Models for short term malaria prediction in Sri Lanka
Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long...
Saved in:
Published in | Malaria journal Vol. 7; no. 1; p. 76 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
06.05.2008
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control.
Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models.
The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons.
Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed. |
---|---|
AbstractList | Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control.
Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models.
The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons.
Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed. BACKGROUND: Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control. METHODS: Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models. RESULTS: The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons. CONCLUSION: Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed. BACKGROUNDMalaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control. METHODSExponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models. RESULTSThe best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons. CONCLUSIONHeterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed. Abstract Background Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control. Methods Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models. Results The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons. Conclusion Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed. |
ArticleNumber | 76 |
Author | Vounatsou, Penelope Briët, Olivier J T Gunawardena, Dissanayake M Galappaththy, Gawrie N L Amerasinghe, Priyanie H |
AuthorAffiliation | 2 Swiss Tropical Institute, Socinstrasse 57, P.O. Box CH-4002, Basel, Switzerland 4 Anti Malaria Campaign, Head Office Colombo, Sri Lanka 5 International Water Management Institute Sub Regional Office for South Asia, c/o ICRISAT, Patancheru, AP 502 324, Andhra Pradesh, India 1 International Water Management Institute, P.O. Box 2075, Colombo, Sri Lanka 3 US Agency for International Development, P.O. Box 7856, Kampala, Uganda |
AuthorAffiliation_xml | – name: 2 Swiss Tropical Institute, Socinstrasse 57, P.O. Box CH-4002, Basel, Switzerland – name: 4 Anti Malaria Campaign, Head Office Colombo, Sri Lanka – name: 3 US Agency for International Development, P.O. Box 7856, Kampala, Uganda – name: 5 International Water Management Institute Sub Regional Office for South Asia, c/o ICRISAT, Patancheru, AP 502 324, Andhra Pradesh, India – name: 1 International Water Management Institute, P.O. Box 2075, Colombo, Sri Lanka |
Author_xml | – sequence: 1 givenname: Olivier J T surname: Briët fullname: Briët, Olivier J T email: o.briet@cgiar.org organization: International Water Management Institute, P,O, Box 2075, Colombo, Sri Lanka. o.briet@cgiar.org – sequence: 2 givenname: Penelope surname: Vounatsou fullname: Vounatsou, Penelope – sequence: 3 givenname: Dissanayake M surname: Gunawardena fullname: Gunawardena, Dissanayake M – sequence: 4 givenname: Gawrie N L surname: Galappaththy fullname: Galappaththy, Gawrie N L – sequence: 5 givenname: Priyanie H surname: Amerasinghe fullname: Amerasinghe, Priyanie H |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18460204$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstr3DAQxkVJaV699lh86s2pJdl6XAoh5AVbemhzFiNplCi1ra3kDeS_jze7JFlK6WU0zHz85kMzh2RvTCMS8ok2J5Qq8ZW2squZmoOspXhHDl4Ke2_yfXJYyn3TUKkk-0D2qWpFw5r2gHTfk8e-VCHlqtylPFUT5qEaoIccoVpm9NFNMY1VHKufOVYLGH_DMXkfoC_4cfsekZuL819nV_Xix-X12emitl3Lp9oFkNpq21lGhWJoO4maO8YQaLCB0-A8UyiUV15w6iko7bTq0DIOQTX8iFxvuD7BvVnmOEB-NAmieS6kfGsgT9H1aFBYK5oAnbe2DVxqkF7qeTYNrBPOzaxvG9ZyZQf0DscpQ78D3e2M8c7cpgfDWsqUFjPgdAOwMf0DsNtxaTDrFZj1Cow0cs34sjWR058VlskMsTjsexgxrYqRVLSzXfVfIdVCt4rxWXiyEbqcSskYXgzRxqxP5G8Ln9_-w6t8exP8CR5buds |
CitedBy_id | crossref_primary_10_1007_s12639_017_0885_7 crossref_primary_10_1007_s12639_021_01458_y crossref_primary_10_3390_app12010496 crossref_primary_10_1111_zph_12021 crossref_primary_10_1186_s12936_015_0630_6 crossref_primary_10_1186_s12936_017_1706_2 crossref_primary_10_24171_j_phrp_2021_0304 crossref_primary_10_1155_2014_482851 crossref_primary_10_1186_1475_2875_13_57 crossref_primary_10_1017_S0950268811001063 crossref_primary_10_1016_j_prevetmed_2017_10_001 crossref_primary_10_1186_s12936_016_1549_2 crossref_primary_10_4103_1995_7645_329008 crossref_primary_10_1186_1475_2875_7_77 crossref_primary_10_1155_2019_7314129 crossref_primary_10_1186_1475_2875_9_251 crossref_primary_10_1371_journal_pone_0004726 crossref_primary_10_1007_s12639_020_01216_6 crossref_primary_10_3390_ijerph16214289 crossref_primary_10_1186_1475_2875_13_192 crossref_primary_10_3390_ijerph18116080 crossref_primary_10_1371_journal_pone_0028812 crossref_primary_10_1038_s41598_020_73601_3 crossref_primary_10_1038_s41598_024_58287_1 crossref_primary_10_1136_bmjopen_2012_001992 crossref_primary_10_1186_1475_2875_10_54 crossref_primary_10_1186_1475_2875_13_231 crossref_primary_10_1371_journal_pone_0065761 crossref_primary_10_3390_ijerph191912271 crossref_primary_10_1007_s10708_019_10134_x crossref_primary_10_1186_1475_2875_10_202 crossref_primary_10_1186_1475_2875_10_301 crossref_primary_10_4236_ajcc_2022_112004 crossref_primary_10_3390_insects11110794 crossref_primary_10_1007_s11356_021_18326_0 crossref_primary_10_1155_2017_4205957 crossref_primary_10_1590_1809_4392202200910 crossref_primary_10_1016_j_sste_2017_05_001 crossref_primary_10_1186_s12911_015_0170_6 crossref_primary_10_1371_journal_pntd_0008710 crossref_primary_10_1186_s12936_015_0758_4 crossref_primary_10_3390_ijerph16112000 |
Cites_doi | 10.1017/S0031182004005013 10.4269/ajtmh.1998.58.533 10.1111/j.1365-3156.2004.01340.x 10.1038/nature04503 10.1186/1475-2875-5-38 10.1046/j.1365-3156.1997.d01-183.x 10.1186/1475-2875-5-42 10.1186/1475-2875-3-44 10.1186/1475-2875-7-77 10.1186/1475-2875-3-41 10.1046/j.1365-3156.1996.d01-7.x 10.1046/j.1365-3156.2002.00924.x 10.1186/1475-2875-2-22 10.1080/00034989760347 10.1016/S0065-308X(00)47013-2 |
ContentType | Journal Article |
Copyright | Copyright © 2008 Briët et al; licensee BioMed Central Ltd. 2008 Briët et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Copyright © 2008 Briët et al; licensee BioMed Central Ltd. 2008 Briët et al; licensee BioMed Central Ltd. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION C1K F1W H95 H97 L.G M7N 7X8 5PM DOA |
DOI | 10.1186/1475-2875-7-76 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1475-2875 |
EndPage | 76 |
ExternalDocumentID | oai_doaj_org_article_e6bb60fa5dbb4f379a7d799b51f256cc oai_biomedcentral_com_1475_2875_7_76 10_1186_1475_2875_7_76 18460204 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Sri Lanka |
GeographicLocations_xml | – name: Sri Lanka |
GroupedDBID | --- -A0 0R~ 29M 2VQ 2WC 4.4 53G 5VS AAFWJ AAJSJ ABDBF ACGFO ACGFS ACIHN ACMJI ACPRK ACRMQ ADBBV ADINQ ADRAZ ADUKV AEAQA AENEX AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC C24 C6C CGR CS3 CUY CVF DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS ECGQY ECM EIF EJD EMB EMK EMOBN ESX F5P FRP GROUPED_DOAJ GX1 H13 HYE IAO IHR INH INR IPNFZ ITC KQ8 M48 M~E NPM O5R O5S OK1 P2P PGMZT PIMPY PQQKQ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A W2D WOQ WOW XSB AAYXX AFPKN CITATION C1K F1W H95 H97 L.G M7N 7X8 ABVAZ AFGXO AFNRJ 5PM |
ID | FETCH-LOGICAL-b543t-cfa79b9b5b21682eb57e93c22ea1fbf31fcd28e68d8d631d1a89c985eb23af803 |
IEDL.DBID | RBZ |
ISSN | 1475-2875 |
IngestDate | Tue Oct 22 15:13:02 EDT 2024 Tue Sep 17 21:27:46 EDT 2024 Wed May 22 07:11:29 EDT 2024 Thu Oct 24 23:57:04 EDT 2024 Fri Oct 25 00:14:19 EDT 2024 Thu Sep 12 19:50:33 EDT 2024 Tue Oct 15 23:39:25 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b543t-cfa79b9b5b21682eb57e93c22ea1fbf31fcd28e68d8d631d1a89c985eb23af803 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | http://dx.doi.org/10.1186/1475-2875-7-76 |
PMID | 18460204 |
PQID | 19694823 |
PQPubID | 23462 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e6bb60fa5dbb4f379a7d799b51f256cc pubmedcentral_primary_oai_pubmedcentral_nih_gov_2412896 biomedcentral_primary_oai_biomedcentral_com_1475_2875_7_76 proquest_miscellaneous_71642568 proquest_miscellaneous_19694823 crossref_primary_10_1186_1475_2875_7_76 pubmed_primary_18460204 |
PublicationCentury | 2000 |
PublicationDate | 2008-05-06 |
PublicationDateYYYYMMDD | 2008-05-06 |
PublicationDate_xml | – month: 05 year: 2008 text: 2008-05-06 day: 06 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Malaria journal |
PublicationTitleAlternate | Malar J |
PublicationYear | 2008 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | 23785448 - PLoS One. 2013 Jun 13;8(6):e65761 15541174 - Malar J. 2004 Nov 12;3:41 9598437 - Am J Trop Med Hyg. 1998 May;58(5):533-42 16452977 - Nature. 2006 Feb 2;439(7076):576-9 8673827 - Trop Med Int Health. 1996 Feb;1(1):86-96 15598256 - Trop Med Int Health. 2004 Dec;9(12):1247-57 11019462 - Bull World Health Organ. 2000;78(9):1136-47 15206460 - Parasitology. 2004 Jun;128(Pt 6):585-93 18460205 - Malar J. 2008;7:77 9391508 - Trop Med Int Health. 1997 Nov;2(11):1057-67 15555061 - Malar J. 2004 Nov 19;3:44 10997211 - Adv Parasitol. 2000;47:309-30 16689992 - Malar J. 2006;5:38 9579215 - Ann Trop Med Parasitol. 1997 Dec;91(8):945-9 12914667 - Malar J. 2003 Jul 22;2:22 16700913 - Malar J. 2006;5:42 12358620 - Trop Med Int Health. 2002 Oct;7(10):851-7 JP Burman (551_CR21) 1988 OJT Briët (551_CR23) 2003; 2 TG Meskel (551_CR12) 2007 DM Gunawardena (551_CR4) 1998; 58 MC Thomson (551_CR14) 2006; 439 W Van der Hoek (551_CR8) 1997; 91 OJ Briet (551_CR2) 2006; 5 551_CR3 TN Krishnamurti (551_CR10) 2007 KJ Mwaniki (551_CR22) 2005; 1 MJ Bouma (551_CR6) 1996; 1 AK Githeko (551_CR7) 2000; 78 PJ Ribeiro Jr (551_CR19) 2001 OJT Briët (551_CR25) 2008; 7 L Zubair (551_CR26) 2007 HD Teklehaimanot (551_CR13) 2004; 19 551_CR24 F Konradsen (551_CR1) 2000 551_CR27 MF Myers (551_CR15) 2000; 47 551_CR29 C Chatfield (551_CR20) 2004 T Abeysekera (551_CR5) 1997; 2 TA Abeku (551_CR17) 2004; 128 MH Craig (551_CR18) 2004; 9 R Basher (551_CR9) 2002 EK Grover-Kopec (551_CR11) 2006; 5 TA Abeku (551_CR16) 2002; 7 HD Teklehaimanot (551_CR28) 2004; 3 |
References_xml | – ident: 551_CR3 – volume: 128 start-page: 585 year: 2004 ident: 551_CR17 publication-title: Parasitology doi: 10.1017/S0031182004005013 contributor: fullname: TA Abeku – ident: 551_CR27 – volume: 58 start-page: 533 year: 1998 ident: 551_CR4 publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.1998.58.533 contributor: fullname: DM Gunawardena – volume-title: R-News year: 2001 ident: 551_CR19 contributor: fullname: PJ Ribeiro Jr – ident: 551_CR29 – volume: 9 start-page: 1247 year: 2004 ident: 551_CR18 publication-title: Trop Med Int Health doi: 10.1111/j.1365-3156.2004.01340.x contributor: fullname: MH Craig – start-page: 189 volume-title: The contextual determinants of malaria year: 2002 ident: 551_CR9 contributor: fullname: R Basher – volume-title: The analysis of time series: an introduction year: 2004 ident: 551_CR20 contributor: fullname: C Chatfield – volume: 439 start-page: 576 year: 2006 ident: 551_CR14 publication-title: Nature doi: 10.1038/nature04503 contributor: fullname: MC Thomson – volume: 5 start-page: 38 year: 2006 ident: 551_CR11 publication-title: Malar J doi: 10.1186/1475-2875-5-38 contributor: fullname: EK Grover-Kopec – volume: 2 start-page: 1057 year: 1997 ident: 551_CR5 publication-title: Trop Med Int Health doi: 10.1046/j.1365-3156.1997.d01-183.x contributor: fullname: T Abeysekera – volume: 1 start-page: 68 year: 2005 ident: 551_CR22 publication-title: East Afr J Stat contributor: fullname: KJ Mwaniki – volume: 5 start-page: 42 year: 2006 ident: 551_CR2 publication-title: Malar J doi: 10.1186/1475-2875-5-42 contributor: fullname: OJ Briet – volume-title: Malaria in Sri Lanka: Current knowledge on transmission and control year: 2000 ident: 551_CR1 contributor: fullname: F Konradsen – volume: 19 start-page: 44 year: 2004 ident: 551_CR13 publication-title: Malar J doi: 10.1186/1475-2875-3-44 contributor: fullname: HD Teklehaimanot – volume-title: Personal communication year: 2007 ident: 551_CR26 contributor: fullname: L Zubair – volume: 78 start-page: 1136 year: 2000 ident: 551_CR7 publication-title: Bull World Health Organ contributor: fullname: AK Githeko – volume-title: Experimental prediction of climate-related malaria incidence year: 2007 ident: 551_CR10 contributor: fullname: TN Krishnamurti – ident: 551_CR24 – volume: 7 start-page: 77 year: 2008 ident: 551_CR25 publication-title: Malar J doi: 10.1186/1475-2875-7-77 contributor: fullname: OJT Briët – volume: 3 start-page: 41 year: 2004 ident: 551_CR28 publication-title: Malar J doi: 10.1186/1475-2875-3-41 contributor: fullname: HD Teklehaimanot – volume-title: Outliers in time series year: 1988 ident: 551_CR21 contributor: fullname: JP Burman – volume: 1 start-page: 86 year: 1996 ident: 551_CR6 publication-title: Trop Med Int Health doi: 10.1046/j.1365-3156.1996.d01-7.x contributor: fullname: MJ Bouma – volume-title: Personal communication year: 2007 ident: 551_CR12 contributor: fullname: TG Meskel – volume: 7 start-page: 851 year: 2002 ident: 551_CR16 publication-title: Trop Med Int Health doi: 10.1046/j.1365-3156.2002.00924.x contributor: fullname: TA Abeku – volume: 2 start-page: 22 year: 2003 ident: 551_CR23 publication-title: Malar J doi: 10.1186/1475-2875-2-22 contributor: fullname: OJT Briët – volume: 91 start-page: 945 year: 1997 ident: 551_CR8 publication-title: Ann Trop Med Parasitol doi: 10.1080/00034989760347 contributor: fullname: W Van der Hoek – volume: 47 start-page: 309 year: 2000 ident: 551_CR15 publication-title: Adv Parasitol doi: 10.1016/S0065-308X(00)47013-2 contributor: fullname: MF Myers |
SSID | ssj0017872 |
Score | 2.1213753 |
Snippet | Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past... Background Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given... BACKGROUNDMalaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given... BACKGROUND: Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present,... Abstract Background Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at... |
SourceID | doaj pubmedcentral biomedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 76 |
SubjectTerms | Epidemiologic Methods Forecasting - methods Humans Malaria - epidemiology Models, Statistical Seasons Sri Lanka - epidemiology Time Factors Weather |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA_iSRCp1uqqtTkIPS0mm29vVhQprRcVvIV84qN2lfee_7-T3X3qtkovvSbZkPxmkszsZH5B6IA4mhqnRO0CuCjcC9gHFU21Spx4oYlPqeQO_7yQ59f8-424efXUV7kT1tMD98AdJum9JNmJ6D3PTBmnojLGC5rhtA6h232JWThTQ_wA1LCLc3IYBfgEYqBrpFoePpfVqi5MI6M897vR8dSx-L9lev55g_LVkXT2Aa0NtiQ-7uewjpZSu4FW-x9xuM8v-ohEee3sbobBOMWzWzC2cdmM8W8HLu3E4YdpidQU6eBJiy-nE_zDtb_cJro-O706Oa-HtxJqLzib1yE7ZTzA4hsqdZMA9GRYaJrkaPaZ0Rxio5PUUUfJaKROm2C0AMeauawJ-4SW2_s2bSMseDTJEBKNanjg0XEW4SSlwYHwZOYVOhpBZh96XgxbmKrHNbBobMHbFrytskpW6OsC3-fvOj9Ey79afivwj3rvCkA77KAd9l_aUaEvC-FZWDclGOLadP84s4UWiOuGvd-ieJLQia7QVi_slwGD0VaSiiukRmowGuu4pp3cdtzdYDCBiyt3_sfkdtFKf3tF1ETuoeX59DF9BhNp7ve71fAES0ERFQ priority: 102 providerName: Directory of Open Access Journals – databaseName: PubMed Central dbid: RPM link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbanpAQgvIKtMUHJE7pxm-7N1pRVYgiJKjUm-VXaNTd7Gp3-_8Z5wGkwIVr_NBoZuyZL_MwQm8rRxJ1SpQuAEThXsA9qEgqVeKVF7ryKeXa4cvP8uKKf7wW1ztIjLUwXdJ-8M1xO18ct81Nl1u5WoTZmCc2-3J5BlYHcIKc7aJdUNARog-hA9BAOnRnJFrOCAdCABaIUpWqe7AILG6uCL1X4T6fGKauf__fnM77uZO_GaPzx-jR4EXi9z21T9BOavfRw_4XHO4ri54ikd85m28wuKV4cwNuNs7XMF44ALONw6t1jtFkueCmxV_XDf7k2lv3DF2df_h2dlEOrySUXnC2LUPtlPHGC0-J1DQBu5NhgdLkSO1rRuoQqU5SRx0lI5E4bYLRAiA1c7Wu2HO01y7b9BJhwaNJpqqiUZQHHh1nEWwoCQ7EJmteoJMJy-yq74hhc4_q6QgcF5tZbzPrrbJKFujdyN-f6zoEouUfM08z-ye7dx-W6-920AObpPeyqp2I3vOaKeNUVAbYQGrw4kIo0JtReBZOTA6DuDYt7zY2NwTimrJ_z8gYEjbRBXrRC_sXwYPyFEhN1GBC63QElLjr2j0o7av_XvkaPeiTVURZyQO0t13fpUPwiLb-qDsBPwCIhg5Q priority: 500 providerName: National Library of Medicine – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagXJAQ4k1oAR-QOAXit41UIUBUFQIusFJvlp90xZIt2a1E_z3jJMuStpy4xo8433jsbzLjMULPGkcSdUrULoCJwr2AdVCRVKvEGy9041MqZ4c_fZaHM_7hSBxt459GAFeXmnblPqlZt3jx6-fZa1D4_V7htXxJOLwLmL-oVa3kVXSNcrDSSxgf33oUYGL2ns9N3TGB48X2506-LyYbVp_X_zIyej6m8q9N6uAWujmyS_xmmA630ZXU3kE3hl9zeDhxdBeJcv_ZYoWBruLVMXw5Lssz_uEAibnDJ13x3RR54XmLv3Rz_NG13909NDt4__XdYT3enlB7wdm6Dtkp440XnhKpaQIxJMMCpcmR7DMjOUSqk9RRR8lIJE6bYLQAU5u5rBt2H-20yzY9RFjwaJJpmmgU5YFHx1mEvZUEB-KUmVfo1QQyezJkyrAld_W0BNTIFrxtwdsqq2SFnm_w_dOut0y0vFDzbYF_0nv_YNl9s6Oi2SS9l012InrPM1PGqagMwEAysLsQKvR0IzwLmlTcI65Ny9OVLYmCuKbs3zWKbQmd6Ao9GIS9HTDQuHLMuEJqMg0mY52WtPPjPps3UCgweuWj_8FwF10f4lhE3cg9tLPuTtNjIEtr_6TXgt-DEhVN priority: 102 providerName: Scholars Portal |
Title | Models for short term malaria prediction in Sri Lanka |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18460204 https://search.proquest.com/docview/19694823 https://search.proquest.com/docview/71642568 http://dx.doi.org/10.1186/1475-2875-7-76 https://pubmed.ncbi.nlm.nih.gov/PMC2412896 https://doaj.org/article/e6bb60fa5dbb4f379a7d799b51f256cc |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5Be0FCiDcpsPiAxCkiftu9bRFVtaJcSqWKi-VX1FVLWu1u_z_jZLclWzhxySF-yPrGj29mPGOAj42nmXktax9RRRFB4j6oaa51Fk2Qpgk5l9jh4-_q6FTMzuTZnb1jy4NPjfpMBfaEvF7WutbqIeyyklCl6OUHP2_9BTjter_mpu46PeP99ltx7Zej46jP2v83qrl9Y_KPI-jwKTxZc0cyHYT9DB7k7jk8HgxvZIgnegGyvG52uSRIRsnyHMk1KZsv-eVRhZ17cr0onpkiDTLvyMliTr757sK_hNPDrz--HNXrtxHqIAVf1bH12gYbZGBUGZYR5Gx5ZCx72oaW0zYmZrIyySTFaaLe2GiNREWa-9Y0_BXsdFddfgNEimSzbZpkNRNRJC94wpOTRo_CUq2oYH8Embse8mC4kpl6XIKLxBW8XcHbaadVBZ82-N626_UOo-7VPCjwj3rvf-BkcOtl5LIKQTWtlykE0XJtvU7aIgy0Re4WYwUfNsJzuE6K88N3-epm6UoaIGEY_3eNojliJ6aC14Ow7waMJK0EEVegR9NgNNZxSTc_73N1I0FClVbt_Q-Gb-HRcEtF1o16BzurxU1-j1RoFSawO53OTmaT3pSA32NhJv3KmPR2q9-ITww4 |
link.rule.ids | 108,230,315,730,783,787,867,888,2109,2228,24330,24949,27936,27937,53804,53806,76140,76141 |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcgAJofIOUOoDEqdAnPjJjVatFtj2AK1UcbH8SrtiyVa72__POI_StHDiGj9ifeOxv_F4xgBvC0tjaSXPrUcThTmO66CkMZeRFY6rwsWYYocPj8TkhH055acbMBliYX5ZNOhmtgfy_fUY9Hm7cA_3xTp1V-IDZfgn5P08l7kUd-AuGuYsqei33R9X_gSclq3fc6jbp2-83f5G3Pt8tF21Wf3_RkVv3qi8tkUdbMHDnluST93YH8FGbB7Dg-5gjnTxRk-Ap9fP5iuCZJWszpF8k7Q4kx4RcrFMnpskLTJryPfljExt89M-hZOD_eO9Sd6_nZA7zqp17msrtdOOu5IKVUYUQtSVL8toae3qitY-lCoKFVQQFQ3UKu214mhoV7ZWRfUMNptFE18A4SzoqIsiaFkyz4JlVcCdlXqLwhQ1y-DjCDJz0eXJMClz9bgEBWgS3ibhbaSRIoN3A75X7Vq7RIlbNXcT_KPe2w-L5ZnpZ4WJwjlR1JYH51hdSW1lkBphoDVyO-8z2BmEZ1CPknPENnFxuTIpTRBTZfXvGsmyxE5UBs87Yf8ZMJK4FGScgRxNg9FYxyXN7LzN5Y0ECk1e8fJ_MNyBe5Pjw6mZfj76-grudzdaeF6I17C5Xl7GbaRNa_em1YjfZ-QX0Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRASQjxLeNUHJE6hceInNwqsCpQKAZUqLpafdNVVdrW7_f-Mk2xpWjhxi-JHrG889jcZzxjgZWVprK3kpfVoojDHcR2UNJYysspxVbkYc-zwl0Oxf8Q-HfPjIaXQqkumgwbd1A5Avr4Ygz7rFm588Ke7i5B6fVdilzL8FBJ_XspSiutwAy1zlm9x-Lb389yhgPOyc3xu6g75G6-2vxT4PhvtV11a_79x0ctHKi_sUZO7cGcgl-RtPxvuwbXY3ofb_Z850gccPQCerz-brQiyVbI6QfZN8upMBkjIYpldN1lcZNqS78spObDtqX0IR5MPP97tl8PlCaXjrFmXPlmpnXbc1VSoOqIUom58XUdLk0sNTT7UKgoVVBANDdQq7bXiaGk3NqmqeQRb7byNj4FwFnTUVRW0rJlnwbIm4NZKvUVpisQKeDOCzCz6RBkmp64el6AETcbbZLyNNFIU8GqD73m7zjBR4krNvQz_qPfuxXz5ywx6ZqJwTlTJ8uAcS43UVgapEQaakNx5X8DORngGFSl7R2wb52crk_MEMVU3_66RTUvsRBWw3Qv7z4CRxeUo4wLkaBqMxjouaacnXTJvZFBo84on_4PhDtz8-n5iDj4efn4Kt_oTLbysxDPYWi_P4nOkTWv3olOI3-fbF5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Models+for+short+term+malaria+prediction+in+Sri+Lanka&rft.jtitle=Malaria+journal&rft.au=Bri%C3%ABt%2C+Olivier&rft.au=Vounatsou%2C+Penelope&rft.au=Gunawardena%2C+Dissanayake&rft.au=Galappaththy%2C+Gawrie&rft.date=2008-05-06&rft.pub=BioMed+Central+Ltd&rft.issn=1475-2875&rft.eissn=1475-2875&rft.volume=7&rft.issue=1&rft.spage=76&rft.epage=76&rft_id=info:doi/10.1186%2F1475-2875-7-76&rft.externalDBID=n%2Fa&rft.externalDocID=oai_biomedcentral_com_1475_2875_7_76 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2875&client=summon |