Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders

Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well...

Full description

Saved in:
Bibliographic Details
Published inMolecular autism Vol. 4; no. 1; p. 30
Main Authors Stamova, Boryana S, Tian, Yingfang, Nordahl, Christine W, Shen, Mark D, Rogers, Sally, Amaral, David G, Sharp, Frank R
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 04.09.2013
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. RNA from blood was processed on whole genome exon arrays for 2-4-year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling. The only pathways significant after multiple comparison corrections (FDR <0.05) were the Nrf2-mediated reactive oxygen species (ROS) oxidative response (superoxide dismutase 2, catalase, peroxiredoxin 1, PIK3C3, DNAJC17, microsomal glutathione S-transferase 3) and superoxide radical degradation (SOD2, CAT). These data support differences in alternative splicing of mRNA in blood of ASD subjects compared to TD controls that differ related to head size. The findings are preliminary, need to be replicated in independent cohorts, and predicted alternative splicing differences need to be confirmed using direct analytical methods.
AbstractList BACKGROUND: Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. METHODS: RNA from blood was processed on whole genome exon arrays for 2-4-year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). RESULTS: A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling. The only pathways significant after multiple comparison corrections (FDR <0.05) were the Nrf2-mediated reactive oxygen species (ROS) oxidative response (superoxide dismutase 2, catalase, peroxiredoxin 1, PIK3C3, DNAJC17, microsomal glutathione S-transferase 3) and superoxide radical degradation (SOD2, CAT). CONCLUSIONS: These data support differences in alternative splicing of mRNA in blood of ASD subjects compared to TD controls that differ related to head size. The findings are preliminary, need to be replicated in independent cohorts, and predicted alternative splicing differences need to be confirmed using direct analytical methods.
Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume.BACKGROUNDSince RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume.RNA from blood was processed on whole genome exon arrays for 2-4-year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20).METHODSRNA from blood was processed on whole genome exon arrays for 2-4-year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20).A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling. The only pathways significant after multiple comparison corrections (FDR <0.05) were the Nrf2-mediated reactive oxygen species (ROS) oxidative response (superoxide dismutase 2, catalase, peroxiredoxin 1, PIK3C3, DNAJC17, microsomal glutathione S-transferase 3) and superoxide radical degradation (SOD2, CAT).RESULTSA total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling. The only pathways significant after multiple comparison corrections (FDR <0.05) were the Nrf2-mediated reactive oxygen species (ROS) oxidative response (superoxide dismutase 2, catalase, peroxiredoxin 1, PIK3C3, DNAJC17, microsomal glutathione S-transferase 3) and superoxide radical degradation (SOD2, CAT).These data support differences in alternative splicing of mRNA in blood of ASD subjects compared to TD controls that differ related to head size. The findings are preliminary, need to be replicated in independent cohorts, and predicted alternative splicing differences need to be confirmed using direct analytical methods.CONCLUSIONSThese data support differences in alternative splicing of mRNA in blood of ASD subjects compared to TD controls that differ related to head size. The findings are preliminary, need to be replicated in independent cohorts, and predicted alternative splicing differences need to be confirmed using direct analytical methods.
Background Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. Methods RNA from blood was processed on whole genome exon arrays for 2-4-year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). Results A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling. The only pathways significant after multiple comparison corrections (FDR <0.05) were the Nrf2-mediated reactive oxygen species (ROS) oxidative response (superoxide dismutase 2, catalase, peroxiredoxin 1, PIK3C3, DNAJC17, microsomal glutathione S-transferase 3) and superoxide radical degradation (SOD2, CAT). Conclusions These data support differences in alternative splicing of mRNA in blood of ASD subjects compared to TD controls that differ related to head size. The findings are preliminary, need to be replicated in independent cohorts, and predicted alternative splicing differences need to be confirmed using direct analytical methods. Keywords: Autism, ASD, RNA, Splicing, Head size, Gene expression
Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. RNA from blood was processed on whole genome exon arrays for 2-4-year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling. The only pathways significant after multiple comparison corrections (FDR <0.05) were the Nrf2-mediated reactive oxygen species (ROS) oxidative response (superoxide dismutase 2, catalase, peroxiredoxin 1, PIK3C3, DNAJC17, microsomal glutathione S-transferase 3) and superoxide radical degradation (SOD2, CAT). These data support differences in alternative splicing of mRNA in blood of ASD subjects compared to TD controls that differ related to head size. The findings are preliminary, need to be replicated in independent cohorts, and predicted alternative splicing differences need to be confirmed using direct analytical methods.
Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. RNA from blood was processed on whole genome exon arrays for 2-4-year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling. The only pathways significant after multiple comparison corrections (FDR <0.05) were the Nrf2-mediated reactive oxygen species (ROS) oxidative response (superoxide dismutase 2, catalase, peroxiredoxin 1, PIK3C3, DNAJC17, microsomal glutathione S-transferase 3) and superoxide radical degradation (SOD2, CAT). These data support differences in alternative splicing of mRNA in blood of ASD subjects compared to TD controls that differ related to head size. The findings are preliminary, need to be replicated in independent cohorts, and predicted alternative splicing differences need to be confirmed using direct analytical methods.
Audience Academic
Author Amaral, David G
Rogers, Sally
Stamova, Boryana S
Nordahl, Christine W
Shen, Mark D
Sharp, Frank R
Tian, Yingfang
AuthorAffiliation 5 MIND Institute Research Wet Labs, University of California at Davis, Room 2417, 2805 50th Street, Sacramento, CA 95817, USA
2 Department of Neurology, University of California at Davis, Sacramento, CA 95817, USA
3 Department of Psychiatry and Behavioral Sciences, University of California at Davis, Sacramento, CA 95817, USA
1 MIND Institute, University of California at Davis, Sacramento, CA 95817, USA
4 College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
AuthorAffiliation_xml – name: 5 MIND Institute Research Wet Labs, University of California at Davis, Room 2417, 2805 50th Street, Sacramento, CA 95817, USA
– name: 3 Department of Psychiatry and Behavioral Sciences, University of California at Davis, Sacramento, CA 95817, USA
– name: 4 College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
– name: 2 Department of Neurology, University of California at Davis, Sacramento, CA 95817, USA
– name: 1 MIND Institute, University of California at Davis, Sacramento, CA 95817, USA
Author_xml – sequence: 1
  givenname: Boryana S
  surname: Stamova
  fullname: Stamova, Boryana S
– sequence: 2
  givenname: Yingfang
  surname: Tian
  fullname: Tian, Yingfang
– sequence: 3
  givenname: Christine W
  surname: Nordahl
  fullname: Nordahl, Christine W
– sequence: 4
  givenname: Mark D
  surname: Shen
  fullname: Shen, Mark D
– sequence: 5
  givenname: Sally
  surname: Rogers
  fullname: Rogers, Sally
– sequence: 6
  givenname: David G
  surname: Amaral
  fullname: Amaral, David G
– sequence: 7
  givenname: Frank R
  surname: Sharp
  fullname: Sharp, Frank R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24007566$$D View this record in MEDLINE/PubMed
BookMark eNp1kktrGzEQgJeS0jyaa49loVByWVfv1V4KJqQPCPTSnoVWO7JVtJIr7br431fGSbDbRjpIjL75kEZzWZ2FGKCq3mC0wFiKDwQx1BDakYY1FL2oLp4CZ0f78-o655-oDIoZY-RVdU4YQi0X4qIa7rZugGCgtjHVg7MWEoTJaV9rP0EKenJbqPPGO-PCqnah7n2MQx1tvYtzifRxl-vfblrXep5cHgsLZkrzWGw5pgFSfl29tNpnuH5Yr6ofn-6-335p7r99_nq7vG96zsTUEEx0OwhpiUWGUwyUCtIKxDjm2khhOwEwcMGlJsyaDjNtpZBaDpIjLVt6VX08eDdzP8JgykOS9mqT3KjTTkXt1OlJcGu1iltFJRMt7YpgeRD0Lj4jOD0xcVT7Qqt9oRVTFBXHzcMlUvw1Q57U6LIB73WAOGeFGe8wx4Swgr47oCvtQblgY5GaPa6WnLJWdlySQi3-Q5U5wOhM6QjrSvwk4f1RwhrKR65z9OV3Ysin4Nvjej2987E9CsAOgEkx5wRWGTfpvadcwXmFkdo34r8lWPyV9mh-JuEPa0reDw
CitedBy_id crossref_primary_10_1016_j_bbr_2015_06_043
crossref_primary_10_1080_20473869_2023_2185959
crossref_primary_10_1007_s00439_015_1585_y
crossref_primary_10_1080_1744666X_2020_1850273
crossref_primary_10_3389_fpsyt_2021_554621
crossref_primary_10_1073_pnas_2206758120
crossref_primary_10_1093_nar_gkv816
crossref_primary_10_1016_j_jhazmat_2025_137214
crossref_primary_10_1016_j_ijdevneu_2016_12_006
crossref_primary_10_1097_MCD_0000000000000160
crossref_primary_10_1016_j_pbb_2021_173312
crossref_primary_10_2217_bmm_13_158
crossref_primary_10_1073_pnas_1912625116
crossref_primary_10_1002_ajmg_a_62173
crossref_primary_10_1038_s41598_018_26093_1
crossref_primary_10_3389_fneur_2020_584695
crossref_primary_10_1016_j_neuron_2017_03_026
crossref_primary_10_1016_j_envres_2023_115769
crossref_primary_10_1096_fj_201902677R
crossref_primary_10_1242_jcs_261406
crossref_primary_10_18632_aging_202259
crossref_primary_10_1002_wrna_1280
crossref_primary_10_1186_s13229_015_0029_9
crossref_primary_10_1038_s42003_024_07332_w
crossref_primary_10_1111_gbb_12430
crossref_primary_10_1007_s00702_022_02472_x
crossref_primary_10_3389_fgene_2019_01186
crossref_primary_10_1093_hmg_ddy199
crossref_primary_10_1177_0271678X251322598
crossref_primary_10_1161_STROKEAHA_114_007482
crossref_primary_10_5853_jos_2016_01368
crossref_primary_10_1177_0883073815602067
crossref_primary_10_1016_j_neurobiolaging_2023_05_001
crossref_primary_10_1038_srep39663
crossref_primary_10_3389_fpsyt_2021_715346
crossref_primary_10_1186_s13229_015_0017_0
crossref_primary_10_1016_j_reprotox_2018_01_008
crossref_primary_10_1016_j_ygeno_2021_05_038
crossref_primary_10_1016_j_celrep_2022_110615
crossref_primary_10_1186_s13229_021_00417_x
crossref_primary_10_1002_acn3_652
crossref_primary_10_3390_ijms18040828
crossref_primary_10_1016_j_bbagrm_2017_08_007
crossref_primary_10_1002_aur_3314
crossref_primary_10_1002_humu_24414
crossref_primary_10_3389_fgene_2021_749415
Cites_doi 10.1016/j.neulet.2010.08.031
10.1016/j.bbi.2011.08.007
10.1007/978-0-387-77374-2_11
10.1016/j.conb.2012.04.008
10.1016/j.jchemneu.2011.10.002
10.1074/jbc.273.26.16319
10.1073/pnas.1121120109
10.1002/ana.20315
10.1523/JNEUROSCI.5714-09.2010
10.1016/S1567-133X(02)00019-4
10.1007/BF02172145
10.1074/jbc.M112.378901
10.1038/ng1295-376
10.1016/j.gde.2009.04.004
10.1073/pnas.0605414103
10.1203/PDR.0b013e318212f16b
10.1038/tp.2012.61
10.1111/j.1469-8749.2012.04316.x
10.1038/nature10989
10.1023/A:1023036509476
10.1016/j.bbi.2008.08.001
10.1016/S0006-291X(02)02378-1
10.1016/j.biopsych.2010.05.024
10.1001/jama.2010.1706
10.1073/pnas.0704964104
10.1002/jnr.23189
10.1016/j.bbaexp.2005.06.008
10.1242/jcs.014290
10.1016/j.molcel.2007.07.018
10.1023/A:1015337611258
10.1093/nar/gkn941
10.1038/mp.2008.63
10.1093/hmg/ddi482
10.1016/j.jneuroim.2010.10.025
10.1038/embor.2011.101
10.1158/0008-5472.CAN-12-3082
10.1038/sj.mp.4001953
10.1038/nm1201-1356
10.1016/j.nurt.2010.05.003
10.1136/jmg.2004.024646
10.1038/ng.835
10.1016/S0168-9525(01)02626-9
10.1186/2040-2392-3-12
10.1093/bioinformatics/btf877
10.1016/j.psychres.2010.04.057
10.1016/j.bbabio.2010.04.018
10.1007/s11064-012-0775-4
10.1016/j.cell.2008.10.017
10.1073/pnas.1107560108
10.1016/j.coi.2006.09.005
10.1196/annals.1381.009
10.1111/cge.12101
10.1051/medsci/2012282004
10.1016/j.cell.2008.10.016
10.1016/j.gene.2011.11.038
10.1016/j.cell.2009.03.010
10.1007/s12011-010-8840-9
10.1016/j.ygeno.2007.09.003
10.1016/j.freeradbiomed.2012.03.011
10.1007/s10803-011-1260-7
10.1038/nature10110
10.1093/hmg/ddl004
10.1016/j.conb.2012.05.004
10.1016/j.micinf.2007.06.009
10.1189/jlb.1205707
10.1371/journal.pone.0019076
10.1016/j.bbi.2009.08.001
10.1016/j.molcel.2011.05.027
10.1007/s10803-008-0674-3
10.1016/j.braindev.2012.03.011
10.1023/A:1005592401947
10.1126/science.1227764
10.1126/science.1138659
10.1523/JNEUROSCI.5178-12.2013
10.1038/mp.2011.155
10.1002/dvdy.21132
10.1667/RR1191.1
10.1016/j.tics.2011.07.003
10.1093/bfgp/elr020
10.1212/WNL.57.2.245
10.1002/ana.22673
10.1038/mp.2010.136
10.1007/s12035-011-8192-2
10.1001/archpsyc.62.12.1366
10.1186/gb-2007-8-4-r64
10.1097/WAD.0b013e31819d494e
ContentType Journal Article
Copyright COPYRIGHT 2013 BioMed Central Ltd.
Copyright © 2013 Stamova et al.; licensee BioMed Central Ltd. 2013 Stamova et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2013 BioMed Central Ltd.
– notice: Copyright © 2013 Stamova et al.; licensee BioMed Central Ltd. 2013 Stamova et al.; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1186/2040-2392-4-30
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic



PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2040-2392
EndPage 30
ExternalDocumentID PMC3846739
oai_biomedcentral_com_2040_2392_4_30
A534789582
24007566
10_1186_2040_2392_4_30
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIH HHS
  grantid: P51 OD011107
GroupedDBID ---
0R~
2VQ
4.4
53G
5VS
7RV
7X7
88E
8AO
8C1
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFS
ACIHN
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BKEYQ
BKNYI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
IPNFZ
ITC
K9-
KQ8
M0R
M1P
M2M
M48
M~E
NAPCQ
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
RBZ
RIG
RNS
ROL
RPM
RSV
SMD
SOJ
TR2
TUS
UKHRP
NPM
7X8
-5E
-5G
-A0
-BR
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
5PM
ID FETCH-LOGICAL-b546t-212a7d68f2f0c531e33627604515ac86f96eed5658a24fc914af868a8d850a873
IEDL.DBID RBZ
ISSN 2040-2392
IngestDate Thu Aug 21 13:36:25 EDT 2025
Wed May 22 07:13:59 EDT 2024
Thu Jul 10 23:04:08 EDT 2025
Tue Jun 17 22:06:36 EDT 2025
Tue Jun 10 21:03:15 EDT 2025
Thu May 22 21:23:55 EDT 2025
Thu Apr 03 07:04:27 EDT 2025
Thu Apr 24 22:57:30 EDT 2025
Tue Jul 01 01:50:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b546t-212a7d68f2f0c531e33627604515ac86f96eed5658a24fc914af868a8d850a873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/2040-2392-4-30
PMID 24007566
PQID 1459151224
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3846739
biomedcentral_primary_oai_biomedcentral_com_2040_2392_4_30
proquest_miscellaneous_1459151224
gale_infotracmisc_A534789582
gale_infotracacademiconefile_A534789582
gale_healthsolutions_A534789582
pubmed_primary_24007566
crossref_citationtrail_10_1186_2040_2392_4_30
crossref_primary_10_1186_2040_2392_4_30
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-04
PublicationDateYYYYMMDD 2013-09-04
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-04
  day: 04
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Molecular autism
PublicationTitleAlternate Mol Autism
PublicationYear 2013
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References 10.1186/2040-2392-4-30-B115
10.1186/2040-2392-4-30-B112
10.1186/2040-2392-4-30-B111
10.1186/2040-2392-4-30-B114
10.1186/2040-2392-4-30-B113
10.1186/2040-2392-4-30-B37
10.1186/2040-2392-4-30-B39
10.1186/2040-2392-4-30-B110
10.1186/2040-2392-4-30-B38
10.1186/2040-2392-4-30-B33
10.1186/2040-2392-4-30-B77
10.1186/2040-2392-4-30-B32
10.1186/2040-2392-4-30-B76
10.1186/2040-2392-4-30-B79
10.1186/2040-2392-4-30-B73
10.1186/2040-2392-4-30-B72
10.1186/2040-2392-4-30-B31
10.1186/2040-2392-4-30-B75
10.1186/2040-2392-4-30-B30
10.1186/2040-2392-4-30-B71
10.1186/2040-2392-4-30-B70
10.1186/2040-2392-4-30-B109
10.1186/2040-2392-4-30-B108
10.1186/2040-2392-4-30-B105
10.1186/2040-2392-4-30-B104
10.1186/2040-2392-4-30-B107
10.1186/2040-2392-4-30-B106
10.1186/2040-2392-4-30-B101
10.1186/2040-2392-4-30-B29
10.1186/2040-2392-4-30-B103
10.1186/2040-2392-4-30-B26
10.1186/2040-2392-4-30-B25
-
10.1186/2040-2392-4-30-B22
10.1186/2040-2392-4-30-B65
10.1186/2040-2392-4-30-B24
10.1186/2040-2392-4-30-B68
10.1186/2040-2392-4-30-B23
10.1186/2040-2392-4-30-B67
10.1186/2040-2392-4-30-B62
10.1186/2040-2392-4-30-B61
10.1186/2040-2392-4-30-B20
10.1186/2040-2392-4-30-B63
10.1186/2040-2392-4-30-B60
10.1186/2040-2392-4-30-B19
10.1186/2040-2392-4-30-B18
10.1186/2040-2392-4-30-B15
10.1186/2040-2392-4-30-B59
10.1186/2040-2392-4-30-B58
10.1186/2040-2392-4-30-B17
10.1186/2040-2392-4-30-B16
10.1186/2040-2392-4-30-B11
10.1186/2040-2392-4-30-B99
10.1186/2040-2392-4-30-B10
10.1186/2040-2392-4-30-B54
10.1186/2040-2392-4-30-B12
10.1186/2040-2392-4-30-B51
10.1186/2040-2392-4-30-B95
10.1186/2040-2392-4-30-B50
10.1186/2040-2392-4-30-B94
10.1186/2040-2392-4-30-B97
10.1186/2040-2392-4-30-B96
10.1186/2040-2392-4-30-B90
10.1186/2040-2392-4-30-B93
10.1186/2040-2392-4-30-B92
10.1186/2040-2392-4-30-B8
10.1186/2040-2392-4-30-B7
10.1186/2040-2392-4-30-B6
10.1186/2040-2392-4-30-B5
10.1186/2040-2392-4-30-B9
10.1186/2040-2392-4-30-B4
10.1186/2040-2392-4-30-B3
10.1186/2040-2392-4-30-B47
10.1186/2040-2392-4-30-B2
10.1186/2040-2392-4-30-B49
10.1186/2040-2392-4-30-B44
10.1186/2040-2392-4-30-B88
10.1186/2040-2392-4-30-B43
10.1186/2040-2392-4-30-B87
10.1186/2040-2392-4-30-B46
10.1186/2040-2392-4-30-B89
10.1186/2040-2392-4-30-B84
10.1186/2040-2392-4-30-B86
10.1186/2040-2392-4-30-B41
10.1186/2040-2392-4-30-B85
10.1186/2040-2392-4-30-B81
References_xml – ident: 10.1186/2040-2392-4-30-B19
  doi: 10.1016/j.neulet.2010.08.031
– ident: 10.1186/2040-2392-4-30-B112
  doi: 10.1016/j.bbi.2011.08.007
– ident: 10.1186/2040-2392-4-30-B92
  doi: 10.1007/978-0-387-77374-2_11
– ident: 10.1186/2040-2392-4-30-B110
  doi: 10.1016/j.conb.2012.04.008
– ident: 10.1186/2040-2392-4-30-B76
  doi: 10.1016/j.jchemneu.2011.10.002
– ident: 10.1186/2040-2392-4-30-B101
  doi: 10.1074/jbc.273.26.16319
– ident: 10.1186/2040-2392-4-30-B86
  doi: 10.1073/pnas.1121120109
– ident: 10.1186/2040-2392-4-30-B109
  doi: 10.1002/ana.20315
– ident: 10.1186/2040-2392-4-30-B32
  doi: 10.1523/JNEUROSCI.5714-09.2010
– ident: 10.1186/2040-2392-4-30-B113
  doi: 10.1016/S1567-133X(02)00019-4
– ident: 10.1186/2040-2392-4-30-B50
  doi: 10.1007/BF02172145
– ident: 10.1186/2040-2392-4-30-B87
  doi: 10.1074/jbc.M112.378901
– ident: 10.1186/2040-2392-4-30-B63
  doi: 10.1038/ng1295-376
– ident: 10.1186/2040-2392-4-30-B3
  doi: 10.1016/j.gde.2009.04.004
– ident: 10.1186/2040-2392-4-30-B85
  doi: 10.1073/pnas.0605414103
– ident: 10.1186/2040-2392-4-30-B11
  doi: 10.1203/PDR.0b013e318212f16b
– ident: 10.1186/2040-2392-4-30-B67
  doi: 10.1038/tp.2012.61
– ident: 10.1186/2040-2392-4-30-B41
  doi: 10.1111/j.1469-8749.2012.04316.x
– ident: 10.1186/2040-2392-4-30-B97
  doi: 10.1038/nature10989
– ident: 10.1186/2040-2392-4-30-B33
  doi: 10.1023/A:1023036509476
– ident: 10.1186/2040-2392-4-30-B59
  doi: 10.1016/j.bbi.2008.08.001
– ident: 10.1186/2040-2392-4-30-B90
  doi: 10.1016/S0006-291X(02)02378-1
– ident: 10.1186/2040-2392-4-30-B22
  doi: 10.1016/j.biopsych.2010.05.024
– ident: 10.1186/2040-2392-4-30-B9
  doi: 10.1001/jama.2010.1706
– ident: 10.1186/2040-2392-4-30-B15
  doi: 10.1073/pnas.0704964104
– ident: 10.1186/2040-2392-4-30-B103
  doi: 10.1002/jnr.23189
– ident: 10.1186/2040-2392-4-30-B114
  doi: 10.1016/j.bbaexp.2005.06.008
– ident: 10.1186/2040-2392-4-30-B43
  doi: 10.1242/jcs.014290
– ident: 10.1186/2040-2392-4-30-B16
  doi: 10.1016/j.molcel.2007.07.018
– ident: 10.1186/2040-2392-4-30-B25
  doi: 10.1023/A:1015337611258
– ident: 10.1186/2040-2392-4-30-B95
  doi: 10.1093/nar/gkn941
– ident: 10.1186/2040-2392-4-30-B8
  doi: 10.1038/mp.2008.63
– ident: 10.1186/2040-2392-4-30-B44
  doi: 10.1093/hmg/ddi482
– ident: 10.1186/2040-2392-4-30-B54
  doi: 10.1016/j.jneuroim.2010.10.025
– ident: 10.1186/2040-2392-4-30-B88
  doi: 10.1038/embor.2011.101
– ident: 10.1186/2040-2392-4-30-B77
  doi: 10.1158/0008-5472.CAN-12-3082
– ident: 10.1186/2040-2392-4-30-B89
  doi: 10.1038/sj.mp.4001953
– ident: 10.1186/2040-2392-4-30-B20
  doi: 10.1038/nm1201-1356
– ident: 10.1186/2040-2392-4-30-B23
  doi: 10.1016/j.nurt.2010.05.003
– ident: 10.1186/2040-2392-4-30-B39
  doi: 10.1136/jmg.2004.024646
– ident: 10.1186/2040-2392-4-30-B96
  doi: 10.1038/ng.835
– ident: 10.1186/2040-2392-4-30-B46
  doi: 10.1016/S0168-9525(01)02626-9
– ident: 10.1186/2040-2392-4-30-B73
  doi: 10.1186/2040-2392-3-12
– ident: 10.1186/2040-2392-4-30-B58
  doi: 10.1093/bioinformatics/btf877
– ident: 10.1186/2040-2392-4-30-B93
  doi: 10.1016/j.psychres.2010.04.057
– ident: 10.1186/2040-2392-4-30-B7
  doi: 10.1016/j.bbabio.2010.04.018
– ident: 10.1186/2040-2392-4-30-B72
  doi: 10.1007/s11064-012-0775-4
– ident: 10.1186/2040-2392-4-30-B38
  doi: 10.1016/j.cell.2008.10.017
– ident: 10.1186/2040-2392-4-30-B30
  doi: 10.1073/pnas.1107560108
– ident: 10.1186/2040-2392-4-30-B108
  doi: 10.1016/j.coi.2006.09.005
– ident: 10.1186/2040-2392-4-30-B24
  doi: 10.1196/annals.1381.009
– ident: 10.1186/2040-2392-4-30-B4
  doi: 10.1111/cge.12101
– ident: -
  doi: 10.1051/medsci/2012282004
– ident: 10.1186/2040-2392-4-30-B111
  doi: 10.1016/j.cell.2008.10.016
– ident: 10.1186/2040-2392-4-30-B79
  doi: 10.1016/j.gene.2011.11.038
– ident: 10.1186/2040-2392-4-30-B18
  doi: 10.1016/j.cell.2009.03.010
– ident: 10.1186/2040-2392-4-30-B70
  doi: 10.1007/s12011-010-8840-9
– ident: 10.1186/2040-2392-4-30-B60
  doi: 10.1016/j.ygeno.2007.09.003
– ident: 10.1186/2040-2392-4-30-B71
  doi: 10.1016/j.freeradbiomed.2012.03.011
– ident: 10.1186/2040-2392-4-30-B65
  doi: 10.1007/s10803-011-1260-7
– ident: 10.1186/2040-2392-4-30-B5
  doi: 10.1038/nature10110
– ident: 10.1186/2040-2392-4-30-B94
  doi: 10.1093/hmg/ddl004
– ident: 10.1186/2040-2392-4-30-B37
  doi: 10.1016/j.conb.2012.05.004
– ident: 10.1186/2040-2392-4-30-B12
  doi: 10.1016/j.micinf.2007.06.009
– ident: 10.1186/2040-2392-4-30-B26
  doi: 10.1189/jlb.1205707
– ident: 10.1186/2040-2392-4-30-B84
  doi: 10.1371/journal.pone.0019076
– ident: 10.1186/2040-2392-4-30-B62
  doi: 10.1016/j.bbi.2009.08.001
– ident: 10.1186/2040-2392-4-30-B107
  doi: 10.1016/j.molcel.2011.05.027
– ident: 10.1186/2040-2392-4-30-B51
  doi: 10.1007/s10803-008-0674-3
– ident: 10.1186/2040-2392-4-30-B68
  doi: 10.1016/j.braindev.2012.03.011
– ident: 10.1186/2040-2392-4-30-B49
  doi: 10.1023/A:1005592401947
– ident: 10.1186/2040-2392-4-30-B106
  doi: 10.1126/science.1227764
– ident: 10.1186/2040-2392-4-30-B115
  doi: 10.1126/science.1138659
– ident: 10.1186/2040-2392-4-30-B105
  doi: 10.1523/JNEUROSCI.5178-12.2013
– ident: 10.1186/2040-2392-4-30-B61
  doi: 10.1038/mp.2011.155
– ident: 10.1186/2040-2392-4-30-B75
  doi: 10.1002/dvdy.21132
– ident: 10.1186/2040-2392-4-30-B17
  doi: 10.1667/RR1191.1
– ident: 10.1186/2040-2392-4-30-B2
  doi: 10.1016/j.tics.2011.07.003
– ident: 10.1186/2040-2392-4-30-B81
  doi: 10.1093/bfgp/elr020
– ident: 10.1186/2040-2392-4-30-B29
  doi: 10.1212/WNL.57.2.245
– ident: 10.1186/2040-2392-4-30-B104
  doi: 10.1002/ana.22673
– ident: 10.1186/2040-2392-4-30-B10
  doi: 10.1038/mp.2010.136
– ident: 10.1186/2040-2392-4-30-B6
  doi: 10.1007/s12035-011-8192-2
– ident: 10.1186/2040-2392-4-30-B31
  doi: 10.1001/archpsyc.62.12.1366
– ident: 10.1186/2040-2392-4-30-B47
  doi: 10.1186/gb-2007-8-4-r64
– ident: 10.1186/2040-2392-4-30-B99
  doi: 10.1097/WAD.0b013e31819d494e
SSID ssj0000314442
Score 2.2044199
Snippet Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been...
Background Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing...
BACKGROUND: Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing...
SourceID pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 30
SubjectTerms Autistic children
Comparative analysis
Computer software industry
Gene expression
Genes
Genetic aspects
Genomes
Glutathione transferase
Medical genetics
Molecular genetics
Pervasive developmental disorders
RNA splicing
Superoxide
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZt-rKXstF2zZZ1Ggz2pOJYsiQPxihlJQzSpwb6JmRbooHEaesWlv9-d4qdRk0Lfdb5l3Sn7866-46Q77JwFaCQYC51gokqKZj2GWdOQTThlR1KiYXC40s5moi_19n1U_5TO4HNi6Ed9pOa3M9O_90tf4PB_woGryXE7yJhKQA9w5_8u2QPUElhN4Nx6-qHXZlD6BB66azFWw7H7Vs8K36fRZj1fOfegK44rXIDpy7ek_3WwaRnK434QHZcfUCqrnkoBR-Vdk1RwLhnNByX14H-mzZ4mA1YRqc1DRntdOHpEvcDWiyWDcWfttSCqjZzGko07x_ntGr5O5tDMrn4c3U-Ym1_BVZkQj4wQC2rKql96pMSbNFxQDMlkXEms6WWPpeAoODxaZsKX-ZDYb2W2upKZ4nVih-RXr2o3TGhlVPcFxgNlVYIP8w9khwL8EYTuC5P-uRnNKPmdsWlYZDdOh4BQzO4HAaXwwjD4WLWTb8pW-ZybKAxMyGC0XJL_sdavnvOa5JfcTXNquZ0bezmLONC6TzTKdwrSKACwjNL21YtwGcjcVYkOYgkwUzLaPhbpzEGhzC3rXaLxwaCryxHvysVffJxpUHr18YMXwUed5-oSLei-YtH6ulNYAnn6Fny_NObP-AzeZeGXh94WjYgPdAh9wU8rofiJJjSf_7MKDM
  priority: 102
  providerName: Scholars Portal
Title Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders
URI https://www.ncbi.nlm.nih.gov/pubmed/24007566
https://www.proquest.com/docview/1459151224
http://dx.doi.org/10.1186/2040-2392-4-30
https://pubmed.ncbi.nlm.nih.gov/PMC3846739
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUoXHqpQNB2W1iMVKknS9lkYjvcFgRarQQXioR6sZzEVpGWLGrgwL_vjDcJeFc9ccnFk4-1Z_bNjD1vGPshS1cjCoFwqQMBdVIK7fNMOIXRhFd2IiUVCl9dy9ktzO_yu9d8x9oO_kRLjM4hESnCuKAU_ge2kwKGcxSXn_0esilEwg6hU84g3jE0bj5irbR9ESHS-v_yG2CKD02-QaHLXfapcx_5dLXee2zLNfus7luDcvRAed_yBE13wcNmeBPIvXlLW9WIVPy-4eG8Ol96_kLWzsvlS8spJcstKmL7wEMB5t_nB1537JztAbu9vPh1PhNd9wRR5iCfBGKSVbXUPvVJhZbmMsQqJYlPJreVlr6QiI_oz2mbgq-KCVivpba61nlitco-s-1m2bivjNdOZb6kWKeyAH5SeKIwBvQ1E7yvSEbsNJpR87hiyjDEXR2PoBkZWg5Dy2HAZHiz6KffVB0vObXHWJgQn2i5If9zkO_f8z_JY1pNs6ooHUzZTPMMlC5yneKzggQZM76zsl1NAv5sosWKJA8jSTTCKho-6TXG0BCdXGvc8rnF0CovyKtKYcS-rDRo-Gw6v6vQnx4xFelWNH_xSHP_J3CAZ-Q3ZsW398z8d_YxDc09aHvskG2jWrkjdLGeyjHbmU7nN_NxSFHg9Qr0OFjcP9-mJY0
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYKPcAFgUphW9o1EhIno2ziV3pbqqJtC5xAQr1YTmILpN0sauDAv2fGeWgN4sTZE9sZezwz9sw3hBzJwlWghThzqeOMV0nBtBcZcwq8Ca_sREpMFL64lLNr_udG3HSQQpgLs-iLwlrge7M4WU1Cn4eTuw8Ya-VdS3DfecJS0PMM7_jXyEclhAqpXKf_husWRGnnoZTOQN5BOL7u4kXu-zxSWS8P7hXNFUdVrqips22y1dmXdNpOf4d8cPUnUvW1QymYqLSviQKyPafhtbwO6N-0wbdsUGX0rqYhoJ0uPX3C44AWy6eG4p0tbTlGQ4bm_8cFrTr4zmaXXJ_9uvo5Y115BVYILh8YKC2rKql96pMSRNFloMyURMAZYUstfS5BgYLBp23KfZlPuPVaaqsrLRKrVfaZrNfL2u0TWjmV-QKdodJy7ie5R4xjDsZoAt_lyYj8iDhq7lsoDYPg1nELLLHB5TC4HIabDD5mPftN2QGXY_2MuQkOjJav6I8H-n6ctyjHuJqmTTkdZN1MRcaVzoVOoa9AgdIOY5a2S1qA30bcrIjyIKIEKS2j5sN-xxhswtC22i0fG_C9RI5mV8pHZK_dQcO0McBXgcE9IiraWxH_4pb67jaAhGdoWGb5l_dwfkw2ZlcX5-b89-Xfr2QzDZVA8C3tgKzDFnPfwB57KL4HSXsG6qUyzQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoSFUvqAjaLuXhSkg9uc0mfqU3XivoAyFUJNSL5SS2irqbRQ0c-PfMOA-tQZy4RfLkNZ7xzNgz3xCyJwtXgRXizKWOM14lBdNeZMwpiCa8smMpsVD415k8ueTfr8RVl_-EtTCzvimsBb43sy-LRejTsHLDRfnv603lW4XXEuJ3nrAUDD3DTf5XZEUJobCbwcXBn2G_BWHaeeilM5B3GI5PH_Go-H0a2azHK_eC6YrTKhfs1OQtWe0cTLrfSsQaWXL1Oqn65qEUfFTaN0UB5Z7ScFxeB_hv2uBhNtgyel3TkNFO557e43pAi_l9Q3HTlrYso6FE8__djFYdfmezQS4nx78PT1jXX4EVgstbBlbLqkpqn_qkBF10GVgzJRFxRthSS59LsKDg8Wmbcl_mY269ltrqSovEapW9I8v1vHYfCK2cynyB0VBpOffj3CPIMQdvNIH78mREvkUcNTctloZBdOt4BObY4HQYnA7DTQY3s579puyQy7GBxtSECEbLJ_SfB_r-Pc9R7uJsmrbmdFB2sy8yrnQudArPChSo7ih5tqtagN9G4KyIciuiBDUto-FPvcQYHMLcttrN7xoIvkSOflfKR-R9K0HDZ2OGrwKPe0RUJFsR_-KR-vpvQAnP0LPM8s2XcH6XvD4_mpifp2c_PpI3aegEgmdpW2QZJMxtgz92W-wERXsAXXcymA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+differential+alternative+splicing+in+blood+of+young+boys+with+autism+spectrum+disorders&rft.jtitle=Molecular+autism&rft.au=Stamova%2C+Boryana+S&rft.au=Tian%2C+Yingfang&rft.au=Nordahl%2C+Christine+W&rft.au=Shen%2C+Mark+D&rft.date=2013-09-04&rft.pub=BioMed+Central+Ltd&rft.issn=2040-2392&rft.eissn=2040-2392&rft.volume=4&rft_id=info:doi/10.1186%2F2040-2392-4-30&rft.externalDocID=A534789582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-2392&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-2392&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-2392&client=summon