551752109
https://www.proquest.com/docview/2449958949
https://pubmed.ncbi.nlm.nih.gov/PMC7549453
https://doaj.org/article/5f99507a7a5445f6bda106dbd819b49c
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7yuPRSWprSbVOjQkkPrallyZLV22ZJSAIJpSRlezKWJZEtqTfs4_93RvZuawghFxuskR-jEfo-yfMJ4GPmaN832tBElCGVTelSoy2SFR4UwiNH2Zj0t8WVOruRF9NiugNfHl7B50J9tX9-3zYzbE3kOSQYpItd2I-iLBTPv663Myo4GEkl9CYz5sGqOILgxcEYFKX6B_hy-Hfkf8PN6Qt43uNENu4a9iXs-PYVTMbnzMdkJ8eW61kzc57dL2iphdzLVvP53fIbq1mXKRklvVlbLzpxb9ZlqRzAzenJ9eQs7XdBSC2yh1VaK8ltSURDuFxqkWfSed6ooHgwucsa55FyyRKhiSqk54jISpcHngWZBxsK8Rr22nnr3wAjtXefZ9b4GjuurktJ-CeTvDFKeuFH8Am9U_VRvKwiQRCq6vxYkR-rzo8jOCLL-04R41FDvnF11fSq47T5xd2jdT5v6zzlCcfUgltL0suOFzCIqr77VUUwBpFvrWsSHwrKuhq5sLMOAZGVphnB4ab9_30-si28P3JiM4IP22LsfrSmUrd-vkYbiZSxKI1EGz2Im8ELDUva2W0U8tZIzmUh3j7Vme_gWR_LaWYOYW-1WPv3iIlWNoFdPdV4LCc8id0igf3x5PLyJ56PT66-_0jibEMSp7P-AuKkCek
linkProvider BMJ Publishing Group Ltd
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXBALEQgEj8TigqEnsODESQm1ptUvLCqFW6s34SReVZNmHEH-K38hMHltyWXHpNZkoyXg88322Z4aQF7HDvm_Y0IQVIeK2cJHMDZCVJAiARw6zMfG0xUSMzvjH8-x8i_zpcmHwWGXnE2tH7SqLa-S7AH0h0gFBke9nPyPsGoW7q10LjcYsjv3vX0DZFu_GH2B8X6bp0eHpwShquwpEBtD4MtKCJ6ZA4M5cynOWxtz5xIogkiBTF1vngcLwAkK9yLhPAOEULg1JHHgaTMAuEeDytzkDKjMg2_uHk89f1qs6EBC5YHmXncPErvnx_cJOwRiBpmG9IzzQeAMu9uJg3S6gh3H7JzT_CXlHd8jtFqvSvca47pItX94jB3tj6uuEK0cXq6mdOk9nc9zuwSGmy6q6XLylmjbZmnVZcVrqeVNgnDaZMvfJ2bXo7AEZlFXpHxKKFed9GhvpNTiPXBccMVjMEysF98wPyWvQjmpn0kLVJIUJ1ehRoR5Vo8cheYWSs6Yqx0bBpFO1sm3lc2zAcbnxmTfrZ_7nDfs4gmtJrNldX6jm31TrAlQWpAT0rXONBZCCME4DH3fGASgzXNoh2enG_-r3r8x-SJ6vb4MLwH0dXfpqBTIcaGtWSA4yec9ueh_Uv1NOL-pi4nnGJc_Yo80vf0Zujk4_naiT8eT4MbnVWnMUyx0yWM5X_gkgs6V52k4HSr5e9wz8CyzlRko
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRCXqggQCwWMxOOAoo1jx44rIVRaVl2KKg5U2puJY5suapNlH6r61_h1zOSxJZcVl16TiZKM5_GNPQ9CXscO577hQBOehUgUmYu0shCssCABHjmsxsRsi1N5fCa-TNLJFvnT1cJgWmVnE2tD7aoC98iHAH3B00GAooehTYv4djT6OPsd4QQpPGntxmk0InLir68gfFt8GB_BWr9JktHn74fHUTthILKAzJdRLgWzGYJ47hKheBIL51khg2RBJy4unIdwRmTg9mUqPAO0k7kksDiIJNiAEyPA_N9VPGWoY2qi1vs74BqF5Kqr0-FyaC9_nRdTEEsI2LDzEaY23oGLPY9YDw7ood1-ruY_zm-0S3Za1EoPGjF7QLZ8-ZAcHoypr0uvHF2spsXUeTqb48EPLjZdVtXFYp_mtKnbrBuM0zKfN63GaVMz84ic3QrHHpPtsir9E0Kx97xPYqt9DmZE5ZlANBYLVmgpPPcD8g64Y1qdWpg6XOHSNHw0yEfT8HFA3iLlrOnPsZGQdaw2RdsDHUdxXGx85v36mf95wydcwTUldu-uL1Tzn6Y1BiYNWgMOz1WOrZCCtC6HyNxZB_DMCl0MyF63_je_f6MAA_JqfRuMAZ7w5KWvVkAjIIBNMy2ARvXkpvdB_Tvl9LxuK65SoUXKn25--UtyD_TOfB2fnjwj91thjmK9R7aX85V_DhBtaV_UukDJj9tWvr_0tEka
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI+enabled+suicide+prediction+tools%3A+a+qualitative+narrative+review&rft.jtitle=BMJ+health+%26+care+informatics&rft.au=D%E2%80%99Hotman%2C+Daniel&rft.au=Loh%2C+Erwin&rft.date=2020-10-09&rft.issn=2632-1009&rft.eissn=2632-1009&rft.volume=27&rft.issue=3&rft.spage=e100175&rft_id=info:doi/10.1136%2Fbmjhci-2020-100175&rft.externalDBID=n%2Fa&rft.externalDocID=10_1136_bmjhci_2020_100175
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-1009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-1009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-1009&client=summon