Maintenance tobramycin primarily affects untargeted bacteria in the CF sputum microbiome

RationaleThe most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas aeruginosa lung infections. While the effects of inhaled tobramycin on P. aeruginosa abundance and lung function diminish with conti...

Full description

Saved in:
Bibliographic Details
Published inThorax Vol. 75; no. 9; pp. 780 - 790
Main Authors Nelson, Maria T, Wolter, Daniel J, Eng, Alexander, Weiss, Eli J, Vo, Anh T, Brittnacher, Mitchell J, Hayden, Hillary S, Ravishankar, Sumedha, Bautista, Gilbert, Ratjen, Anina, Blackledge, Marcella, McNamara, Sharon, Nay, Laura, Majors, Cheryl, Miller, Samuel I, Borenstein, Elhanan, Simon, Richard H, LiPuma, John J, Hoffman, Luke R
Format Journal Article
LanguageEnglish
Published England BMJ Publishing Group Ltd and British Thoracic Society 01.09.2020
BMJ Publishing Group LTD
Subjects
Online AccessGet full text

Cover

Loading…
Abstract RationaleThe most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas aeruginosa lung infections. While the effects of inhaled tobramycin on P. aeruginosa abundance and lung function diminish with continued therapy, this maintenance treatment is known to improve long-term outcomes, underscoring how little is known about why antibiotics work in CF infections, what their effects are on complex CF sputum microbiomes and how to improve these treatments.ObjectivesTo rigorously define the effect of maintenance tobramycin on CF sputum microbiome characteristics.Methods and measurementsWe collected sputum from 30 PWCF at standardised times before, during and after a single month-long course of maintenance inhaled tobramycin. We used traditional culture, quantitative PCR and metagenomic sequencing to define the dynamic effects of this treatment on sputum microbiomes, including abundance changes in both clinically targeted and untargeted bacteria, as well as functional gene categories.Main resultsCF sputum microbiota changed most markedly by 1 week of antibiotic therapy and plateaued thereafter, and this shift was largely driven by changes in non-dominant taxa. The genetically conferred functional capacities (ie, metagenomes) of subjects’ sputum communities changed little with antibiotic perturbation, despite taxonomic shifts, suggesting functional redundancy within the CF sputum microbiome.ConclusionsMaintenance treatment with inhaled tobramycin, an antibiotic with demonstrated long-term mortality benefit, primarily impacted clinically untargeted bacteria in CF sputum, highlighting the importance of monitoring the non-canonical effects of antibiotics and other treatments to accurately define and improve their clinical impact.
AbstractList RationaleThe most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas aeruginosa lung infections. While the effects of inhaled tobramycin on P. aeruginosa abundance and lung function diminish with continued therapy, this maintenance treatment is known to improve long-term outcomes, underscoring how little is known about why antibiotics work in CF infections, what their effects are on complex CF sputum microbiomes and how to improve these treatments.ObjectivesTo rigorously define the effect of maintenance tobramycin on CF sputum microbiome characteristics.Methods and measurementsWe collected sputum from 30 PWCF at standardised times before, during and after a single month-long course of maintenance inhaled tobramycin. We used traditional culture, quantitative PCR and metagenomic sequencing to define the dynamic effects of this treatment on sputum microbiomes, including abundance changes in both clinically targeted and untargeted bacteria, as well as functional gene categories.Main resultsCF sputum microbiota changed most markedly by 1 week of antibiotic therapy and plateaued thereafter, and this shift was largely driven by changes in non-dominant taxa. The genetically conferred functional capacities (ie, metagenomes) of subjects’ sputum communities changed little with antibiotic perturbation, despite taxonomic shifts, suggesting functional redundancy within the CF sputum microbiome.ConclusionsMaintenance treatment with inhaled tobramycin, an antibiotic with demonstrated long-term mortality benefit, primarily impacted clinically untargeted bacteria in CF sputum, highlighting the importance of monitoring the non-canonical effects of antibiotics and other treatments to accurately define and improve their clinical impact.
The most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas aeruginosa lung infections. While the effects of inhaled tobramycin on P. aeruginosa abundance and lung function diminish with continued therapy, this maintenance treatment is known to improve long-term outcomes, underscoring how little is known about why antibiotics work in CF infections, what their effects are on complex CF sputum microbiomes and how to improve these treatments.RATIONALEThe most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas aeruginosa lung infections. While the effects of inhaled tobramycin on P. aeruginosa abundance and lung function diminish with continued therapy, this maintenance treatment is known to improve long-term outcomes, underscoring how little is known about why antibiotics work in CF infections, what their effects are on complex CF sputum microbiomes and how to improve these treatments.To rigorously define the effect of maintenance tobramycin on CF sputum microbiome characteristics.OBJECTIVESTo rigorously define the effect of maintenance tobramycin on CF sputum microbiome characteristics.We collected sputum from 30 PWCF at standardised times before, during and after a single month-long course of maintenance inhaled tobramycin. We used traditional culture, quantitative PCR and metagenomic sequencing to define the dynamic effects of this treatment on sputum microbiomes, including abundance changes in both clinically targeted and untargeted bacteria, as well as functional gene categories.METHODS AND MEASUREMENTSWe collected sputum from 30 PWCF at standardised times before, during and after a single month-long course of maintenance inhaled tobramycin. We used traditional culture, quantitative PCR and metagenomic sequencing to define the dynamic effects of this treatment on sputum microbiomes, including abundance changes in both clinically targeted and untargeted bacteria, as well as functional gene categories.CF sputum microbiota changed most markedly by 1 week of antibiotic therapy and plateaued thereafter, and this shift was largely driven by changes in non-dominant taxa. The genetically conferred functional capacities (ie, metagenomes) of subjects' sputum communities changed little with antibiotic perturbation, despite taxonomic shifts, suggesting functional redundancy within the CF sputum microbiome.MAIN RESULTSCF sputum microbiota changed most markedly by 1 week of antibiotic therapy and plateaued thereafter, and this shift was largely driven by changes in non-dominant taxa. The genetically conferred functional capacities (ie, metagenomes) of subjects' sputum communities changed little with antibiotic perturbation, despite taxonomic shifts, suggesting functional redundancy within the CF sputum microbiome.Maintenance treatment with inhaled tobramycin, an antibiotic with demonstrated long-term mortality benefit, primarily impacted clinically untargeted bacteria in CF sputum, highlighting the importance of monitoring the non-canonical effects of antibiotics and other treatments to accurately define and improve their clinical impact.CONCLUSIONSMaintenance treatment with inhaled tobramycin, an antibiotic with demonstrated long-term mortality benefit, primarily impacted clinically untargeted bacteria in CF sputum, highlighting the importance of monitoring the non-canonical effects of antibiotics and other treatments to accurately define and improve their clinical impact.
The most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic lung infections. While the effects of inhaled tobramycin on abundance and lung function diminish with continued therapy, this maintenance treatment is known to improve long-term outcomes, underscoring how little is known about why antibiotics work in CF infections, what their effects are on complex CF sputum microbiomes and how to improve these treatments. To rigorously define the effect of maintenance tobramycin on CF sputum microbiome characteristics. We collected sputum from 30 PWCF at standardised times before, during and after a single month-long course of maintenance inhaled tobramycin. We used traditional culture, quantitative PCR and metagenomic sequencing to define the dynamic effects of this treatment on sputum microbiomes, including abundance changes in both clinically targeted and untargeted bacteria, as well as functional gene categories. CF sputum microbiota changed most markedly by 1 week of antibiotic therapy and plateaued thereafter, and this shift was largely driven by changes in non-dominant taxa. The genetically conferred functional capacities (ie, metagenomes) of subjects' sputum communities changed little with antibiotic perturbation, despite taxonomic shifts, suggesting functional redundancy within the CF sputum microbiome. Maintenance treatment with inhaled tobramycin, an antibiotic with demonstrated long-term mortality benefit, primarily impacted clinically untargeted bacteria in CF sputum, highlighting the importance of monitoring the non-canonical effects of antibiotics and other treatments to accurately define and improve their clinical impact.
Author McNamara, Sharon
Bautista, Gilbert
Hayden, Hillary S
Brittnacher, Mitchell J
Ravishankar, Sumedha
Ratjen, Anina
Miller, Samuel I
Majors, Cheryl
Borenstein, Elhanan
Blackledge, Marcella
Wolter, Daniel J
Nay, Laura
Nelson, Maria T
Vo, Anh T
Weiss, Eli J
Eng, Alexander
Hoffman, Luke R
Simon, Richard H
LiPuma, John J
AuthorAffiliation 6 Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
11 Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
2 Medical Scientist Training Program, University of Washington School of Medicine, Seattle, Washington, United States
9 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
4 Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA
3 Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, Washington, United States
5 Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
1 Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
10 Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
7 Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
8 Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States
AuthorAffiliation_xml – name: 5 Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
– name: 1 Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
– name: 10 Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
– name: 9 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
– name: 3 Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, Washington, United States
– name: 7 Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
– name: 4 Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA
– name: 6 Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
– name: 11 Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
– name: 8 Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States
– name: 2 Medical Scientist Training Program, University of Washington School of Medicine, Seattle, Washington, United States
Author_xml – sequence: 1
  givenname: Maria T
  surname: Nelson
  fullname: Nelson, Maria T
  organization: Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, Washington, USA
– sequence: 2
  givenname: Daniel J
  surname: Wolter
  fullname: Wolter, Daniel J
  organization: Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA
– sequence: 3
  givenname: Alexander
  surname: Eng
  fullname: Eng, Alexander
  organization: Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
– sequence: 4
  givenname: Eli J
  surname: Weiss
  fullname: Weiss, Eli J
  organization: Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
– sequence: 5
  givenname: Anh T
  surname: Vo
  fullname: Vo, Anh T
  organization: Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
– sequence: 6
  givenname: Mitchell J
  surname: Brittnacher
  fullname: Brittnacher, Mitchell J
  organization: Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
– sequence: 7
  givenname: Hillary S
  surname: Hayden
  fullname: Hayden, Hillary S
  organization: Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
– sequence: 8
  givenname: Sumedha
  surname: Ravishankar
  fullname: Ravishankar, Sumedha
  organization: Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
– sequence: 9
  givenname: Gilbert
  surname: Bautista
  fullname: Bautista, Gilbert
  organization: Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
– sequence: 10
  givenname: Anina
  surname: Ratjen
  fullname: Ratjen, Anina
  organization: Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
– sequence: 11
  givenname: Marcella
  surname: Blackledge
  fullname: Blackledge, Marcella
  organization: Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA
– sequence: 12
  givenname: Sharon
  surname: McNamara
  fullname: McNamara, Sharon
  organization: Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA
– sequence: 13
  givenname: Laura
  surname: Nay
  fullname: Nay, Laura
  organization: Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA
– sequence: 14
  givenname: Cheryl
  surname: Majors
  fullname: Majors, Cheryl
  organization: Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
– sequence: 15
  givenname: Samuel I
  surname: Miller
  fullname: Miller, Samuel I
  organization: Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
– sequence: 16
  givenname: Elhanan
  surname: Borenstein
  fullname: Borenstein, Elhanan
  organization: Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
– sequence: 17
  givenname: Richard H
  surname: Simon
  fullname: Simon, Richard H
  organization: Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
– sequence: 18
  givenname: John J
  surname: LiPuma
  fullname: LiPuma, John J
  organization: Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
– sequence: 19
  givenname: Luke R
  surname: Hoffman
  fullname: Hoffman, Luke R
  email: lhoffm@uw.edu
  organization: Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32631930$$D View this record in MEDLINE/PubMed
BookMark eNqNkVFrFDEUhYNU7Lb6E5QBX3wZzU1mMgmCIItthYovCr6FZHrTzTKTrJmMuP_eLFNX7YP6lEC-c3PuOWfkJMSAhDwF-hKAi1d5E5P5vg1DzSiomkEDsntAVtAIWXOmxAlZUdrQWvBOnJKzadpSSiVA94icciY4KE5X5MsH40PGYEKPVY42mXHf-1Dtkh9N8sO-Ms5hn6dqDtmkW8x4U1nTZ0zeVAXMG6zWF9W0m_M8VqPvU7Q-jviYPHRmmPDJ3XlOPl-8-7S-qq8_Xr5fv72ubctYrp0FtE4IlLZhrbKyd4gCrcLWKdcpQN6Ui2ISOHPQ9VIycIK1XBrhFPBz8maZu5vtiDc9hpzMoBf_ex2N13--BL_Rt_Gb7mTXgpJlwIu7ASl-nXHKevRTj8NgAsZ50qxhAFQoaAv6_B66jXMKZb1C8RJ8yZQX6tnvjo5WfoZegHYBSlbTlNAdEaD6UK4-lqsP5eql3KJ7fU_X-2yyj4fF_PBPNV3Udtz-94fwS3Jc9e-aHz0jz44
CitedBy_id crossref_primary_10_1016_j_jcf_2021_02_001
crossref_primary_10_1128_spectrum_03633_22
crossref_primary_10_1099_mgen_0_000754
crossref_primary_10_1183_13993003_02281_2023
crossref_primary_10_1128_msphere_00318_22
crossref_primary_10_1136_thoraxjnl_2021_217782
crossref_primary_10_1128_spectrum_01454_22
crossref_primary_10_1016_j_jcf_2021_02_003
crossref_primary_10_1152_ajplung_00018_2024
crossref_primary_10_1016_j_jcf_2022_10_005
crossref_primary_10_1038_s41579_022_00821_x
crossref_primary_10_1093_jpids_piac040
crossref_primary_10_1093_jpids_piac062
crossref_primary_10_1128_mbio_03148_21
crossref_primary_10_7554_eLife_81604
crossref_primary_10_1186_s12866_021_02159_5
crossref_primary_10_1128_Spectrum_00029_21
crossref_primary_10_1183_16000617_0259_2021
crossref_primary_10_1038_s41598_024_77246_4
crossref_primary_10_1128_JB_00311_21
crossref_primary_10_1128_mbio_01424_22
crossref_primary_10_1016_j_tim_2023_04_006
crossref_primary_10_1136_thoraxjnl_2019_214191
crossref_primary_10_1186_s12866_023_03073_8
crossref_primary_10_1002_ppul_71024
crossref_primary_10_1128_mBio_00006_21
crossref_primary_10_1093_jpids_piac036
crossref_primary_10_1136_thoraxjnl_2020_216005
crossref_primary_10_1164_rccm_202112_2704PP
crossref_primary_10_1016_j_jcf_2023_11_010
crossref_primary_10_1136_thoraxjnl_2021_218240
crossref_primary_10_3390_life11020094
Cites_doi 10.1513/AnnalsATS.201211-107OC
10.1002/ppul.21356
10.1128/JCM.02204-13
10.2165/00003495-197612030-00002
10.1371/journal.pone.0194060
10.1038/nature18927
10.1073/pnas.1120577109
10.1073/pnas.0804326105
10.1073/pnas.0903619106
10.1128/JCM.02299-15
10.1038/nature07540
10.1016/j.jbiotec.2017.01.001
10.1093/jac/dkt086
10.1186/1756-0500-6-241
10.1002/ppul.21521
10.1016/j.jcf.2011.05.002
10.1016/j.jcf.2010.10.003
10.1128/AAC.04123-14
10.1371/journal.pone.0045001
10.1186/s40168-015-0074-9
10.1016/j.jcf.2020.03.008
10.1038/s41522-016-0002-1
10.1016/j.tim.2014.09.004
10.1016/j.jcf.2012.07.009
10.1007/BF01972512
10.1128/JB.173.9.2800-2808.1991
10.3389/fmicb.2017.02224
10.1111/j.1469-0691.2008.02659.x
10.1186/s40168-017-0265-7
10.1038/srep10241
10.1002/ppul.1950070110
10.1128/mBio.02287-16
10.1023/A:1007529726302
10.1093/gbe/evz049
10.1002/ppul.21374
10.1016/j.jpeds.2007.03.006
10.1016/S0022-3476(84)81094-X
10.1186/2049-2618-1-27
10.1513/AnnalsATS.201501-029OC
10.1111/lam.12134
10.1128/JCM.01189-11
10.1128/microbiolspec.VMBF-0016-2015
10.1371/journal.pone.0011044
10.3389/fmicb.2014.00258
10.1016/j.chom.2015.07.006
10.1113/jphysiol.2009.174136
10.1371/journal.ppat.1006798
10.1164/ajrccm/141.4_Pt_1.914
10.1038/ismej.2012.145
10.1038/nrmicro3380
10.1056/NEJM199901073400104
10.1038/nature11053
10.1099/jmm.0.016683-0
10.1164/rccm.201505-0943OC
10.1371/journal.pone.0149998
10.1016/j.jcf.2014.04.004
10.1016/j.celrep.2019.01.091
10.1136/thx.2010.137281
10.1183/23120541.00096-2015
10.1186/s40168-017-0234-1
10.1128/jb.173.9.2800-2808.1991
ContentType Journal Article
Copyright Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.
2022 Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.
Copyright_xml – notice: Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: 2022 Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
BTHHO
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1136/thoraxjnl-2019-214187
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
BMJ Journals
ProQuest One Community College
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
BMJ Journals
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest One Academic Middle East (New)
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1468-3296
EndPage 790
ExternalDocumentID PMC7875198
32631930
10_1136_thoraxjnl_2019_214187
thoraxjnl
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Novartis
  grantid: Unrestricted, Investigator-Initiated Research Awar
  funderid: http://dx.doi.org/10.13039/100004336
– fundername: Mylan
  grantid: Assumed the unrestricted grant from Novartis for t
– fundername: National Institutes of Health
  grantid: DK089507; HL141669; T32AI55396
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: Cystic Fibrosis Foundation
  grantid: SINGH15R0
  funderid: http://dx.doi.org/10.13039/100000897
– fundername: NIDDK NIH HHS
  grantid: P30 DK089507
– fundername: NHLBI NIH HHS
  grantid: K24 HL141669
– fundername: NIAID NIH HHS
  grantid: T32 AI055396
GroupedDBID ---
.55
.GJ
.VT
08G
0R~
123
18M
29Q
2WC
354
39C
3O-
4.4
40O
53G
5RE
5VS
6PF
7X7
7~S
88E
8F7
8FI
8FJ
8R4
8R5
AAHLL
AAKAS
AAOJX
AAWJN
AAWTL
AAYEP
ABAAH
ABJNI
ABKDF
ABMQD
ABOCM
ABTFR
ABUWG
ABVAJ
ACGFO
ACGFS
ACGTL
ACHTP
ACMFJ
ACOAB
ACOFX
ACQSR
ACTZY
ADBBV
ADCEG
ADZCM
AENEX
AFKRA
AFWFF
AGQPQ
AHMBA
AHNKE
AHQMW
AJYBZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
BAWUL
BENPR
BLJBA
BOMFT
BPHCQ
BTFSW
BTHHO
BVXVI
C45
CAG
CCPQU
COF
CS3
CXRWF
DIK
DU5
E3Z
EBS
EJD
F5P
FEDTE
FYUFA
GX1
H13
HAJ
HMCUK
HVGLF
HYE
HZ~
IAO
IEA
IH2
IHR
IOF
ITC
J5H
KQ8
L7B
M1P
N4W
N9A
NTWIH
NXWIF
O9-
OK1
OVD
P2P
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
R53
RHI
RMJ
RPM
RV8
TEORI
TR2
UAW
UKHRP
UYXKK
V24
VM9
VVN
W8F
WH7
X7M
YFH
YOC
YQY
ZCG
ZGI
AAYXX
ACQHZ
ADGHP
AERUA
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-b522t-fb1ebf66e8b4259b8cfee6eb9e5f9f791e34f9f928132f17c8821f62538a6f913
IEDL.DBID 7X7
ISSN 0040-6376
1468-3296
IngestDate Thu Aug 21 14:04:42 EDT 2025
Fri Jul 11 15:17:32 EDT 2025
Fri Jul 25 09:25:37 EDT 2025
Mon Jul 21 05:46:17 EDT 2025
Tue Jul 01 02:00:42 EDT 2025
Thu Apr 24 22:56:39 EDT 2025
Thu Apr 24 22:52:29 EDT 2025
Thu Apr 24 22:49:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords bacterial infection
cystic fibrosis
respiratory infection
Language English
License Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b522t-fb1ebf66e8b4259b8cfee6eb9e5f9f791e34f9f928132f17c8821f62538a6f913
Notes Original research
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Contributors MTN, JJL, RHS, DJW and LRH performed conceptualisation and design of the study. MTN, DJW, ATV, SR, GB, AR, MB, SN, LN and CM helped in data collection. MTN, AE, EJW, MJB, EB and LRH performed the data analysis and interpretation. Resources were collected by MJB, HSH, SIM, MB, SN, LN and CM. MTN and LRH helped in writing the original draft. All authors helped in writing, review and editing of the article. MTN helped in visualisation, DJW, EB, JJL, RHS and LRH helped in supervision and LRH, JJL and RHS helped in acquisition of funds.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7875198
PMID 32631930
PQID 2434681933
PQPubID 2041050
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7875198
proquest_miscellaneous_2421106915
proquest_journals_2434681933
pubmed_primary_32631930
crossref_primary_10_1136_thoraxjnl_2019_214187
crossref_citationtrail_10_1136_thoraxjnl_2019_214187
bmj_primary_10_1136_thoraxjnl_2019_214187
bmj_journals_10_1136_thoraxjnl_2019_214187
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Thorax
PublicationTitleAbbrev Thorax
PublicationTitleAlternate Thorax
PublicationYear 2020
Publisher BMJ Publishing Group Ltd and British Thoracic Society
BMJ Publishing Group LTD
Publisher_xml – name: BMJ Publishing Group Ltd and British Thoracic Society
– name: BMJ Publishing Group LTD
References Brito, Yilmaz, Huang (R35) 2016; 535
Sibley, Parkins, Rabin (R40) 2008; 105
Ramsey, Pepe, Quan (R11) 1999; 340
Nelson, Pope, Marsh (R25) 2019; 26
Li, Mendis, Trigui (R26) 2014; 5
Hogan, Willger, Dolben (R48) 2016; 11
Regelmann, Elliott, Warwick (R8) 1990; 141
Sanders, Bittner, Rosenfeld (R2) 2011; 46
Fraimow, Greenman, Leviton (R43) 1991; 173
Jorth, Staudinger, Wu (R46) 2015; 18
Carmody, Zhao, Schloss (R30) 2013; 10
Quinn, Whiteson, Lim (R55) 2016; 2
Murray, Doherty, Govan (R49) 2010; 59
Aitchison, Barceló-Vidal, Martín-Fernández (R62) 2000; 32
Smith, Nelson, Calaunan (R44) 2013; 6
Gloor, Macklaim, Pawlowsky-Glahn (R61) 2017; 8
Konstan, Flume, Kappler (R13) 2011; 10
Konstan, Geller, Minić (R12) 2011; 46
Rogers, Cuthbertson, Hoffman (R28) 2013; 7
Lim, Schmieder, Haynes (R51) 2013; 12
Carmody, Caverly, Foster (R3) 2018; 13
Coburn, Wang, Diaz Caballero (R24) 2015; 5
Horrevorts, Mouton (R20) 1991; 10
Price, Hampton, Gifford (R6) 2013; 1
Feigelman, Kahlert, Baty (R56) 2017; 5
Mirković, Murray, Lavelle (R38) 2015; 192
Yatsunenko, Rey, Manary (R59) 2012; 486
Tunney, Klem, Fodor (R52) 2011; 66
Carmody, Zhao, Kalikin (R5) 2015; 3
Thomassen, Klinger, Badger (R47) 1984; 104
Dickson, Erb-Downward, Freeman (R10) 2017; 8
Muhlebach, Zorn, Esther (R4) 2018; 14
Turnbaugh, Hamady, Yatsunenko (R36) 2009; 457
Wiehlmann, Pienkowska, Hedtfeld (R57) 2017; 250
Pasquaroli, Zandri, Vignaroli (R34) 2013; 68
Lee, Hinz, Bauerle (R18) 2009; 106
Jakubovics, Shields, Rajarajan (R29) 2013; 57
Velsko, Perez, Richards (R45) 2019; 11
Munita, Arias (R32) 2016; 4
Harrison, McCarthy, Fleming (R14) 2014; 13
Zhao, Schloss, Kalikin (R39) 2012; 109
Mahboubi, Carmody, Foster (R33) 2016; 54
Cox, Allgaier, Taylor (R23) 2010; 5
Moran Losada, Chouvarine, Dorda (R54) 2016; 2
Worlitzsch, Rintelen, Böhm (R37) 2009; 15
Stressmann, Rogers, Marsh (R60) 2011; 10
Lim, Evangelista, Schmieder (R22) 2014; 52
Heirali, Workentine, Acosta (R21) 2017; 5
Ratjen, Yau, Wettlaufer (R19) 2015; 59
Taylor, Leong, Ivey (R41) 2020
Konstan, Morgan, Butler (R1) 2007; 151
O’Toole (R7) 2017; 200
Zhao, Li, Schloss (R50) 2011; 49
Turnbaugh, Gordon (R58) 2009; 587
Dickson, Erb-Downward, Freeman (R9) 2015; 12
MacLusky, Gold, Corey (R16) 1989; 7
Blair, Webber, Baylay (R31) 2015; 13
Sawicki, Signorovitch, Zhang (R17) 2012; 47
Brogden, Pinder, Sawyer (R42) 1976; 12
Ayrapetyan, Williams, Oliver (R27) 2015; 23
Fodor, Klem, Gilpin (R53) 2012; 7
Thomassen, Klinger, Badger 1984; 104
Mahboubi, Carmody, Foster 2016; 54
Worlitzsch, Rintelen, Böhm 2009; 15
Turnbaugh, Hamady, Yatsunenko 2009; 457
Sawicki, Signorovitch, Zhang 2012; 47
Zhao, Schloss, Kalikin 2012; 109
Lim, Evangelista, Schmieder 2014; 52
Fodor, Klem, Gilpin 2012; 7
Jakubovics, Shields, Rajarajan 2013; 57
Mirković, Murray, Lavelle 2015; 192
Konstan, Morgan, Butler 2007; 151
Moran Losada, Chouvarine, Dorda 2016; 2
Lee, Hinz, Bauerle 2009; 106
Hogan, Willger, Dolben 2016; 11
Dickson, Erb-Downward, Freeman 2017; 8
Tunney, Klem, Fodor 2011; 66
Nelson, Pope, Marsh 2019; 26
Ratjen, Yau, Wettlaufer 2015; 59
Aitchison, Barceló-Vidal, Martín-Fernández 2000; 32
Blair, Webber, Baylay 2015; 13
Gloor, Macklaim, Pawlowsky-Glahn 2017; 8
Horrevorts, Mouton 1991; 10
Dickson, Erb-Downward, Freeman 2015; 12
Munita, Arias 2016; 4
Fraimow, Greenman, Leviton 1991; 173
Pasquaroli, Zandri, Vignaroli 2013; 68
Lim, Schmieder, Haynes 2013; 12
Brito, Yilmaz, Huang 2016; 535
Brogden, Pinder, Sawyer 1976; 12
Muhlebach, Zorn, Esther 2018; 14
Feigelman, Kahlert, Baty 2017; 5
Sibley, Parkins, Rabin 2008; 105
Harrison, McCarthy, Fleming 2014; 13
Yatsunenko, Rey, Manary 2012; 486
O’Toole 2017; 200
Taylor, Leong, Ivey 2020
Quinn, Whiteson, Lim 2016; 2
Konstan, Flume, Kappler 2011; 10
Carmody, Zhao, Kalikin 2015; 3
Li, Mendis, Trigui 2014; 5
Murray, Doherty, Govan 2010; 59
Zhao, Li, Schloss 2011; 49
Carmody, Zhao, Schloss 2013; 10
Heirali, Workentine, Acosta 2017; 5
Coburn, Wang, Diaz Caballero 2015; 5
Wiehlmann, Pienkowska, Hedtfeld 2017; 250
Price, Hampton, Gifford 2013; 1
MacLusky, Gold, Corey 1989; 7
Smith, Nelson, Calaunan 2013; 6
Jorth, Staudinger, Wu 2015; 18
Carmody, Caverly, Foster 2018; 13
Ayrapetyan, Williams, Oliver 2015; 23
Velsko, Perez, Richards 2019; 11
Rogers, Cuthbertson, Hoffman 2013; 7
Turnbaugh, Gordon 2009; 587
Stressmann, Rogers, Marsh 2011; 10
Konstan, Geller, Minić 2011; 46
Regelmann, Elliott, Warwick 1990; 141
Sanders, Bittner, Rosenfeld 2011; 46
Ramsey, Pepe, Quan 1999; 340
Cox, Allgaier, Taylor 2010; 5
2024092103450758000_75.9.780.20
2024092103450758000_75.9.780.21
2024092103450758000_75.9.780.22
2024092103450758000_75.9.780.60
Hogan (2024092103450758000_75.9.780.48) 2016; 11
2024092103450758000_75.9.780.61
2024092103450758000_75.9.780.17
2024092103450758000_75.9.780.18
2024092103450758000_75.9.780.19
2024092103450758000_75.9.780.12
Quinn (2024092103450758000_75.9.780.55) 2016; 2
2024092103450758000_75.9.780.56
2024092103450758000_75.9.780.13
2024092103450758000_75.9.780.14
2024092103450758000_75.9.780.58
2024092103450758000_75.9.780.15
2024092103450758000_75.9.780.59
2024092103450758000_75.9.780.52
2024092103450758000_75.9.780.53
2024092103450758000_75.9.780.10
2024092103450758000_75.9.780.11
Brogden (2024092103450758000_75.9.780.42) 1976; 12
2024092103450758000_75.9.780.50
2024092103450758000_75.9.780.51
2024092103450758000_75.9.780.8
2024092103450758000_75.9.780.9
2024092103450758000_75.9.780.49
Aitchison (2024092103450758000_75.9.780.62) 2000; 32
2024092103450758000_75.9.780.2
2024092103450758000_75.9.780.1
2024092103450758000_75.9.780.4
2024092103450758000_75.9.780.45
2024092103450758000_75.9.780.3
2024092103450758000_75.9.780.46
2024092103450758000_75.9.780.6
2024092103450758000_75.9.780.47
2024092103450758000_75.9.780.5
2024092103450758000_75.9.780.43
2024092103450758000_75.9.780.40
Li (2024092103450758000_75.9.780.26) 2014; 5
Moran Losada (2024092103450758000_75.9.780.54) 2016; 2
Taylor (2024092103450758000_75.9.780.41) 2020
2024092103450758000_75.9.780.38
2024092103450758000_75.9.780.39
MacLusky (2024092103450758000_75.9.780.16) 1989; 7
2024092103450758000_75.9.780.34
2024092103450758000_75.9.780.35
2024092103450758000_75.9.780.36
2024092103450758000_75.9.780.37
O’Toole (2024092103450758000_75.9.780.7) 2017; 200
2024092103450758000_75.9.780.30
2024092103450758000_75.9.780.31
Smith (2024092103450758000_75.9.780.44) 2013; 6
2024092103450758000_75.9.780.33
Munita (2024092103450758000_75.9.780.32) 2016; 4
2024092103450758000_75.9.780.27
2024092103450758000_75.9.780.28
2024092103450758000_75.9.780.29
2024092103450758000_75.9.780.23
2024092103450758000_75.9.780.24
2024092103450758000_75.9.780.25
Wiehlmann (2024092103450758000_75.9.780.57) 2017; 250
35177541 - Thorax. 2022 Mar;77(3):e1
33139450 - Thorax. 2020 Dec;75(12):1031-1032
References_xml – volume: 10
  start-page: 179
  year: 2013
  ident: R30
  article-title: Changes in cystic fibrosis airway microbiota at pulmonary exacerbation
  publication-title: Ann Am Thorac Soc
  doi: 10.1513/AnnalsATS.201211-107OC
– volume: 46
  start-page: 230
  year: 2011
  ident: R12
  article-title: Tobramycin inhalation powder for P. aeruginosa infection in cystic fibrosis: the evolve trial
  publication-title: Pediatr Pulmonol
  doi: 10.1002/ppul.21356
– volume: 52
  start-page: 425
  year: 2014
  ident: R22
  article-title: Clinical insights from metagenomic analysis of sputum samples from patients with cystic fibrosis
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.02204-13
– volume: 12
  start-page: 166
  year: 1976
  ident: R42
  article-title: Tobramycin: a review of its antibacterial and pharmacokinetic properties and therapeutic use
  publication-title: Drugs
  doi: 10.2165/00003495-197612030-00002
– volume: 13
  year: 2018
  ident: R3
  article-title: Fluctuations in airway bacterial communities associated with clinical states and disease stages in cystic fibrosis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0194060
– volume: 535
  start-page: 435
  year: 2016
  ident: R35
  article-title: Mobile genes in the human microbiome are structured from global to individual scales
  publication-title: Nature
  doi: 10.1038/nature18927
– volume: 109
  start-page: 5809
  year: 2012
  ident: R39
  article-title: Decade-long bacterial community dynamics in cystic fibrosis airways
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1120577109
– volume: 105
  start-page: 15070
  year: 2008
  ident: R40
  article-title: A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0804326105
– volume: 106
  start-page: 14570
  year: 2009
  ident: R18
  article-title: Targeting a bacterial stress response to enhance antibiotic action
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0903619106
– volume: 54
  start-page: 613
  year: 2016
  ident: R33
  article-title: Culture-Based and culture-independent bacteriologic analysis of cystic fibrosis respiratory specimens
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.02299-15
– volume: 457
  start-page: 480
  year: 2009
  ident: R36
  article-title: A core gut microbiome in obese and lean twins
  publication-title: Nature
  doi: 10.1038/nature07540
– volume: 250
  start-page: 51
  year: 2017
  ident: R57
  article-title: Impact of sample processing on human airways microbial metagenomes
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2017.01.001
– volume: 68
  start-page: 1812
  year: 2013
  ident: R34
  article-title: Antibiotic pressure can induce the viable but non-culturable state in Staphylococcus aureus growing in biofilms
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkt086
– volume: 6
  year: 2013
  ident: R44
  article-title: "Affect of anaerobiosis on the antibiotic susceptibility of H. influenzae"
  publication-title: BMC Res Notes
  doi: 10.1186/1756-0500-6-241
– volume: 47
  start-page: 44
  year: 2012
  ident: R17
  article-title: Reduced mortality in cystic fibrosis patients treated with tobramycin inhalation solution
  publication-title: Pediatr Pulmonol
  doi: 10.1002/ppul.21521
– volume: 10
  start-page: 357
  year: 2011
  ident: R60
  article-title: Does bacterial density in cystic fibrosis sputum increase prior to pulmonary exacerbation?
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2011.05.002
– volume: 10
  start-page: 54
  year: 2011
  ident: R13
  article-title: Safety, efficacy and convenience of tobramycin inhalation powder in cystic fibrosis patients: the EAGER trial
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2010.10.003
– volume: 59
  start-page: 711
  year: 2015
  ident: R19
  article-title: In vitro efficacy of high-dose tobramycin against Burkholderia cepacia complex and Stenotrophomonas maltophilia isolates from cystic fibrosis patients
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.04123-14
– volume: 7
  year: 2012
  ident: R53
  article-title: The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0045001
– volume: 3
  start-page: 12
  year: 2015
  ident: R5
  article-title: The daily dynamics of cystic fibrosis airway microbiota during clinical stability and at exacerbation
  publication-title: Microbiome
  doi: 10.1186/s40168-015-0074-9
– year: 2020
  ident: R41
  article-title: Total bacterial load, inflammation, and structural lung disease in paediatric cystic fibrosis
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2020.03.008
– volume: 2
  start-page: 1
  year: 2016
  ident: R55
  article-title: Ecological networking of cystic fibrosis lung infections
  publication-title: NPJ Biofilms Microbiomes
  doi: 10.1038/s41522-016-0002-1
– volume: 23
  start-page: 7
  year: 2015
  ident: R27
  article-title: Bridging the gap between viable but non-culturable and antibiotic persistent bacteria
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2014.09.004
– volume: 12
  start-page: 154
  year: 2013
  ident: R51
  article-title: Metagenomics and metatranscriptomics: windows on CF-associated viral and microbial communities
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2012.07.009
– volume: 10
  start-page: 785
  year: 1991
  ident: R20
  article-title: Susceptibility to various antimicrobial agents and tolerance to methicillin of Staphylococcus aureus isolates from cystic fibrosis patients
  publication-title: Eur J Clin Microbiol Infect Dis
  doi: 10.1007/BF01972512
– volume: 173
  start-page: 2800
  year: 1991
  ident: R43
  article-title: Tobramycin uptake in Escherichia coli is driven by either electrical potential or ATP
  publication-title: J Bacteriol
  doi: 10.1128/JB.173.9.2800-2808.1991
– volume: 8
  year: 2017
  ident: R61
  article-title: Microbiome datasets are compositional: and this is not optional
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.02224
– volume: 15
  start-page: 454
  year: 2009
  ident: R37
  article-title: Antibiotic-resistant obligate anaerobes during exacerbations of cystic fibrosis patients
  publication-title: Clin Microbiol Infect
  doi: 10.1111/j.1469-0691.2008.02659.x
– volume: 5
  start-page: 51
  year: 2017
  ident: R21
  article-title: The effects of inhaled aztreonam on the cystic fibrosis lung microbiome
  publication-title: Microbiome
  doi: 10.1186/s40168-017-0265-7
– volume: 5
  year: 2015
  ident: R24
  article-title: Lung microbiota across age and disease stage in cystic fibrosis
  publication-title: Sci Rep
  doi: 10.1038/srep10241
– volume: 7
  start-page: 42
  year: 1989
  ident: R16
  article-title: Long-term effects of inhaled tobramycin in patients with cystic fibrosis colonized with Pseudomonas aeruginosa
  publication-title: Pediatr Pulmonol
  doi: 10.1002/ppul.1950070110
– volume: 8
  start-page: e02287
  year: 2017
  ident: R10
  article-title: Bacterial topography of the healthy human lower respiratory tract
  publication-title: mBio
  doi: 10.1128/mBio.02287-16
– volume: 32
  start-page: 271
  year: 2000
  ident: R62
  article-title: Logratio analysis and compositional distance
  publication-title: Math Geol
  doi: 10.1023/A:1007529726302
– volume: 11
  start-page: 1077
  year: 2019
  ident: R45
  article-title: Resolving phylogenetic relationships for Streptococcus mitis and Streptococcus oralis through Core- and pan-genome analyses
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evz049
– volume: 46
  start-page: 393
  year: 2011
  ident: R2
  article-title: Pulmonary exacerbations are associated with subsequent FEV1 decline in both adults and children with cystic fibrosis
  publication-title: Pediatr Pulmonol
  doi: 10.1002/ppul.21374
– volume: 151
  start-page: 134
  year: 2007
  ident: R1
  article-title: Risk factors for rate of decline in forced expiratory volume in one second in children and adolescents with cystic fibrosis
  publication-title: J Pediatr
  doi: 10.1016/j.jpeds.2007.03.006
– volume: 104
  start-page: 352
  year: 1984
  ident: R47
  article-title: Cultures of thoracotomy specimens confirm usefulness of sputum cultures in cystic fibrosis
  publication-title: J Pediatr
  doi: 10.1016/S0022-3476(84)81094-X
– volume: 1
  start-page: 27
  year: 2013
  ident: R6
  article-title: Unique microbial communities persist in individual cystic fibrosis patients throughout a clinical exacerbation
  publication-title: Microbiome
  doi: 10.1186/2049-2618-1-27
– volume: 12
  start-page: 821
  year: 2015
  ident: R9
  article-title: Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography
  publication-title: Ann Am Thorac Soc
  doi: 10.1513/AnnalsATS.201501-029OC
– volume: 57
  start-page: 467
  year: 2013
  ident: R29
  article-title: Life after death: the critical role of extracellular DNA in microbial biofilms
  publication-title: Lett Appl Microbiol
  doi: 10.1111/lam.12134
– volume: 49
  start-page: 3717
  year: 2011
  ident: R50
  article-title: Effect of sample storage conditions on culture-independent bacterial community measures in cystic fibrosis sputum specimens
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01189-11
– volume: 4
  year: 2016
  ident: R32
  article-title: Mechanisms of antibiotic resistance
  publication-title: Microbiol Spectr
  doi: 10.1128/microbiolspec.VMBF-0016-2015
– volume: 5
  year: 2010
  ident: R23
  article-title: Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0011044
– volume: 5
  year: 2014
  ident: R26
  article-title: The importance of the viable but non-culturable state in human bacterial pathogens
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2014.00258
– volume: 18
  start-page: 307
  year: 2015
  ident: R46
  article-title: Regional isolation drives bacterial diversification within cystic fibrosis lungs
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.07.006
– volume: 587
  start-page: 4153
  year: 2009
  ident: R58
  article-title: The core gut microbiome, energy balance and obesity
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2009.174136
– volume: 200
  start-page: e00561
  year: 2017
  ident: R7
  article-title: Cystic fibrosis airway microbiome: overturning the old, opening the way for the new
  publication-title: J Bacteriol
– volume: 14
  year: 2018
  ident: R4
  article-title: Initial acquisition and succession of the cystic fibrosis lung microbiome is associated with disease progression in infants and preschool children
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1006798
– volume: 141
  start-page: 914
  year: 1990
  ident: R8
  article-title: Reduction of sputum Pseudomonas aeruginosa density by antibiotics improves lung function in cystic fibrosis more than do bronchodilators and chest physiotherapy alone
  publication-title: Am Rev Respir Dis
  doi: 10.1164/ajrccm/141.4_Pt_1.914
– volume: 7
  start-page: 697
  year: 2013
  ident: R28
  article-title: Reducing bias in bacterial community analysis of lower respiratory infections
  publication-title: ISME J
  doi: 10.1038/ismej.2012.145
– volume: 13
  start-page: 42
  year: 2015
  ident: R31
  article-title: Molecular mechanisms of antibiotic resistance
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro3380
– volume: 340
  start-page: 23
  year: 1999
  ident: R11
  article-title: Intermittent administration of inhaled tobramycin in patients with cystic fibrosis
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199901073400104
– volume: 486
  start-page: 222
  year: 2012
  ident: R59
  article-title: Human gut microbiome viewed across age and geography
  publication-title: Nature
  doi: 10.1038/nature11053
– volume: 59
  start-page: 829
  year: 2010
  ident: R49
  article-title: Do processing time and storage of sputum influence quantitative bacteriology in bronchiectasis?
  publication-title: J Med Microbiol
  doi: 10.1099/jmm.0.016683-0
– volume: 192
  start-page: 1314
  year: 2015
  ident: R38
  article-title: The role of short-chain fatty acids, produced by anaerobic bacteria, in the cystic fibrosis airway
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201505-0943OC
– volume: 11
  year: 2016
  ident: R48
  article-title: Analysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with mild-to-moderate cystic fibrosis lung disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0149998
– volume: 13
  start-page: 692
  year: 2014
  ident: R14
  article-title: Inhaled versus nebulised tobramycin: a real world comparison in adult cystic fibrosis (CF)
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2014.04.004
– volume: 26
  start-page: 2227
  year: 2019
  ident: R25
  article-title: Human and extracellular DNA depletion for metagenomic analysis of complex clinical infection samples yields optimized viable microbiome profiles
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.01.091
– volume: 66
  start-page: 579
  year: 2011
  ident: R52
  article-title: Use of culture and molecular analysis to determine the effect of antibiotic treatment on microbial community diversity and abundance during exacerbation in patients with cystic fibrosis
  publication-title: Thorax
  doi: 10.1136/thx.2010.137281
– volume: 2
  year: 2016
  ident: R54
  article-title: The cystic fibrosis lower airways microbial metagenome
  publication-title: ERJ Open Res
  doi: 10.1183/23120541.00096-2015
– volume: 5
  start-page: 20
  year: 2017
  ident: R56
  article-title: Sputum DNA sequencing in cystic fibrosis: non-invasive access to the lung microbiome and to pathogen details
  publication-title: Microbiome
  doi: 10.1186/s40168-017-0234-1
– volume: 4
  year: 2016
  article-title: Mechanisms of antibiotic resistance
  publication-title: Microbiol Spectr
  doi: 10.1128/microbiolspec.VMBF-0016-2015
– volume: 59
  start-page: 711
  year: 2015
  article-title: In vitro efficacy of high-dose tobramycin against Burkholderia cepacia complex and Stenotrophomonas maltophilia isolates from cystic fibrosis patients
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.04123-14
– volume: 8
  year: 2017
  article-title: Microbiome datasets are compositional: and this is not optional
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.02224
– volume: 340
  start-page: 23
  year: 1999
  article-title: Intermittent administration of inhaled tobramycin in patients with cystic fibrosis
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199901073400104
– volume: 68
  start-page: 1812
  year: 2013
  article-title: Antibiotic pressure can induce the viable but non-culturable state in Staphylococcus aureus growing in biofilms
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkt086
– volume: 151
  start-page: 134
  year: 2007
  article-title: Risk factors for rate of decline in forced expiratory volume in one second in children and adolescents with cystic fibrosis
  publication-title: J Pediatr
  doi: 10.1016/j.jpeds.2007.03.006
– volume: 49
  start-page: 3717
  year: 2011
  article-title: Effect of sample storage conditions on culture-independent bacterial community measures in cystic fibrosis sputum specimens
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01189-11
– volume: 457
  start-page: 480
  year: 2009
  article-title: A core gut microbiome in obese and lean twins
  publication-title: Nature
  doi: 10.1038/nature07540
– volume: 2
  start-page: 1
  year: 2016
  article-title: Ecological networking of cystic fibrosis lung infections
  publication-title: NPJ Biofilms Microbiomes
  doi: 10.1038/s41522-016-0002-1
– volume: 5
  year: 2014
  article-title: The importance of the viable but non-culturable state in human bacterial pathogens
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2014.00258
– volume: 26
  start-page: 2227
  year: 2019
  article-title: Human and extracellular DNA depletion for metagenomic analysis of complex clinical infection samples yields optimized viable microbiome profiles
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.01.091
– volume: 46
  start-page: 230
  year: 2011
  article-title: Tobramycin inhalation powder for P. aeruginosa infection in cystic fibrosis: the evolve trial
  publication-title: Pediatr Pulmonol
  doi: 10.1002/ppul.21356
– volume: 3
  start-page: 12
  year: 2015
  article-title: The daily dynamics of cystic fibrosis airway microbiota during clinical stability and at exacerbation
  publication-title: Microbiome
  doi: 10.1186/s40168-015-0074-9
– volume: 5
  year: 2015
  article-title: Lung microbiota across age and disease stage in cystic fibrosis
  publication-title: Sci Rep
  doi: 10.1038/srep10241
– volume: 52
  start-page: 425
  year: 2014
  article-title: Clinical insights from metagenomic analysis of sputum samples from patients with cystic fibrosis
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.02204-13
– volume: 13
  start-page: 42
  year: 2015
  article-title: Molecular mechanisms of antibiotic resistance
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro3380
– volume: 173
  start-page: 2800
  year: 1991
  article-title: Tobramycin uptake in Escherichia coli is driven by either electrical potential or ATP
  publication-title: J Bacteriol
  doi: 10.1128/JB.173.9.2800-2808.1991
– volume: 18
  start-page: 307
  year: 2015
  article-title: Regional isolation drives bacterial diversification within cystic fibrosis lungs
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.07.006
– volume: 486
  start-page: 222
  year: 2012
  article-title: Human gut microbiome viewed across age and geography
  publication-title: Nature
  doi: 10.1038/nature11053
– volume: 10
  start-page: 54
  year: 2011
  article-title: Safety, efficacy and convenience of tobramycin inhalation powder in cystic fibrosis patients: the EAGER trial
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2010.10.003
– volume: 11
  start-page: 1077
  year: 2019
  article-title: Resolving phylogenetic relationships for Streptococcus mitis and Streptococcus oralis through Core- and pan-genome analyses
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evz049
– volume: 12
  start-page: 821
  year: 2015
  article-title: Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography
  publication-title: Ann Am Thorac Soc
  doi: 10.1513/AnnalsATS.201501-029OC
– volume: 46
  start-page: 393
  year: 2011
  article-title: Pulmonary exacerbations are associated with subsequent FEV1 decline in both adults and children with cystic fibrosis
  publication-title: Pediatr Pulmonol
  doi: 10.1002/ppul.21374
– volume: 32
  start-page: 271
  year: 2000
  article-title: Logratio analysis and compositional distance
  publication-title: Math Geol
  doi: 10.1023/A:1007529726302
– volume: 105
  start-page: 15070
  year: 2008
  article-title: A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0804326105
– volume: 7
  start-page: 697
  year: 2013
  article-title: Reducing bias in bacterial community analysis of lower respiratory infections
  publication-title: ISME J
  doi: 10.1038/ismej.2012.145
– volume: 106
  start-page: 14570
  year: 2009
  article-title: Targeting a bacterial stress response to enhance antibiotic action
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0903619106
– volume: 13
  year: 2018
  article-title: Fluctuations in airway bacterial communities associated with clinical states and disease stages in cystic fibrosis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0194060
– volume: 7
  start-page: 42
  year: 1989
  article-title: Long-term effects of inhaled tobramycin in patients with cystic fibrosis colonized with Pseudomonas aeruginosa
  publication-title: Pediatr Pulmonol
  doi: 10.1002/ppul.1950070110
– volume: 5
  start-page: 51
  year: 2017
  article-title: The effects of inhaled aztreonam on the cystic fibrosis lung microbiome
  publication-title: Microbiome
  doi: 10.1186/s40168-017-0265-7
– volume: 12
  start-page: 154
  year: 2013
  article-title: Metagenomics and metatranscriptomics: windows on CF-associated viral and microbial communities
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2012.07.009
– volume: 10
  start-page: 179
  year: 2013
  article-title: Changes in cystic fibrosis airway microbiota at pulmonary exacerbation
  publication-title: Ann Am Thorac Soc
  doi: 10.1513/AnnalsATS.201211-107OC
– volume: 250
  start-page: 51
  year: 2017
  article-title: Impact of sample processing on human airways microbial metagenomes
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2017.01.001
– volume: 13
  start-page: 692
  year: 2014
  article-title: Inhaled versus nebulised tobramycin: a real world comparison in adult cystic fibrosis (CF)
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2014.04.004
– volume: 2
  year: 2016
  article-title: The cystic fibrosis lower airways microbial metagenome
  publication-title: ERJ Open Res
  doi: 10.1183/23120541.00096-2015
– volume: 14
  year: 2018
  article-title: Initial acquisition and succession of the cystic fibrosis lung microbiome is associated with disease progression in infants and preschool children
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1006798
– volume: 109
  start-page: 5809
  year: 2012
  article-title: Decade-long bacterial community dynamics in cystic fibrosis airways
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1120577109
– volume: 10
  start-page: 785
  year: 1991
  article-title: Susceptibility to various antimicrobial agents and tolerance to methicillin of Staphylococcus aureus isolates from cystic fibrosis patients
  publication-title: Eur J Clin Microbiol Infect Dis
  doi: 10.1007/BF01972512
– volume: 1
  start-page: 27
  year: 2013
  article-title: Unique microbial communities persist in individual cystic fibrosis patients throughout a clinical exacerbation
  publication-title: Microbiome
  doi: 10.1186/2049-2618-1-27
– volume: 12
  start-page: 166
  year: 1976
  article-title: Tobramycin: a review of its antibacterial and pharmacokinetic properties and therapeutic use
  publication-title: Drugs
  doi: 10.2165/00003495-197612030-00002
– volume: 8
  start-page: e02287
  year: 2017
  article-title: Bacterial topography of the healthy human lower respiratory tract
  publication-title: mBio
  doi: 10.1128/mBio.02287-16
– volume: 11
  year: 2016
  article-title: Analysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with mild-to-moderate cystic fibrosis lung disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0149998
– volume: 7
  year: 2012
  article-title: The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0045001
– volume: 200
  start-page: e00561
  year: 2017
  article-title: Cystic fibrosis airway microbiome: overturning the old, opening the way for the new
  publication-title: J Bacteriol
– volume: 141
  start-page: 914
  year: 1990
  article-title: Reduction of sputum Pseudomonas aeruginosa density by antibiotics improves lung function in cystic fibrosis more than do bronchodilators and chest physiotherapy alone
  publication-title: Am Rev Respir Dis
  doi: 10.1164/ajrccm/141.4_Pt_1.914
– volume: 104
  start-page: 352
  year: 1984
  article-title: Cultures of thoracotomy specimens confirm usefulness of sputum cultures in cystic fibrosis
  publication-title: J Pediatr
  doi: 10.1016/S0022-3476(84)81094-X
– volume: 66
  start-page: 579
  year: 2011
  article-title: Use of culture and molecular analysis to determine the effect of antibiotic treatment on microbial community diversity and abundance during exacerbation in patients with cystic fibrosis
  publication-title: Thorax
  doi: 10.1136/thx.2010.137281
– volume: 54
  start-page: 613
  year: 2016
  article-title: Culture-Based and culture-independent bacteriologic analysis of cystic fibrosis respiratory specimens
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.02299-15
– year: 2020
  article-title: Total bacterial load, inflammation, and structural lung disease in paediatric cystic fibrosis
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2020.03.008
– volume: 587
  start-page: 4153
  year: 2009
  article-title: The core gut microbiome, energy balance and obesity
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2009.174136
– volume: 535
  start-page: 435
  year: 2016
  article-title: Mobile genes in the human microbiome are structured from global to individual scales
  publication-title: Nature
  doi: 10.1038/nature18927
– volume: 6
  year: 2013
  article-title: "Affect of anaerobiosis on the antibiotic susceptibility of H. influenzae"
  publication-title: BMC Res Notes
  doi: 10.1186/1756-0500-6-241
– volume: 47
  start-page: 44
  year: 2012
  article-title: Reduced mortality in cystic fibrosis patients treated with tobramycin inhalation solution
  publication-title: Pediatr Pulmonol
  doi: 10.1002/ppul.21521
– volume: 23
  start-page: 7
  year: 2015
  article-title: Bridging the gap between viable but non-culturable and antibiotic persistent bacteria
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2014.09.004
– volume: 57
  start-page: 467
  year: 2013
  article-title: Life after death: the critical role of extracellular DNA in microbial biofilms
  publication-title: Lett Appl Microbiol
  doi: 10.1111/lam.12134
– volume: 5
  year: 2010
  article-title: Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0011044
– volume: 192
  start-page: 1314
  year: 2015
  article-title: The role of short-chain fatty acids, produced by anaerobic bacteria, in the cystic fibrosis airway
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201505-0943OC
– volume: 59
  start-page: 829
  year: 2010
  article-title: Do processing time and storage of sputum influence quantitative bacteriology in bronchiectasis?
  publication-title: J Med Microbiol
  doi: 10.1099/jmm.0.016683-0
– volume: 10
  start-page: 357
  year: 2011
  article-title: Does bacterial density in cystic fibrosis sputum increase prior to pulmonary exacerbation?
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2011.05.002
– volume: 15
  start-page: 454
  year: 2009
  article-title: Antibiotic-resistant obligate anaerobes during exacerbations of cystic fibrosis patients
  publication-title: Clin Microbiol Infect
  doi: 10.1111/j.1469-0691.2008.02659.x
– volume: 5
  start-page: 20
  year: 2017
  article-title: Sputum DNA sequencing in cystic fibrosis: non-invasive access to the lung microbiome and to pathogen details
  publication-title: Microbiome
  doi: 10.1186/s40168-017-0234-1
– ident: 2024092103450758000_75.9.780.1
  doi: 10.1016/j.jpeds.2007.03.006
– ident: 2024092103450758000_75.9.780.47
  doi: 10.1016/S0022-3476(84)81094-X
– ident: 2024092103450758000_75.9.780.14
  doi: 10.1016/j.jcf.2014.04.004
– ident: 2024092103450758000_75.9.780.25
  doi: 10.1016/j.celrep.2019.01.091
– ident: 2024092103450758000_75.9.780.33
  doi: 10.1128/JCM.02299-15
– volume: 12
  start-page: 166
  year: 1976
  ident: 2024092103450758000_75.9.780.42
  article-title: Tobramycin: a review of its antibacterial and pharmacokinetic properties and therapeutic use
  publication-title: Drugs
  doi: 10.2165/00003495-197612030-00002
– ident: 2024092103450758000_75.9.780.10
  doi: 10.1128/mBio.02287-16
– ident: 2024092103450758000_75.9.780.22
  doi: 10.1128/JCM.02204-13
– ident: 2024092103450758000_75.9.780.24
  doi: 10.1038/srep10241
– ident: 2024092103450758000_75.9.780.4
  doi: 10.1371/journal.ppat.1006798
– ident: 2024092103450758000_75.9.780.59
  doi: 10.1038/nature11053
– ident: 2024092103450758000_75.9.780.18
  doi: 10.1073/pnas.0903619106
– ident: 2024092103450758000_75.9.780.2
  doi: 10.1002/ppul.21374
– ident: 2024092103450758000_75.9.780.23
  doi: 10.1371/journal.pone.0011044
– ident: 2024092103450758000_75.9.780.56
  doi: 10.1186/s40168-017-0234-1
– ident: 2024092103450758000_75.9.780.35
  doi: 10.1038/nature18927
– ident: 2024092103450758000_75.9.780.51
  doi: 10.1016/j.jcf.2012.07.009
– ident: 2024092103450758000_75.9.780.45
  doi: 10.1093/gbe/evz049
– ident: 2024092103450758000_75.9.780.3
  doi: 10.1371/journal.pone.0194060
– ident: 2024092103450758000_75.9.780.58
  doi: 10.1113/jphysiol.2009.174136
– volume: 6
  year: 2013
  ident: 2024092103450758000_75.9.780.44
  article-title: "Affect of anaerobiosis on the antibiotic susceptibility of H. influenzae"
  publication-title: BMC Res Notes
  doi: 10.1186/1756-0500-6-241
– ident: 2024092103450758000_75.9.780.60
  doi: 10.1016/j.jcf.2011.05.002
– volume: 4
  year: 2016
  ident: 2024092103450758000_75.9.780.32
  article-title: Mechanisms of antibiotic resistance
  publication-title: Microbiol Spectr
  doi: 10.1128/microbiolspec.VMBF-0016-2015
– ident: 2024092103450758000_75.9.780.8
  doi: 10.1164/ajrccm/141.4_Pt_1.914
– ident: 2024092103450758000_75.9.780.29
  doi: 10.1111/lam.12134
– ident: 2024092103450758000_75.9.780.46
  doi: 10.1016/j.chom.2015.07.006
– volume: 11
  year: 2016
  ident: 2024092103450758000_75.9.780.48
  article-title: Analysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with mild-to-moderate cystic fibrosis lung disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0149998
– ident: 2024092103450758000_75.9.780.31
  doi: 10.1038/nrmicro3380
– ident: 2024092103450758000_75.9.780.38
  doi: 10.1164/rccm.201505-0943OC
– ident: 2024092103450758000_75.9.780.6
  doi: 10.1186/2049-2618-1-27
– ident: 2024092103450758000_75.9.780.28
  doi: 10.1038/ismej.2012.145
– ident: 2024092103450758000_75.9.780.52
  doi: 10.1136/thx.2010.137281
– volume: 200
  start-page: e00561
  year: 2017
  ident: 2024092103450758000_75.9.780.7
  article-title: Cystic fibrosis airway microbiome: overturning the old, opening the way for the new
  publication-title: J Bacteriol
– ident: 2024092103450758000_75.9.780.11
  doi: 10.1056/NEJM199901073400104
– ident: 2024092103450758000_75.9.780.20
  doi: 10.1007/BF01972512
– ident: 2024092103450758000_75.9.780.49
  doi: 10.1099/jmm.0.016683-0
– volume: 2
  year: 2016
  ident: 2024092103450758000_75.9.780.54
  article-title: The cystic fibrosis lower airways microbial metagenome
  publication-title: ERJ Open Res
  doi: 10.1183/23120541.00096-2015
– volume: 2
  start-page: 1
  year: 2016
  ident: 2024092103450758000_75.9.780.55
  article-title: Ecological networking of cystic fibrosis lung infections
  publication-title: NPJ Biofilms Microbiomes
  doi: 10.1038/s41522-016-0002-1
– volume: 5
  year: 2014
  ident: 2024092103450758000_75.9.780.26
  article-title: The importance of the viable but non-culturable state in human bacterial pathogens
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2014.00258
– ident: 2024092103450758000_75.9.780.39
  doi: 10.1073/pnas.1120577109
– ident: 2024092103450758000_75.9.780.40
  doi: 10.1073/pnas.0804326105
– ident: 2024092103450758000_75.9.780.5
  doi: 10.1186/s40168-015-0074-9
– ident: 2024092103450758000_75.9.780.19
  doi: 10.1128/AAC.04123-14
– ident: 2024092103450758000_75.9.780.9
  doi: 10.1513/AnnalsATS.201501-029OC
– ident: 2024092103450758000_75.9.780.43
  doi: 10.1128/jb.173.9.2800-2808.1991
– ident: 2024092103450758000_75.9.780.12
  doi: 10.1002/ppul.21356
– ident: 2024092103450758000_75.9.780.17
  doi: 10.1002/ppul.21521
– ident: 2024092103450758000_75.9.780.50
  doi: 10.1128/JCM.01189-11
– ident: 2024092103450758000_75.9.780.37
  doi: 10.1111/j.1469-0691.2008.02659.x
– volume: 7
  start-page: 42
  year: 1989
  ident: 2024092103450758000_75.9.780.16
  article-title: Long-term effects of inhaled tobramycin in patients with cystic fibrosis colonized with Pseudomonas aeruginosa
  publication-title: Pediatr Pulmonol
  doi: 10.1002/ppul.1950070110
– ident: 2024092103450758000_75.9.780.61
  doi: 10.3389/fmicb.2017.02224
– volume: 250
  start-page: 51
  year: 2017
  ident: 2024092103450758000_75.9.780.57
  article-title: Impact of sample processing on human airways microbial metagenomes
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2017.01.001
– ident: 2024092103450758000_75.9.780.21
  doi: 10.1186/s40168-017-0265-7
– ident: 2024092103450758000_75.9.780.27
  doi: 10.1016/j.tim.2014.09.004
– ident: 2024092103450758000_75.9.780.15
– ident: 2024092103450758000_75.9.780.53
  doi: 10.1371/journal.pone.0045001
– ident: 2024092103450758000_75.9.780.30
  doi: 10.1513/AnnalsATS.201211-107OC
– year: 2020
  ident: 2024092103450758000_75.9.780.41
  article-title: Total bacterial load, inflammation, and structural lung disease in paediatric cystic fibrosis
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2020.03.008
– ident: 2024092103450758000_75.9.780.13
  doi: 10.1016/j.jcf.2010.10.003
– ident: 2024092103450758000_75.9.780.36
  doi: 10.1038/nature07540
– volume: 32
  start-page: 271
  year: 2000
  ident: 2024092103450758000_75.9.780.62
  article-title: Logratio analysis and compositional distance
  publication-title: Math Geol
  doi: 10.1023/A:1007529726302
– ident: 2024092103450758000_75.9.780.34
  doi: 10.1093/jac/dkt086
– reference: 33139450 - Thorax. 2020 Dec;75(12):1031-1032
– reference: 35177541 - Thorax. 2022 Mar;77(3):e1
SSID ssj0008117
Score 2.4896855
Snippet RationaleThe most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic...
The most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic lung...
The most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas...
SourceID pubmedcentral
proquest
pubmed
crossref
bmj
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 780
SubjectTerms Administration, Inhalation
Adolescent
Adult
Aged
Anti-Bacterial Agents - pharmacology
Anti-Bacterial Agents - therapeutic use
Antibiotics
Bacteria
Bacteria - genetics
Bacteria - isolation & purification
bacterial infection
Bacterial Infections - prevention & control
Child
Clinical outcomes
Cystic fibrosis
Cystic Fibrosis - microbiology
Cystic Fibrosis - physiopathology
Forced Expiratory Volume
Genes
Humans
Maintenance Chemotherapy
Metagenome - drug effects
Microbiota
Microbiota - drug effects
Middle Aged
Pathogens
Respiratory infection
Severity of Illness Index
Spirometry
Sputum - microbiology
Staphylococcus infections
Studies
Taxonomy
Time Factors
Tobramycin - pharmacology
Tobramycin - therapeutic use
Young Adult
Title Maintenance tobramycin primarily affects untargeted bacteria in the CF sputum microbiome
URI https://thorax.bmj.com/content/75/9/780.full
https://www.ncbi.nlm.nih.gov/pubmed/32631930
https://www.proquest.com/docview/2434681933
https://www.proquest.com/docview/2421106915
https://pubmed.ncbi.nlm.nih.gov/PMC7875198
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZrC2MvY92vemuLBnvZwKsV2bL1NLbSUAYpY6yQN2PZJ5oSO1ljw_Lf785S3GWDts86I-tOJ91J331i7H0KVH4JEJZZVIZxbIkDssTEtbBQJdoodw45uVDnl_G3aTL1B24rD6vcrIn9Ql0tSjojPxnFMla4fUn5efkrpFej6HbVP6Gxw_aIuowgXel0SLgiKqLcoOYUepKv4BFSnbRXqOHf180cp4nQ4UjEglB1O6a-3t6h_gs7_0VP_rUdjZ-xpz6O5F-c4ffZI2ies8cTf1P-gk0nBTFBEJ0GcHTam6JeYwtf9uwSs_maFw7JwbvGocGh4sZRNxccBTEw5Kdjvlp2bVfzeuYIm2p4yS7HZz9Pz0P_ikJoMLZqQ2sEGKsUZAb9U5ustAAKjIbEaptqARItZPUow8TUirTEmFtYTItkViirhXzFdptFAweM44YHOrKi6ln3UmEi0FS7WqhEV5kRAfuI-su9F6zyPsGQKh-UnZOyc6fsgH0gYTfs9X2y8cYkeem5y-kJjfl9n30aPntgP4cbe9-O4nbmBezd0IxeSFcrRQOLjmQokVZaJAF77abH0CMGyLjOyShg6dbEGQSI4Xu7pZld9UzfuJpihJ29ufu33rInIzoF6JFvh2y3vengCEOl1hz3_nDM9r6eXXz_8QcFpBP5
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnQS8THwTGGAkeAAprM6HEz8gBGNVx9YKoU3qW4iTs9apSbs1EfSf4m_knK9RkBgve_Ylts935zv77meAlwGa8ktEOwn7ie152mBAJhS4xhpTXypRn0OOxmJ44n2e-JMN-NnWwpi0ytYmVoY6nSfmjHzX8VxP0Pbluu8X57Z5NcrcrrZPaNRicYir7xSyLd8dfKL1feU4g_3jvaHdvCpgK_I1ClsrjkoLgaEieZUqTDSiQCXR11IHkqNLI9bSCSlQ0zxIyAflmsIEN4yFltyl_27CludSKNODrY_74y9fO9tvyjbbPD1ButvUDHFX7BantKY_zvIZCSaXtsM9bvL4NlV2tr4n_uXo_pmv-dsGOLgN243nyj7UonYHNjC_CzdGzd38PZiMYoM9YQA8kJGZuIizFbWwRYVnMZ2tWFznjrAyr_PPMWWqBouOGRGSK8r2Bmy5KIsyY9m0hojK8D6cXAuHH0Avn-f4CBhtsSj7mqcVzl_AVR-lqZaNhS_TUHEL3hD_okbvllEV0rgi6pgdGWZHNbMteG2I62mvrqL12iWJkgYt3TzaMbvqs7fdZ__Zz0673pezuJR1C150zaT35jInznFeGhoTugvJfQse1uLR9UguOVlWt29BsCY4HYHBFF9vyaenFbY42W_y6cPH_x7Wc7g5PB4dRUcH48MncMsxZxBV3t0O9IqLEp-So1aoZ412MPh23Qr5CzQaUSg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61Raq4IN4NLWAkOIAUNs7DiQ8IoZZVS9mKA5X2FuJkrG61yW67G8H-NX4d4zhJWZAol549ie3xzHjGnvkM8DJGU36J6OaJl7thqA0GZE6Ba6axiKQS9hxydCIOT8NP42i8AT-7WhiTVtnZxMZQF7PcnJEP_DAIBW1fQTDQbVrEl4Ph-_mFa16QMjet3XMaVkSOcfWdwrfFu6MDWutXvj_8-HX_0G1fGHAV-R1LVyuOSguBiSLZlSrJNaJAJTHSUseSY0Cj19JPKGjTPM7JH-WaQoYgyYSWPKD_bsKtOIi40bF43Ad7ning7DL2BGlxWz3EAzFYntHq_jivpiSiXLo-D7nJ6NtU5fn67viXy_tn5uZvW-HwLtxpfVj2wQrdPdjA6j5sj9pb-gcwHmUGhcJAeSAjg3GZlStqYfMG2WIyXbHMZpGwurKZ6FgwZWGjM0aE5JSy_SFbzOtlXbJyYsGiSnwIpzfC30ewVc0q3AFGmy1KT_OiQfyLufJQmrrZTESySBR34A3xL201cJE2wU0g0p7ZqWF2apntwGtDbKe9uo427JYkzVvcdPN8x_S6z972n_1nP3vdel_N4krqHXjRN5MFMNc6WYWz2tCYIF5IHjnw2IpH3yM552RjA8-BeE1wegKDLr7eUk3OGpRxsuTk3SdP_j2s57BNaph-Pjo53oXbvjmMaBLw9mBreVnjU_LYlupZoxoMvt20Lv4CHuFT-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maintenance+tobramycin+primarily+affects+untargeted+bacteria+in+the+CF+sputum+microbiome&rft.jtitle=Thorax&rft.au=Nelson%2C+Maria+T&rft.au=Wolter%2C+Daniel+J&rft.au=Eng%2C+Alexander&rft.au=Weiss%2C+Eli+J&rft.date=2020-09-01&rft.issn=0040-6376&rft.eissn=1468-3296&rft.volume=75&rft.issue=9&rft.spage=780&rft.epage=790&rft_id=info:doi/10.1136%2Fthoraxjnl-2019-214187&rft.externalDBID=n%2Fa&rft.externalDocID=10_1136_thoraxjnl_2019_214187
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6376&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6376&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6376&client=summon