Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer
The mammalian circadian clock and its associated clock genes are increasingly been recognized as critical components for a number of physiological and disease processes that extend beyond hormone release, thermal regulation, and sleep-wake cycles. New evidence suggests that clinical behavior disrupt...
Saved in:
Published in | Current neurovascular research Vol. 14; no. 3; p. 299 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Netherlands
01.01.2017
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | The mammalian circadian clock and its associated clock genes are increasingly been recognized as critical components for a number of physiological and disease processes that extend beyond hormone release, thermal regulation, and sleep-wake cycles. New evidence suggests that clinical behavior disruptions that involve prolonged shift work and even space travel may negatively impact circadian rhythm and lead to multi-system disease.
In light of the significant role circadian rhythm can hold over the body's normal physiology as well as disease processes, we examined and discussed the impact circadian rhythm and clock genes hold over lifespan, neurodegenerative disorders, and tumorigenesis.
In experimental models, lifespan is significantly reduced with the introduction of arrhythmic mutants and leads to an increase in oxidative stress exposure. Interestingly, patients with Alzheimer's disease and Parkinson's disease may suffer disease onset or progression as a result of alterations in the DNA methylation of clock genes as well as prolonged pharmacological treatment for these disorders that may lead to impairment of circadian rhythm function. Tumorigenesis also can occur with the loss of a maintained circadian rhythm and lead to an increased risk for nasopharyngeal carcinoma, breast cancer, and metastatic colorectal cancer. Interestingly, the circadian clock system relies upon the regulation of the critical pathways of autophagy, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) as well as proliferative mechanisms that involve the wingless pathway of Wnt/β-catenin pathway to foster cell survival during injury and block tumor cell growth.
Future targeting of the pathways of autophagy, mTOR, SIRT1, and Wnt that control mammalian circadian rhythm may hold the key for the development of novel and effective therapies against aging- related disorders, neurodegenerative disease, and tumorigenesis. |
---|---|
AbstractList | The mammalian circadian clock and its associated clock genes are increasingly been recognized as critical components for a number of physiological and disease processes that extend beyond hormone release, thermal regulation, and sleep-wake cycles. New evidence suggests that clinical behavior disruptions that involve prolonged shift work and even space travel may negatively impact circadian rhythm and lead to multi-system disease.
In light of the significant role circadian rhythm can hold over the body's normal physiology as well as disease processes, we examined and discussed the impact circadian rhythm and clock genes hold over lifespan, neurodegenerative disorders, and tumorigenesis.
In experimental models, lifespan is significantly reduced with the introduction of arrhythmic mutants and leads to an increase in oxidative stress exposure. Interestingly, patients with Alzheimer's disease and Parkinson's disease may suffer disease onset or progression as a result of alterations in the DNA methylation of clock genes as well as prolonged pharmacological treatment for these disorders that may lead to impairment of circadian rhythm function. Tumorigenesis also can occur with the loss of a maintained circadian rhythm and lead to an increased risk for nasopharyngeal carcinoma, breast cancer, and metastatic colorectal cancer. Interestingly, the circadian clock system relies upon the regulation of the critical pathways of autophagy, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) as well as proliferative mechanisms that involve the wingless pathway of Wnt/β-catenin pathway to foster cell survival during injury and block tumor cell growth.
Future targeting of the pathways of autophagy, mTOR, SIRT1, and Wnt that control mammalian circadian rhythm may hold the key for the development of novel and effective therapies against aging- related disorders, neurodegenerative disease, and tumorigenesis. |
Author | Maiese, Kenneth |
Author_xml | – sequence: 1 givenname: Kenneth surname: Maiese fullname: Maiese, Kenneth organization: Cellular and Molecular Signaling, Newark, NY. United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28721811$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j1tLwzAYQIMoOqd_QeKbwqr5vjaXPo5O52AymPN5JG26Bte0tNnG_r3Dy9N5ORw41-TcN94Scg_sCUEmz8CFRIYCEiEESCZBsRQZsDMyACV5xGWcXpIrVBJBAQxI-97snd_Q0NBQWbqsjqGq6cGFimbbJv-iD5nrcl047R_p1Hrbj-h4F5q20pvjiNarxXJEtS_ox2y5Auo8ndjNSet0cHtLJ663urc_RqZ9brsbclHqbW9v_zgkn68vq-wtmi-ms2w8jwxHHqKkTLnVLJepUogmZ7E0SgmdCKNlmSZgkMVaQWpySFmcSA0lYnn6NUYWluOQ3P12252pbbFuO1fr7rj-X8dv1NpYNQ |
CitedBy_id | crossref_primary_10_3389_fgene_2021_651979 crossref_primary_10_3389_fcell_2020_616434 crossref_primary_10_3390_cells8040293 crossref_primary_10_1016_j_lfs_2019_01_006 crossref_primary_10_4103_1673_5374_291382 crossref_primary_10_1016_j_ijbiomac_2021_10_026 crossref_primary_10_1080_26895293_2024_2393847 crossref_primary_10_1111_apha_13548 crossref_primary_10_1080_21655979_2021_2024687 crossref_primary_10_52586_4971 crossref_primary_10_3390_biomedicines12091961 crossref_primary_10_1016_j_advms_2024_11_002 crossref_primary_10_3390_cancers13235978 crossref_primary_10_1126_sciadv_abq1141 crossref_primary_10_1016_j_yexcr_2019_111614 crossref_primary_10_1111_exd_15005 crossref_primary_10_1016_j_bcp_2019_03_008 crossref_primary_10_1016_j_cca_2020_04_016 crossref_primary_10_1016_j_arr_2020_101155 crossref_primary_10_1080_17512433_2020_1698288 crossref_primary_10_1042_BST20170121 crossref_primary_10_1093_bib_bbab510 crossref_primary_10_1134_S2079057020020083 crossref_primary_10_18632_aging_205155 crossref_primary_10_2478_jtim_2022_0049 crossref_primary_10_3389_fmolb_2024_1387576 crossref_primary_10_3390_ijms21249387 crossref_primary_10_4274_hamidiyemedj_galenos_2022_33043 crossref_primary_10_4252_wjsc_v15_i8_842 crossref_primary_10_3389_fendo_2022_847322 crossref_primary_10_2147_NSS_S310351 crossref_primary_10_3390_cells11121930 crossref_primary_10_3390_ijms19123910 crossref_primary_10_1186_s12864_017_4423_x crossref_primary_10_3390_antiox10020210 crossref_primary_10_18632_aging_205961 crossref_primary_10_4103_1673_5374_249224 crossref_primary_10_1016_j_ydbio_2024_02_008 crossref_primary_10_3233_CBM_181459 crossref_primary_10_3390_molecules28041889 crossref_primary_10_3389_fphys_2022_873237 crossref_primary_10_1007_s11064_025_04378_y crossref_primary_10_3390_cancers12030562 crossref_primary_10_2478_jtim_2023_0049 crossref_primary_10_3390_cancers15194728 crossref_primary_10_1016_j_biopha_2020_110924 crossref_primary_10_1016_j_fct_2021_112063 crossref_primary_10_3389_fimmu_2023_1273570 crossref_primary_10_2147_DMSO_S315362 crossref_primary_10_1016_j_pnpbp_2023_110721 crossref_primary_10_1111_jpi_12506 crossref_primary_10_32604_biocell_2023_031638 crossref_primary_10_3390_cells12222595 crossref_primary_10_1080_09291016_2019_1592353 crossref_primary_10_1080_10641963_2023_2178659 crossref_primary_10_3390_antiox12051124 crossref_primary_10_3390_bioengineering10070871 crossref_primary_10_3390_antiox11010035 crossref_primary_10_1016_j_arr_2021_101554 crossref_primary_10_3390_ijms23010421 crossref_primary_10_3390_biom11071002 crossref_primary_10_1097_MNH_0000000000000611 crossref_primary_10_3390_cells9040905 crossref_primary_10_1016_j_tranon_2021_101270 crossref_primary_10_3390_biom13050816 crossref_primary_10_1186_s12889_021_11500_6 |
ContentType | Journal Article |
Copyright | Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org. |
Copyright_xml | – notice: Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org. |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.2174/1567202614666170718092010 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
EISSN | 1875-5739 |
ExternalDocumentID | 28721811 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS053946 |
GroupedDBID | CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-b525t-4f95ea0c798822bc037b886a46ba7f941b203a819bc190347a1f22f180bb7de52 |
IngestDate | Wed Feb 19 02:42:18 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | Parkinson's disease nicotinamide apoptosis wingless diabetes mellitus mTOR Complex 2 (mTORC2) AMP activated protein kinase (AMPK) hamartin (tuberous sclerosis 1)/tuberin (tuberous sclerosis 2) (TSC1/TSC2) β-catenin mTOR Complex 1 (mTORC1) aging-related disorders sirtuin nerve growth factor RORE circadian rhythm Aging Wnt programmed cell death Alzheimer's disease space travel cardiovascular disease shift work stem cells autophagy mechanistic target of rapamycin (mTOR) angiogenesis nicotinamide adenine dinucleotide (NAD+) period (PER) Cryptochrome Huntington's disease REV-ERBα clock genes RORα metabolism silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) suprachiasmatic nucleus BMAL1 CLOCK oxidative stress |
Language | English |
License | Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-b525t-4f95ea0c798822bc037b886a46ba7f941b203a819bc190347a1f22f180bb7de52 |
PMID | 28721811 |
ParticipantIDs | pubmed_primary_28721811 |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Current neurovascular research |
PublicationTitleAlternate | Curr Neurovasc Res |
PublicationYear | 2017 |
References | 27586459 - Nat Commun. 2016 Sep 02;7:12565 26138818 - Aging Clin Exp Res. 2016 Apr;28(2):303-11 25766107 - Biochim Biophys Acta. 2015 Jul;1852(7):1311-22 22924465 - Expert Opin Ther Targets. 2012 Dec;16(12):1203-14 26256004 - Curr Neurovasc Res. 2015;12(4):404-13 25317149 - Neural Regen Res. 2014 Aug 1;9(15):1413-7 26582729 - J Pharmacol Exp Ther. 2016 Feb;356(2):314-23 26182057 - PLoS One. 2015 Jul 16;10(7):e0132768 27524412 - Ageing Res Rev. 2016 Nov;31:9-35 26064426 - Oxid Med Cell Longev. 2015;2015:875961 27883893 - Alzheimers Dement. 2017 Jun;13(6):689-700 23203037 - Int J Mol Sci. 2012 Oct 26;13(11):13830-66 28421530 - Mol Neurobiol. 2017 Apr 18;:null 28469105 - Chin Med J (Engl). 2017 May 5;130(9):1085-1092 25219658 - Curr Neurovasc Res. 2014;11(4):378-89 28406476 - Cell Death Dis. 2017 Apr 13;8(4):e2750 25596530 - J Biol Chem. 2015 Mar 6;290(10 ):6168-78 26891083 - Diabetes Metab Res Rev. 2016 Sep;32(6):534-43 26588882 - Environ Toxicol. 2017 Jan;32(1):109-121 25815111 - World J Stem Cells. 2015 Mar 26;7(2):235-42 26804764 - Toxicology. 2016 Feb 3;341-343:28-40 28498393 - Int J Oncol. 2017 Jun;50(6):2191-2199 28137967 - J Neurosci. 2017 Mar 1;37(9):2449-2462 25789103 - World J Diabetes. 2015 Mar 15;6(2):217-24 22980037 - Prog Neurobiol. 2012 Nov;99(2):128-48 28671110 - J Alzheimers Dis. 2017;59(2):615-631 25247581 - Int J Mol Sci. 2014 Sep 22;15(9):16848-84 25912437 - APMIS. 2015 Aug;123(8):639-47 27390624 - J Transl Sci. 2016 Jul;2(4):241-247 28126510 - Pharmacol Res. 2017 May;119:1-11 28541391 - Am J Epidemiol. 2017 Sep 1;186(5):532-540 28456571 - Toxicol Lett. 2017 Jun 5;275:28-38 28260916 - Onco Targets Ther. 2017 Feb 20;10 :711-724 25281273 - Immunol Res. 2015 Mar;61(3):187-97 25096191 - Neuro Oncol. 2015 Jan;17(1):95-106 27033026 - Nutr Metab Cardiovasc Dis. 2016 Jun;26(6):489-94 24301659 - Mucosal Immunol. 2014 Jul;7(4):929-38 26328016 - World J Stem Cells. 2015 Aug 26;7(7):999-1009 27340022 - Nat Rev Neurol. 2016 Jul;12(7):379-92 28112228 - Sci Rep. 2017 Jan 23;7:41082 21307646 - Oxid Med Cell Longev. 2010 Nov-Dec;3(6):374-91 28561773 - Int J Mol Sci. 2017 May 31;18(6):null 27127460 - Neural Regen Res. 2016 Mar;11(3):372-85 23888142 - Front Aging Neurosci. 2013 Jul 23;5:36 28533928 - Am J Cardiovasc Dis. 2017 Apr 15;7(2):33-47 26561536 - J Transl Sci. 2015 Nov;1(3):55-57 17691973 - Curr Neurovasc Res. 2007 Aug;4(3):194-204 25682558 - J Formos Med Assoc. 2015 May;114(5):430-7 23265840 - Trends Mol Med. 2013 Jan;19(1):51-60 28611660 - Front Aging Neurosci. 2017 May 30;9:170 27078501 - Chronobiol Int. 2016;33(5):553-60 28628032 - J Clin Invest. 2017 Jun 30;127(7):2678-2688 26169250 - Sci Rep. 2015 Jul 14;5:12115 27613400 - Trends Endocrinol Metab. 2016 Dec;27(12 ):868-880 25105207 - Ann Med. 2014 Dec;46(8):587-96 22233091 - Expert Opin Ther Targets. 2012 Feb;16(2):167-78 22545721 - Cardiovasc Diabetol. 2012 Jul 16;11:45 25270091 - Oncol Rep. 2014 Dec;32(6):2831-5 27642518 - J Transl Sci. 2016;2(6):327-329 27142962 - Sci Rep. 2016 May 04;6:25226 26003731 - Biochem Biophys Res Commun. 2015 Jul 31;463(3):161-6 26135885 - Brain Res Bull. 2015 Jul;116:67-72 27807740 - Apoptosis. 2017 Feb;22(2):265-283 28611667 - Front Pharmacol. 2017 May 29;8:315 25432176 - Cancer Res. 2015 Jan 15;75(2):446-55 24211426 - Exp Gerontol. 2014 Feb;50:137-48 27763686 - J Pineal Res. 2017 Jan;62(1) 23092114 - Expert Opin Drug Discov. 2013 Jan;8(1):35-48 21925170 - Exp Cell Res. 2012 Jan 1;318(1):33-42 26466127 - PLoS One. 2015 Oct 14;10 (10 ):e0139664 22732551 - Trends Cardiovasc Med. 2011 Jul;21(5):151-5 26997506 - Curr Neuropharmacol. 2016;14 (8):810-825 28634643 - J Muscle Res Cell Motil. 2017 Jun 20;:null 28122627 - Mol Neurodegener. 2017 Jan 25;12 (1):11 26171319 - Anal Cell Pathol (Amst). 2015;2015:569392 25349171 - Mol Psychiatry. 2015 Feb;20(1):48-55 25268090 - Eur Rev Med Pharmacol Sci. 2014;18(17):2460-4 26208432 - Cancer Lett. 2015 Oct 10;367(1):76-87 28643459 - J Cell Mol Med. 2017 Jun 23;:null 27634039 - J Biol Chem. 2016 Oct 28;291(44):23318-23329 28555021 - Molecules. 2017 May 27;22(6):null 21748792 - J Orthop Res. 2012 Jan;30(1):144-52 27553905 - Sci Rep. 2016 Aug 24;6:32206 26936536 - Mol Med Rep. 2016 Apr;13(4):3539-46 27200181 - J Transl Sci. 2016;2(3):185-187 28618940 - Tumour Biol. 2017 Jun;39(6):1010428317699755 25047736 - Mol Nutr Food Res. 2014 Oct;58(10):1941-51 25742566 - Curr Neurovasc Res. 2015;12(2):173-88 23990359 - Diabetes. 2013 Dec;62(12 ):4122-31 27297423 - J Vet Sci. 2017 Mar 30;18(1):11-16 28123577 - Oncol Lett. 2017 Jan;13(1):423-428 28072817 - PLoS Genet. 2017 Jan 10;13(1):e1006507 26900721 - Mol Endocrinol. 2016 Apr;30(4):446-54 22203920 - Rom J Morphol Embryol. 2011;52(4):1173-85 24990154 - Sci Rep. 2014 Jul 03;4:5555 22185448 - Future Cardiol. 2012 Jan;8(1):89-100 21157483 - Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35 23029019 - PLoS One. 2012;7(9):e45456 22961668 - Cell Biochem Funct. 2013 Mar;31(2):166-72 26469771 - Br J Clin Pharmacol. 2016 Nov;82(5):1245-1266 24111970 - Antioxid Redox Signal. 2014 Jun 20;20(18):2997-3006 18313758 - Pharmacol Ther. 2008 Apr;118(1):58-81 24449278 - Stem Cells. 2014 May;32(5):1183-94 26660162 - Arch Virol. 2016 Mar;161(3):621-30 27567590 - J Nutr Biochem. 2016 Oct;36:31-41 26303641 - Biochim Biophys Acta. 2015 Nov;1852(11):2442-55 26893943 - J Transl Sci. 2016;1(3):83-85 24574137 - Cell Biochem Funct. 2014 Jun;32(4):309-25 21430067 - Cancer Res. 2011 May 1;71(9):3246-56 26202455 - Mol Nutr Food Res. 2015 Oct;59(10 ):1905-17 28417163 - Cell Mol Life Sci. 2017 Sep;74(18):3347-3362 28294062 - Curr Neurovasc Res. 2017;14 (2):184-189 23147994 - Clin Cancer Res. 2013 Jan 1;19(1):170-82 26872534 - Pathol Res Pract. 2016 Apr;212(4):310-8 26087293 - PLoS One. 2015 Jun 18;10(6):e0128651 28317262 - Biofactors. 2017 Jul 8;43(4):540-548 26799652 - Autophagy. 2016;12 (1):1-222 22873724 - Curr Neurovasc Res. 2012 Nov;9(4):239-49 25046865 - Biochim Biophys Acta. 2014 Sep;1839(9):866-72 28540646 - CNS Drugs. 2017 Jul;31(7):535-549 26439987 - Oncotarget. 2015 Oct 27;6(33):34446-57 28667519 - Sci China Life Sci. 2017 Jun 29;:null 27488211 - Curr Neurovasc Res. 2016;13(4):329-340 27923342 - Curr Neurovasc Res. 2017;14 (1):1-2 27725116 - J Neuroimmunol. 2016 Oct 15;299:164-171 28583847 - Cancer Lett. 2017 Aug 28;402:117-130 24407293 - J Biol Chem. 2014 Mar 7;289(10 ):6709-26 25556834 - Neuron. 2015 Jan 21;85(2):303-15 28427145 - Oncotarget. 2017 May 16;8(20):32752-32768 28551800 - Adv Exp Med Biol. 2017;982:407-429 28625127 - Curr Neurovasc Res. 2017;14 (3):207-214 |
References_xml | – reference: 28625127 - Curr Neurovasc Res. 2017;14 (3):207-214 – reference: 23029019 - PLoS One. 2012;7(9):e45456 – reference: 25096191 - Neuro Oncol. 2015 Jan;17(1):95-106 – reference: 28469105 - Chin Med J (Engl). 2017 May 5;130(9):1085-1092 – reference: 27725116 - J Neuroimmunol. 2016 Oct 15;299:164-171 – reference: 24301659 - Mucosal Immunol. 2014 Jul;7(4):929-38 – reference: 28417163 - Cell Mol Life Sci. 2017 Sep;74(18):3347-3362 – reference: 25105207 - Ann Med. 2014 Dec;46(8):587-96 – reference: 25596530 - J Biol Chem. 2015 Mar 6;290(10 ):6168-78 – reference: 26328016 - World J Stem Cells. 2015 Aug 26;7(7):999-1009 – reference: 27524412 - Ageing Res Rev. 2016 Nov;31:9-35 – reference: 28498393 - Int J Oncol. 2017 Jun;50(6):2191-2199 – reference: 21748792 - J Orthop Res. 2012 Jan;30(1):144-52 – reference: 26893943 - J Transl Sci. 2016;1(3):83-85 – reference: 26208432 - Cancer Lett. 2015 Oct 10;367(1):76-87 – reference: 25556834 - Neuron. 2015 Jan 21;85(2):303-15 – reference: 25219658 - Curr Neurovasc Res. 2014;11(4):378-89 – reference: 26169250 - Sci Rep. 2015 Jul 14;5:12115 – reference: 26582729 - J Pharmacol Exp Ther. 2016 Feb;356(2):314-23 – reference: 28541391 - Am J Epidemiol. 2017 Sep 1;186(5):532-540 – reference: 26182057 - PLoS One. 2015 Jul 16;10(7):e0132768 – reference: 26256004 - Curr Neurovasc Res. 2015;12(4):404-13 – reference: 28122627 - Mol Neurodegener. 2017 Jan 25;12 (1):11 – reference: 25742566 - Curr Neurovasc Res. 2015;12(2):173-88 – reference: 26804764 - Toxicology. 2016 Feb 3;341-343:28-40 – reference: 28628032 - J Clin Invest. 2017 Jun 30;127(7):2678-2688 – reference: 23990359 - Diabetes. 2013 Dec;62(12 ):4122-31 – reference: 25268090 - Eur Rev Med Pharmacol Sci. 2014;18(17):2460-4 – reference: 28427145 - Oncotarget. 2017 May 16;8(20):32752-32768 – reference: 26138818 - Aging Clin Exp Res. 2016 Apr;28(2):303-11 – reference: 22961668 - Cell Biochem Funct. 2013 Mar;31(2):166-72 – reference: 23203037 - Int J Mol Sci. 2012 Oct 26;13(11):13830-66 – reference: 27613400 - Trends Endocrinol Metab. 2016 Dec;27(12 ):868-880 – reference: 27340022 - Nat Rev Neurol. 2016 Jul;12(7):379-92 – reference: 26588882 - Environ Toxicol. 2017 Jan;32(1):109-121 – reference: 26003731 - Biochem Biophys Res Commun. 2015 Jul 31;463(3):161-6 – reference: 27200181 - J Transl Sci. 2016;2(3):185-187 – reference: 28260916 - Onco Targets Ther. 2017 Feb 20;10 :711-724 – reference: 27807740 - Apoptosis. 2017 Feb;22(2):265-283 – reference: 21307646 - Oxid Med Cell Longev. 2010 Nov-Dec;3(6):374-91 – reference: 28583847 - Cancer Lett. 2017 Aug 28;402:117-130 – reference: 26439987 - Oncotarget. 2015 Oct 27;6(33):34446-57 – reference: 28294062 - Curr Neurovasc Res. 2017;14 (2):184-189 – reference: 27127460 - Neural Regen Res. 2016 Mar;11(3):372-85 – reference: 22233091 - Expert Opin Ther Targets. 2012 Feb;16(2):167-78 – reference: 28611667 - Front Pharmacol. 2017 May 29;8:315 – reference: 28540646 - CNS Drugs. 2017 Jul;31(7):535-549 – reference: 26087293 - PLoS One. 2015 Jun 18;10(6):e0128651 – reference: 18313758 - Pharmacol Ther. 2008 Apr;118(1):58-81 – reference: 24449278 - Stem Cells. 2014 May;32(5):1183-94 – reference: 23092114 - Expert Opin Drug Discov. 2013 Jan;8(1):35-48 – reference: 25815111 - World J Stem Cells. 2015 Mar 26;7(2):235-42 – reference: 22732551 - Trends Cardiovasc Med. 2011 Jul;21(5):151-5 – reference: 27634039 - J Biol Chem. 2016 Oct 28;291(44):23318-23329 – reference: 25912437 - APMIS. 2015 Aug;123(8):639-47 – reference: 17691973 - Curr Neurovasc Res. 2007 Aug;4(3):194-204 – reference: 26936536 - Mol Med Rep. 2016 Apr;13(4):3539-46 – reference: 28456571 - Toxicol Lett. 2017 Jun 5;275:28-38 – reference: 28137967 - J Neurosci. 2017 Mar 1;37(9):2449-2462 – reference: 27642518 - J Transl Sci. 2016;2(6):327-329 – reference: 28611660 - Front Aging Neurosci. 2017 May 30;9:170 – reference: 24211426 - Exp Gerontol. 2014 Feb;50:137-48 – reference: 26997506 - Curr Neuropharmacol. 2016;14 (8):810-825 – reference: 28555021 - Molecules. 2017 May 27;22(6):null – reference: 27078501 - Chronobiol Int. 2016;33(5):553-60 – reference: 21430067 - Cancer Res. 2011 May 1;71(9):3246-56 – reference: 27390624 - J Transl Sci. 2016 Jul;2(4):241-247 – reference: 24407293 - J Biol Chem. 2014 Mar 7;289(10 ):6709-26 – reference: 27297423 - J Vet Sci. 2017 Mar 30;18(1):11-16 – reference: 28406476 - Cell Death Dis. 2017 Apr 13;8(4):e2750 – reference: 26303641 - Biochim Biophys Acta. 2015 Nov;1852(11):2442-55 – reference: 26561536 - J Transl Sci. 2015 Nov;1(3):55-57 – reference: 24111970 - Antioxid Redox Signal. 2014 Jun 20;20(18):2997-3006 – reference: 26466127 - PLoS One. 2015 Oct 14;10 (10 ):e0139664 – reference: 21925170 - Exp Cell Res. 2012 Jan 1;318(1):33-42 – reference: 28667519 - Sci China Life Sci. 2017 Jun 29;:null – reference: 28072817 - PLoS Genet. 2017 Jan 10;13(1):e1006507 – reference: 22185448 - Future Cardiol. 2012 Jan;8(1):89-100 – reference: 28551800 - Adv Exp Med Biol. 2017;982:407-429 – reference: 28671110 - J Alzheimers Dis. 2017;59(2):615-631 – reference: 26135885 - Brain Res Bull. 2015 Jul;116:67-72 – reference: 22980037 - Prog Neurobiol. 2012 Nov;99(2):128-48 – reference: 27142962 - Sci Rep. 2016 May 04;6:25226 – reference: 26202455 - Mol Nutr Food Res. 2015 Oct;59(10 ):1905-17 – reference: 25281273 - Immunol Res. 2015 Mar;61(3):187-97 – reference: 27033026 - Nutr Metab Cardiovasc Dis. 2016 Jun;26(6):489-94 – reference: 27883893 - Alzheimers Dement. 2017 Jun;13(6):689-700 – reference: 28112228 - Sci Rep. 2017 Jan 23;7:41082 – reference: 26872534 - Pathol Res Pract. 2016 Apr;212(4):310-8 – reference: 25432176 - Cancer Res. 2015 Jan 15;75(2):446-55 – reference: 28561773 - Int J Mol Sci. 2017 May 31;18(6):null – reference: 26799652 - Autophagy. 2016;12 (1):1-222 – reference: 27553905 - Sci Rep. 2016 Aug 24;6:32206 – reference: 28643459 - J Cell Mol Med. 2017 Jun 23;:null – reference: 27567590 - J Nutr Biochem. 2016 Oct;36:31-41 – reference: 28533928 - Am J Cardiovasc Dis. 2017 Apr 15;7(2):33-47 – reference: 27763686 - J Pineal Res. 2017 Jan;62(1): – reference: 25247581 - Int J Mol Sci. 2014 Sep 22;15(9):16848-84 – reference: 26171319 - Anal Cell Pathol (Amst). 2015;2015:569392 – reference: 23265840 - Trends Mol Med. 2013 Jan;19(1):51-60 – reference: 23888142 - Front Aging Neurosci. 2013 Jul 23;5:36 – reference: 25766107 - Biochim Biophys Acta. 2015 Jul;1852(7):1311-22 – reference: 28317262 - Biofactors. 2017 Jul 8;43(4):540-548 – reference: 28123577 - Oncol Lett. 2017 Jan;13(1):423-428 – reference: 21157483 - Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35 – reference: 26660162 - Arch Virol. 2016 Mar;161(3):621-30 – reference: 25682558 - J Formos Med Assoc. 2015 May;114(5):430-7 – reference: 28126510 - Pharmacol Res. 2017 May;119:1-11 – reference: 26064426 - Oxid Med Cell Longev. 2015;2015:875961 – reference: 27586459 - Nat Commun. 2016 Sep 02;7:12565 – reference: 25047736 - Mol Nutr Food Res. 2014 Oct;58(10):1941-51 – reference: 26891083 - Diabetes Metab Res Rev. 2016 Sep;32(6):534-43 – reference: 26469771 - Br J Clin Pharmacol. 2016 Nov;82(5):1245-1266 – reference: 22924465 - Expert Opin Ther Targets. 2012 Dec;16(12):1203-14 – reference: 25270091 - Oncol Rep. 2014 Dec;32(6):2831-5 – reference: 24990154 - Sci Rep. 2014 Jul 03;4:5555 – reference: 27923342 - Curr Neurovasc Res. 2017;14 (1):1-2 – reference: 28634643 - J Muscle Res Cell Motil. 2017 Jun 20;:null – reference: 22545721 - Cardiovasc Diabetol. 2012 Jul 16;11:45 – reference: 22873724 - Curr Neurovasc Res. 2012 Nov;9(4):239-49 – reference: 28618940 - Tumour Biol. 2017 Jun;39(6):1010428317699755 – reference: 28421530 - Mol Neurobiol. 2017 Apr 18;:null – reference: 23147994 - Clin Cancer Res. 2013 Jan 1;19(1):170-82 – reference: 26900721 - Mol Endocrinol. 2016 Apr;30(4):446-54 – reference: 25349171 - Mol Psychiatry. 2015 Feb;20(1):48-55 – reference: 25046865 - Biochim Biophys Acta. 2014 Sep;1839(9):866-72 – reference: 24574137 - Cell Biochem Funct. 2014 Jun;32(4):309-25 – reference: 25789103 - World J Diabetes. 2015 Mar 15;6(2):217-24 – reference: 25317149 - Neural Regen Res. 2014 Aug 1;9(15):1413-7 – reference: 27488211 - Curr Neurovasc Res. 2016;13(4):329-340 – reference: 22203920 - Rom J Morphol Embryol. 2011;52(4):1173-85 |
Score | 2.4539027 |
SecondaryResourceType | review_article |
Snippet | The mammalian circadian clock and its associated clock genes are increasingly been recognized as critical components for a number of physiological and disease... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 299 |
SubjectTerms | Animals Autophagy - genetics Circadian Rhythm - physiology Humans Neoplasms - genetics Neoplasms - metabolism Neoplasms - physiopathology Neurodegenerative Diseases - genetics Neurodegenerative Diseases - metabolism Neurodegenerative Diseases - physiopathology Sirtuin 1 - genetics Sirtuin 1 - metabolism TOR Serine-Threonine Kinases - genetics TOR Serine-Threonine Kinases - metabolism |
Title | Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28721811 |
Volume | 14 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGA1eQHwRxfuNCD4orNqkSbs-ylSmMJWxwd5GkqUqsjmkPuiv9_uSrpaheHkpI0lHl3OWfudLckLIIUSgECabOpA3ykCgaBYoMYgCOTAZvN8148at8r2Jm11x3ZO9z1S2212S6xPz_uW-kv-gCmWAK-6S_QOy5ZdCAXwGfOEKCMP1Vxi3fDqgCB_bD2_5w9BnVhvwjnpyM7SPL8bZD6D8R49pf_rwK_oJKL9NZdi5bZeLOK_aHYY5kHN77wyp_coiP4vjWjSQJi_VmHZi8eSsMcuVrYWLUJltbin0o6hsBarmG1hSyTdYP0aCxAlk4j2IykFUVMgSVUdEf_7R9EiNSgiTBjJOOMpAATKKJRDv1MMUJ-ir90Cnj4cOQpB3GJKwn2unTLQnVbNkFuQEno9611ogB8WDnH77GOgVXdw6pTtc_NFZJkuFcKBnngUrZMaOVsnYM4DmzxQYQD0DKDKAOgbQoxL_Y-rQr9ES-xpF5GsUUKUOd_o4olXcaYG7a-FxXyPdy4tOoxkUZ2gEWnKZByJLpVWhQVs6zrUJo0TX67ESsVZJlgqmeRgpCAu1gdAwEoliGecZ_H6tk4GVfJ3MjZ5HdpPQNBJhamwacw3tYqlSwxmzUMRjrmK1RTZ8B_XH3iilP-m67W9rdsjiJ8d2yXwG_0y7B2FervcdSB-M9Uu8 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moving+to+the+Rhythm+with+Clock+%28Circadian%29+Genes%2C+Autophagy%2C+mTOR%2C+and+SIRT1+in+Degenerative+Disease+and+Cancer&rft.jtitle=Current+neurovascular+research&rft.au=Maiese%2C+Kenneth&rft.date=2017-01-01&rft.eissn=1875-5739&rft.volume=14&rft.issue=3&rft.spage=299&rft_id=info:doi/10.2174%2F1567202614666170718092010&rft_id=info%3Apmid%2F28721811&rft_id=info%3Apmid%2F28721811&rft.externalDocID=28721811 |