Models for short term malaria prediction in Sri Lanka

Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long...

Full description

Saved in:
Bibliographic Details
Published inMalaria journal Vol. 7; no. 1; p. 76
Main Authors Briët, Olivier J T, Vounatsou, Penelope, Gunawardena, Dissanayake M, Galappaththy, Gawrie N L, Amerasinghe, Priyanie H
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 06.05.2008
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control. Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models. The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons. Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed.
AbstractList Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control. Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models. The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons. Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed.
BACKGROUND: Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control. METHODS: Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models. RESULTS: The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons. CONCLUSION: Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed.
BACKGROUNDMalaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control. METHODSExponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models. RESULTSThe best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons. CONCLUSIONHeterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed.
Abstract Background Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control. Methods Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models. Results The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons. Conclusion Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed.
ArticleNumber 76
Author Vounatsou, Penelope
Briët, Olivier J T
Gunawardena, Dissanayake M
Galappaththy, Gawrie N L
Amerasinghe, Priyanie H
AuthorAffiliation 2 Swiss Tropical Institute, Socinstrasse 57, P.O. Box CH-4002, Basel, Switzerland
4 Anti Malaria Campaign, Head Office Colombo, Sri Lanka
5 International Water Management Institute Sub Regional Office for South Asia, c/o ICRISAT, Patancheru, AP 502 324, Andhra Pradesh, India
1 International Water Management Institute, P.O. Box 2075, Colombo, Sri Lanka
3 US Agency for International Development, P.O. Box 7856, Kampala, Uganda
AuthorAffiliation_xml – name: 2 Swiss Tropical Institute, Socinstrasse 57, P.O. Box CH-4002, Basel, Switzerland
– name: 4 Anti Malaria Campaign, Head Office Colombo, Sri Lanka
– name: 3 US Agency for International Development, P.O. Box 7856, Kampala, Uganda
– name: 5 International Water Management Institute Sub Regional Office for South Asia, c/o ICRISAT, Patancheru, AP 502 324, Andhra Pradesh, India
– name: 1 International Water Management Institute, P.O. Box 2075, Colombo, Sri Lanka
Author_xml – sequence: 1
  givenname: Olivier J T
  surname: Briët
  fullname: Briët, Olivier J T
  email: o.briet@cgiar.org
  organization: International Water Management Institute, P,O, Box 2075, Colombo, Sri Lanka. o.briet@cgiar.org
– sequence: 2
  givenname: Penelope
  surname: Vounatsou
  fullname: Vounatsou, Penelope
– sequence: 3
  givenname: Dissanayake M
  surname: Gunawardena
  fullname: Gunawardena, Dissanayake M
– sequence: 4
  givenname: Gawrie N L
  surname: Galappaththy
  fullname: Galappaththy, Gawrie N L
– sequence: 5
  givenname: Priyanie H
  surname: Amerasinghe
  fullname: Amerasinghe, Priyanie H
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18460204$$D View this record in MEDLINE/PubMed
BookMark eNqFkstr3DAQxkVJaV699lh86s2pJdl6XAoh5AVbemhzFiNplCi1ra3kDeS_jze7JFlK6WU0zHz85kMzh2RvTCMS8ok2J5Qq8ZW2squZmoOspXhHDl4Ke2_yfXJYyn3TUKkk-0D2qWpFw5r2gHTfk8e-VCHlqtylPFUT5qEaoIccoVpm9NFNMY1VHKufOVYLGH_DMXkfoC_4cfsekZuL819nV_Xix-X12emitl3Lp9oFkNpq21lGhWJoO4maO8YQaLCB0-A8UyiUV15w6iko7bTq0DIOQTX8iFxvuD7BvVnmOEB-NAmieS6kfGsgT9H1aFBYK5oAnbe2DVxqkF7qeTYNrBPOzaxvG9ZyZQf0DscpQ78D3e2M8c7cpgfDWsqUFjPgdAOwMf0DsNtxaTDrFZj1Cow0cs34sjWR058VlskMsTjsexgxrYqRVLSzXfVfIdVCt4rxWXiyEbqcSskYXgzRxqxP5G8Ln9_-w6t8exP8CR5buds
CitedBy_id crossref_primary_10_1007_s12639_017_0885_7
crossref_primary_10_1007_s12639_021_01458_y
crossref_primary_10_3390_app12010496
crossref_primary_10_1111_zph_12021
crossref_primary_10_1186_s12936_015_0630_6
crossref_primary_10_1186_s12936_017_1706_2
crossref_primary_10_24171_j_phrp_2021_0304
crossref_primary_10_1155_2014_482851
crossref_primary_10_1186_1475_2875_13_57
crossref_primary_10_1017_S0950268811001063
crossref_primary_10_1016_j_prevetmed_2017_10_001
crossref_primary_10_1186_s12936_016_1549_2
crossref_primary_10_4103_1995_7645_329008
crossref_primary_10_1186_1475_2875_7_77
crossref_primary_10_1155_2019_7314129
crossref_primary_10_1186_1475_2875_9_251
crossref_primary_10_1371_journal_pone_0004726
crossref_primary_10_1007_s12639_020_01216_6
crossref_primary_10_3390_ijerph16214289
crossref_primary_10_1186_1475_2875_13_192
crossref_primary_10_3390_ijerph18116080
crossref_primary_10_1371_journal_pone_0028812
crossref_primary_10_1038_s41598_020_73601_3
crossref_primary_10_1038_s41598_024_58287_1
crossref_primary_10_1136_bmjopen_2012_001992
crossref_primary_10_1186_1475_2875_10_54
crossref_primary_10_1186_1475_2875_13_231
crossref_primary_10_1371_journal_pone_0065761
crossref_primary_10_3390_ijerph191912271
crossref_primary_10_1007_s10708_019_10134_x
crossref_primary_10_1186_1475_2875_10_202
crossref_primary_10_1186_1475_2875_10_301
crossref_primary_10_4236_ajcc_2022_112004
crossref_primary_10_3390_insects11110794
crossref_primary_10_1007_s11356_021_18326_0
crossref_primary_10_1155_2017_4205957
crossref_primary_10_1590_1809_4392202200910
crossref_primary_10_1016_j_sste_2017_05_001
crossref_primary_10_1186_s12911_015_0170_6
crossref_primary_10_1371_journal_pntd_0008710
crossref_primary_10_1186_s12936_015_0758_4
crossref_primary_10_3390_ijerph16112000
Cites_doi 10.1017/S0031182004005013
10.4269/ajtmh.1998.58.533
10.1111/j.1365-3156.2004.01340.x
10.1038/nature04503
10.1186/1475-2875-5-38
10.1046/j.1365-3156.1997.d01-183.x
10.1186/1475-2875-5-42
10.1186/1475-2875-3-44
10.1186/1475-2875-7-77
10.1186/1475-2875-3-41
10.1046/j.1365-3156.1996.d01-7.x
10.1046/j.1365-3156.2002.00924.x
10.1186/1475-2875-2-22
10.1080/00034989760347
10.1016/S0065-308X(00)47013-2
ContentType Journal Article
Copyright Copyright © 2008 Briët et al; licensee BioMed Central Ltd. 2008 Briët et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Copyright © 2008 Briët et al; licensee BioMed Central Ltd. 2008 Briët et al; licensee BioMed Central Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
C1K
F1W
H95
H97
L.G
M7N
7X8
5PM
DOA
DOI 10.1186/1475-2875-7-76
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE

Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1475-2875
EndPage 76
ExternalDocumentID oai_doaj_org_article_e6bb60fa5dbb4f379a7d799b51f256cc
oai_biomedcentral_com_1475_2875_7_76
10_1186_1475_2875_7_76
18460204
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Sri Lanka
GeographicLocations_xml – name: Sri Lanka
GroupedDBID ---
-A0
0R~
29M
2VQ
2WC
4.4
53G
5VS
AAFWJ
AAJSJ
ABDBF
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
C24
C6C
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECGQY
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
FRP
GROUPED_DOAJ
GX1
H13
HYE
IAO
IHR
INH
INR
IPNFZ
ITC
KQ8
M48
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
W2D
WOQ
WOW
XSB
AAYXX
AFPKN
CITATION
C1K
F1W
H95
H97
L.G
M7N
7X8
ABVAZ
AFGXO
AFNRJ
5PM
ID FETCH-LOGICAL-b543t-cfa79b9b5b21682eb57e93c22ea1fbf31fcd28e68d8d631d1a89c985eb23af803
IEDL.DBID RBZ
ISSN 1475-2875
IngestDate Tue Oct 22 15:13:02 EDT 2024
Tue Sep 17 21:27:46 EDT 2024
Wed May 22 07:11:29 EDT 2024
Thu Oct 24 23:57:04 EDT 2024
Fri Oct 25 00:14:19 EDT 2024
Thu Sep 12 19:50:33 EDT 2024
Tue Oct 15 23:39:25 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b543t-cfa79b9b5b21682eb57e93c22ea1fbf31fcd28e68d8d631d1a89c985eb23af803
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://dx.doi.org/10.1186/1475-2875-7-76
PMID 18460204
PQID 19694823
PQPubID 23462
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_e6bb60fa5dbb4f379a7d799b51f256cc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2412896
biomedcentral_primary_oai_biomedcentral_com_1475_2875_7_76
proquest_miscellaneous_71642568
proquest_miscellaneous_19694823
crossref_primary_10_1186_1475_2875_7_76
pubmed_primary_18460204
PublicationCentury 2000
PublicationDate 2008-05-06
PublicationDateYYYYMMDD 2008-05-06
PublicationDate_xml – month: 05
  year: 2008
  text: 2008-05-06
  day: 06
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Malaria journal
PublicationTitleAlternate Malar J
PublicationYear 2008
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 23785448 - PLoS One. 2013 Jun 13;8(6):e65761
15541174 - Malar J. 2004 Nov 12;3:41
9598437 - Am J Trop Med Hyg. 1998 May;58(5):533-42
16452977 - Nature. 2006 Feb 2;439(7076):576-9
8673827 - Trop Med Int Health. 1996 Feb;1(1):86-96
15598256 - Trop Med Int Health. 2004 Dec;9(12):1247-57
11019462 - Bull World Health Organ. 2000;78(9):1136-47
15206460 - Parasitology. 2004 Jun;128(Pt 6):585-93
18460205 - Malar J. 2008;7:77
9391508 - Trop Med Int Health. 1997 Nov;2(11):1057-67
15555061 - Malar J. 2004 Nov 19;3:44
10997211 - Adv Parasitol. 2000;47:309-30
16689992 - Malar J. 2006;5:38
9579215 - Ann Trop Med Parasitol. 1997 Dec;91(8):945-9
12914667 - Malar J. 2003 Jul 22;2:22
16700913 - Malar J. 2006;5:42
12358620 - Trop Med Int Health. 2002 Oct;7(10):851-7
JP Burman (551_CR21) 1988
OJT Briët (551_CR23) 2003; 2
TG Meskel (551_CR12) 2007
DM Gunawardena (551_CR4) 1998; 58
MC Thomson (551_CR14) 2006; 439
W Van der Hoek (551_CR8) 1997; 91
OJ Briet (551_CR2) 2006; 5
551_CR3
TN Krishnamurti (551_CR10) 2007
KJ Mwaniki (551_CR22) 2005; 1
MJ Bouma (551_CR6) 1996; 1
AK Githeko (551_CR7) 2000; 78
PJ Ribeiro Jr (551_CR19) 2001
OJT Briët (551_CR25) 2008; 7
L Zubair (551_CR26) 2007
HD Teklehaimanot (551_CR13) 2004; 19
551_CR24
F Konradsen (551_CR1) 2000
551_CR27
MF Myers (551_CR15) 2000; 47
551_CR29
C Chatfield (551_CR20) 2004
T Abeysekera (551_CR5) 1997; 2
TA Abeku (551_CR17) 2004; 128
MH Craig (551_CR18) 2004; 9
R Basher (551_CR9) 2002
EK Grover-Kopec (551_CR11) 2006; 5
TA Abeku (551_CR16) 2002; 7
HD Teklehaimanot (551_CR28) 2004; 3
References_xml – ident: 551_CR3
– volume: 128
  start-page: 585
  year: 2004
  ident: 551_CR17
  publication-title: Parasitology
  doi: 10.1017/S0031182004005013
  contributor:
    fullname: TA Abeku
– ident: 551_CR27
– volume: 58
  start-page: 533
  year: 1998
  ident: 551_CR4
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.1998.58.533
  contributor:
    fullname: DM Gunawardena
– volume-title: R-News
  year: 2001
  ident: 551_CR19
  contributor:
    fullname: PJ Ribeiro Jr
– ident: 551_CR29
– volume: 9
  start-page: 1247
  year: 2004
  ident: 551_CR18
  publication-title: Trop Med Int Health
  doi: 10.1111/j.1365-3156.2004.01340.x
  contributor:
    fullname: MH Craig
– start-page: 189
  volume-title: The contextual determinants of malaria
  year: 2002
  ident: 551_CR9
  contributor:
    fullname: R Basher
– volume-title: The analysis of time series: an introduction
  year: 2004
  ident: 551_CR20
  contributor:
    fullname: C Chatfield
– volume: 439
  start-page: 576
  year: 2006
  ident: 551_CR14
  publication-title: Nature
  doi: 10.1038/nature04503
  contributor:
    fullname: MC Thomson
– volume: 5
  start-page: 38
  year: 2006
  ident: 551_CR11
  publication-title: Malar J
  doi: 10.1186/1475-2875-5-38
  contributor:
    fullname: EK Grover-Kopec
– volume: 2
  start-page: 1057
  year: 1997
  ident: 551_CR5
  publication-title: Trop Med Int Health
  doi: 10.1046/j.1365-3156.1997.d01-183.x
  contributor:
    fullname: T Abeysekera
– volume: 1
  start-page: 68
  year: 2005
  ident: 551_CR22
  publication-title: East Afr J Stat
  contributor:
    fullname: KJ Mwaniki
– volume: 5
  start-page: 42
  year: 2006
  ident: 551_CR2
  publication-title: Malar J
  doi: 10.1186/1475-2875-5-42
  contributor:
    fullname: OJ Briet
– volume-title: Malaria in Sri Lanka: Current knowledge on transmission and control
  year: 2000
  ident: 551_CR1
  contributor:
    fullname: F Konradsen
– volume: 19
  start-page: 44
  year: 2004
  ident: 551_CR13
  publication-title: Malar J
  doi: 10.1186/1475-2875-3-44
  contributor:
    fullname: HD Teklehaimanot
– volume-title: Personal communication
  year: 2007
  ident: 551_CR26
  contributor:
    fullname: L Zubair
– volume: 78
  start-page: 1136
  year: 2000
  ident: 551_CR7
  publication-title: Bull World Health Organ
  contributor:
    fullname: AK Githeko
– volume-title: Experimental prediction of climate-related malaria incidence
  year: 2007
  ident: 551_CR10
  contributor:
    fullname: TN Krishnamurti
– ident: 551_CR24
– volume: 7
  start-page: 77
  year: 2008
  ident: 551_CR25
  publication-title: Malar J
  doi: 10.1186/1475-2875-7-77
  contributor:
    fullname: OJT Briët
– volume: 3
  start-page: 41
  year: 2004
  ident: 551_CR28
  publication-title: Malar J
  doi: 10.1186/1475-2875-3-41
  contributor:
    fullname: HD Teklehaimanot
– volume-title: Outliers in time series
  year: 1988
  ident: 551_CR21
  contributor:
    fullname: JP Burman
– volume: 1
  start-page: 86
  year: 1996
  ident: 551_CR6
  publication-title: Trop Med Int Health
  doi: 10.1046/j.1365-3156.1996.d01-7.x
  contributor:
    fullname: MJ Bouma
– volume-title: Personal communication
  year: 2007
  ident: 551_CR12
  contributor:
    fullname: TG Meskel
– volume: 7
  start-page: 851
  year: 2002
  ident: 551_CR16
  publication-title: Trop Med Int Health
  doi: 10.1046/j.1365-3156.2002.00924.x
  contributor:
    fullname: TA Abeku
– volume: 2
  start-page: 22
  year: 2003
  ident: 551_CR23
  publication-title: Malar J
  doi: 10.1186/1475-2875-2-22
  contributor:
    fullname: OJT Briët
– volume: 91
  start-page: 945
  year: 1997
  ident: 551_CR8
  publication-title: Ann Trop Med Parasitol
  doi: 10.1080/00034989760347
  contributor:
    fullname: W Van der Hoek
– volume: 47
  start-page: 309
  year: 2000
  ident: 551_CR15
  publication-title: Adv Parasitol
  doi: 10.1016/S0065-308X(00)47013-2
  contributor:
    fullname: MF Myers
SSID ssj0017872
Score 2.1213753
Snippet Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past...
Background Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given...
BACKGROUNDMalaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given...
BACKGROUND: Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present,...
Abstract Background Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at...
SourceID doaj
pubmedcentral
biomedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 76
SubjectTerms Epidemiologic Methods
Forecasting - methods
Humans
Malaria - epidemiology
Models, Statistical
Seasons
Sri Lanka - epidemiology
Time Factors
Weather
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA_iSRCp1uqqtTkIPS0mm29vVhQprRcVvIV84qN2lfee_7-T3X3qtkovvSbZkPxmkszsZH5B6IA4mhqnRO0CuCjcC9gHFU21Spx4oYlPqeQO_7yQ59f8-424efXUV7kT1tMD98AdJum9JNmJ6D3PTBmnojLGC5rhtA6h232JWThTQ_wA1LCLc3IYBfgEYqBrpFoePpfVqi5MI6M897vR8dSx-L9lev55g_LVkXT2Aa0NtiQ-7uewjpZSu4FW-x9xuM8v-ohEee3sbobBOMWzWzC2cdmM8W8HLu3E4YdpidQU6eBJiy-nE_zDtb_cJro-O706Oa-HtxJqLzib1yE7ZTzA4hsqdZMA9GRYaJrkaPaZ0Rxio5PUUUfJaKROm2C0AMeauawJ-4SW2_s2bSMseDTJEBKNanjg0XEW4SSlwYHwZOYVOhpBZh96XgxbmKrHNbBobMHbFrytskpW6OsC3-fvOj9Ey79afivwj3rvCkA77KAd9l_aUaEvC-FZWDclGOLadP84s4UWiOuGvd-ieJLQia7QVi_slwGD0VaSiiukRmowGuu4pp3cdtzdYDCBiyt3_sfkdtFKf3tF1ETuoeX59DF9BhNp7ve71fAES0ERFQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: PubMed Central
  dbid: RPM
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbanpAQgvIKtMUHJE7pxm-7N1pRVYgiJKjUm-VXaNTd7Gp3-_8Z5wGkwIVr_NBoZuyZL_MwQm8rRxJ1SpQuAEThXsA9qEgqVeKVF7ryKeXa4cvP8uKKf7wW1ztIjLUwXdJ-8M1xO18ct81Nl1u5WoTZmCc2-3J5BlYHcIKc7aJdUNARog-hA9BAOnRnJFrOCAdCABaIUpWqe7AILG6uCL1X4T6fGKauf__fnM77uZO_GaPzx-jR4EXi9z21T9BOavfRw_4XHO4ri54ikd85m28wuKV4cwNuNs7XMF44ALONw6t1jtFkueCmxV_XDf7k2lv3DF2df_h2dlEOrySUXnC2LUPtlPHGC0-J1DQBu5NhgdLkSO1rRuoQqU5SRx0lI5E4bYLRAiA1c7Wu2HO01y7b9BJhwaNJpqqiUZQHHh1nEWwoCQ7EJmteoJMJy-yq74hhc4_q6QgcF5tZbzPrrbJKFujdyN-f6zoEouUfM08z-ye7dx-W6-920AObpPeyqp2I3vOaKeNUVAbYQGrw4kIo0JtReBZOTA6DuDYt7zY2NwTimrJ_z8gYEjbRBXrRC_sXwYPyFEhN1GBC63QElLjr2j0o7av_XvkaPeiTVURZyQO0t13fpUPwiLb-qDsBPwCIhg5Q
  priority: 500
  providerName: National Library of Medicine
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagXJAQ4k1oAR-QOAXit41UIUBUFQIusFJvlp90xZIt2a1E_z3jJMuStpy4xo8433jsbzLjMULPGkcSdUrULoCJwr2AdVCRVKvEGy9041MqZ4c_fZaHM_7hSBxt459GAFeXmnblPqlZt3jx6-fZa1D4_V7htXxJOLwLmL-oVa3kVXSNcrDSSxgf33oUYGL2ns9N3TGB48X2506-LyYbVp_X_zIyej6m8q9N6uAWujmyS_xmmA630ZXU3kE3hl9zeDhxdBeJcv_ZYoWBruLVMXw5Lssz_uEAibnDJ13x3RR54XmLv3Rz_NG13909NDt4__XdYT3enlB7wdm6Dtkp440XnhKpaQIxJMMCpcmR7DMjOUSqk9RRR8lIJE6bYLQAU5u5rBt2H-20yzY9RFjwaJJpmmgU5YFHx1mEvZUEB-KUmVfo1QQyezJkyrAld_W0BNTIFrxtwdsqq2SFnm_w_dOut0y0vFDzbYF_0nv_YNl9s6Oi2SS9l012InrPM1PGqagMwEAysLsQKvR0IzwLmlTcI65Ny9OVLYmCuKbs3zWKbQmd6Ao9GIS9HTDQuHLMuEJqMg0mY52WtPPjPps3UCgweuWj_8FwF10f4lhE3cg9tLPuTtNjIEtr_6TXgt-DEhVN
  priority: 102
  providerName: Scholars Portal
Title Models for short term malaria prediction in Sri Lanka
URI https://www.ncbi.nlm.nih.gov/pubmed/18460204
https://search.proquest.com/docview/19694823
https://search.proquest.com/docview/71642568
http://dx.doi.org/10.1186/1475-2875-7-76
https://pubmed.ncbi.nlm.nih.gov/PMC2412896
https://doaj.org/article/e6bb60fa5dbb4f379a7d799b51f256cc
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5Be0FCiDcpsPiAxCkiftu9bRFVtaJcSqWKi-VX1FVLWu1u_z_jZLclWzhxySF-yPrGj29mPGOAj42nmXktax9RRRFB4j6oaa51Fk2Qpgk5l9jh4-_q6FTMzuTZnb1jy4NPjfpMBfaEvF7WutbqIeyyklCl6OUHP2_9BTjter_mpu46PeP99ltx7Zej46jP2v83qrl9Y_KPI-jwKTxZc0cyHYT9DB7k7jk8HgxvZIgnegGyvG52uSRIRsnyHMk1KZsv-eVRhZ17cr0onpkiDTLvyMliTr757sK_hNPDrz--HNXrtxHqIAVf1bH12gYbZGBUGZYR5Gx5ZCx72oaW0zYmZrIyySTFaaLe2GiNREWa-9Y0_BXsdFddfgNEimSzbZpkNRNRJC94wpOTRo_CUq2oYH8Embse8mC4kpl6XIKLxBW8XcHbaadVBZ82-N626_UOo-7VPCjwj3rvf-BkcOtl5LIKQTWtlykE0XJtvU7aIgy0Re4WYwUfNsJzuE6K88N3-epm6UoaIGEY_3eNojliJ6aC14Ow7waMJK0EEVegR9NgNNZxSTc_73N1I0FClVbt_Q-Gb-HRcEtF1o16BzurxU1-j1RoFSawO53OTmaT3pSA32NhJv3KmPR2q9-ITww4
link.rule.ids 108,230,315,730,783,787,867,888,2109,2228,24330,24949,27936,27937,53804,53806,76140,76141
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcgAJofIOUOoDEqdAnPjJjVatFtj2AK1UcbH8SrtiyVa72__POI_StHDiGj9ifeOxv_F4xgBvC0tjaSXPrUcThTmO66CkMZeRFY6rwsWYYocPj8TkhH055acbMBliYX5ZNOhmtgfy_fUY9Hm7cA_3xTp1V-IDZfgn5P08l7kUd-AuGuYsqei33R9X_gSclq3fc6jbp2-83f5G3Pt8tF21Wf3_RkVv3qi8tkUdbMHDnluST93YH8FGbB7Dg-5gjnTxRk-Ap9fP5iuCZJWszpF8k7Q4kx4RcrFMnpskLTJryPfljExt89M-hZOD_eO9Sd6_nZA7zqp17msrtdOOu5IKVUYUQtSVL8toae3qitY-lCoKFVQQFQ3UKu214mhoV7ZWRfUMNptFE18A4SzoqIsiaFkyz4JlVcCdlXqLwhQ1y-DjCDJz0eXJMClz9bgEBWgS3ibhbaSRIoN3A75X7Vq7RIlbNXcT_KPe2w-L5ZnpZ4WJwjlR1JYH51hdSW1lkBphoDVyO-8z2BmEZ1CPknPENnFxuTIpTRBTZfXvGsmyxE5UBs87Yf8ZMJK4FGScgRxNg9FYxyXN7LzN5Y0ECk1e8fJ_MNyBe5Pjw6mZfj76-grudzdaeF6I17C5Xl7GbaRNa_em1YjfZ-QX0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRASQjxLeNUHJE6hceInNwqsCpQKAZUqLpafdNVVdrW7_f-Mk2xpWjhxi-JHrG889jcZzxjgZWVprK3kpfVoojDHcR2UNJYysspxVbkYc-zwl0Oxf8Q-HfPjIaXQqkumgwbd1A5Avr4Ygz7rFm588Ke7i5B6fVdilzL8FBJ_XspSiutwAy1zlm9x-Lb389yhgPOyc3xu6g75G6-2vxT4PhvtV11a_79x0ctHKi_sUZO7cGcgl-RtPxvuwbXY3ofb_Z850gccPQCerz-brQiyVbI6QfZN8upMBkjIYpldN1lcZNqS78spObDtqX0IR5MPP97tl8PlCaXjrFmXPlmpnXbc1VSoOqIUom58XUdLk0sNTT7UKgoVVBANDdQq7bXiaGk3NqmqeQRb7byNj4FwFnTUVRW0rJlnwbIm4NZKvUVpisQKeDOCzCz6RBkmp64el6AETcbbZLyNNFIU8GqD73m7zjBR4krNvQz_qPfuxXz5ywx6ZqJwTlTJ8uAcS43UVgapEQaakNx5X8DORngGFSl7R2wb52crk_MEMVU3_66RTUvsRBWw3Qv7z4CRxeUo4wLkaBqMxjouaacnXTJvZFBo84on_4PhDtz8-n5iDj4efn4Kt_oTLbysxDPYWi_P4nOkTWv3olOI3-fbF5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Models+for+short+term+malaria+prediction+in+Sri+Lanka&rft.jtitle=Malaria+journal&rft.au=Bri%C3%ABt%2C+Olivier&rft.au=Vounatsou%2C+Penelope&rft.au=Gunawardena%2C+Dissanayake&rft.au=Galappaththy%2C+Gawrie&rft.date=2008-05-06&rft.pub=BioMed+Central+Ltd&rft.issn=1475-2875&rft.eissn=1475-2875&rft.volume=7&rft.issue=1&rft.spage=76&rft.epage=76&rft_id=info:doi/10.1186%2F1475-2875-7-76&rft.externalDBID=n%2Fa&rft.externalDocID=oai_biomedcentral_com_1475_2875_7_76
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2875&client=summon