Normal histone modifications on the inactive X chromosome in ICF and Rett syndrome cells: implications for methyl-CpG binding proteins
In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X ch...
Saved in:
Published in | BMC biology Vol. 2; no. 1; p. 21 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
20.09.2004
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1741-7007 1741-7007 |
DOI | 10.1186/1741-7007-2-21 |
Cover
Loading…
Abstract | In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X chromosome by studying histone modifications on the X chromosome in normal cells and in cells from patients with ICF syndrome (Immune deficiency, Centromeric region instability, and Facial anomalies syndrome). In normal cells the inactive X has characteristic silencing type histone modification patterns and the CpG islands of genes subject to X inactivation are hypermethylated. In ICF cells, however, genes subject to X inactivation are hypomethylated on the inactive X due to mutations in the DNA methyltransferase (DNMT3B) genes. Therefore, if DNA methylation is upstream of histone modification, the histones on the inactive X in ICF cells should not be modified to a silent form. In addition, we determined whether a specific methyl-CpG binding protein, MeCP2, is necessary for the inactive X histone modification pattern by studying Rett syndrome cells which are deficient in MeCP2 function.
We show here that the inactive X in ICF cells, which appears to be hypomethylated at all CpG islands, exhibits normal histone modification patterns. In addition, in Rett cells with no functional MeCP2 methyl-CpG binding protein, the inactive X also exhibits normal histone modification patterns.
These data suggest that DNA methylation and the associated methyl-DNA binding proteins may not play a critical role in determining histone modification patterns on the mammalian inactive X chromosome at the sites analyzed. |
---|---|
AbstractList | BACKGROUND: In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X chromosome by studying histone modifications on the X chromosome in normal cells and in cells from patients with ICF syndrome (Immune deficiency, Centromeric region instability, and Facial anomalies syndrome). In normal cells the inactive X has characteristic silencing type histone modification patterns and the CpG islands of genes subject to X inactivation are hypermethylated. In ICF cells, however, genes subject to X inactivation are hypomethylated on the inactive X due to mutations in the DNA methyltransferase (DNMT3B) genes. Therefore, if DNA methylation is upstream of histone modification, the histones on the inactive X in ICF cells should not be modified to a silent form. In addition, we determined whether a specific methyl-CpG binding protein, MeCP2, is necessary for the inactive X histone modification pattern by studying Rett syndrome cells which are deficient in MeCP2 function. RESULTS: We show here that the inactive X in ICF cells, which appears to be hypomethylated at all CpG islands, exhibits normal histone modification patterns. In addition, in Rett cells with no functional MeCP2 methyl-CpG binding protein, the inactive X also exhibits normal histone modification patterns. CONCLUSIONS: These data suggest that DNA methylation and the associated methyl-DNA binding proteins may not play a critical role in determining histone modification patterns on the mammalian inactive X chromosome at the sites analyzed. In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X chromosome by studying histone modifications on the X chromosome in normal cells and in cells from patients with ICF syndrome (Immune deficiency, Centromeric region instability, and Facial anomalies syndrome). In normal cells the inactive X has characteristic silencing type histone modification patterns and the CpG islands of genes subject to X inactivation are hypermethylated. In ICF cells, however, genes subject to X inactivation are hypomethylated on the inactive X due to mutations in the DNA methyltransferase (DNMT3B) genes. Therefore, if DNA methylation is upstream of histone modification, the histones on the inactive X in ICF cells should not be modified to a silent form. In addition, we determined whether a specific methyl-CpG binding protein, MeCP2, is necessary for the inactive X histone modification pattern by studying Rett syndrome cells which are deficient in MeCP2 function. We show here that the inactive X in ICF cells, which appears to be hypomethylated at all CpG islands, exhibits normal histone modification patterns. In addition, in Rett cells with no functional MeCP2 methyl-CpG binding protein, the inactive X also exhibits normal histone modification patterns. These data suggest that DNA methylation and the associated methyl-DNA binding proteins may not play a critical role in determining histone modification patterns on the mammalian inactive X chromosome at the sites analyzed. Abstract Background In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X chromosome by studying histone modifications on the X chromosome in normal cells and in cells from patients with ICF syndrome (Immune deficiency, Centromeric region instability, and Facial anomalies syndrome). In normal cells the inactive X has characteristic silencing type histone modification patterns and the CpG islands of genes subject to X inactivation are hypermethylated. In ICF cells, however, genes subject to X inactivation are hypomethylated on the inactive X due to mutations in the DNA methyltransferase (DNMT3B) genes. Therefore, if DNA methylation is upstream of histone modification, the histones on the inactive X in ICF cells should not be modified to a silent form. In addition, we determined whether a specific methyl-CpG binding protein, MeCP2, is necessary for the inactive X histone modification pattern by studying Rett syndrome cells which are deficient in MeCP2 function. Results We show here that the inactive X in ICF cells, which appears to be hypomethylated at all CpG islands, exhibits normal histone modification patterns. In addition, in Rett cells with no functional MeCP2 methyl-CpG binding protein, the inactive X also exhibits normal histone modification patterns. Conclusions These data suggest that DNA methylation and the associated methyl-DNA binding proteins may not play a critical role in determining histone modification patterns on the mammalian inactive X chromosome at the sites analyzed. In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X chromosome by studying histone modifications on the X chromosome in normal cells and in cells from patients with ICF syndrome (Immune deficiency, Centromeric region instability, and Facial anomalies syndrome). In normal cells the inactive X has characteristic silencing type histone modification patterns and the CpG islands of genes subject to X inactivation are hypermethylated. In ICF cells, however, genes subject to X inactivation are hypomethylated on the inactive X due to mutations in the DNA methyltransferase (DNMT3B) genes. Therefore, if DNA methylation is upstream of histone modification, the histones on the inactive X in ICF cells should not be modified to a silent form. In addition, we determined whether a specific methyl-CpG binding protein, MeCP2, is necessary for the inactive X histone modification pattern by studying Rett syndrome cells which are deficient in MeCP2 function.BACKGROUNDIn mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X chromosome by studying histone modifications on the X chromosome in normal cells and in cells from patients with ICF syndrome (Immune deficiency, Centromeric region instability, and Facial anomalies syndrome). In normal cells the inactive X has characteristic silencing type histone modification patterns and the CpG islands of genes subject to X inactivation are hypermethylated. In ICF cells, however, genes subject to X inactivation are hypomethylated on the inactive X due to mutations in the DNA methyltransferase (DNMT3B) genes. Therefore, if DNA methylation is upstream of histone modification, the histones on the inactive X in ICF cells should not be modified to a silent form. In addition, we determined whether a specific methyl-CpG binding protein, MeCP2, is necessary for the inactive X histone modification pattern by studying Rett syndrome cells which are deficient in MeCP2 function.We show here that the inactive X in ICF cells, which appears to be hypomethylated at all CpG islands, exhibits normal histone modification patterns. In addition, in Rett cells with no functional MeCP2 methyl-CpG binding protein, the inactive X also exhibits normal histone modification patterns.RESULTSWe show here that the inactive X in ICF cells, which appears to be hypomethylated at all CpG islands, exhibits normal histone modification patterns. In addition, in Rett cells with no functional MeCP2 methyl-CpG binding protein, the inactive X also exhibits normal histone modification patterns.These data suggest that DNA methylation and the associated methyl-DNA binding proteins may not play a critical role in determining histone modification patterns on the mammalian inactive X chromosome at the sites analyzed.CONCLUSIONSThese data suggest that DNA methylation and the associated methyl-DNA binding proteins may not play a critical role in determining histone modification patterns on the mammalian inactive X chromosome at the sites analyzed. |
ArticleNumber | 21 |
Author | Luo, Ping Francke, Uta Hansen, R Scott Gartler, Stanley M Traynor, Jeff Varadarajan, Kartik R Canfield, Theresa K |
AuthorAffiliation | 3 Department of Genetics, Stanford University, Stanford, CA, USA 2 Department of Genome Sciences, University of Washington, Seattle, WA, USA 1 Department of Medicine, University of Washington, Seattle, WA, USA |
AuthorAffiliation_xml | – name: 2 Department of Genome Sciences, University of Washington, Seattle, WA, USA – name: 3 Department of Genetics, Stanford University, Stanford, CA, USA – name: 1 Department of Medicine, University of Washington, Seattle, WA, USA |
Author_xml | – sequence: 1 givenname: Stanley M surname: Gartler fullname: Gartler, Stanley M – sequence: 2 givenname: Kartik R surname: Varadarajan fullname: Varadarajan, Kartik R – sequence: 3 givenname: Ping surname: Luo fullname: Luo, Ping – sequence: 4 givenname: Theresa K surname: Canfield fullname: Canfield, Theresa K – sequence: 5 givenname: Jeff surname: Traynor fullname: Traynor, Jeff – sequence: 6 givenname: Uta surname: Francke fullname: Francke, Uta – sequence: 7 givenname: R Scott surname: Hansen fullname: Hansen, R Scott |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15377381$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1r3DAQhk1JaT7aa49Fp96c6MO27EIPYWnShdBCaaE3IUvjtYIlbSVtYP9Af3flbLJk-0FPGmbmfXg1M6fFkfMOiuI1weeEtM0F4RUpOca8pCUlz4qTfeLoSXxcnMZ4izGtOWcvimNSsxy05KT4-ckHKyc0mpgyGVmvzWCUTMa7iLxDaQRknFTJ3AH6jtQYvPXR2zmLlosrJJ1GXyAlFLdOh7mgYJriO2TsetqTBh-QhTRup3Kxvka9cdq4FVoHn8C4-LJ4PsgpwquH96z4dvXh6-JjefP5erm4vCn7uqKp7DvWAyEDHRiu-6HGsgaiBk2wlNDTTmkFWLeyIhXmLaZAKG9BM0mAN6AVOyuWO6728lasg7EybIWXRtwnfFgJGZJRE4imk7zpteRasorhqmvyNIe2k6QGAMUy6_2Otd70NsPBpSCnA-hhxZlRrPydqClpWpL1lzt9b_w_9IcV5a2YVyrmlQoq6Mx4--Ah-B8biElYE-f5Swd-E0XDKW-y-_82UkwrwniVG988_dXezuPJ5IZq16CCjzHAIJRJ91vOJs0kCBbzZf7p9Pw32Z78d8EvOnDoIQ |
CitedBy_id | crossref_primary_10_1186_1471_2164_8_131 crossref_primary_10_1016_j_fertnstert_2015_12_013 crossref_primary_10_1097_01_wco_0000162848_99154_9a crossref_primary_10_1093_hmg_ddn177 crossref_primary_10_1016_j_drudis_2011_09_008 crossref_primary_10_1016_j_ejmg_2009_07_004 crossref_primary_10_1038_ncpneuro0148 crossref_primary_10_1080_19420889_2019_1592419 crossref_primary_10_2217_epi_09_13 crossref_primary_10_1093_hmg_ddl027 crossref_primary_10_1007_s11103_009_9594_7 crossref_primary_10_1002_jcp_20879 crossref_primary_10_1371_journal_pone_0019464 crossref_primary_10_1007_s00335_013_9451_5 |
Cites_doi | 10.1038/12664 10.1038/ng1143 10.1128/MCB.16.11.6190 10.1038/35104508 10.1126/science.1063127 10.1073/pnas.96.2.616 10.1186/1471-2350-3-12 10.1159/000071576 10.1073/pnas.96.24.13825 10.1093/hmg/10.10.1085 10.1101/gad.5.6.1102 10.1038/nature731 10.1074/jbc.272.23.14921 10.1101/gad.1123303 10.1159/000071571 10.1016/0092-8674(93)90419-Q 10.1073/pnas.96.25.14412 10.1016/S0168-9525(02)02667-7 10.1007/BF02281863 10.1128/MCB.8.11.4692 10.1038/13810 10.1038/ncb1076 10.1016/S0387-7604(01)00333-3 10.1007/BF02524648 10.1038/ng0592-137 10.1093/hmg/5.9.1345 10.1101/gad.4.8.1277 10.1038/46214 10.1073/pnas.87.21.8252 10.1093/hmg/ddg268 10.1038/ng787 10.1073/pnas.95.9.5133 10.1038/561 10.1016/S1535-6108(02)00234-9 10.1016/S0960-9822(02)00976-4 10.1128/MCB.12.9.3819 10.1093/hmg/ddg229 10.1016/S0092-8674(00)81656-6 10.1016/S0092-8674(01)00598-0 10.1093/hmg/9.18.2575 10.1038/23962 10.1038/31275 10.1038/ng1158 10.1016/S0896-6273(02)00768-7 10.1073/pnas.51.5.786 10.1093/hmg/ddg351 10.1093/hmg/11.25.3191 10.1016/S0960-9822(02)00660-7 |
ContentType | Journal Article |
Copyright | Copyright © 2004 Gartler et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Copyright © 2004 Gartler et al; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 8FD FR3 P64 RC3 7X8 5PM DOA |
DOI | 10.1186/1741-7007-2-21 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1741-7007 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_69a76bda7da3430496741f89a15eeec3 PMC521681 oai_biomedcentral_com_1741_7007_2_21 15377381 10_1186_1741_7007_2_21 |
Genre | Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: NS40163 – fundername: NINDS NIH HHS grantid: R01 NS040163 – fundername: NICHD NIH HHS grantid: HD16659 – fundername: NIGMS NIH HHS grantid: T32 GM008748 – fundername: NICHD NIH HHS grantid: R01 HD016659 – fundername: NIGMS NIH HHS grantid: T32 GM08748 |
GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5GY 5VS 6J9 AAFWJ AAJSJ AASML AAYXX ABDBF ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BFQNJ BMC C1A C6C CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO IGS IHR INH INR IOV ISE ISR ITC KQ8 M48 M~E O5R O5S OK1 OVT P2P PGMZT RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS WOQ WOW XSB -A0 ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM 7TM 8FD FR3 P64 RC3 7X8 ABVAZ AFGXO AFNRJ 5PM |
ID | FETCH-LOGICAL-b542t-b93be11f2f305bf50a5e1cfd10aaeb29cdce0d8a41407802e1278ed3a1e76edc3 |
IEDL.DBID | M48 |
ISSN | 1741-7007 |
IngestDate | Wed Aug 27 01:26:21 EDT 2025 Thu Aug 21 14:10:03 EDT 2025 Wed May 22 07:12:20 EDT 2024 Thu Sep 04 16:44:51 EDT 2025 Fri Sep 05 13:20:51 EDT 2025 Thu Jan 02 22:02:15 EST 2025 Tue Jul 01 02:57:57 EDT 2025 Thu Apr 24 23:01:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b542t-b93be11f2f305bf50a5e1cfd10aaeb29cdce0d8a41407802e1278ed3a1e76edc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1741-7007-2-21 |
PMID | 15377381 |
PQID | 20241374 |
PQPubID | 23462 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_69a76bda7da3430496741f89a15eeec3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_521681 biomedcentral_primary_oai_biomedcentral_com_1741_7007_2_21 proquest_miscellaneous_67276430 proquest_miscellaneous_20241374 pubmed_primary_15377381 crossref_citationtrail_10_1186_1741_7007_2_21 crossref_primary_10_1186_1741_7007_2_21 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-09-20 |
PublicationDateYYYYMMDD | 2004-09-20 |
PublicationDate_xml | – month: 09 year: 2004 text: 2004-09-20 day: 20 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC biology |
PublicationTitleAlternate | BMC Biol |
PublicationYear | 2004 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | GP Pfeifer (23_CR40) 1990; 87 MR Matarazzo (23_CR31) 2002; 11 GP Pfeifer (23_CR42) 1991; 5 RS Hansen (23_CR24) 2003; 12 J Giacalone (23_CR26) 1992; 1 C Costanzi (23_CR25) 1998; 393 M Wan (23_CR10) 2001; 10 J Traynor (23_CR27) 2002; 3 SM Gartler (23_CR44) 1985; 198 BP Chadwick (23_CR19) 2003; 12 R Huber (23_CR49) 1999; 96 GL Xu (23_CR22) 1999; 402 RS Hansen (23_CR45) 1996; 5 Y Goto (23_CR29) 2002; 99 T Kiyono (23_CR47) 1998; 396 E Heard (23_CR34) 2001; 107 BA Boggs (23_CR18) 1996; 105 P Jeppesen (23_CR16) 1993; 74 X Nan (23_CR9) 2001; 23 N Belyaev (23_CR15) 1996; 97 RS Hansen (23_CR48) 1988; 8 MD Litt (23_CR39) 1996; 16 T Jenuwein (23_CR2) 2001; 293 WA Burgers (23_CR14) 2002; 18 MD Litt (23_CR36) 1997; 272 T Sasaki (23_CR35) 1992; 12 SM Gartler (23_CR43) 2002; 99 BA Boggs (23_CR17) 2002; 30 JA Fahrner (23_CR37) 2003; 17 PL Jones (23_CR7) 1998; 19 T Hashimshony (23_CR11) 2003; 34 RS Hansen (23_CR23) 2000; 9 GP Pfeifer (23_CR41) 1990; 4 VG Allfrey (23_CR1) 1964; 51 M Shahbazian (23_CR13) 2002; 35 H Tamaru (23_CR3) 2001; 414 JE Mermoud (23_CR33) 2002; 12 C Rougeulle (23_CR32) 2003; 12 RE Amir (23_CR12) 1999; 23 L Johnson (23_CR6) 2002; 12 M Okano (23_CR21) 1999; 99 PA Wade (23_CR8) 1999; 23 H Tamaru (23_CR4) 2003; 34 SL Gilbert (23_CR28) 1999; 96 RS Hansen (23_CR46) 1998; 95 KE Bachman (23_CR38) 2003; 3 JP Jackson (23_CR5) 2002; 416 RS Hansen (23_CR20) 1999; 96 R Schneider (23_CR30) 2004; 6 8343956 - Cell. 1993 Jul 30;74(2):281-9 2044957 - Genes Dev. 1991 Jun;5(6):1102-13 14570711 - Hum Mol Genet. 2003 Dec 15;12(24):3343-8 2236038 - Proc Natl Acad Sci U S A. 1990 Nov;87(21):8252-6 11063717 - Hum Mol Genet. 2000 Nov 1;9(18):2575-87 11747809 - Cell. 2001 Dec 14;107(6):727-38 14172992 - Proc Natl Acad Sci U S A. 1964 May;51:786-94 9620779 - Nat Genet. 1998 Jun;19(2):187-91 1302007 - Nat Genet. 1992 May;1(2):137-43 11713521 - Nature. 2001 Nov 15;414(6861):277-83 12900541 - Cytogenet Genome Res. 2002;99(1-4):25-9 10555141 - Cell. 1999 Oct 29;99(3):247-57 12897049 - Genes Dev. 2003 Aug 1;17(15):1805-12 2850467 - Mol Cell Biol. 1988 Nov;8(11):4692-9 1380647 - Mol Cell Biol. 1992 Sep;12(9):3819-26 11740495 - Nat Genet. 2002 Jan;30(1):73-6 10471500 - Nat Genet. 1999 Sep;23(1):62-6 12044346 - Trends Genet. 2002 Jun;18(6):275-7 12740577 - Nat Genet. 2003 Jun;34(2):187-92 12418965 - BMC Med Genet. 2002 Nov 5;3:12 9169463 - J Biol Chem. 1997 Jun 6;272(23):14921-6 11331619 - Hum Mol Genet. 2001 May 1;10(10):1085-92 12194816 - Curr Biol. 2002 Aug 20;12(16):1360-7 14661024 - Nat Cell Biol. 2004 Jan;6(1):73-7 11498575 - Science. 2001 Aug 10;293(5532):1074-80 2415991 - Prog Clin Biol Res. 1985;198:223-35 11839280 - Curr Biol. 2002 Feb 5;12(3):247-51 10508514 - Nat Genet. 1999 Oct;23(2):185-8 10588719 - Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14412-7 9892682 - Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):616-21 10647011 - Nature. 1999 Nov 11;402(6758):187-91 9634239 - Nature. 1998 Jun 11;393(6685):599-601 8872476 - Hum Mol Genet. 1996 Sep;5(9):1345-53 12900547 - Cytogenet Genome Res. 2002;99(1-4):66-74 8655133 - Hum Genet. 1996 May;97(5):573-8 9817205 - Nature. 1998 Nov 5;396(6706):84-8 11738839 - Brain Dev. 2001 Dec;23 Suppl 1:S32-7 12160743 - Neuron. 2002 Jul 18;35(2):243-54 11898023 - Nature. 2002 Apr 4;416(6880):556-60 8939823 - Chromosoma. 1996 Dec;105(5):303-9 9560241 - Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5133-8 12679815 - Nat Genet. 2003 May;34(1):75-9 12925568 - Hum Mol Genet. 2003 Oct 1;12(19):2559-67 12559178 - Cancer Cell. 2003 Jan;3(1):89-95 2227409 - Genes Dev. 1990 Aug;4(8):1277-87 10570157 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13825-30 8887649 - Mol Cell Biol. 1996 Nov;16(11):6190-9 12915472 - Hum Mol Genet. 2003 Sep 1;12(17):2167-78 12444103 - Hum Mol Genet. 2002 Dec 1;11(25):3191-8 |
References_xml | – volume: 23 start-page: 62 year: 1999 ident: 23_CR8 publication-title: Nat Genet doi: 10.1038/12664 – volume: 34 start-page: 75 year: 2003 ident: 23_CR4 publication-title: Nat Genet doi: 10.1038/ng1143 – volume: 16 start-page: 6190 year: 1996 ident: 23_CR39 publication-title: Mol Cell Biol doi: 10.1128/MCB.16.11.6190 – volume: 414 start-page: 277 year: 2001 ident: 23_CR3 publication-title: Nature doi: 10.1038/35104508 – volume: 293 start-page: 1074 year: 2001 ident: 23_CR2 publication-title: Science doi: 10.1126/science.1063127 – volume: 96 start-page: 616 year: 1999 ident: 23_CR49 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.2.616 – volume: 3 start-page: 12 year: 2002 ident: 23_CR27 publication-title: BMC Med Genet doi: 10.1186/1471-2350-3-12 – volume: 99 start-page: 66 year: 2002 ident: 23_CR29 publication-title: Cytogenet Genome Res doi: 10.1159/000071576 – volume: 96 start-page: 13825 year: 1999 ident: 23_CR28 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.24.13825 – volume: 10 start-page: 1085 year: 2001 ident: 23_CR10 publication-title: Hum Mol Genet doi: 10.1093/hmg/10.10.1085 – volume: 5 start-page: 1102 year: 1991 ident: 23_CR42 publication-title: Genes Dev doi: 10.1101/gad.5.6.1102 – volume: 416 start-page: 556 year: 2002 ident: 23_CR5 publication-title: Nature doi: 10.1038/nature731 – volume: 272 start-page: 14921 year: 1997 ident: 23_CR36 publication-title: J Biol Chem doi: 10.1074/jbc.272.23.14921 – volume: 17 start-page: 1805 year: 2003 ident: 23_CR37 publication-title: Genes Dev doi: 10.1101/gad.1123303 – volume: 99 start-page: 25 year: 2002 ident: 23_CR43 publication-title: Cytogenet Genome Res doi: 10.1159/000071571 – volume: 198 start-page: 223 year: 1985 ident: 23_CR44 publication-title: Prog Clin Biol Res – volume: 74 start-page: 281 year: 1993 ident: 23_CR16 publication-title: Cell doi: 10.1016/0092-8674(93)90419-Q – volume: 96 start-page: 14412 year: 1999 ident: 23_CR20 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.25.14412 – volume: 18 start-page: 275 year: 2002 ident: 23_CR14 publication-title: Trends Genet doi: 10.1016/S0168-9525(02)02667-7 – volume: 97 start-page: 573 year: 1996 ident: 23_CR15 publication-title: Hum Genet doi: 10.1007/BF02281863 – volume: 8 start-page: 4692 year: 1988 ident: 23_CR48 publication-title: Mol Cell Biol doi: 10.1128/MCB.8.11.4692 – volume: 23 start-page: 185 year: 1999 ident: 23_CR12 publication-title: Nat Genet doi: 10.1038/13810 – volume: 6 start-page: 73 year: 2004 ident: 23_CR30 publication-title: Nat Cell Biol doi: 10.1038/ncb1076 – volume: 23 start-page: S32 issue: Suppl 1 year: 2001 ident: 23_CR9 publication-title: Brain Dev doi: 10.1016/S0387-7604(01)00333-3 – volume: 105 start-page: 303 year: 1996 ident: 23_CR18 publication-title: Chromosoma doi: 10.1007/BF02524648 – volume: 1 start-page: 137 year: 1992 ident: 23_CR26 publication-title: Nat Genet doi: 10.1038/ng0592-137 – volume: 5 start-page: 1345 year: 1996 ident: 23_CR45 publication-title: Hum Mol Genet doi: 10.1093/hmg/5.9.1345 – volume: 4 start-page: 1277 year: 1990 ident: 23_CR41 publication-title: Genes Dev doi: 10.1101/gad.4.8.1277 – volume: 402 start-page: 187 year: 1999 ident: 23_CR22 publication-title: Nature doi: 10.1038/46214 – volume: 87 start-page: 8252 year: 1990 ident: 23_CR40 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.87.21.8252 – volume: 12 start-page: 2559 year: 2003 ident: 23_CR24 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddg268 – volume: 30 start-page: 73 year: 2002 ident: 23_CR17 publication-title: Nat Genet doi: 10.1038/ng787 – volume: 95 start-page: 5133 year: 1998 ident: 23_CR46 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.9.5133 – volume: 19 start-page: 187 year: 1998 ident: 23_CR7 publication-title: Nat Genet doi: 10.1038/561 – volume: 3 start-page: 89 year: 2003 ident: 23_CR38 publication-title: Cancer Cell doi: 10.1016/S1535-6108(02)00234-9 – volume: 12 start-page: 1360 year: 2002 ident: 23_CR6 publication-title: Curr Biol doi: 10.1016/S0960-9822(02)00976-4 – volume: 12 start-page: 3819 year: 1992 ident: 23_CR35 publication-title: Mol Cell Biol doi: 10.1128/MCB.12.9.3819 – volume: 12 start-page: 2167 year: 2003 ident: 23_CR19 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddg229 – volume: 99 start-page: 247 year: 1999 ident: 23_CR21 publication-title: Cell doi: 10.1016/S0092-8674(00)81656-6 – volume: 107 start-page: 727 year: 2001 ident: 23_CR34 publication-title: Cell doi: 10.1016/S0092-8674(01)00598-0 – volume: 9 start-page: 2575 year: 2000 ident: 23_CR23 publication-title: Hum Mol Genet doi: 10.1093/hmg/9.18.2575 – volume: 396 start-page: 84 year: 1998 ident: 23_CR47 publication-title: Nature doi: 10.1038/23962 – volume: 393 start-page: 599 year: 1998 ident: 23_CR25 publication-title: Nature doi: 10.1038/31275 – volume: 34 start-page: 187 year: 2003 ident: 23_CR11 publication-title: Nat Genet doi: 10.1038/ng1158 – volume: 35 start-page: 243 year: 2002 ident: 23_CR13 publication-title: Neuron doi: 10.1016/S0896-6273(02)00768-7 – volume: 51 start-page: 786 year: 1964 ident: 23_CR1 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.51.5.786 – volume: 12 start-page: 3343 year: 2003 ident: 23_CR32 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddg351 – volume: 11 start-page: 3191 year: 2002 ident: 23_CR31 publication-title: Hum Mol Genet doi: 10.1093/hmg/11.25.3191 – volume: 12 start-page: 247 year: 2002 ident: 23_CR33 publication-title: Curr Biol doi: 10.1016/S0960-9822(02)00660-7 – reference: 12915472 - Hum Mol Genet. 2003 Sep 1;12(17):2167-78 – reference: 12897049 - Genes Dev. 2003 Aug 1;17(15):1805-12 – reference: 9892682 - Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):616-21 – reference: 10508514 - Nat Genet. 1999 Oct;23(2):185-8 – reference: 10588719 - Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14412-7 – reference: 8872476 - Hum Mol Genet. 1996 Sep;5(9):1345-53 – reference: 8655133 - Hum Genet. 1996 May;97(5):573-8 – reference: 12900547 - Cytogenet Genome Res. 2002;99(1-4):66-74 – reference: 11898023 - Nature. 2002 Apr 4;416(6880):556-60 – reference: 1380647 - Mol Cell Biol. 1992 Sep;12(9):3819-26 – reference: 14172992 - Proc Natl Acad Sci U S A. 1964 May;51:786-94 – reference: 2044957 - Genes Dev. 1991 Jun;5(6):1102-13 – reference: 8343956 - Cell. 1993 Jul 30;74(2):281-9 – reference: 2850467 - Mol Cell Biol. 1988 Nov;8(11):4692-9 – reference: 12444103 - Hum Mol Genet. 2002 Dec 1;11(25):3191-8 – reference: 12740577 - Nat Genet. 2003 Jun;34(2):187-92 – reference: 1302007 - Nat Genet. 1992 May;1(2):137-43 – reference: 10471500 - Nat Genet. 1999 Sep;23(1):62-6 – reference: 10570157 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13825-30 – reference: 12559178 - Cancer Cell. 2003 Jan;3(1):89-95 – reference: 10555141 - Cell. 1999 Oct 29;99(3):247-57 – reference: 9620779 - Nat Genet. 1998 Jun;19(2):187-91 – reference: 10647011 - Nature. 1999 Nov 11;402(6758):187-91 – reference: 12925568 - Hum Mol Genet. 2003 Oct 1;12(19):2559-67 – reference: 11331619 - Hum Mol Genet. 2001 May 1;10(10):1085-92 – reference: 14570711 - Hum Mol Genet. 2003 Dec 15;12(24):3343-8 – reference: 12194816 - Curr Biol. 2002 Aug 20;12(16):1360-7 – reference: 12900541 - Cytogenet Genome Res. 2002;99(1-4):25-9 – reference: 11063717 - Hum Mol Genet. 2000 Nov 1;9(18):2575-87 – reference: 11738839 - Brain Dev. 2001 Dec;23 Suppl 1:S32-7 – reference: 12679815 - Nat Genet. 2003 May;34(1):75-9 – reference: 11747809 - Cell. 2001 Dec 14;107(6):727-38 – reference: 12160743 - Neuron. 2002 Jul 18;35(2):243-54 – reference: 2415991 - Prog Clin Biol Res. 1985;198:223-35 – reference: 9634239 - Nature. 1998 Jun 11;393(6685):599-601 – reference: 8887649 - Mol Cell Biol. 1996 Nov;16(11):6190-9 – reference: 2236038 - Proc Natl Acad Sci U S A. 1990 Nov;87(21):8252-6 – reference: 2227409 - Genes Dev. 1990 Aug;4(8):1277-87 – reference: 11498575 - Science. 2001 Aug 10;293(5532):1074-80 – reference: 9560241 - Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5133-8 – reference: 11839280 - Curr Biol. 2002 Feb 5;12(3):247-51 – reference: 9169463 - J Biol Chem. 1997 Jun 6;272(23):14921-6 – reference: 9817205 - Nature. 1998 Nov 5;396(6706):84-8 – reference: 12044346 - Trends Genet. 2002 Jun;18(6):275-7 – reference: 8939823 - Chromosoma. 1996 Dec;105(5):303-9 – reference: 12418965 - BMC Med Genet. 2002 Nov 5;3:12 – reference: 14661024 - Nat Cell Biol. 2004 Jan;6(1):73-7 – reference: 11740495 - Nat Genet. 2002 Jan;30(1):73-6 – reference: 11713521 - Nature. 2001 Nov 15;414(6861):277-83 |
SSID | ssj0025773 |
Score | 1.7984318 |
Snippet | In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with... Background: In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their... BACKGROUND: In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their... Abstract Background In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their... |
SourceID | doaj pubmedcentral biomedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 21 |
SubjectTerms | Cells, Cultured Chromosomes, Human, X - genetics CpG Islands - genetics DNA Methylation Female Fibroblasts - metabolism Fibroblasts - pathology Histones - metabolism Humans Immunologic Deficiency Syndromes - genetics Immunologic Deficiency Syndromes - metabolism Methyl-CpG-Binding Protein 2 - deficiency Methyl-CpG-Binding Protein 2 - genetics Methyl-CpG-Binding Protein 2 - metabolism Rett Syndrome - genetics Rett Syndrome - metabolism Rett Syndrome - pathology X Chromosome Inactivation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDfL0wckTlZjJ3bi3mDFUpDoAVFpb5ZfUSMt3qqbHvoH-N3MOEnZABUXrraljD1j-5vM-BtC3rggPeetYtpJzapoFbO8DKz13gtRtFZpfOD85UQdn1af13K9V-oLc8IGeuBh4Q6VtrVywdbBlhXGhBTcgW2jLZcxRp95PgtdTM7U6GrJOseWAW5zVsM1ONI18kYdXrcxwZAhdPbOfTO7njKL_9-g5-8ZlHtX0uoeuTtiSfpumMN9ciumB-T2UF3y6iH5cYJ4dEMzpXCK9Ps2YF7Q8IuObhMF7Ee7ZPOJR9fUn2Fq3g7EhFb6abmiNgX6NfY9nXgNKP7n3x3Rbi8PnQLspViI-mrDlucfqevyQxmaGSC6tHtETlcfvi2P2Vh2gTlZiZ45XboI-hMtnAWulYWVkfs28MJa8MO1h1kXobEVxxhgISIXdRNDaXmsFSxJ-ZgcJJjWU0I1t9ZK7gKS-LQ6OqsaH-oQ0ZOqvF6Qo9nqm_OBYsMg6fW8B_afQdUZVJ0RRvAFYZOqjB8JzbGuxsZkx6ZRf4x_ez1--s5NI9-j5mfS5AYwTDMapvmXYS7I68luDGxZ1I9NcXu5M6LAYGZd3TwCw-MAFYsFeTLY2S-BZQmm3YCIamaBM1nnPak7y7ThANRUw5_9j7k9J3eGDCYNp-wLctBfXMaXAM569yrvw5-JCTr1 priority: 102 providerName: Directory of Open Access Journals |
Title | Normal histone modifications on the inactive X chromosome in ICF and Rett syndrome cells: implications for methyl-CpG binding proteins |
URI | https://www.ncbi.nlm.nih.gov/pubmed/15377381 https://www.proquest.com/docview/20241374 https://www.proquest.com/docview/67276430 http://dx.doi.org/10.1186/1741-7007-2-21 https://pubmed.ncbi.nlm.nih.gov/PMC521681 https://doaj.org/article/69a76bda7da3430496741f89a15eeec3 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZQERIXxJvlUXxA4mSI83DiSgjRFUtBag8VK624WH6FRgrZskkl9g_wu5lxstumD3HZQzLZTDwz9oxn_A0hb4zLLOelYNJkkqVeC6Z54lhprY3jqNRC4gHnwyNxME-_LbLFef3TMIDttaEd9pOar-p3f36vP4LBfwgGX4j34FRzluOeW8zwTPltWJUEBmKH6TajAJoZss1b2gHA8erzl06-16MFK-D6X-eMXq6pvLBIze6Te4N3ST_16vCA3PLNQ3Kn7ze5fkT-HqGHWtMAMtx4-mvpsFKo37Sjy4aCN0irRoc5kC6oPcFivRbYhKv063RGdePose86ukE6oLjz3-7R6kJlOgVHmGJr6nXNpqdfqKnC0RkaMCGqpn1M5rPP36cHbGjEwEyWxh0zMjEeJBqXMDuYMot05rktHY-0hshcWvjqyBU65ZgVjGLP47zwLtHc5wKGJHlCdhr4rGeESq61zrhxCOtTSm-0KKzLncfYKrVyQvZGo69Oe9ANhTDY4ztgkQpFp1B0KlYxnxC2EZWyA8Q5dtqoVQh1CnGF_u2WfvOemyj3UfIjbsKF5eqnGmxcCalzYZzOnU5STF8K-I-ykJpn3nubTMjrjd4oMGKUj2788qxVcYTpzTy9mQIT5uA8RhPytNezc4azBFS7ABbFSANHvI7vNNVJABIH100U_Pl_X_qC3O0LliRMqi_JTrc686_AF-vMbtjD2A2mBr_H-z_-AeIcOAs |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Normal+histone+modifications+on+the+inactive+X+chromosome+in+ICF+and+Rett+syndrome+cells%3A+implications+for+methyl-CpG+binding+proteins&rft.jtitle=BMC+biology&rft.au=Gartler%2C+Stanley+M&rft.au=Varadarajan%2C+Kartik+R&rft.au=Luo%2C+Ping&rft.au=Canfield%2C+Theresa+K&rft.date=2004-09-20&rft.issn=1741-7007&rft.eissn=1741-7007&rft.volume=2&rft.spage=21&rft_id=info:doi/10.1186%2F1741-7007-2-21&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon |