Maintenance tobramycin primarily affects untargeted bacteria in the CF sputum microbiome
RationaleThe most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas aeruginosa lung infections. While the effects of inhaled tobramycin on P. aeruginosa abundance and lung function diminish with conti...
Saved in:
Published in | Thorax Vol. 75; no. 9; pp. 780 - 790 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BMJ Publishing Group Ltd and British Thoracic Society
01.09.2020
BMJ Publishing Group LTD |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | RationaleThe most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas aeruginosa lung infections. While the effects of inhaled tobramycin on P. aeruginosa abundance and lung function diminish with continued therapy, this maintenance treatment is known to improve long-term outcomes, underscoring how little is known about why antibiotics work in CF infections, what their effects are on complex CF sputum microbiomes and how to improve these treatments.ObjectivesTo rigorously define the effect of maintenance tobramycin on CF sputum microbiome characteristics.Methods and measurementsWe collected sputum from 30 PWCF at standardised times before, during and after a single month-long course of maintenance inhaled tobramycin. We used traditional culture, quantitative PCR and metagenomic sequencing to define the dynamic effects of this treatment on sputum microbiomes, including abundance changes in both clinically targeted and untargeted bacteria, as well as functional gene categories.Main resultsCF sputum microbiota changed most markedly by 1 week of antibiotic therapy and plateaued thereafter, and this shift was largely driven by changes in non-dominant taxa. The genetically conferred functional capacities (ie, metagenomes) of subjects’ sputum communities changed little with antibiotic perturbation, despite taxonomic shifts, suggesting functional redundancy within the CF sputum microbiome.ConclusionsMaintenance treatment with inhaled tobramycin, an antibiotic with demonstrated long-term mortality benefit, primarily impacted clinically untargeted bacteria in CF sputum, highlighting the importance of monitoring the non-canonical effects of antibiotics and other treatments to accurately define and improve their clinical impact. |
---|---|
AbstractList | RationaleThe most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas aeruginosa lung infections. While the effects of inhaled tobramycin on P. aeruginosa abundance and lung function diminish with continued therapy, this maintenance treatment is known to improve long-term outcomes, underscoring how little is known about why antibiotics work in CF infections, what their effects are on complex CF sputum microbiomes and how to improve these treatments.ObjectivesTo rigorously define the effect of maintenance tobramycin on CF sputum microbiome characteristics.Methods and measurementsWe collected sputum from 30 PWCF at standardised times before, during and after a single month-long course of maintenance inhaled tobramycin. We used traditional culture, quantitative PCR and metagenomic sequencing to define the dynamic effects of this treatment on sputum microbiomes, including abundance changes in both clinically targeted and untargeted bacteria, as well as functional gene categories.Main resultsCF sputum microbiota changed most markedly by 1 week of antibiotic therapy and plateaued thereafter, and this shift was largely driven by changes in non-dominant taxa. The genetically conferred functional capacities (ie, metagenomes) of subjects’ sputum communities changed little with antibiotic perturbation, despite taxonomic shifts, suggesting functional redundancy within the CF sputum microbiome.ConclusionsMaintenance treatment with inhaled tobramycin, an antibiotic with demonstrated long-term mortality benefit, primarily impacted clinically untargeted bacteria in CF sputum, highlighting the importance of monitoring the non-canonical effects of antibiotics and other treatments to accurately define and improve their clinical impact. The most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas aeruginosa lung infections. While the effects of inhaled tobramycin on P. aeruginosa abundance and lung function diminish with continued therapy, this maintenance treatment is known to improve long-term outcomes, underscoring how little is known about why antibiotics work in CF infections, what their effects are on complex CF sputum microbiomes and how to improve these treatments.RATIONALEThe most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas aeruginosa lung infections. While the effects of inhaled tobramycin on P. aeruginosa abundance and lung function diminish with continued therapy, this maintenance treatment is known to improve long-term outcomes, underscoring how little is known about why antibiotics work in CF infections, what their effects are on complex CF sputum microbiomes and how to improve these treatments.To rigorously define the effect of maintenance tobramycin on CF sputum microbiome characteristics.OBJECTIVESTo rigorously define the effect of maintenance tobramycin on CF sputum microbiome characteristics.We collected sputum from 30 PWCF at standardised times before, during and after a single month-long course of maintenance inhaled tobramycin. We used traditional culture, quantitative PCR and metagenomic sequencing to define the dynamic effects of this treatment on sputum microbiomes, including abundance changes in both clinically targeted and untargeted bacteria, as well as functional gene categories.METHODS AND MEASUREMENTSWe collected sputum from 30 PWCF at standardised times before, during and after a single month-long course of maintenance inhaled tobramycin. We used traditional culture, quantitative PCR and metagenomic sequencing to define the dynamic effects of this treatment on sputum microbiomes, including abundance changes in both clinically targeted and untargeted bacteria, as well as functional gene categories.CF sputum microbiota changed most markedly by 1 week of antibiotic therapy and plateaued thereafter, and this shift was largely driven by changes in non-dominant taxa. The genetically conferred functional capacities (ie, metagenomes) of subjects' sputum communities changed little with antibiotic perturbation, despite taxonomic shifts, suggesting functional redundancy within the CF sputum microbiome.MAIN RESULTSCF sputum microbiota changed most markedly by 1 week of antibiotic therapy and plateaued thereafter, and this shift was largely driven by changes in non-dominant taxa. The genetically conferred functional capacities (ie, metagenomes) of subjects' sputum communities changed little with antibiotic perturbation, despite taxonomic shifts, suggesting functional redundancy within the CF sputum microbiome.Maintenance treatment with inhaled tobramycin, an antibiotic with demonstrated long-term mortality benefit, primarily impacted clinically untargeted bacteria in CF sputum, highlighting the importance of monitoring the non-canonical effects of antibiotics and other treatments to accurately define and improve their clinical impact.CONCLUSIONSMaintenance treatment with inhaled tobramycin, an antibiotic with demonstrated long-term mortality benefit, primarily impacted clinically untargeted bacteria in CF sputum, highlighting the importance of monitoring the non-canonical effects of antibiotics and other treatments to accurately define and improve their clinical impact. The most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic lung infections. While the effects of inhaled tobramycin on abundance and lung function diminish with continued therapy, this maintenance treatment is known to improve long-term outcomes, underscoring how little is known about why antibiotics work in CF infections, what their effects are on complex CF sputum microbiomes and how to improve these treatments. To rigorously define the effect of maintenance tobramycin on CF sputum microbiome characteristics. We collected sputum from 30 PWCF at standardised times before, during and after a single month-long course of maintenance inhaled tobramycin. We used traditional culture, quantitative PCR and metagenomic sequencing to define the dynamic effects of this treatment on sputum microbiomes, including abundance changes in both clinically targeted and untargeted bacteria, as well as functional gene categories. CF sputum microbiota changed most markedly by 1 week of antibiotic therapy and plateaued thereafter, and this shift was largely driven by changes in non-dominant taxa. The genetically conferred functional capacities (ie, metagenomes) of subjects' sputum communities changed little with antibiotic perturbation, despite taxonomic shifts, suggesting functional redundancy within the CF sputum microbiome. Maintenance treatment with inhaled tobramycin, an antibiotic with demonstrated long-term mortality benefit, primarily impacted clinically untargeted bacteria in CF sputum, highlighting the importance of monitoring the non-canonical effects of antibiotics and other treatments to accurately define and improve their clinical impact. |
Author | McNamara, Sharon Bautista, Gilbert Hayden, Hillary S Brittnacher, Mitchell J Ravishankar, Sumedha Ratjen, Anina Miller, Samuel I Majors, Cheryl Borenstein, Elhanan Blackledge, Marcella Wolter, Daniel J Nay, Laura Nelson, Maria T Vo, Anh T Weiss, Eli J Eng, Alexander Hoffman, Luke R Simon, Richard H LiPuma, John J |
AuthorAffiliation | 6 Microbiology, University of Washington School of Medicine, Seattle, Washington, USA 11 Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA 2 Medical Scientist Training Program, University of Washington School of Medicine, Seattle, Washington, United States 9 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel 4 Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA 3 Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, Washington, United States 5 Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA 1 Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA 10 Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel 7 Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA 8 Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States |
AuthorAffiliation_xml | – name: 5 Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA – name: 1 Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA – name: 10 Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel – name: 9 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel – name: 3 Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, Washington, United States – name: 7 Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA – name: 4 Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA – name: 6 Microbiology, University of Washington School of Medicine, Seattle, Washington, USA – name: 11 Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA – name: 8 Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States – name: 2 Medical Scientist Training Program, University of Washington School of Medicine, Seattle, Washington, United States |
Author_xml | – sequence: 1 givenname: Maria T surname: Nelson fullname: Nelson, Maria T organization: Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, Washington, USA – sequence: 2 givenname: Daniel J surname: Wolter fullname: Wolter, Daniel J organization: Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA – sequence: 3 givenname: Alexander surname: Eng fullname: Eng, Alexander organization: Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA – sequence: 4 givenname: Eli J surname: Weiss fullname: Weiss, Eli J organization: Microbiology, University of Washington School of Medicine, Seattle, Washington, USA – sequence: 5 givenname: Anh T surname: Vo fullname: Vo, Anh T organization: Microbiology, University of Washington School of Medicine, Seattle, Washington, USA – sequence: 6 givenname: Mitchell J surname: Brittnacher fullname: Brittnacher, Mitchell J organization: Microbiology, University of Washington School of Medicine, Seattle, Washington, USA – sequence: 7 givenname: Hillary S surname: Hayden fullname: Hayden, Hillary S organization: Microbiology, University of Washington School of Medicine, Seattle, Washington, USA – sequence: 8 givenname: Sumedha surname: Ravishankar fullname: Ravishankar, Sumedha organization: Microbiology, University of Washington School of Medicine, Seattle, Washington, USA – sequence: 9 givenname: Gilbert surname: Bautista fullname: Bautista, Gilbert organization: Microbiology, University of Washington School of Medicine, Seattle, Washington, USA – sequence: 10 givenname: Anina surname: Ratjen fullname: Ratjen, Anina organization: Microbiology, University of Washington School of Medicine, Seattle, Washington, USA – sequence: 11 givenname: Marcella surname: Blackledge fullname: Blackledge, Marcella organization: Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA – sequence: 12 givenname: Sharon surname: McNamara fullname: McNamara, Sharon organization: Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA – sequence: 13 givenname: Laura surname: Nay fullname: Nay, Laura organization: Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA – sequence: 14 givenname: Cheryl surname: Majors fullname: Majors, Cheryl organization: Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA – sequence: 15 givenname: Samuel I surname: Miller fullname: Miller, Samuel I organization: Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA – sequence: 16 givenname: Elhanan surname: Borenstein fullname: Borenstein, Elhanan organization: Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel – sequence: 17 givenname: Richard H surname: Simon fullname: Simon, Richard H organization: Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA – sequence: 18 givenname: John J surname: LiPuma fullname: LiPuma, John J organization: Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA – sequence: 19 givenname: Luke R surname: Hoffman fullname: Hoffman, Luke R email: lhoffm@uw.edu organization: Microbiology, University of Washington School of Medicine, Seattle, Washington, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32631930$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkVFrFDEUhYNU7Lb6E5QBX3wZzU1mMgmCIItthYovCr6FZHrTzTKTrJmMuP_eLFNX7YP6lEC-c3PuOWfkJMSAhDwF-hKAi1d5E5P5vg1DzSiomkEDsntAVtAIWXOmxAlZUdrQWvBOnJKzadpSSiVA94icciY4KE5X5MsH40PGYEKPVY42mXHf-1Dtkh9N8sO-Ms5hn6dqDtmkW8x4U1nTZ0zeVAXMG6zWF9W0m_M8VqPvU7Q-jviYPHRmmPDJ3XlOPl-8-7S-qq8_Xr5fv72ubctYrp0FtE4IlLZhrbKyd4gCrcLWKdcpQN6Ui2ISOHPQ9VIycIK1XBrhFPBz8maZu5vtiDc9hpzMoBf_ex2N13--BL_Rt_Gb7mTXgpJlwIu7ASl-nXHKevRTj8NgAsZ50qxhAFQoaAv6_B66jXMKZb1C8RJ8yZQX6tnvjo5WfoZegHYBSlbTlNAdEaD6UK4-lqsP5eql3KJ7fU_X-2yyj4fF_PBPNV3Udtz-94fwS3Jc9e-aHz0jz44 |
CitedBy_id | crossref_primary_10_1016_j_jcf_2021_02_001 crossref_primary_10_1128_spectrum_03633_22 crossref_primary_10_1099_mgen_0_000754 crossref_primary_10_1183_13993003_02281_2023 crossref_primary_10_1128_msphere_00318_22 crossref_primary_10_1136_thoraxjnl_2021_217782 crossref_primary_10_1128_spectrum_01454_22 crossref_primary_10_1016_j_jcf_2021_02_003 crossref_primary_10_1152_ajplung_00018_2024 crossref_primary_10_1016_j_jcf_2022_10_005 crossref_primary_10_1038_s41579_022_00821_x crossref_primary_10_1093_jpids_piac040 crossref_primary_10_1093_jpids_piac062 crossref_primary_10_1128_mbio_03148_21 crossref_primary_10_7554_eLife_81604 crossref_primary_10_1186_s12866_021_02159_5 crossref_primary_10_1128_Spectrum_00029_21 crossref_primary_10_1183_16000617_0259_2021 crossref_primary_10_1038_s41598_024_77246_4 crossref_primary_10_1128_JB_00311_21 crossref_primary_10_1128_mbio_01424_22 crossref_primary_10_1016_j_tim_2023_04_006 crossref_primary_10_1136_thoraxjnl_2019_214191 crossref_primary_10_1186_s12866_023_03073_8 crossref_primary_10_1002_ppul_71024 crossref_primary_10_1128_mBio_00006_21 crossref_primary_10_1093_jpids_piac036 crossref_primary_10_1136_thoraxjnl_2020_216005 crossref_primary_10_1164_rccm_202112_2704PP crossref_primary_10_1016_j_jcf_2023_11_010 crossref_primary_10_1136_thoraxjnl_2021_218240 crossref_primary_10_3390_life11020094 |
Cites_doi | 10.1513/AnnalsATS.201211-107OC 10.1002/ppul.21356 10.1128/JCM.02204-13 10.2165/00003495-197612030-00002 10.1371/journal.pone.0194060 10.1038/nature18927 10.1073/pnas.1120577109 10.1073/pnas.0804326105 10.1073/pnas.0903619106 10.1128/JCM.02299-15 10.1038/nature07540 10.1016/j.jbiotec.2017.01.001 10.1093/jac/dkt086 10.1186/1756-0500-6-241 10.1002/ppul.21521 10.1016/j.jcf.2011.05.002 10.1016/j.jcf.2010.10.003 10.1128/AAC.04123-14 10.1371/journal.pone.0045001 10.1186/s40168-015-0074-9 10.1016/j.jcf.2020.03.008 10.1038/s41522-016-0002-1 10.1016/j.tim.2014.09.004 10.1016/j.jcf.2012.07.009 10.1007/BF01972512 10.1128/JB.173.9.2800-2808.1991 10.3389/fmicb.2017.02224 10.1111/j.1469-0691.2008.02659.x 10.1186/s40168-017-0265-7 10.1038/srep10241 10.1002/ppul.1950070110 10.1128/mBio.02287-16 10.1023/A:1007529726302 10.1093/gbe/evz049 10.1002/ppul.21374 10.1016/j.jpeds.2007.03.006 10.1016/S0022-3476(84)81094-X 10.1186/2049-2618-1-27 10.1513/AnnalsATS.201501-029OC 10.1111/lam.12134 10.1128/JCM.01189-11 10.1128/microbiolspec.VMBF-0016-2015 10.1371/journal.pone.0011044 10.3389/fmicb.2014.00258 10.1016/j.chom.2015.07.006 10.1113/jphysiol.2009.174136 10.1371/journal.ppat.1006798 10.1164/ajrccm/141.4_Pt_1.914 10.1038/ismej.2012.145 10.1038/nrmicro3380 10.1056/NEJM199901073400104 10.1038/nature11053 10.1099/jmm.0.016683-0 10.1164/rccm.201505-0943OC 10.1371/journal.pone.0149998 10.1016/j.jcf.2014.04.004 10.1016/j.celrep.2019.01.091 10.1136/thx.2010.137281 10.1183/23120541.00096-2015 10.1186/s40168-017-0234-1 10.1128/jb.173.9.2800-2808.1991 |
ContentType | Journal Article |
Copyright | Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ. 2022 Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ. |
Copyright_xml | – notice: Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ. – notice: 2022 Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR BTHHO CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1136/thoraxjnl-2019-214187 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central BMJ Journals ProQuest One Community College Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) BMJ Journals Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Academic Middle East (New) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1468-3296 |
EndPage | 790 |
ExternalDocumentID | PMC7875198 32631930 10_1136_thoraxjnl_2019_214187 thoraxjnl |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Novartis grantid: Unrestricted, Investigator-Initiated Research Awar funderid: http://dx.doi.org/10.13039/100004336 – fundername: Mylan grantid: Assumed the unrestricted grant from Novartis for t – fundername: National Institutes of Health grantid: DK089507; HL141669; T32AI55396 funderid: http://dx.doi.org/10.13039/100000002 – fundername: Cystic Fibrosis Foundation grantid: SINGH15R0 funderid: http://dx.doi.org/10.13039/100000897 – fundername: NIDDK NIH HHS grantid: P30 DK089507 – fundername: NHLBI NIH HHS grantid: K24 HL141669 – fundername: NIAID NIH HHS grantid: T32 AI055396 |
GroupedDBID | --- .55 .GJ .VT 08G 0R~ 123 18M 29Q 2WC 354 39C 3O- 4.4 40O 53G 5RE 5VS 6PF 7X7 7~S 88E 8F7 8FI 8FJ 8R4 8R5 AAHLL AAKAS AAOJX AAWJN AAWTL AAYEP ABAAH ABJNI ABKDF ABMQD ABOCM ABTFR ABUWG ABVAJ ACGFO ACGFS ACGTL ACHTP ACMFJ ACOAB ACOFX ACQSR ACTZY ADBBV ADCEG ADZCM AENEX AFKRA AFWFF AGQPQ AHMBA AHNKE AHQMW AJYBZ ALIPV ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN BAWUL BENPR BLJBA BOMFT BPHCQ BTFSW BTHHO BVXVI C45 CAG CCPQU COF CS3 CXRWF DIK DU5 E3Z EBS EJD F5P FEDTE FYUFA GX1 H13 HAJ HMCUK HVGLF HYE HZ~ IAO IEA IH2 IHR IOF ITC J5H KQ8 L7B M1P N4W N9A NTWIH NXWIF O9- OK1 OVD P2P PHGZT PQQKQ PROAC PSQYO Q2X R53 RHI RMJ RPM RV8 TEORI TR2 UAW UKHRP UYXKK V24 VM9 VVN W8F WH7 X7M YFH YOC YQY ZCG ZGI AAYXX ACQHZ ADGHP AERUA CITATION PHGZM CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-b522t-fb1ebf66e8b4259b8cfee6eb9e5f9f791e34f9f928132f17c8821f62538a6f913 |
IEDL.DBID | 7X7 |
ISSN | 0040-6376 1468-3296 |
IngestDate | Thu Aug 21 14:04:42 EDT 2025 Fri Jul 11 15:17:32 EDT 2025 Fri Jul 25 09:25:37 EDT 2025 Mon Jul 21 05:46:17 EDT 2025 Tue Jul 01 02:00:42 EDT 2025 Thu Apr 24 22:56:39 EDT 2025 Thu Apr 24 22:52:29 EDT 2025 Thu Apr 24 22:49:23 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | bacterial infection cystic fibrosis respiratory infection |
Language | English |
License | Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b522t-fb1ebf66e8b4259b8cfee6eb9e5f9f791e34f9f928132f17c8821f62538a6f913 |
Notes | Original research ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Contributors MTN, JJL, RHS, DJW and LRH performed conceptualisation and design of the study. MTN, DJW, ATV, SR, GB, AR, MB, SN, LN and CM helped in data collection. MTN, AE, EJW, MJB, EB and LRH performed the data analysis and interpretation. Resources were collected by MJB, HSH, SIM, MB, SN, LN and CM. MTN and LRH helped in writing the original draft. All authors helped in writing, review and editing of the article. MTN helped in visualisation, DJW, EB, JJL, RHS and LRH helped in supervision and LRH, JJL and RHS helped in acquisition of funds. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7875198 |
PMID | 32631930 |
PQID | 2434681933 |
PQPubID | 2041050 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7875198 proquest_miscellaneous_2421106915 proquest_journals_2434681933 pubmed_primary_32631930 crossref_primary_10_1136_thoraxjnl_2019_214187 crossref_citationtrail_10_1136_thoraxjnl_2019_214187 bmj_primary_10_1136_thoraxjnl_2019_214187 bmj_journals_10_1136_thoraxjnl_2019_214187 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Thorax |
PublicationTitleAbbrev | Thorax |
PublicationTitleAlternate | Thorax |
PublicationYear | 2020 |
Publisher | BMJ Publishing Group Ltd and British Thoracic Society BMJ Publishing Group LTD |
Publisher_xml | – name: BMJ Publishing Group Ltd and British Thoracic Society – name: BMJ Publishing Group LTD |
References | Brito, Yilmaz, Huang (R35) 2016; 535 Sibley, Parkins, Rabin (R40) 2008; 105 Ramsey, Pepe, Quan (R11) 1999; 340 Nelson, Pope, Marsh (R25) 2019; 26 Li, Mendis, Trigui (R26) 2014; 5 Hogan, Willger, Dolben (R48) 2016; 11 Regelmann, Elliott, Warwick (R8) 1990; 141 Sanders, Bittner, Rosenfeld (R2) 2011; 46 Fraimow, Greenman, Leviton (R43) 1991; 173 Jorth, Staudinger, Wu (R46) 2015; 18 Carmody, Zhao, Schloss (R30) 2013; 10 Quinn, Whiteson, Lim (R55) 2016; 2 Murray, Doherty, Govan (R49) 2010; 59 Aitchison, Barceló-Vidal, Martín-Fernández (R62) 2000; 32 Smith, Nelson, Calaunan (R44) 2013; 6 Gloor, Macklaim, Pawlowsky-Glahn (R61) 2017; 8 Konstan, Flume, Kappler (R13) 2011; 10 Konstan, Geller, Minić (R12) 2011; 46 Rogers, Cuthbertson, Hoffman (R28) 2013; 7 Lim, Schmieder, Haynes (R51) 2013; 12 Carmody, Caverly, Foster (R3) 2018; 13 Coburn, Wang, Diaz Caballero (R24) 2015; 5 Horrevorts, Mouton (R20) 1991; 10 Price, Hampton, Gifford (R6) 2013; 1 Feigelman, Kahlert, Baty (R56) 2017; 5 Mirković, Murray, Lavelle (R38) 2015; 192 Yatsunenko, Rey, Manary (R59) 2012; 486 Tunney, Klem, Fodor (R52) 2011; 66 Carmody, Zhao, Kalikin (R5) 2015; 3 Thomassen, Klinger, Badger (R47) 1984; 104 Dickson, Erb-Downward, Freeman (R10) 2017; 8 Muhlebach, Zorn, Esther (R4) 2018; 14 Turnbaugh, Hamady, Yatsunenko (R36) 2009; 457 Wiehlmann, Pienkowska, Hedtfeld (R57) 2017; 250 Pasquaroli, Zandri, Vignaroli (R34) 2013; 68 Lee, Hinz, Bauerle (R18) 2009; 106 Jakubovics, Shields, Rajarajan (R29) 2013; 57 Velsko, Perez, Richards (R45) 2019; 11 Munita, Arias (R32) 2016; 4 Harrison, McCarthy, Fleming (R14) 2014; 13 Zhao, Schloss, Kalikin (R39) 2012; 109 Mahboubi, Carmody, Foster (R33) 2016; 54 Cox, Allgaier, Taylor (R23) 2010; 5 Moran Losada, Chouvarine, Dorda (R54) 2016; 2 Worlitzsch, Rintelen, Böhm (R37) 2009; 15 Stressmann, Rogers, Marsh (R60) 2011; 10 Lim, Evangelista, Schmieder (R22) 2014; 52 Heirali, Workentine, Acosta (R21) 2017; 5 Ratjen, Yau, Wettlaufer (R19) 2015; 59 Taylor, Leong, Ivey (R41) 2020 Konstan, Morgan, Butler (R1) 2007; 151 O’Toole (R7) 2017; 200 Zhao, Li, Schloss (R50) 2011; 49 Turnbaugh, Gordon (R58) 2009; 587 Dickson, Erb-Downward, Freeman (R9) 2015; 12 MacLusky, Gold, Corey (R16) 1989; 7 Blair, Webber, Baylay (R31) 2015; 13 Sawicki, Signorovitch, Zhang (R17) 2012; 47 Brogden, Pinder, Sawyer (R42) 1976; 12 Ayrapetyan, Williams, Oliver (R27) 2015; 23 Fodor, Klem, Gilpin (R53) 2012; 7 Thomassen, Klinger, Badger 1984; 104 Mahboubi, Carmody, Foster 2016; 54 Worlitzsch, Rintelen, Böhm 2009; 15 Turnbaugh, Hamady, Yatsunenko 2009; 457 Sawicki, Signorovitch, Zhang 2012; 47 Zhao, Schloss, Kalikin 2012; 109 Lim, Evangelista, Schmieder 2014; 52 Fodor, Klem, Gilpin 2012; 7 Jakubovics, Shields, Rajarajan 2013; 57 Mirković, Murray, Lavelle 2015; 192 Konstan, Morgan, Butler 2007; 151 Moran Losada, Chouvarine, Dorda 2016; 2 Lee, Hinz, Bauerle 2009; 106 Hogan, Willger, Dolben 2016; 11 Dickson, Erb-Downward, Freeman 2017; 8 Tunney, Klem, Fodor 2011; 66 Nelson, Pope, Marsh 2019; 26 Ratjen, Yau, Wettlaufer 2015; 59 Aitchison, Barceló-Vidal, Martín-Fernández 2000; 32 Blair, Webber, Baylay 2015; 13 Gloor, Macklaim, Pawlowsky-Glahn 2017; 8 Horrevorts, Mouton 1991; 10 Dickson, Erb-Downward, Freeman 2015; 12 Munita, Arias 2016; 4 Fraimow, Greenman, Leviton 1991; 173 Pasquaroli, Zandri, Vignaroli 2013; 68 Lim, Schmieder, Haynes 2013; 12 Brito, Yilmaz, Huang 2016; 535 Brogden, Pinder, Sawyer 1976; 12 Muhlebach, Zorn, Esther 2018; 14 Feigelman, Kahlert, Baty 2017; 5 Sibley, Parkins, Rabin 2008; 105 Harrison, McCarthy, Fleming 2014; 13 Yatsunenko, Rey, Manary 2012; 486 O’Toole 2017; 200 Taylor, Leong, Ivey 2020 Quinn, Whiteson, Lim 2016; 2 Konstan, Flume, Kappler 2011; 10 Carmody, Zhao, Kalikin 2015; 3 Li, Mendis, Trigui 2014; 5 Murray, Doherty, Govan 2010; 59 Zhao, Li, Schloss 2011; 49 Carmody, Zhao, Schloss 2013; 10 Heirali, Workentine, Acosta 2017; 5 Coburn, Wang, Diaz Caballero 2015; 5 Wiehlmann, Pienkowska, Hedtfeld 2017; 250 Price, Hampton, Gifford 2013; 1 MacLusky, Gold, Corey 1989; 7 Smith, Nelson, Calaunan 2013; 6 Jorth, Staudinger, Wu 2015; 18 Carmody, Caverly, Foster 2018; 13 Ayrapetyan, Williams, Oliver 2015; 23 Velsko, Perez, Richards 2019; 11 Rogers, Cuthbertson, Hoffman 2013; 7 Turnbaugh, Gordon 2009; 587 Stressmann, Rogers, Marsh 2011; 10 Konstan, Geller, Minić 2011; 46 Regelmann, Elliott, Warwick 1990; 141 Sanders, Bittner, Rosenfeld 2011; 46 Ramsey, Pepe, Quan 1999; 340 Cox, Allgaier, Taylor 2010; 5 2024092103450758000_75.9.780.20 2024092103450758000_75.9.780.21 2024092103450758000_75.9.780.22 2024092103450758000_75.9.780.60 Hogan (2024092103450758000_75.9.780.48) 2016; 11 2024092103450758000_75.9.780.61 2024092103450758000_75.9.780.17 2024092103450758000_75.9.780.18 2024092103450758000_75.9.780.19 2024092103450758000_75.9.780.12 Quinn (2024092103450758000_75.9.780.55) 2016; 2 2024092103450758000_75.9.780.56 2024092103450758000_75.9.780.13 2024092103450758000_75.9.780.14 2024092103450758000_75.9.780.58 2024092103450758000_75.9.780.15 2024092103450758000_75.9.780.59 2024092103450758000_75.9.780.52 2024092103450758000_75.9.780.53 2024092103450758000_75.9.780.10 2024092103450758000_75.9.780.11 Brogden (2024092103450758000_75.9.780.42) 1976; 12 2024092103450758000_75.9.780.50 2024092103450758000_75.9.780.51 2024092103450758000_75.9.780.8 2024092103450758000_75.9.780.9 2024092103450758000_75.9.780.49 Aitchison (2024092103450758000_75.9.780.62) 2000; 32 2024092103450758000_75.9.780.2 2024092103450758000_75.9.780.1 2024092103450758000_75.9.780.4 2024092103450758000_75.9.780.45 2024092103450758000_75.9.780.3 2024092103450758000_75.9.780.46 2024092103450758000_75.9.780.6 2024092103450758000_75.9.780.47 2024092103450758000_75.9.780.5 2024092103450758000_75.9.780.43 2024092103450758000_75.9.780.40 Li (2024092103450758000_75.9.780.26) 2014; 5 Moran Losada (2024092103450758000_75.9.780.54) 2016; 2 Taylor (2024092103450758000_75.9.780.41) 2020 2024092103450758000_75.9.780.38 2024092103450758000_75.9.780.39 MacLusky (2024092103450758000_75.9.780.16) 1989; 7 2024092103450758000_75.9.780.34 2024092103450758000_75.9.780.35 2024092103450758000_75.9.780.36 2024092103450758000_75.9.780.37 O’Toole (2024092103450758000_75.9.780.7) 2017; 200 2024092103450758000_75.9.780.30 2024092103450758000_75.9.780.31 Smith (2024092103450758000_75.9.780.44) 2013; 6 2024092103450758000_75.9.780.33 Munita (2024092103450758000_75.9.780.32) 2016; 4 2024092103450758000_75.9.780.27 2024092103450758000_75.9.780.28 2024092103450758000_75.9.780.29 2024092103450758000_75.9.780.23 2024092103450758000_75.9.780.24 2024092103450758000_75.9.780.25 Wiehlmann (2024092103450758000_75.9.780.57) 2017; 250 35177541 - Thorax. 2022 Mar;77(3):e1 33139450 - Thorax. 2020 Dec;75(12):1031-1032 |
References_xml | – volume: 10 start-page: 179 year: 2013 ident: R30 article-title: Changes in cystic fibrosis airway microbiota at pulmonary exacerbation publication-title: Ann Am Thorac Soc doi: 10.1513/AnnalsATS.201211-107OC – volume: 46 start-page: 230 year: 2011 ident: R12 article-title: Tobramycin inhalation powder for P. aeruginosa infection in cystic fibrosis: the evolve trial publication-title: Pediatr Pulmonol doi: 10.1002/ppul.21356 – volume: 52 start-page: 425 year: 2014 ident: R22 article-title: Clinical insights from metagenomic analysis of sputum samples from patients with cystic fibrosis publication-title: J Clin Microbiol doi: 10.1128/JCM.02204-13 – volume: 12 start-page: 166 year: 1976 ident: R42 article-title: Tobramycin: a review of its antibacterial and pharmacokinetic properties and therapeutic use publication-title: Drugs doi: 10.2165/00003495-197612030-00002 – volume: 13 year: 2018 ident: R3 article-title: Fluctuations in airway bacterial communities associated with clinical states and disease stages in cystic fibrosis publication-title: PLoS One doi: 10.1371/journal.pone.0194060 – volume: 535 start-page: 435 year: 2016 ident: R35 article-title: Mobile genes in the human microbiome are structured from global to individual scales publication-title: Nature doi: 10.1038/nature18927 – volume: 109 start-page: 5809 year: 2012 ident: R39 article-title: Decade-long bacterial community dynamics in cystic fibrosis airways publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1120577109 – volume: 105 start-page: 15070 year: 2008 ident: R40 article-title: A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0804326105 – volume: 106 start-page: 14570 year: 2009 ident: R18 article-title: Targeting a bacterial stress response to enhance antibiotic action publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0903619106 – volume: 54 start-page: 613 year: 2016 ident: R33 article-title: Culture-Based and culture-independent bacteriologic analysis of cystic fibrosis respiratory specimens publication-title: J Clin Microbiol doi: 10.1128/JCM.02299-15 – volume: 457 start-page: 480 year: 2009 ident: R36 article-title: A core gut microbiome in obese and lean twins publication-title: Nature doi: 10.1038/nature07540 – volume: 250 start-page: 51 year: 2017 ident: R57 article-title: Impact of sample processing on human airways microbial metagenomes publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2017.01.001 – volume: 68 start-page: 1812 year: 2013 ident: R34 article-title: Antibiotic pressure can induce the viable but non-culturable state in Staphylococcus aureus growing in biofilms publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkt086 – volume: 6 year: 2013 ident: R44 article-title: "Affect of anaerobiosis on the antibiotic susceptibility of H. influenzae" publication-title: BMC Res Notes doi: 10.1186/1756-0500-6-241 – volume: 47 start-page: 44 year: 2012 ident: R17 article-title: Reduced mortality in cystic fibrosis patients treated with tobramycin inhalation solution publication-title: Pediatr Pulmonol doi: 10.1002/ppul.21521 – volume: 10 start-page: 357 year: 2011 ident: R60 article-title: Does bacterial density in cystic fibrosis sputum increase prior to pulmonary exacerbation? publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2011.05.002 – volume: 10 start-page: 54 year: 2011 ident: R13 article-title: Safety, efficacy and convenience of tobramycin inhalation powder in cystic fibrosis patients: the EAGER trial publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2010.10.003 – volume: 59 start-page: 711 year: 2015 ident: R19 article-title: In vitro efficacy of high-dose tobramycin against Burkholderia cepacia complex and Stenotrophomonas maltophilia isolates from cystic fibrosis patients publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.04123-14 – volume: 7 year: 2012 ident: R53 article-title: The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations publication-title: PLoS One doi: 10.1371/journal.pone.0045001 – volume: 3 start-page: 12 year: 2015 ident: R5 article-title: The daily dynamics of cystic fibrosis airway microbiota during clinical stability and at exacerbation publication-title: Microbiome doi: 10.1186/s40168-015-0074-9 – year: 2020 ident: R41 article-title: Total bacterial load, inflammation, and structural lung disease in paediatric cystic fibrosis publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2020.03.008 – volume: 2 start-page: 1 year: 2016 ident: R55 article-title: Ecological networking of cystic fibrosis lung infections publication-title: NPJ Biofilms Microbiomes doi: 10.1038/s41522-016-0002-1 – volume: 23 start-page: 7 year: 2015 ident: R27 article-title: Bridging the gap between viable but non-culturable and antibiotic persistent bacteria publication-title: Trends Microbiol doi: 10.1016/j.tim.2014.09.004 – volume: 12 start-page: 154 year: 2013 ident: R51 article-title: Metagenomics and metatranscriptomics: windows on CF-associated viral and microbial communities publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2012.07.009 – volume: 10 start-page: 785 year: 1991 ident: R20 article-title: Susceptibility to various antimicrobial agents and tolerance to methicillin of Staphylococcus aureus isolates from cystic fibrosis patients publication-title: Eur J Clin Microbiol Infect Dis doi: 10.1007/BF01972512 – volume: 173 start-page: 2800 year: 1991 ident: R43 article-title: Tobramycin uptake in Escherichia coli is driven by either electrical potential or ATP publication-title: J Bacteriol doi: 10.1128/JB.173.9.2800-2808.1991 – volume: 8 year: 2017 ident: R61 article-title: Microbiome datasets are compositional: and this is not optional publication-title: Front Microbiol doi: 10.3389/fmicb.2017.02224 – volume: 15 start-page: 454 year: 2009 ident: R37 article-title: Antibiotic-resistant obligate anaerobes during exacerbations of cystic fibrosis patients publication-title: Clin Microbiol Infect doi: 10.1111/j.1469-0691.2008.02659.x – volume: 5 start-page: 51 year: 2017 ident: R21 article-title: The effects of inhaled aztreonam on the cystic fibrosis lung microbiome publication-title: Microbiome doi: 10.1186/s40168-017-0265-7 – volume: 5 year: 2015 ident: R24 article-title: Lung microbiota across age and disease stage in cystic fibrosis publication-title: Sci Rep doi: 10.1038/srep10241 – volume: 7 start-page: 42 year: 1989 ident: R16 article-title: Long-term effects of inhaled tobramycin in patients with cystic fibrosis colonized with Pseudomonas aeruginosa publication-title: Pediatr Pulmonol doi: 10.1002/ppul.1950070110 – volume: 8 start-page: e02287 year: 2017 ident: R10 article-title: Bacterial topography of the healthy human lower respiratory tract publication-title: mBio doi: 10.1128/mBio.02287-16 – volume: 32 start-page: 271 year: 2000 ident: R62 article-title: Logratio analysis and compositional distance publication-title: Math Geol doi: 10.1023/A:1007529726302 – volume: 11 start-page: 1077 year: 2019 ident: R45 article-title: Resolving phylogenetic relationships for Streptococcus mitis and Streptococcus oralis through Core- and pan-genome analyses publication-title: Genome Biol Evol doi: 10.1093/gbe/evz049 – volume: 46 start-page: 393 year: 2011 ident: R2 article-title: Pulmonary exacerbations are associated with subsequent FEV1 decline in both adults and children with cystic fibrosis publication-title: Pediatr Pulmonol doi: 10.1002/ppul.21374 – volume: 151 start-page: 134 year: 2007 ident: R1 article-title: Risk factors for rate of decline in forced expiratory volume in one second in children and adolescents with cystic fibrosis publication-title: J Pediatr doi: 10.1016/j.jpeds.2007.03.006 – volume: 104 start-page: 352 year: 1984 ident: R47 article-title: Cultures of thoracotomy specimens confirm usefulness of sputum cultures in cystic fibrosis publication-title: J Pediatr doi: 10.1016/S0022-3476(84)81094-X – volume: 1 start-page: 27 year: 2013 ident: R6 article-title: Unique microbial communities persist in individual cystic fibrosis patients throughout a clinical exacerbation publication-title: Microbiome doi: 10.1186/2049-2618-1-27 – volume: 12 start-page: 821 year: 2015 ident: R9 article-title: Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography publication-title: Ann Am Thorac Soc doi: 10.1513/AnnalsATS.201501-029OC – volume: 57 start-page: 467 year: 2013 ident: R29 article-title: Life after death: the critical role of extracellular DNA in microbial biofilms publication-title: Lett Appl Microbiol doi: 10.1111/lam.12134 – volume: 49 start-page: 3717 year: 2011 ident: R50 article-title: Effect of sample storage conditions on culture-independent bacterial community measures in cystic fibrosis sputum specimens publication-title: J Clin Microbiol doi: 10.1128/JCM.01189-11 – volume: 4 year: 2016 ident: R32 article-title: Mechanisms of antibiotic resistance publication-title: Microbiol Spectr doi: 10.1128/microbiolspec.VMBF-0016-2015 – volume: 5 year: 2010 ident: R23 article-title: Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients publication-title: PLoS One doi: 10.1371/journal.pone.0011044 – volume: 5 year: 2014 ident: R26 article-title: The importance of the viable but non-culturable state in human bacterial pathogens publication-title: Front Microbiol doi: 10.3389/fmicb.2014.00258 – volume: 18 start-page: 307 year: 2015 ident: R46 article-title: Regional isolation drives bacterial diversification within cystic fibrosis lungs publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.07.006 – volume: 587 start-page: 4153 year: 2009 ident: R58 article-title: The core gut microbiome, energy balance and obesity publication-title: J Physiol doi: 10.1113/jphysiol.2009.174136 – volume: 200 start-page: e00561 year: 2017 ident: R7 article-title: Cystic fibrosis airway microbiome: overturning the old, opening the way for the new publication-title: J Bacteriol – volume: 14 year: 2018 ident: R4 article-title: Initial acquisition and succession of the cystic fibrosis lung microbiome is associated with disease progression in infants and preschool children publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1006798 – volume: 141 start-page: 914 year: 1990 ident: R8 article-title: Reduction of sputum Pseudomonas aeruginosa density by antibiotics improves lung function in cystic fibrosis more than do bronchodilators and chest physiotherapy alone publication-title: Am Rev Respir Dis doi: 10.1164/ajrccm/141.4_Pt_1.914 – volume: 7 start-page: 697 year: 2013 ident: R28 article-title: Reducing bias in bacterial community analysis of lower respiratory infections publication-title: ISME J doi: 10.1038/ismej.2012.145 – volume: 13 start-page: 42 year: 2015 ident: R31 article-title: Molecular mechanisms of antibiotic resistance publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3380 – volume: 340 start-page: 23 year: 1999 ident: R11 article-title: Intermittent administration of inhaled tobramycin in patients with cystic fibrosis publication-title: N Engl J Med doi: 10.1056/NEJM199901073400104 – volume: 486 start-page: 222 year: 2012 ident: R59 article-title: Human gut microbiome viewed across age and geography publication-title: Nature doi: 10.1038/nature11053 – volume: 59 start-page: 829 year: 2010 ident: R49 article-title: Do processing time and storage of sputum influence quantitative bacteriology in bronchiectasis? publication-title: J Med Microbiol doi: 10.1099/jmm.0.016683-0 – volume: 192 start-page: 1314 year: 2015 ident: R38 article-title: The role of short-chain fatty acids, produced by anaerobic bacteria, in the cystic fibrosis airway publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201505-0943OC – volume: 11 year: 2016 ident: R48 article-title: Analysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with mild-to-moderate cystic fibrosis lung disease publication-title: PLoS One doi: 10.1371/journal.pone.0149998 – volume: 13 start-page: 692 year: 2014 ident: R14 article-title: Inhaled versus nebulised tobramycin: a real world comparison in adult cystic fibrosis (CF) publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2014.04.004 – volume: 26 start-page: 2227 year: 2019 ident: R25 article-title: Human and extracellular DNA depletion for metagenomic analysis of complex clinical infection samples yields optimized viable microbiome profiles publication-title: Cell Rep doi: 10.1016/j.celrep.2019.01.091 – volume: 66 start-page: 579 year: 2011 ident: R52 article-title: Use of culture and molecular analysis to determine the effect of antibiotic treatment on microbial community diversity and abundance during exacerbation in patients with cystic fibrosis publication-title: Thorax doi: 10.1136/thx.2010.137281 – volume: 2 year: 2016 ident: R54 article-title: The cystic fibrosis lower airways microbial metagenome publication-title: ERJ Open Res doi: 10.1183/23120541.00096-2015 – volume: 5 start-page: 20 year: 2017 ident: R56 article-title: Sputum DNA sequencing in cystic fibrosis: non-invasive access to the lung microbiome and to pathogen details publication-title: Microbiome doi: 10.1186/s40168-017-0234-1 – volume: 4 year: 2016 article-title: Mechanisms of antibiotic resistance publication-title: Microbiol Spectr doi: 10.1128/microbiolspec.VMBF-0016-2015 – volume: 59 start-page: 711 year: 2015 article-title: In vitro efficacy of high-dose tobramycin against Burkholderia cepacia complex and Stenotrophomonas maltophilia isolates from cystic fibrosis patients publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.04123-14 – volume: 8 year: 2017 article-title: Microbiome datasets are compositional: and this is not optional publication-title: Front Microbiol doi: 10.3389/fmicb.2017.02224 – volume: 340 start-page: 23 year: 1999 article-title: Intermittent administration of inhaled tobramycin in patients with cystic fibrosis publication-title: N Engl J Med doi: 10.1056/NEJM199901073400104 – volume: 68 start-page: 1812 year: 2013 article-title: Antibiotic pressure can induce the viable but non-culturable state in Staphylococcus aureus growing in biofilms publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkt086 – volume: 151 start-page: 134 year: 2007 article-title: Risk factors for rate of decline in forced expiratory volume in one second in children and adolescents with cystic fibrosis publication-title: J Pediatr doi: 10.1016/j.jpeds.2007.03.006 – volume: 49 start-page: 3717 year: 2011 article-title: Effect of sample storage conditions on culture-independent bacterial community measures in cystic fibrosis sputum specimens publication-title: J Clin Microbiol doi: 10.1128/JCM.01189-11 – volume: 457 start-page: 480 year: 2009 article-title: A core gut microbiome in obese and lean twins publication-title: Nature doi: 10.1038/nature07540 – volume: 2 start-page: 1 year: 2016 article-title: Ecological networking of cystic fibrosis lung infections publication-title: NPJ Biofilms Microbiomes doi: 10.1038/s41522-016-0002-1 – volume: 5 year: 2014 article-title: The importance of the viable but non-culturable state in human bacterial pathogens publication-title: Front Microbiol doi: 10.3389/fmicb.2014.00258 – volume: 26 start-page: 2227 year: 2019 article-title: Human and extracellular DNA depletion for metagenomic analysis of complex clinical infection samples yields optimized viable microbiome profiles publication-title: Cell Rep doi: 10.1016/j.celrep.2019.01.091 – volume: 46 start-page: 230 year: 2011 article-title: Tobramycin inhalation powder for P. aeruginosa infection in cystic fibrosis: the evolve trial publication-title: Pediatr Pulmonol doi: 10.1002/ppul.21356 – volume: 3 start-page: 12 year: 2015 article-title: The daily dynamics of cystic fibrosis airway microbiota during clinical stability and at exacerbation publication-title: Microbiome doi: 10.1186/s40168-015-0074-9 – volume: 5 year: 2015 article-title: Lung microbiota across age and disease stage in cystic fibrosis publication-title: Sci Rep doi: 10.1038/srep10241 – volume: 52 start-page: 425 year: 2014 article-title: Clinical insights from metagenomic analysis of sputum samples from patients with cystic fibrosis publication-title: J Clin Microbiol doi: 10.1128/JCM.02204-13 – volume: 13 start-page: 42 year: 2015 article-title: Molecular mechanisms of antibiotic resistance publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3380 – volume: 173 start-page: 2800 year: 1991 article-title: Tobramycin uptake in Escherichia coli is driven by either electrical potential or ATP publication-title: J Bacteriol doi: 10.1128/JB.173.9.2800-2808.1991 – volume: 18 start-page: 307 year: 2015 article-title: Regional isolation drives bacterial diversification within cystic fibrosis lungs publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.07.006 – volume: 486 start-page: 222 year: 2012 article-title: Human gut microbiome viewed across age and geography publication-title: Nature doi: 10.1038/nature11053 – volume: 10 start-page: 54 year: 2011 article-title: Safety, efficacy and convenience of tobramycin inhalation powder in cystic fibrosis patients: the EAGER trial publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2010.10.003 – volume: 11 start-page: 1077 year: 2019 article-title: Resolving phylogenetic relationships for Streptococcus mitis and Streptococcus oralis through Core- and pan-genome analyses publication-title: Genome Biol Evol doi: 10.1093/gbe/evz049 – volume: 12 start-page: 821 year: 2015 article-title: Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography publication-title: Ann Am Thorac Soc doi: 10.1513/AnnalsATS.201501-029OC – volume: 46 start-page: 393 year: 2011 article-title: Pulmonary exacerbations are associated with subsequent FEV1 decline in both adults and children with cystic fibrosis publication-title: Pediatr Pulmonol doi: 10.1002/ppul.21374 – volume: 32 start-page: 271 year: 2000 article-title: Logratio analysis and compositional distance publication-title: Math Geol doi: 10.1023/A:1007529726302 – volume: 105 start-page: 15070 year: 2008 article-title: A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0804326105 – volume: 7 start-page: 697 year: 2013 article-title: Reducing bias in bacterial community analysis of lower respiratory infections publication-title: ISME J doi: 10.1038/ismej.2012.145 – volume: 106 start-page: 14570 year: 2009 article-title: Targeting a bacterial stress response to enhance antibiotic action publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0903619106 – volume: 13 year: 2018 article-title: Fluctuations in airway bacterial communities associated with clinical states and disease stages in cystic fibrosis publication-title: PLoS One doi: 10.1371/journal.pone.0194060 – volume: 7 start-page: 42 year: 1989 article-title: Long-term effects of inhaled tobramycin in patients with cystic fibrosis colonized with Pseudomonas aeruginosa publication-title: Pediatr Pulmonol doi: 10.1002/ppul.1950070110 – volume: 5 start-page: 51 year: 2017 article-title: The effects of inhaled aztreonam on the cystic fibrosis lung microbiome publication-title: Microbiome doi: 10.1186/s40168-017-0265-7 – volume: 12 start-page: 154 year: 2013 article-title: Metagenomics and metatranscriptomics: windows on CF-associated viral and microbial communities publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2012.07.009 – volume: 10 start-page: 179 year: 2013 article-title: Changes in cystic fibrosis airway microbiota at pulmonary exacerbation publication-title: Ann Am Thorac Soc doi: 10.1513/AnnalsATS.201211-107OC – volume: 250 start-page: 51 year: 2017 article-title: Impact of sample processing on human airways microbial metagenomes publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2017.01.001 – volume: 13 start-page: 692 year: 2014 article-title: Inhaled versus nebulised tobramycin: a real world comparison in adult cystic fibrosis (CF) publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2014.04.004 – volume: 2 year: 2016 article-title: The cystic fibrosis lower airways microbial metagenome publication-title: ERJ Open Res doi: 10.1183/23120541.00096-2015 – volume: 14 year: 2018 article-title: Initial acquisition and succession of the cystic fibrosis lung microbiome is associated with disease progression in infants and preschool children publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1006798 – volume: 109 start-page: 5809 year: 2012 article-title: Decade-long bacterial community dynamics in cystic fibrosis airways publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1120577109 – volume: 10 start-page: 785 year: 1991 article-title: Susceptibility to various antimicrobial agents and tolerance to methicillin of Staphylococcus aureus isolates from cystic fibrosis patients publication-title: Eur J Clin Microbiol Infect Dis doi: 10.1007/BF01972512 – volume: 1 start-page: 27 year: 2013 article-title: Unique microbial communities persist in individual cystic fibrosis patients throughout a clinical exacerbation publication-title: Microbiome doi: 10.1186/2049-2618-1-27 – volume: 12 start-page: 166 year: 1976 article-title: Tobramycin: a review of its antibacterial and pharmacokinetic properties and therapeutic use publication-title: Drugs doi: 10.2165/00003495-197612030-00002 – volume: 8 start-page: e02287 year: 2017 article-title: Bacterial topography of the healthy human lower respiratory tract publication-title: mBio doi: 10.1128/mBio.02287-16 – volume: 11 year: 2016 article-title: Analysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with mild-to-moderate cystic fibrosis lung disease publication-title: PLoS One doi: 10.1371/journal.pone.0149998 – volume: 7 year: 2012 article-title: The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations publication-title: PLoS One doi: 10.1371/journal.pone.0045001 – volume: 200 start-page: e00561 year: 2017 article-title: Cystic fibrosis airway microbiome: overturning the old, opening the way for the new publication-title: J Bacteriol – volume: 141 start-page: 914 year: 1990 article-title: Reduction of sputum Pseudomonas aeruginosa density by antibiotics improves lung function in cystic fibrosis more than do bronchodilators and chest physiotherapy alone publication-title: Am Rev Respir Dis doi: 10.1164/ajrccm/141.4_Pt_1.914 – volume: 104 start-page: 352 year: 1984 article-title: Cultures of thoracotomy specimens confirm usefulness of sputum cultures in cystic fibrosis publication-title: J Pediatr doi: 10.1016/S0022-3476(84)81094-X – volume: 66 start-page: 579 year: 2011 article-title: Use of culture and molecular analysis to determine the effect of antibiotic treatment on microbial community diversity and abundance during exacerbation in patients with cystic fibrosis publication-title: Thorax doi: 10.1136/thx.2010.137281 – volume: 54 start-page: 613 year: 2016 article-title: Culture-Based and culture-independent bacteriologic analysis of cystic fibrosis respiratory specimens publication-title: J Clin Microbiol doi: 10.1128/JCM.02299-15 – year: 2020 article-title: Total bacterial load, inflammation, and structural lung disease in paediatric cystic fibrosis publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2020.03.008 – volume: 587 start-page: 4153 year: 2009 article-title: The core gut microbiome, energy balance and obesity publication-title: J Physiol doi: 10.1113/jphysiol.2009.174136 – volume: 535 start-page: 435 year: 2016 article-title: Mobile genes in the human microbiome are structured from global to individual scales publication-title: Nature doi: 10.1038/nature18927 – volume: 6 year: 2013 article-title: "Affect of anaerobiosis on the antibiotic susceptibility of H. influenzae" publication-title: BMC Res Notes doi: 10.1186/1756-0500-6-241 – volume: 47 start-page: 44 year: 2012 article-title: Reduced mortality in cystic fibrosis patients treated with tobramycin inhalation solution publication-title: Pediatr Pulmonol doi: 10.1002/ppul.21521 – volume: 23 start-page: 7 year: 2015 article-title: Bridging the gap between viable but non-culturable and antibiotic persistent bacteria publication-title: Trends Microbiol doi: 10.1016/j.tim.2014.09.004 – volume: 57 start-page: 467 year: 2013 article-title: Life after death: the critical role of extracellular DNA in microbial biofilms publication-title: Lett Appl Microbiol doi: 10.1111/lam.12134 – volume: 5 year: 2010 article-title: Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients publication-title: PLoS One doi: 10.1371/journal.pone.0011044 – volume: 192 start-page: 1314 year: 2015 article-title: The role of short-chain fatty acids, produced by anaerobic bacteria, in the cystic fibrosis airway publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201505-0943OC – volume: 59 start-page: 829 year: 2010 article-title: Do processing time and storage of sputum influence quantitative bacteriology in bronchiectasis? publication-title: J Med Microbiol doi: 10.1099/jmm.0.016683-0 – volume: 10 start-page: 357 year: 2011 article-title: Does bacterial density in cystic fibrosis sputum increase prior to pulmonary exacerbation? publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2011.05.002 – volume: 15 start-page: 454 year: 2009 article-title: Antibiotic-resistant obligate anaerobes during exacerbations of cystic fibrosis patients publication-title: Clin Microbiol Infect doi: 10.1111/j.1469-0691.2008.02659.x – volume: 5 start-page: 20 year: 2017 article-title: Sputum DNA sequencing in cystic fibrosis: non-invasive access to the lung microbiome and to pathogen details publication-title: Microbiome doi: 10.1186/s40168-017-0234-1 – ident: 2024092103450758000_75.9.780.1 doi: 10.1016/j.jpeds.2007.03.006 – ident: 2024092103450758000_75.9.780.47 doi: 10.1016/S0022-3476(84)81094-X – ident: 2024092103450758000_75.9.780.14 doi: 10.1016/j.jcf.2014.04.004 – ident: 2024092103450758000_75.9.780.25 doi: 10.1016/j.celrep.2019.01.091 – ident: 2024092103450758000_75.9.780.33 doi: 10.1128/JCM.02299-15 – volume: 12 start-page: 166 year: 1976 ident: 2024092103450758000_75.9.780.42 article-title: Tobramycin: a review of its antibacterial and pharmacokinetic properties and therapeutic use publication-title: Drugs doi: 10.2165/00003495-197612030-00002 – ident: 2024092103450758000_75.9.780.10 doi: 10.1128/mBio.02287-16 – ident: 2024092103450758000_75.9.780.22 doi: 10.1128/JCM.02204-13 – ident: 2024092103450758000_75.9.780.24 doi: 10.1038/srep10241 – ident: 2024092103450758000_75.9.780.4 doi: 10.1371/journal.ppat.1006798 – ident: 2024092103450758000_75.9.780.59 doi: 10.1038/nature11053 – ident: 2024092103450758000_75.9.780.18 doi: 10.1073/pnas.0903619106 – ident: 2024092103450758000_75.9.780.2 doi: 10.1002/ppul.21374 – ident: 2024092103450758000_75.9.780.23 doi: 10.1371/journal.pone.0011044 – ident: 2024092103450758000_75.9.780.56 doi: 10.1186/s40168-017-0234-1 – ident: 2024092103450758000_75.9.780.35 doi: 10.1038/nature18927 – ident: 2024092103450758000_75.9.780.51 doi: 10.1016/j.jcf.2012.07.009 – ident: 2024092103450758000_75.9.780.45 doi: 10.1093/gbe/evz049 – ident: 2024092103450758000_75.9.780.3 doi: 10.1371/journal.pone.0194060 – ident: 2024092103450758000_75.9.780.58 doi: 10.1113/jphysiol.2009.174136 – volume: 6 year: 2013 ident: 2024092103450758000_75.9.780.44 article-title: "Affect of anaerobiosis on the antibiotic susceptibility of H. influenzae" publication-title: BMC Res Notes doi: 10.1186/1756-0500-6-241 – ident: 2024092103450758000_75.9.780.60 doi: 10.1016/j.jcf.2011.05.002 – volume: 4 year: 2016 ident: 2024092103450758000_75.9.780.32 article-title: Mechanisms of antibiotic resistance publication-title: Microbiol Spectr doi: 10.1128/microbiolspec.VMBF-0016-2015 – ident: 2024092103450758000_75.9.780.8 doi: 10.1164/ajrccm/141.4_Pt_1.914 – ident: 2024092103450758000_75.9.780.29 doi: 10.1111/lam.12134 – ident: 2024092103450758000_75.9.780.46 doi: 10.1016/j.chom.2015.07.006 – volume: 11 year: 2016 ident: 2024092103450758000_75.9.780.48 article-title: Analysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with mild-to-moderate cystic fibrosis lung disease publication-title: PLoS One doi: 10.1371/journal.pone.0149998 – ident: 2024092103450758000_75.9.780.31 doi: 10.1038/nrmicro3380 – ident: 2024092103450758000_75.9.780.38 doi: 10.1164/rccm.201505-0943OC – ident: 2024092103450758000_75.9.780.6 doi: 10.1186/2049-2618-1-27 – ident: 2024092103450758000_75.9.780.28 doi: 10.1038/ismej.2012.145 – ident: 2024092103450758000_75.9.780.52 doi: 10.1136/thx.2010.137281 – volume: 200 start-page: e00561 year: 2017 ident: 2024092103450758000_75.9.780.7 article-title: Cystic fibrosis airway microbiome: overturning the old, opening the way for the new publication-title: J Bacteriol – ident: 2024092103450758000_75.9.780.11 doi: 10.1056/NEJM199901073400104 – ident: 2024092103450758000_75.9.780.20 doi: 10.1007/BF01972512 – ident: 2024092103450758000_75.9.780.49 doi: 10.1099/jmm.0.016683-0 – volume: 2 year: 2016 ident: 2024092103450758000_75.9.780.54 article-title: The cystic fibrosis lower airways microbial metagenome publication-title: ERJ Open Res doi: 10.1183/23120541.00096-2015 – volume: 2 start-page: 1 year: 2016 ident: 2024092103450758000_75.9.780.55 article-title: Ecological networking of cystic fibrosis lung infections publication-title: NPJ Biofilms Microbiomes doi: 10.1038/s41522-016-0002-1 – volume: 5 year: 2014 ident: 2024092103450758000_75.9.780.26 article-title: The importance of the viable but non-culturable state in human bacterial pathogens publication-title: Front Microbiol doi: 10.3389/fmicb.2014.00258 – ident: 2024092103450758000_75.9.780.39 doi: 10.1073/pnas.1120577109 – ident: 2024092103450758000_75.9.780.40 doi: 10.1073/pnas.0804326105 – ident: 2024092103450758000_75.9.780.5 doi: 10.1186/s40168-015-0074-9 – ident: 2024092103450758000_75.9.780.19 doi: 10.1128/AAC.04123-14 – ident: 2024092103450758000_75.9.780.9 doi: 10.1513/AnnalsATS.201501-029OC – ident: 2024092103450758000_75.9.780.43 doi: 10.1128/jb.173.9.2800-2808.1991 – ident: 2024092103450758000_75.9.780.12 doi: 10.1002/ppul.21356 – ident: 2024092103450758000_75.9.780.17 doi: 10.1002/ppul.21521 – ident: 2024092103450758000_75.9.780.50 doi: 10.1128/JCM.01189-11 – ident: 2024092103450758000_75.9.780.37 doi: 10.1111/j.1469-0691.2008.02659.x – volume: 7 start-page: 42 year: 1989 ident: 2024092103450758000_75.9.780.16 article-title: Long-term effects of inhaled tobramycin in patients with cystic fibrosis colonized with Pseudomonas aeruginosa publication-title: Pediatr Pulmonol doi: 10.1002/ppul.1950070110 – ident: 2024092103450758000_75.9.780.61 doi: 10.3389/fmicb.2017.02224 – volume: 250 start-page: 51 year: 2017 ident: 2024092103450758000_75.9.780.57 article-title: Impact of sample processing on human airways microbial metagenomes publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2017.01.001 – ident: 2024092103450758000_75.9.780.21 doi: 10.1186/s40168-017-0265-7 – ident: 2024092103450758000_75.9.780.27 doi: 10.1016/j.tim.2014.09.004 – ident: 2024092103450758000_75.9.780.15 – ident: 2024092103450758000_75.9.780.53 doi: 10.1371/journal.pone.0045001 – ident: 2024092103450758000_75.9.780.30 doi: 10.1513/AnnalsATS.201211-107OC – year: 2020 ident: 2024092103450758000_75.9.780.41 article-title: Total bacterial load, inflammation, and structural lung disease in paediatric cystic fibrosis publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2020.03.008 – ident: 2024092103450758000_75.9.780.13 doi: 10.1016/j.jcf.2010.10.003 – ident: 2024092103450758000_75.9.780.36 doi: 10.1038/nature07540 – volume: 32 start-page: 271 year: 2000 ident: 2024092103450758000_75.9.780.62 article-title: Logratio analysis and compositional distance publication-title: Math Geol doi: 10.1023/A:1007529726302 – ident: 2024092103450758000_75.9.780.34 doi: 10.1093/jac/dkt086 – reference: 33139450 - Thorax. 2020 Dec;75(12):1031-1032 – reference: 35177541 - Thorax. 2022 Mar;77(3):e1 |
SSID | ssj0008117 |
Score | 2.4896855 |
Snippet | RationaleThe most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic... The most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic lung... The most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas... |
SourceID | pubmedcentral proquest pubmed crossref bmj |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 780 |
SubjectTerms | Administration, Inhalation Adolescent Adult Aged Anti-Bacterial Agents - pharmacology Anti-Bacterial Agents - therapeutic use Antibiotics Bacteria Bacteria - genetics Bacteria - isolation & purification bacterial infection Bacterial Infections - prevention & control Child Clinical outcomes Cystic fibrosis Cystic Fibrosis - microbiology Cystic Fibrosis - physiopathology Forced Expiratory Volume Genes Humans Maintenance Chemotherapy Metagenome - drug effects Microbiota Microbiota - drug effects Middle Aged Pathogens Respiratory infection Severity of Illness Index Spirometry Sputum - microbiology Staphylococcus infections Studies Taxonomy Time Factors Tobramycin - pharmacology Tobramycin - therapeutic use Young Adult |
Title | Maintenance tobramycin primarily affects untargeted bacteria in the CF sputum microbiome |
URI | https://thorax.bmj.com/content/75/9/780.full https://www.ncbi.nlm.nih.gov/pubmed/32631930 https://www.proquest.com/docview/2434681933 https://www.proquest.com/docview/2421106915 https://pubmed.ncbi.nlm.nih.gov/PMC7875198 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZrC2MvY92vemuLBnvZwKsV2bL1NLbSUAYpY6yQN2PZJ5oSO1ljw_Lf785S3GWDts86I-tOJ91J331i7H0KVH4JEJZZVIZxbIkDssTEtbBQJdoodw45uVDnl_G3aTL1B24rD6vcrIn9Ql0tSjojPxnFMla4fUn5efkrpFej6HbVP6Gxw_aIuowgXel0SLgiKqLcoOYUepKv4BFSnbRXqOHf180cp4nQ4UjEglB1O6a-3t6h_gs7_0VP_rUdjZ-xpz6O5F-c4ffZI2ies8cTf1P-gk0nBTFBEJ0GcHTam6JeYwtf9uwSs_maFw7JwbvGocGh4sZRNxccBTEw5Kdjvlp2bVfzeuYIm2p4yS7HZz9Pz0P_ikJoMLZqQ2sEGKsUZAb9U5ustAAKjIbEaptqARItZPUow8TUirTEmFtYTItkViirhXzFdptFAweM44YHOrKi6ln3UmEi0FS7WqhEV5kRAfuI-su9F6zyPsGQKh-UnZOyc6fsgH0gYTfs9X2y8cYkeem5y-kJjfl9n30aPntgP4cbe9-O4nbmBezd0IxeSFcrRQOLjmQokVZaJAF77abH0CMGyLjOyShg6dbEGQSI4Xu7pZld9UzfuJpihJ29ufu33rInIzoF6JFvh2y3vengCEOl1hz3_nDM9r6eXXz_8QcFpBP5 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnQS8THwTGGAkeAAprM6HEz8gBGNVx9YKoU3qW4iTs9apSbs1EfSf4m_knK9RkBgve_Ylts935zv77meAlwGa8ktEOwn7ie152mBAJhS4xhpTXypRn0OOxmJ44n2e-JMN-NnWwpi0ytYmVoY6nSfmjHzX8VxP0Pbluu8X57Z5NcrcrrZPaNRicYir7xSyLd8dfKL1feU4g_3jvaHdvCpgK_I1ClsrjkoLgaEieZUqTDSiQCXR11IHkqNLI9bSCSlQ0zxIyAflmsIEN4yFltyl_27CludSKNODrY_74y9fO9tvyjbbPD1ButvUDHFX7BantKY_zvIZCSaXtsM9bvL4NlV2tr4n_uXo_pmv-dsGOLgN243nyj7UonYHNjC_CzdGzd38PZiMYoM9YQA8kJGZuIizFbWwRYVnMZ2tWFznjrAyr_PPMWWqBouOGRGSK8r2Bmy5KIsyY9m0hojK8D6cXAuHH0Avn-f4CBhtsSj7mqcVzl_AVR-lqZaNhS_TUHEL3hD_okbvllEV0rgi6pgdGWZHNbMteG2I62mvrqL12iWJkgYt3TzaMbvqs7fdZ__Zz0673pezuJR1C150zaT35jInznFeGhoTugvJfQse1uLR9UguOVlWt29BsCY4HYHBFF9vyaenFbY42W_y6cPH_x7Wc7g5PB4dRUcH48MncMsxZxBV3t0O9IqLEp-So1aoZ412MPh23Qr5CzQaUSg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61Raq4IN4NLWAkOIAUNs7DiQ8IoZZVS9mKA5X2FuJkrG61yW67G8H-NX4d4zhJWZAol549ie3xzHjGnvkM8DJGU36J6OaJl7thqA0GZE6Ba6axiKQS9hxydCIOT8NP42i8AT-7WhiTVtnZxMZQF7PcnJEP_DAIBW1fQTDQbVrEl4Ph-_mFa16QMjet3XMaVkSOcfWdwrfFu6MDWutXvj_8-HX_0G1fGHAV-R1LVyuOSguBiSLZlSrJNaJAJTHSUseSY0Cj19JPKGjTPM7JH-WaQoYgyYSWPKD_bsKtOIi40bF43Ad7ning7DL2BGlxWz3EAzFYntHq_jivpiSiXLo-D7nJ6NtU5fn67viXy_tn5uZvW-HwLtxpfVj2wQrdPdjA6j5sj9pb-gcwHmUGhcJAeSAjg3GZlStqYfMG2WIyXbHMZpGwurKZ6FgwZWGjM0aE5JSy_SFbzOtlXbJyYsGiSnwIpzfC30ewVc0q3AFGmy1KT_OiQfyLufJQmrrZTESySBR34A3xL201cJE2wU0g0p7ZqWF2apntwGtDbKe9uo427JYkzVvcdPN8x_S6z972n_1nP3vdel_N4krqHXjRN5MFMNc6WYWz2tCYIF5IHjnw2IpH3yM552RjA8-BeE1wegKDLr7eUk3OGpRxsuTk3SdP_j2s57BNaph-Pjo53oXbvjmMaBLw9mBreVnjU_LYlupZoxoMvt20Lv4CHuFT-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maintenance+tobramycin+primarily+affects+untargeted+bacteria+in+the+CF+sputum+microbiome&rft.jtitle=Thorax&rft.au=Nelson%2C+Maria+T&rft.au=Wolter%2C+Daniel+J&rft.au=Eng%2C+Alexander&rft.au=Weiss%2C+Eli+J&rft.date=2020-09-01&rft.issn=0040-6376&rft.eissn=1468-3296&rft.volume=75&rft.issue=9&rft.spage=780&rft.epage=790&rft_id=info:doi/10.1136%2Fthoraxjnl-2019-214187&rft.externalDBID=n%2Fa&rft.externalDocID=10_1136_thoraxjnl_2019_214187 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6376&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6376&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6376&client=summon |