Increased proinflammatory endothelial response to S100A8/A9 after preactivation through advanced glycation end products

Atherosclerosis is an inflammatory disease in which a perpetuated activation of NFkappaB via the RAGE (receptor for advanced glycation end products)-MAPK signalling pathway may play an important pathogenetic role. As recently S100 proteins have been identified as ligands of RAGE, we sought to determ...

Full description

Saved in:
Bibliographic Details
Published inCardiovascular diabetology Vol. 5; no. 1; p. 6
Main Authors Ehlermann, Philipp, Eggers, Kai, Bierhaus, Angelika, Most, Patrick, Weichenhan, Dieter, Greten, Johannes, Nawroth, Peter P, Katus, Hugo A, Remppis, Andrew
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 30.03.2006
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Atherosclerosis is an inflammatory disease in which a perpetuated activation of NFkappaB via the RAGE (receptor for advanced glycation end products)-MAPK signalling pathway may play an important pathogenetic role. As recently S100 proteins have been identified as ligands of RAGE, we sought to determine the effects of the proinflammatory heterodimer of S100A8/S100A9 on the RAGE-NFkappaB mediated induction of proinflammatory gene expression. Human umbilical vein endothelial cells (HUVEC) were preincubated for 72 h with AGE-albumin or unmodified albumin for control, whereas AGE-albumin induction resulted in an upregulation of RAGE. Following this preactivation, cells were stimulated for 48 h with heterodimeric human recombinant S100A8/S100A9. Heterodimeric S100A8/S100A9 enhanced secretion of IL-6, ICAM-1, VCAM-1 and MCP1 in AGE-albumin pretreated HUVEC in a dose dependent manner. These effects could not be detected after stimulation with the homodimeric proteins S100A8, S100A9, S100A1 and S100B. The effects of heterodimeric S100A8/S100A9 were reduced by inhibition of the MAP-kinase pathways ERK1/2 and p38 by PD 98059 and SB 203580, respectively. The heterodimeric S100A8/S100A9 might therefore play a hitherto unknown role in triggering atherosclerosis in diabetes and renal failure, pathophysiological entities associated with a high AGE burden. Thus, blocking heterodimeric S100A8/S100A9 might represent a novel therapeutic modality in treating atherosclerosis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1475-2840
1475-2840
DOI:10.1186/1475-2840-5-6