Normal histone modifications on the inactive X chromosome in ICF and Rett syndrome cells: implications for methyl-CpG binding proteins

In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X ch...

Full description

Saved in:
Bibliographic Details
Published inBMC biology Vol. 2; no. 1; p. 21
Main Authors Gartler, Stanley M, Varadarajan, Kartik R, Luo, Ping, Canfield, Theresa K, Traynor, Jeff, Francke, Uta, Hansen, R Scott
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 20.09.2004
BioMed Central
BMC
Subjects
Online AccessGet full text
ISSN1741-7007
1741-7007
DOI10.1186/1741-7007-2-21

Cover

Loading…
Abstract In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X chromosome by studying histone modifications on the X chromosome in normal cells and in cells from patients with ICF syndrome (Immune deficiency, Centromeric region instability, and Facial anomalies syndrome). In normal cells the inactive X has characteristic silencing type histone modification patterns and the CpG islands of genes subject to X inactivation are hypermethylated. In ICF cells, however, genes subject to X inactivation are hypomethylated on the inactive X due to mutations in the DNA methyltransferase (DNMT3B) genes. Therefore, if DNA methylation is upstream of histone modification, the histones on the inactive X in ICF cells should not be modified to a silent form. In addition, we determined whether a specific methyl-CpG binding protein, MeCP2, is necessary for the inactive X histone modification pattern by studying Rett syndrome cells which are deficient in MeCP2 function. We show here that the inactive X in ICF cells, which appears to be hypomethylated at all CpG islands, exhibits normal histone modification patterns. In addition, in Rett cells with no functional MeCP2 methyl-CpG binding protein, the inactive X also exhibits normal histone modification patterns. These data suggest that DNA methylation and the associated methyl-DNA binding proteins may not play a critical role in determining histone modification patterns on the mammalian inactive X chromosome at the sites analyzed.
AbstractList BACKGROUND: In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X chromosome by studying histone modifications on the X chromosome in normal cells and in cells from patients with ICF syndrome (Immune deficiency, Centromeric region instability, and Facial anomalies syndrome). In normal cells the inactive X has characteristic silencing type histone modification patterns and the CpG islands of genes subject to X inactivation are hypermethylated. In ICF cells, however, genes subject to X inactivation are hypomethylated on the inactive X due to mutations in the DNA methyltransferase (DNMT3B) genes. Therefore, if DNA methylation is upstream of histone modification, the histones on the inactive X in ICF cells should not be modified to a silent form. In addition, we determined whether a specific methyl-CpG binding protein, MeCP2, is necessary for the inactive X histone modification pattern by studying Rett syndrome cells which are deficient in MeCP2 function. RESULTS: We show here that the inactive X in ICF cells, which appears to be hypomethylated at all CpG islands, exhibits normal histone modification patterns. In addition, in Rett cells with no functional MeCP2 methyl-CpG binding protein, the inactive X also exhibits normal histone modification patterns. CONCLUSIONS: These data suggest that DNA methylation and the associated methyl-DNA binding proteins may not play a critical role in determining histone modification patterns on the mammalian inactive X chromosome at the sites analyzed.
In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X chromosome by studying histone modifications on the X chromosome in normal cells and in cells from patients with ICF syndrome (Immune deficiency, Centromeric region instability, and Facial anomalies syndrome). In normal cells the inactive X has characteristic silencing type histone modification patterns and the CpG islands of genes subject to X inactivation are hypermethylated. In ICF cells, however, genes subject to X inactivation are hypomethylated on the inactive X due to mutations in the DNA methyltransferase (DNMT3B) genes. Therefore, if DNA methylation is upstream of histone modification, the histones on the inactive X in ICF cells should not be modified to a silent form. In addition, we determined whether a specific methyl-CpG binding protein, MeCP2, is necessary for the inactive X histone modification pattern by studying Rett syndrome cells which are deficient in MeCP2 function. We show here that the inactive X in ICF cells, which appears to be hypomethylated at all CpG islands, exhibits normal histone modification patterns. In addition, in Rett cells with no functional MeCP2 methyl-CpG binding protein, the inactive X also exhibits normal histone modification patterns. These data suggest that DNA methylation and the associated methyl-DNA binding proteins may not play a critical role in determining histone modification patterns on the mammalian inactive X chromosome at the sites analyzed.
Abstract Background In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X chromosome by studying histone modifications on the X chromosome in normal cells and in cells from patients with ICF syndrome (Immune deficiency, Centromeric region instability, and Facial anomalies syndrome). In normal cells the inactive X has characteristic silencing type histone modification patterns and the CpG islands of genes subject to X inactivation are hypermethylated. In ICF cells, however, genes subject to X inactivation are hypomethylated on the inactive X due to mutations in the DNA methyltransferase (DNMT3B) genes. Therefore, if DNA methylation is upstream of histone modification, the histones on the inactive X in ICF cells should not be modified to a silent form. In addition, we determined whether a specific methyl-CpG binding protein, MeCP2, is necessary for the inactive X histone modification pattern by studying Rett syndrome cells which are deficient in MeCP2 function. Results We show here that the inactive X in ICF cells, which appears to be hypomethylated at all CpG islands, exhibits normal histone modification patterns. In addition, in Rett cells with no functional MeCP2 methyl-CpG binding protein, the inactive X also exhibits normal histone modification patterns. Conclusions These data suggest that DNA methylation and the associated methyl-DNA binding proteins may not play a critical role in determining histone modification patterns on the mammalian inactive X chromosome at the sites analyzed.
In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X chromosome by studying histone modifications on the X chromosome in normal cells and in cells from patients with ICF syndrome (Immune deficiency, Centromeric region instability, and Facial anomalies syndrome). In normal cells the inactive X has characteristic silencing type histone modification patterns and the CpG islands of genes subject to X inactivation are hypermethylated. In ICF cells, however, genes subject to X inactivation are hypomethylated on the inactive X due to mutations in the DNA methyltransferase (DNMT3B) genes. Therefore, if DNA methylation is upstream of histone modification, the histones on the inactive X in ICF cells should not be modified to a silent form. In addition, we determined whether a specific methyl-CpG binding protein, MeCP2, is necessary for the inactive X histone modification pattern by studying Rett syndrome cells which are deficient in MeCP2 function.BACKGROUNDIn mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X chromosome by studying histone modifications on the X chromosome in normal cells and in cells from patients with ICF syndrome (Immune deficiency, Centromeric region instability, and Facial anomalies syndrome). In normal cells the inactive X has characteristic silencing type histone modification patterns and the CpG islands of genes subject to X inactivation are hypermethylated. In ICF cells, however, genes subject to X inactivation are hypomethylated on the inactive X due to mutations in the DNA methyltransferase (DNMT3B) genes. Therefore, if DNA methylation is upstream of histone modification, the histones on the inactive X in ICF cells should not be modified to a silent form. In addition, we determined whether a specific methyl-CpG binding protein, MeCP2, is necessary for the inactive X histone modification pattern by studying Rett syndrome cells which are deficient in MeCP2 function.We show here that the inactive X in ICF cells, which appears to be hypomethylated at all CpG islands, exhibits normal histone modification patterns. In addition, in Rett cells with no functional MeCP2 methyl-CpG binding protein, the inactive X also exhibits normal histone modification patterns.RESULTSWe show here that the inactive X in ICF cells, which appears to be hypomethylated at all CpG islands, exhibits normal histone modification patterns. In addition, in Rett cells with no functional MeCP2 methyl-CpG binding protein, the inactive X also exhibits normal histone modification patterns.These data suggest that DNA methylation and the associated methyl-DNA binding proteins may not play a critical role in determining histone modification patterns on the mammalian inactive X chromosome at the sites analyzed.CONCLUSIONSThese data suggest that DNA methylation and the associated methyl-DNA binding proteins may not play a critical role in determining histone modification patterns on the mammalian inactive X chromosome at the sites analyzed.
ArticleNumber 21
Author Luo, Ping
Francke, Uta
Hansen, R Scott
Gartler, Stanley M
Traynor, Jeff
Varadarajan, Kartik R
Canfield, Theresa K
AuthorAffiliation 3 Department of Genetics, Stanford University, Stanford, CA, USA
2 Department of Genome Sciences, University of Washington, Seattle, WA, USA
1 Department of Medicine, University of Washington, Seattle, WA, USA
AuthorAffiliation_xml – name: 2 Department of Genome Sciences, University of Washington, Seattle, WA, USA
– name: 3 Department of Genetics, Stanford University, Stanford, CA, USA
– name: 1 Department of Medicine, University of Washington, Seattle, WA, USA
Author_xml – sequence: 1
  givenname: Stanley M
  surname: Gartler
  fullname: Gartler, Stanley M
– sequence: 2
  givenname: Kartik R
  surname: Varadarajan
  fullname: Varadarajan, Kartik R
– sequence: 3
  givenname: Ping
  surname: Luo
  fullname: Luo, Ping
– sequence: 4
  givenname: Theresa K
  surname: Canfield
  fullname: Canfield, Theresa K
– sequence: 5
  givenname: Jeff
  surname: Traynor
  fullname: Traynor, Jeff
– sequence: 6
  givenname: Uta
  surname: Francke
  fullname: Francke, Uta
– sequence: 7
  givenname: R Scott
  surname: Hansen
  fullname: Hansen, R Scott
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15377381$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1r3DAQhk1JaT7aa49Fp96c6MO27EIPYWnShdBCaaE3IUvjtYIlbSVtYP9Af3flbLJk-0FPGmbmfXg1M6fFkfMOiuI1weeEtM0F4RUpOca8pCUlz4qTfeLoSXxcnMZ4izGtOWcvimNSsxy05KT4-ckHKyc0mpgyGVmvzWCUTMa7iLxDaQRknFTJ3AH6jtQYvPXR2zmLlosrJJ1GXyAlFLdOh7mgYJriO2TsetqTBh-QhTRup3Kxvka9cdq4FVoHn8C4-LJ4PsgpwquH96z4dvXh6-JjefP5erm4vCn7uqKp7DvWAyEDHRiu-6HGsgaiBk2wlNDTTmkFWLeyIhXmLaZAKG9BM0mAN6AVOyuWO6728lasg7EybIWXRtwnfFgJGZJRE4imk7zpteRasorhqmvyNIe2k6QGAMUy6_2Otd70NsPBpSCnA-hhxZlRrPydqClpWpL1lzt9b_w_9IcV5a2YVyrmlQoq6Mx4--Ah-B8biElYE-f5Swd-E0XDKW-y-_82UkwrwniVG988_dXezuPJ5IZq16CCjzHAIJRJ91vOJs0kCBbzZf7p9Pw32Z78d8EvOnDoIQ
CitedBy_id crossref_primary_10_1186_1471_2164_8_131
crossref_primary_10_1016_j_fertnstert_2015_12_013
crossref_primary_10_1097_01_wco_0000162848_99154_9a
crossref_primary_10_1093_hmg_ddn177
crossref_primary_10_1016_j_drudis_2011_09_008
crossref_primary_10_1016_j_ejmg_2009_07_004
crossref_primary_10_1038_ncpneuro0148
crossref_primary_10_1080_19420889_2019_1592419
crossref_primary_10_2217_epi_09_13
crossref_primary_10_1093_hmg_ddl027
crossref_primary_10_1007_s11103_009_9594_7
crossref_primary_10_1002_jcp_20879
crossref_primary_10_1371_journal_pone_0019464
crossref_primary_10_1007_s00335_013_9451_5
Cites_doi 10.1038/12664
10.1038/ng1143
10.1128/MCB.16.11.6190
10.1038/35104508
10.1126/science.1063127
10.1073/pnas.96.2.616
10.1186/1471-2350-3-12
10.1159/000071576
10.1073/pnas.96.24.13825
10.1093/hmg/10.10.1085
10.1101/gad.5.6.1102
10.1038/nature731
10.1074/jbc.272.23.14921
10.1101/gad.1123303
10.1159/000071571
10.1016/0092-8674(93)90419-Q
10.1073/pnas.96.25.14412
10.1016/S0168-9525(02)02667-7
10.1007/BF02281863
10.1128/MCB.8.11.4692
10.1038/13810
10.1038/ncb1076
10.1016/S0387-7604(01)00333-3
10.1007/BF02524648
10.1038/ng0592-137
10.1093/hmg/5.9.1345
10.1101/gad.4.8.1277
10.1038/46214
10.1073/pnas.87.21.8252
10.1093/hmg/ddg268
10.1038/ng787
10.1073/pnas.95.9.5133
10.1038/561
10.1016/S1535-6108(02)00234-9
10.1016/S0960-9822(02)00976-4
10.1128/MCB.12.9.3819
10.1093/hmg/ddg229
10.1016/S0092-8674(00)81656-6
10.1016/S0092-8674(01)00598-0
10.1093/hmg/9.18.2575
10.1038/23962
10.1038/31275
10.1038/ng1158
10.1016/S0896-6273(02)00768-7
10.1073/pnas.51.5.786
10.1093/hmg/ddg351
10.1093/hmg/11.25.3191
10.1016/S0960-9822(02)00660-7
ContentType Journal Article
Copyright Copyright © 2004 Gartler et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Copyright © 2004 Gartler et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
5PM
DOA
DOI 10.1186/1741-7007-2-21
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Genetics Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1741-7007
EndPage 21
ExternalDocumentID oai_doaj_org_article_69a76bda7da3430496741f89a15eeec3
PMC521681
oai_biomedcentral_com_1741_7007_2_21
15377381
10_1186_1741_7007_2_21
Genre Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: NS40163
– fundername: NINDS NIH HHS
  grantid: R01 NS040163
– fundername: NICHD NIH HHS
  grantid: HD16659
– fundername: NIGMS NIH HHS
  grantid: T32 GM008748
– fundername: NICHD NIH HHS
  grantid: R01 HD016659
– fundername: NIGMS NIH HHS
  grantid: T32 GM08748
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5GY
5VS
6J9
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
C1A
C6C
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
IGS
IHR
INH
INR
IOV
ISE
ISR
ITC
KQ8
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
WOQ
WOW
XSB
-A0
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
ABVAZ
AFGXO
AFNRJ
5PM
ID FETCH-LOGICAL-b542t-b93be11f2f305bf50a5e1cfd10aaeb29cdce0d8a41407802e1278ed3a1e76edc3
IEDL.DBID M48
ISSN 1741-7007
IngestDate Wed Aug 27 01:26:21 EDT 2025
Thu Aug 21 14:10:03 EDT 2025
Wed May 22 07:12:20 EDT 2024
Thu Sep 04 16:44:51 EDT 2025
Fri Sep 05 13:20:51 EDT 2025
Thu Jan 02 22:02:15 EST 2025
Tue Jul 01 02:57:57 EDT 2025
Thu Apr 24 23:01:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b542t-b93be11f2f305bf50a5e1cfd10aaeb29cdce0d8a41407802e1278ed3a1e76edc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1741-7007-2-21
PMID 15377381
PQID 20241374
PQPubID 23462
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_69a76bda7da3430496741f89a15eeec3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_521681
biomedcentral_primary_oai_biomedcentral_com_1741_7007_2_21
proquest_miscellaneous_67276430
proquest_miscellaneous_20241374
pubmed_primary_15377381
crossref_citationtrail_10_1186_1741_7007_2_21
crossref_primary_10_1186_1741_7007_2_21
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-09-20
PublicationDateYYYYMMDD 2004-09-20
PublicationDate_xml – month: 09
  year: 2004
  text: 2004-09-20
  day: 20
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC biology
PublicationTitleAlternate BMC Biol
PublicationYear 2004
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References GP Pfeifer (23_CR40) 1990; 87
MR Matarazzo (23_CR31) 2002; 11
GP Pfeifer (23_CR42) 1991; 5
RS Hansen (23_CR24) 2003; 12
J Giacalone (23_CR26) 1992; 1
C Costanzi (23_CR25) 1998; 393
M Wan (23_CR10) 2001; 10
J Traynor (23_CR27) 2002; 3
SM Gartler (23_CR44) 1985; 198
BP Chadwick (23_CR19) 2003; 12
R Huber (23_CR49) 1999; 96
GL Xu (23_CR22) 1999; 402
RS Hansen (23_CR45) 1996; 5
Y Goto (23_CR29) 2002; 99
T Kiyono (23_CR47) 1998; 396
E Heard (23_CR34) 2001; 107
BA Boggs (23_CR18) 1996; 105
P Jeppesen (23_CR16) 1993; 74
X Nan (23_CR9) 2001; 23
N Belyaev (23_CR15) 1996; 97
RS Hansen (23_CR48) 1988; 8
MD Litt (23_CR39) 1996; 16
T Jenuwein (23_CR2) 2001; 293
WA Burgers (23_CR14) 2002; 18
MD Litt (23_CR36) 1997; 272
T Sasaki (23_CR35) 1992; 12
SM Gartler (23_CR43) 2002; 99
BA Boggs (23_CR17) 2002; 30
JA Fahrner (23_CR37) 2003; 17
PL Jones (23_CR7) 1998; 19
T Hashimshony (23_CR11) 2003; 34
RS Hansen (23_CR23) 2000; 9
GP Pfeifer (23_CR41) 1990; 4
VG Allfrey (23_CR1) 1964; 51
M Shahbazian (23_CR13) 2002; 35
H Tamaru (23_CR3) 2001; 414
JE Mermoud (23_CR33) 2002; 12
C Rougeulle (23_CR32) 2003; 12
RE Amir (23_CR12) 1999; 23
L Johnson (23_CR6) 2002; 12
M Okano (23_CR21) 1999; 99
PA Wade (23_CR8) 1999; 23
H Tamaru (23_CR4) 2003; 34
SL Gilbert (23_CR28) 1999; 96
RS Hansen (23_CR46) 1998; 95
KE Bachman (23_CR38) 2003; 3
JP Jackson (23_CR5) 2002; 416
RS Hansen (23_CR20) 1999; 96
R Schneider (23_CR30) 2004; 6
8343956 - Cell. 1993 Jul 30;74(2):281-9
2044957 - Genes Dev. 1991 Jun;5(6):1102-13
14570711 - Hum Mol Genet. 2003 Dec 15;12(24):3343-8
2236038 - Proc Natl Acad Sci U S A. 1990 Nov;87(21):8252-6
11063717 - Hum Mol Genet. 2000 Nov 1;9(18):2575-87
11747809 - Cell. 2001 Dec 14;107(6):727-38
14172992 - Proc Natl Acad Sci U S A. 1964 May;51:786-94
9620779 - Nat Genet. 1998 Jun;19(2):187-91
1302007 - Nat Genet. 1992 May;1(2):137-43
11713521 - Nature. 2001 Nov 15;414(6861):277-83
12900541 - Cytogenet Genome Res. 2002;99(1-4):25-9
10555141 - Cell. 1999 Oct 29;99(3):247-57
12897049 - Genes Dev. 2003 Aug 1;17(15):1805-12
2850467 - Mol Cell Biol. 1988 Nov;8(11):4692-9
1380647 - Mol Cell Biol. 1992 Sep;12(9):3819-26
11740495 - Nat Genet. 2002 Jan;30(1):73-6
10471500 - Nat Genet. 1999 Sep;23(1):62-6
12044346 - Trends Genet. 2002 Jun;18(6):275-7
12740577 - Nat Genet. 2003 Jun;34(2):187-92
12418965 - BMC Med Genet. 2002 Nov 5;3:12
9169463 - J Biol Chem. 1997 Jun 6;272(23):14921-6
11331619 - Hum Mol Genet. 2001 May 1;10(10):1085-92
12194816 - Curr Biol. 2002 Aug 20;12(16):1360-7
14661024 - Nat Cell Biol. 2004 Jan;6(1):73-7
11498575 - Science. 2001 Aug 10;293(5532):1074-80
2415991 - Prog Clin Biol Res. 1985;198:223-35
11839280 - Curr Biol. 2002 Feb 5;12(3):247-51
10508514 - Nat Genet. 1999 Oct;23(2):185-8
10588719 - Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14412-7
9892682 - Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):616-21
10647011 - Nature. 1999 Nov 11;402(6758):187-91
9634239 - Nature. 1998 Jun 11;393(6685):599-601
8872476 - Hum Mol Genet. 1996 Sep;5(9):1345-53
12900547 - Cytogenet Genome Res. 2002;99(1-4):66-74
8655133 - Hum Genet. 1996 May;97(5):573-8
9817205 - Nature. 1998 Nov 5;396(6706):84-8
11738839 - Brain Dev. 2001 Dec;23 Suppl 1:S32-7
12160743 - Neuron. 2002 Jul 18;35(2):243-54
11898023 - Nature. 2002 Apr 4;416(6880):556-60
8939823 - Chromosoma. 1996 Dec;105(5):303-9
9560241 - Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5133-8
12679815 - Nat Genet. 2003 May;34(1):75-9
12925568 - Hum Mol Genet. 2003 Oct 1;12(19):2559-67
12559178 - Cancer Cell. 2003 Jan;3(1):89-95
2227409 - Genes Dev. 1990 Aug;4(8):1277-87
10570157 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13825-30
8887649 - Mol Cell Biol. 1996 Nov;16(11):6190-9
12915472 - Hum Mol Genet. 2003 Sep 1;12(17):2167-78
12444103 - Hum Mol Genet. 2002 Dec 1;11(25):3191-8
References_xml – volume: 23
  start-page: 62
  year: 1999
  ident: 23_CR8
  publication-title: Nat Genet
  doi: 10.1038/12664
– volume: 34
  start-page: 75
  year: 2003
  ident: 23_CR4
  publication-title: Nat Genet
  doi: 10.1038/ng1143
– volume: 16
  start-page: 6190
  year: 1996
  ident: 23_CR39
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.16.11.6190
– volume: 414
  start-page: 277
  year: 2001
  ident: 23_CR3
  publication-title: Nature
  doi: 10.1038/35104508
– volume: 293
  start-page: 1074
  year: 2001
  ident: 23_CR2
  publication-title: Science
  doi: 10.1126/science.1063127
– volume: 96
  start-page: 616
  year: 1999
  ident: 23_CR49
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.2.616
– volume: 3
  start-page: 12
  year: 2002
  ident: 23_CR27
  publication-title: BMC Med Genet
  doi: 10.1186/1471-2350-3-12
– volume: 99
  start-page: 66
  year: 2002
  ident: 23_CR29
  publication-title: Cytogenet Genome Res
  doi: 10.1159/000071576
– volume: 96
  start-page: 13825
  year: 1999
  ident: 23_CR28
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.24.13825
– volume: 10
  start-page: 1085
  year: 2001
  ident: 23_CR10
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/10.10.1085
– volume: 5
  start-page: 1102
  year: 1991
  ident: 23_CR42
  publication-title: Genes Dev
  doi: 10.1101/gad.5.6.1102
– volume: 416
  start-page: 556
  year: 2002
  ident: 23_CR5
  publication-title: Nature
  doi: 10.1038/nature731
– volume: 272
  start-page: 14921
  year: 1997
  ident: 23_CR36
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.23.14921
– volume: 17
  start-page: 1805
  year: 2003
  ident: 23_CR37
  publication-title: Genes Dev
  doi: 10.1101/gad.1123303
– volume: 99
  start-page: 25
  year: 2002
  ident: 23_CR43
  publication-title: Cytogenet Genome Res
  doi: 10.1159/000071571
– volume: 198
  start-page: 223
  year: 1985
  ident: 23_CR44
  publication-title: Prog Clin Biol Res
– volume: 74
  start-page: 281
  year: 1993
  ident: 23_CR16
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90419-Q
– volume: 96
  start-page: 14412
  year: 1999
  ident: 23_CR20
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.25.14412
– volume: 18
  start-page: 275
  year: 2002
  ident: 23_CR14
  publication-title: Trends Genet
  doi: 10.1016/S0168-9525(02)02667-7
– volume: 97
  start-page: 573
  year: 1996
  ident: 23_CR15
  publication-title: Hum Genet
  doi: 10.1007/BF02281863
– volume: 8
  start-page: 4692
  year: 1988
  ident: 23_CR48
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.8.11.4692
– volume: 23
  start-page: 185
  year: 1999
  ident: 23_CR12
  publication-title: Nat Genet
  doi: 10.1038/13810
– volume: 6
  start-page: 73
  year: 2004
  ident: 23_CR30
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1076
– volume: 23
  start-page: S32
  issue: Suppl 1
  year: 2001
  ident: 23_CR9
  publication-title: Brain Dev
  doi: 10.1016/S0387-7604(01)00333-3
– volume: 105
  start-page: 303
  year: 1996
  ident: 23_CR18
  publication-title: Chromosoma
  doi: 10.1007/BF02524648
– volume: 1
  start-page: 137
  year: 1992
  ident: 23_CR26
  publication-title: Nat Genet
  doi: 10.1038/ng0592-137
– volume: 5
  start-page: 1345
  year: 1996
  ident: 23_CR45
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/5.9.1345
– volume: 4
  start-page: 1277
  year: 1990
  ident: 23_CR41
  publication-title: Genes Dev
  doi: 10.1101/gad.4.8.1277
– volume: 402
  start-page: 187
  year: 1999
  ident: 23_CR22
  publication-title: Nature
  doi: 10.1038/46214
– volume: 87
  start-page: 8252
  year: 1990
  ident: 23_CR40
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.87.21.8252
– volume: 12
  start-page: 2559
  year: 2003
  ident: 23_CR24
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddg268
– volume: 30
  start-page: 73
  year: 2002
  ident: 23_CR17
  publication-title: Nat Genet
  doi: 10.1038/ng787
– volume: 95
  start-page: 5133
  year: 1998
  ident: 23_CR46
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.9.5133
– volume: 19
  start-page: 187
  year: 1998
  ident: 23_CR7
  publication-title: Nat Genet
  doi: 10.1038/561
– volume: 3
  start-page: 89
  year: 2003
  ident: 23_CR38
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(02)00234-9
– volume: 12
  start-page: 1360
  year: 2002
  ident: 23_CR6
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(02)00976-4
– volume: 12
  start-page: 3819
  year: 1992
  ident: 23_CR35
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.12.9.3819
– volume: 12
  start-page: 2167
  year: 2003
  ident: 23_CR19
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddg229
– volume: 99
  start-page: 247
  year: 1999
  ident: 23_CR21
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81656-6
– volume: 107
  start-page: 727
  year: 2001
  ident: 23_CR34
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00598-0
– volume: 9
  start-page: 2575
  year: 2000
  ident: 23_CR23
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/9.18.2575
– volume: 396
  start-page: 84
  year: 1998
  ident: 23_CR47
  publication-title: Nature
  doi: 10.1038/23962
– volume: 393
  start-page: 599
  year: 1998
  ident: 23_CR25
  publication-title: Nature
  doi: 10.1038/31275
– volume: 34
  start-page: 187
  year: 2003
  ident: 23_CR11
  publication-title: Nat Genet
  doi: 10.1038/ng1158
– volume: 35
  start-page: 243
  year: 2002
  ident: 23_CR13
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00768-7
– volume: 51
  start-page: 786
  year: 1964
  ident: 23_CR1
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.51.5.786
– volume: 12
  start-page: 3343
  year: 2003
  ident: 23_CR32
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddg351
– volume: 11
  start-page: 3191
  year: 2002
  ident: 23_CR31
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/11.25.3191
– volume: 12
  start-page: 247
  year: 2002
  ident: 23_CR33
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(02)00660-7
– reference: 12915472 - Hum Mol Genet. 2003 Sep 1;12(17):2167-78
– reference: 12897049 - Genes Dev. 2003 Aug 1;17(15):1805-12
– reference: 9892682 - Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):616-21
– reference: 10508514 - Nat Genet. 1999 Oct;23(2):185-8
– reference: 10588719 - Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14412-7
– reference: 8872476 - Hum Mol Genet. 1996 Sep;5(9):1345-53
– reference: 8655133 - Hum Genet. 1996 May;97(5):573-8
– reference: 12900547 - Cytogenet Genome Res. 2002;99(1-4):66-74
– reference: 11898023 - Nature. 2002 Apr 4;416(6880):556-60
– reference: 1380647 - Mol Cell Biol. 1992 Sep;12(9):3819-26
– reference: 14172992 - Proc Natl Acad Sci U S A. 1964 May;51:786-94
– reference: 2044957 - Genes Dev. 1991 Jun;5(6):1102-13
– reference: 8343956 - Cell. 1993 Jul 30;74(2):281-9
– reference: 2850467 - Mol Cell Biol. 1988 Nov;8(11):4692-9
– reference: 12444103 - Hum Mol Genet. 2002 Dec 1;11(25):3191-8
– reference: 12740577 - Nat Genet. 2003 Jun;34(2):187-92
– reference: 1302007 - Nat Genet. 1992 May;1(2):137-43
– reference: 10471500 - Nat Genet. 1999 Sep;23(1):62-6
– reference: 10570157 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13825-30
– reference: 12559178 - Cancer Cell. 2003 Jan;3(1):89-95
– reference: 10555141 - Cell. 1999 Oct 29;99(3):247-57
– reference: 9620779 - Nat Genet. 1998 Jun;19(2):187-91
– reference: 10647011 - Nature. 1999 Nov 11;402(6758):187-91
– reference: 12925568 - Hum Mol Genet. 2003 Oct 1;12(19):2559-67
– reference: 11331619 - Hum Mol Genet. 2001 May 1;10(10):1085-92
– reference: 14570711 - Hum Mol Genet. 2003 Dec 15;12(24):3343-8
– reference: 12194816 - Curr Biol. 2002 Aug 20;12(16):1360-7
– reference: 12900541 - Cytogenet Genome Res. 2002;99(1-4):25-9
– reference: 11063717 - Hum Mol Genet. 2000 Nov 1;9(18):2575-87
– reference: 11738839 - Brain Dev. 2001 Dec;23 Suppl 1:S32-7
– reference: 12679815 - Nat Genet. 2003 May;34(1):75-9
– reference: 11747809 - Cell. 2001 Dec 14;107(6):727-38
– reference: 12160743 - Neuron. 2002 Jul 18;35(2):243-54
– reference: 2415991 - Prog Clin Biol Res. 1985;198:223-35
– reference: 9634239 - Nature. 1998 Jun 11;393(6685):599-601
– reference: 8887649 - Mol Cell Biol. 1996 Nov;16(11):6190-9
– reference: 2236038 - Proc Natl Acad Sci U S A. 1990 Nov;87(21):8252-6
– reference: 2227409 - Genes Dev. 1990 Aug;4(8):1277-87
– reference: 11498575 - Science. 2001 Aug 10;293(5532):1074-80
– reference: 9560241 - Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5133-8
– reference: 11839280 - Curr Biol. 2002 Feb 5;12(3):247-51
– reference: 9169463 - J Biol Chem. 1997 Jun 6;272(23):14921-6
– reference: 9817205 - Nature. 1998 Nov 5;396(6706):84-8
– reference: 12044346 - Trends Genet. 2002 Jun;18(6):275-7
– reference: 8939823 - Chromosoma. 1996 Dec;105(5):303-9
– reference: 12418965 - BMC Med Genet. 2002 Nov 5;3:12
– reference: 14661024 - Nat Cell Biol. 2004 Jan;6(1):73-7
– reference: 11740495 - Nat Genet. 2002 Jan;30(1):73-6
– reference: 11713521 - Nature. 2001 Nov 15;414(6861):277-83
SSID ssj0025773
Score 1.7984318
Snippet In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with...
Background: In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their...
BACKGROUND: In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their...
Abstract Background In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their...
SourceID doaj
pubmedcentral
biomedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 21
SubjectTerms Cells, Cultured
Chromosomes, Human, X - genetics
CpG Islands - genetics
DNA Methylation
Female
Fibroblasts - metabolism
Fibroblasts - pathology
Histones - metabolism
Humans
Immunologic Deficiency Syndromes - genetics
Immunologic Deficiency Syndromes - metabolism
Methyl-CpG-Binding Protein 2 - deficiency
Methyl-CpG-Binding Protein 2 - genetics
Methyl-CpG-Binding Protein 2 - metabolism
Rett Syndrome - genetics
Rett Syndrome - metabolism
Rett Syndrome - pathology
X Chromosome Inactivation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDfL0wckTlZjJ3bi3mDFUpDoAVFpb5ZfUSMt3qqbHvoH-N3MOEnZABUXrraljD1j-5vM-BtC3rggPeetYtpJzapoFbO8DKz13gtRtFZpfOD85UQdn1af13K9V-oLc8IGeuBh4Q6VtrVywdbBlhXGhBTcgW2jLZcxRp95PgtdTM7U6GrJOseWAW5zVsM1ONI18kYdXrcxwZAhdPbOfTO7njKL_9-g5-8ZlHtX0uoeuTtiSfpumMN9ciumB-T2UF3y6iH5cYJ4dEMzpXCK9Ps2YF7Q8IuObhMF7Ee7ZPOJR9fUn2Fq3g7EhFb6abmiNgX6NfY9nXgNKP7n3x3Rbi8PnQLspViI-mrDlucfqevyQxmaGSC6tHtETlcfvi2P2Vh2gTlZiZ45XboI-hMtnAWulYWVkfs28MJa8MO1h1kXobEVxxhgISIXdRNDaXmsFSxJ-ZgcJJjWU0I1t9ZK7gKS-LQ6OqsaH-oQ0ZOqvF6Qo9nqm_OBYsMg6fW8B_afQdUZVJ0RRvAFYZOqjB8JzbGuxsZkx6ZRf4x_ez1--s5NI9-j5mfS5AYwTDMapvmXYS7I68luDGxZ1I9NcXu5M6LAYGZd3TwCw-MAFYsFeTLY2S-BZQmm3YCIamaBM1nnPak7y7ThANRUw5_9j7k9J3eGDCYNp-wLctBfXMaXAM569yrvw5-JCTr1
  priority: 102
  providerName: Directory of Open Access Journals
Title Normal histone modifications on the inactive X chromosome in ICF and Rett syndrome cells: implications for methyl-CpG binding proteins
URI https://www.ncbi.nlm.nih.gov/pubmed/15377381
https://www.proquest.com/docview/20241374
https://www.proquest.com/docview/67276430
http://dx.doi.org/10.1186/1741-7007-2-21
https://pubmed.ncbi.nlm.nih.gov/PMC521681
https://doaj.org/article/69a76bda7da3430496741f89a15eeec3
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZQERIXxJvlUXxA4mSI83DiSgjRFUtBag8VK624WH6FRgrZskkl9g_wu5lxstumD3HZQzLZTDwz9oxn_A0hb4zLLOelYNJkkqVeC6Z54lhprY3jqNRC4gHnwyNxME-_LbLFef3TMIDttaEd9pOar-p3f36vP4LBfwgGX4j34FRzluOeW8zwTPltWJUEBmKH6TajAJoZss1b2gHA8erzl06-16MFK-D6X-eMXq6pvLBIze6Te4N3ST_16vCA3PLNQ3Kn7ze5fkT-HqGHWtMAMtx4-mvpsFKo37Sjy4aCN0irRoc5kC6oPcFivRbYhKv063RGdePose86ukE6oLjz3-7R6kJlOgVHmGJr6nXNpqdfqKnC0RkaMCGqpn1M5rPP36cHbGjEwEyWxh0zMjEeJBqXMDuYMot05rktHY-0hshcWvjqyBU65ZgVjGLP47zwLtHc5wKGJHlCdhr4rGeESq61zrhxCOtTSm-0KKzLncfYKrVyQvZGo69Oe9ANhTDY4ztgkQpFp1B0KlYxnxC2EZWyA8Q5dtqoVQh1CnGF_u2WfvOemyj3UfIjbsKF5eqnGmxcCalzYZzOnU5STF8K-I-ykJpn3nubTMjrjd4oMGKUj2788qxVcYTpzTy9mQIT5uA8RhPytNezc4azBFS7ABbFSANHvI7vNNVJABIH100U_Pl_X_qC3O0LliRMqi_JTrc686_AF-vMbtjD2A2mBr_H-z_-AeIcOAs
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Normal+histone+modifications+on+the+inactive+X+chromosome+in+ICF+and+Rett+syndrome+cells%3A+implications+for+methyl-CpG+binding+proteins&rft.jtitle=BMC+biology&rft.au=Gartler%2C+Stanley+M&rft.au=Varadarajan%2C+Kartik+R&rft.au=Luo%2C+Ping&rft.au=Canfield%2C+Theresa+K&rft.date=2004-09-20&rft.issn=1741-7007&rft.eissn=1741-7007&rft.volume=2&rft.spage=21&rft_id=info:doi/10.1186%2F1741-7007-2-21&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon