Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer's disease
Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric A...
Saved in:
Published in | Molecular neurodegeneration Vol. 6; no. 1; p. 45 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
30.06.2011
BioMed Central BMC |
Online Access | Get full text |
Cover
Loading…
Abstract | Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ), a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ). However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear.
We demonstrated that Aβ(1-42) fibrils, not Aβ(1-42) oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42) not only attenuated fAβ(1-42)-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42). Compared with the fAβ(1-42) treatment, the oAβ(1-42) treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β) level and produced higher levels of tumor necrosis factor-α (TNF-α), nitric oxide (NO), prostaglandin E2 (PGE2) and intracellular superoxide anion (SOA). The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42)-induced microglia was decreased by IL-1β, lippolysaccharide (LPS) and tert-butyl hydroperoxide (t-BHP). The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC), a nuclear factor-κB (NF-κB) inhibitor, and N-acetyl-L-cysteine (NAC), a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42) stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1), and Ig receptor FcγRIII, and significantly increased that of formyl peptide receptor 2 (FPR2) and scavenger receptor class B1 (SRB1), compared with the basal level. Interestingly, the pre-stimulation with oAβ(1-42) or the inflammatory and oxidative milieu (IL-1β, LPS or t-BHP) significantly downregulated the fAβ(1-42)-induced mRNA over-expression of CD36, CD47 and Itgb1 receptors in microglial cells.
These results imply that Aβ oligomers induce a potent inflammatory response and subsequently disturb microglial phagocytosis and clearance of Aβ fibrils, thereby contributing to an initial neurodegenerative characteristic of AD. Antiinflammatory and antioxidative therapies may indeed prove beneficial to delay the progression of AD. |
---|---|
AbstractList | BACKGROUND: Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ), a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ). However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear. RESULTS: We demonstrated that Aβ(1-42) fibrils, not Aβ(1-42) oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42) not only attenuated fAβ(1-42)-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42). Compared with the fAβ(1-42) treatment, the oAβ(1-42) treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β) level and produced higher levels of tumor necrosis factor-α (TNF-α), nitric oxide (NO), prostaglandin E2 (PGE2) and intracellular superoxide anion (SOA). The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42)-induced microglia was decreased by IL-1β, lippolysaccharide (LPS) and tert-butyl hydroperoxide (t-BHP). The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC), a nuclear factor-κB (NF-κB) inhibitor, and N-acetyl-L-cysteine (NAC), a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42) stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1), and Ig receptor FcγRIII, and significantly increased that of formyl peptide receptor 2 (FPR2) and scavenger receptor class B1 (SRB1), compared with the basal level. Interestingly, the pre-stimulation with oAβ(1-42) or the inflammatory and oxidative milieu (IL-1β, LPS or t-BHP) significantly downregulated the fAβ(1-42)-induced mRNA over-expression of CD36, CD47 and Itgb1 receptors in microglial cells. CONCLUSION: These results imply that Aβ oligomers induce a potent inflammatory response and subsequently disturb microglial phagocytosis and clearance of Aβ fibrils, thereby contributing to an initial neurodegenerative characteristic of AD. Antiinflammatory and antioxidative therapies may indeed prove beneficial to delay the progression of AD. Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ), a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ). However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear.BACKGROUNDReactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ), a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ). However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear.We demonstrated that Aβ(1-42) fibrils, not Aβ(1-42) oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42) not only attenuated fAβ(1-42)-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42). Compared with the fAβ(1-42) treatment, the oAβ(1-42) treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β) level and produced higher levels of tumor necrosis factor-α (TNF-α), nitric oxide (NO), prostaglandin E2 (PGE2) and intracellular superoxide anion (SOA). The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42)-induced microglia was decreased by IL-1β, lippolysaccharide (LPS) and tert-butyl hydroperoxide (t-BHP). The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC), a nuclear factor-κB (NF-κB) inhibitor, and N-acetyl-L-cysteine (NAC), a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42) stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1), and Ig receptor FcγRIII, and significantly increased that of formyl peptide receptor 2 (FPR2) and scavenger receptor class B1 (SRB1), compared with the basal level. Interestingly, the pre-stimulation with oAβ(1-42) or the inflammatory and oxidative milieu (IL-1β, LPS or t-BHP) significantly downregulated the fAβ(1-42)-induced mRNA over-expression of CD36, CD47 and Itgb1 receptors in microglial cells.RESULTSWe demonstrated that Aβ(1-42) fibrils, not Aβ(1-42) oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42) not only attenuated fAβ(1-42)-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42). Compared with the fAβ(1-42) treatment, the oAβ(1-42) treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β) level and produced higher levels of tumor necrosis factor-α (TNF-α), nitric oxide (NO), prostaglandin E2 (PGE2) and intracellular superoxide anion (SOA). The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42)-induced microglia was decreased by IL-1β, lippolysaccharide (LPS) and tert-butyl hydroperoxide (t-BHP). The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC), a nuclear factor-κB (NF-κB) inhibitor, and N-acetyl-L-cysteine (NAC), a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42) stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1), and Ig receptor FcγRIII, and significantly increased that of formyl peptide receptor 2 (FPR2) and scavenger receptor class B1 (SRB1), compared with the basal level. Interestingly, the pre-stimulation with oAβ(1-42) or the inflammatory and oxidative milieu (IL-1β, LPS or t-BHP) significantly downregulated the fAβ(1-42)-induced mRNA over-expression of CD36, CD47 and Itgb1 receptors in microglial cells.These results imply that Aβ oligomers induce a potent inflammatory response and subsequently disturb microglial phagocytosis and clearance of Aβ fibrils, thereby contributing to an initial neurodegenerative characteristic of AD. Antiinflammatory and antioxidative therapies may indeed prove beneficial to delay the progression of AD.CONCLUSIONThese results imply that Aβ oligomers induce a potent inflammatory response and subsequently disturb microglial phagocytosis and clearance of Aβ fibrils, thereby contributing to an initial neurodegenerative characteristic of AD. Antiinflammatory and antioxidative therapies may indeed prove beneficial to delay the progression of AD. Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ), a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ). However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear. We demonstrated that Aβ(1-42) fibrils, not Aβ(1-42) oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42) not only attenuated fAβ(1-42)-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42). Compared with the fAβ(1-42) treatment, the oAβ(1-42) treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β) level and produced higher levels of tumor necrosis factor-α (TNF-α), nitric oxide (NO), prostaglandin E2 (PGE2) and intracellular superoxide anion (SOA). The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42)-induced microglia was decreased by IL-1β, lippolysaccharide (LPS) and tert-butyl hydroperoxide (t-BHP). The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC), a nuclear factor-κB (NF-κB) inhibitor, and N-acetyl-L-cysteine (NAC), a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42) stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1), and Ig receptor FcγRIII, and significantly increased that of formyl peptide receptor 2 (FPR2) and scavenger receptor class B1 (SRB1), compared with the basal level. Interestingly, the pre-stimulation with oAβ(1-42) or the inflammatory and oxidative milieu (IL-1β, LPS or t-BHP) significantly downregulated the fAβ(1-42)-induced mRNA over-expression of CD36, CD47 and Itgb1 receptors in microglial cells. These results imply that Aβ oligomers induce a potent inflammatory response and subsequently disturb microglial phagocytosis and clearance of Aβ fibrils, thereby contributing to an initial neurodegenerative characteristic of AD. Antiinflammatory and antioxidative therapies may indeed prove beneficial to delay the progression of AD. Abstract Background Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ), a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ). However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear. Results We demonstrated that Aβ(1-42) fibrils, not Aβ(1-42) oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42) not only attenuated fAβ(1-42)-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42). Compared with the fAβ(1-42) treatment, the oAβ(1-42) treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β) level and produced higher levels of tumor necrosis factor-α (TNF-α), nitric oxide (NO), prostaglandin E2 (PGE2) and intracellular superoxide anion (SOA). The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42)-induced microglia was decreased by IL-1β, lippolysaccharide (LPS) and tert-butyl hydroperoxide (t-BHP). The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC), a nuclear factor-κB (NF-κB) inhibitor, and N-acetyl-L-cysteine (NAC), a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42) stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1), and Ig receptor FcγRIII, and significantly increased that of formyl peptide receptor 2 (FPR2) and scavenger receptor class B1 (SRB1), compared with the basal level. Interestingly, the pre-stimulation with oAβ(1-42) or the inflammatory and oxidative milieu (IL-1β, LPS or t-BHP) significantly downregulated the fAβ(1-42)-induced mRNA over-expression of CD36, CD47 and Itgb1 receptors in microglial cells. Conclusion These results imply that Aβ oligomers induce a potent inflammatory response and subsequently disturb microglial phagocytosis and clearance of Aβ fibrils, thereby contributing to an initial neurodegenerative characteristic of AD. Antiinflammatory and antioxidative therapies may indeed prove beneficial to delay the progression of AD. |
ArticleNumber | 45 |
Author | Chen, Xiao-chun Zhang, Jing Pan, Xiao-dong Zhu, Yuan-gui Ye, Qin-yong Huang, Hua-pin Lin, Nan |
AuthorAffiliation | 1 Department of Neurology, Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China 2 Fujian Institute of Geriatrics, Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China 3 Centre of Neurobiology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China |
AuthorAffiliation_xml | – name: 3 Centre of Neurobiology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China – name: 1 Department of Neurology, Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China – name: 2 Fujian Institute of Geriatrics, Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China |
Author_xml | – sequence: 1 givenname: Xiao-dong surname: Pan fullname: Pan, Xiao-dong – sequence: 2 givenname: Yuan-gui surname: Zhu fullname: Zhu, Yuan-gui – sequence: 3 givenname: Nan surname: Lin fullname: Lin, Nan – sequence: 4 givenname: Jing surname: Zhang fullname: Zhang, Jing – sequence: 5 givenname: Qin-yong surname: Ye fullname: Ye, Qin-yong – sequence: 6 givenname: Hua-pin surname: Huang fullname: Huang, Hua-pin – sequence: 7 givenname: Xiao-chun surname: Chen fullname: Chen, Xiao-chun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21718498$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v1DAQhiNURD_gyhHl1lOKHX8k5oC0qqBUKuICZ8t27OxUTrzYSaXlzC_ih_Cb6jZttQvqydbMO8_M6J3j4mAMoy2KtxidYdzy97hhqMKk5hWvKHtRHD0FDnb-h8VxStcI0QYh9qo4rHGDWyrao-L3VzAx9B6ULzdr1QeznUKCVMLYzcZ2pd6WDnQE71Us__6p1LD1AboyS9Q02XFW06IKHvow2AhmR_ahhGHjwagJwphKF2K58r_WFrLwNJUdJKuSfV28dMon--bhPSl-fP70_fxLdfXt4vJ8dVVphslUOYxNxwg1hnNCCUeYaiScqLlRWLeMdk1NjUOEcaWJ00Q0eQNOrBGtcYaSk-Jy4XZBXctNhEHFrQwK5H0gxF6qOIHxVmKOnMA1Idw2VNdCW8uYY7XlFJuGkcz6uLA2sx5sZ-w4ReX3oPuZEdayDzeSYCqYwBmwWgAawjOA_YwJg7xzVN45KrmkLDNOH4aI4eds0yQHSMZmr0Yb5iTbFqNWUNRm5bvdcZ_aPF5CFtBFkM8hpWidNDDd25abg5c4980H9_8EZ_-UPZKfKbgFPRHbnQ |
CitedBy_id | crossref_primary_10_1142_S1793545813500491 crossref_primary_10_1007_s12031_024_02221_7 crossref_primary_10_1016_j_phymed_2025_156502 crossref_primary_10_1016_j_nbd_2015_09_002 crossref_primary_10_3390_cells10102669 crossref_primary_10_1021_acs_est_3c08506 crossref_primary_10_3390_antiox11081553 crossref_primary_10_1016_j_nbd_2023_106285 crossref_primary_10_3389_fncel_2021_749587 crossref_primary_10_1007_s00018_017_2463_7 crossref_primary_10_3389_fnagi_2017_00065 crossref_primary_10_1038_nrneurol_2017_162 crossref_primary_10_3389_fgene_2022_824495 crossref_primary_10_1002_hipo_23504 crossref_primary_10_1186_s13024_022_00545_9 crossref_primary_10_1016_j_ygeno_2024_110976 crossref_primary_10_1098_rsif_2014_1224 crossref_primary_10_1038_cddis_2013_503 crossref_primary_10_3389_fncel_2021_753832 crossref_primary_10_3389_fnagi_2022_968444 crossref_primary_10_1016_j_arr_2021_101451 crossref_primary_10_1371_journal_pone_0147721 crossref_primary_10_1093_brain_aww016 crossref_primary_10_1039_D4CB00189C crossref_primary_10_1111_jnc_14906 crossref_primary_10_1016_j_neulet_2015_10_024 crossref_primary_10_12677_pi_2024_133022 crossref_primary_10_1016_j_neuroscience_2021_11_001 crossref_primary_10_1007_s10571_013_9984_x crossref_primary_10_1136_postgradmedj_2013_201515rep crossref_primary_10_1093_toxsci_kfw081 crossref_primary_10_1371_journal_pone_0129618 crossref_primary_10_3390_ijms17030338 crossref_primary_10_1016_j_neuroscience_2020_01_002 crossref_primary_10_1016_j_neuroscience_2020_09_024 crossref_primary_10_4103_0366_6999_186646 crossref_primary_10_3390_ijms222313136 crossref_primary_10_1186_1750_1326_7_55 crossref_primary_10_1016_j_brainresbull_2020_10_006 crossref_primary_10_1093_hmg_ddz222 crossref_primary_10_1016_j_bbi_2014_05_003 crossref_primary_10_1017_S1740925X12000105 crossref_primary_10_3389_fphys_2020_00393 crossref_primary_10_3389_fnagi_2020_625642 crossref_primary_10_7554_eLife_92069_3 crossref_primary_10_1021_acschemneuro_3c00208 crossref_primary_10_3390_antiox2040246 crossref_primary_10_3389_fncel_2024_1516093 crossref_primary_10_1016_j_neuron_2022_10_021 crossref_primary_10_1002_cbf_3623 crossref_primary_10_1021_acs_nanolett_2c00191 crossref_primary_10_1016_j_trsl_2015_11_005 crossref_primary_10_1073_pnas_1914088116 crossref_primary_10_1016_j_bbrc_2024_150312 crossref_primary_10_1016_j_arr_2024_102615 crossref_primary_10_1016_j_neurobiolaging_2014_05_023 crossref_primary_10_3389_fnins_2017_00680 crossref_primary_10_1186_s13024_020_00417_0 crossref_primary_10_2174_1567205018666210324124239 crossref_primary_10_1096_fj_202401927R crossref_primary_10_1093_brain_aww349 crossref_primary_10_2174_1389200221666200502015203 crossref_primary_10_1007_s10571_014_0101_6 crossref_primary_10_4103_1673_5374_191224 crossref_primary_10_3390_ijms12118259 crossref_primary_10_1016_j_jpsychires_2024_09_022 crossref_primary_10_3390_ijms22052342 crossref_primary_10_1016_j_nantod_2024_102178 crossref_primary_10_1186_s13024_017_0173_0 crossref_primary_10_1021_acschemneuro_1c00537 crossref_primary_10_1186_1742_2094_9_219 crossref_primary_10_1002_marc_202300378 crossref_primary_10_1186_s12979_018_0142_7 crossref_primary_10_1016_j_envpol_2023_121843 crossref_primary_10_1002_cbic_202300132 crossref_primary_10_3390_ijms23168997 crossref_primary_10_3390_inorganics10010006 crossref_primary_10_3389_fnagi_2015_00094 crossref_primary_10_1089_lrb_2018_0079 crossref_primary_10_1016_j_bbi_2016_07_003 crossref_primary_10_1088_1757_899X_955_1_012101 crossref_primary_10_1096_fj_201801360R crossref_primary_10_3390_molecules29071478 crossref_primary_10_1186_s12868_016_0315_2 crossref_primary_10_1016_j_ejphar_2021_173873 crossref_primary_10_1016_j_pneurobio_2024_102591 crossref_primary_10_1111_febs_15861 crossref_primary_10_3390_ijms131215510 crossref_primary_10_2174_1875036201811010240 crossref_primary_10_7759_cureus_52423 crossref_primary_10_1016_j_biomaterials_2022_121690 crossref_primary_10_3153_FH22032 crossref_primary_10_1016_j_neuro_2012_12_004 crossref_primary_10_3390_biom13020313 crossref_primary_10_1111_acel_12495 crossref_primary_10_1136_jclinpath_2013_201515 crossref_primary_10_3390_ijms21249441 crossref_primary_10_1111_bpa_12478 crossref_primary_10_1021_acs_nanolett_8b03644 crossref_primary_10_1186_s40478_020_01013_5 crossref_primary_10_3390_ijms21165646 crossref_primary_10_1186_s40478_024_01770_7 crossref_primary_10_1016_j_nepig_2016_05_001 crossref_primary_10_1016_j_carbpol_2020_117124 crossref_primary_10_3389_fnins_2022_798994 crossref_primary_10_1186_s12974_023_02931_6 crossref_primary_10_3109_00207454_2014_952730 crossref_primary_10_1089_jmf_2016_3714 crossref_primary_10_3390_nu11061353 crossref_primary_10_1016_j_bbrc_2016_11_016 crossref_primary_10_1002_ajmg_c_31833 crossref_primary_10_3390_antiox11112097 crossref_primary_10_1016_j_mad_2016_09_009 crossref_primary_10_1080_14756366_2024_2418470 crossref_primary_10_1002_jbt_23660 crossref_primary_10_1016_j_nano_2021_102397 crossref_primary_10_1039_D1FO00286D crossref_primary_10_2147_NSS_S320745 crossref_primary_10_3390_ijms24031869 crossref_primary_10_3390_cells13040309 crossref_primary_10_3390_ijms21030816 crossref_primary_10_1016_j_vph_2023_107213 crossref_primary_10_3389_fncel_2023_1290628 crossref_primary_10_1039_D2CC00318J crossref_primary_10_3233_JAD_150282 crossref_primary_10_3233_JAD_231399 crossref_primary_10_1016_j_neulet_2012_02_061 crossref_primary_10_1002_advs_201902906 crossref_primary_10_1016_j_neuropharm_2014_08_012 crossref_primary_10_3390_ijms232113432 crossref_primary_10_3390_ijms23095056 crossref_primary_10_1016_j_ebiom_2015_09_053 crossref_primary_10_1016_j_exer_2013_03_009 crossref_primary_10_3390_nu14183715 crossref_primary_10_1016_j_neurobiolaging_2020_03_024 crossref_primary_10_3389_fnagi_2023_1201982 crossref_primary_10_1016_j_expneurol_2022_114230 crossref_primary_10_1186_1742_2094_9_148 crossref_primary_10_3389_fncel_2014_00129 crossref_primary_10_1002_ame2_12313 crossref_primary_10_1016_j_nbd_2015_08_025 crossref_primary_10_1016_j_brainres_2016_08_016 crossref_primary_10_1002_chem_202400870 crossref_primary_10_1016_j_nano_2018_04_014 crossref_primary_10_1080_19336918_2019_1629224 crossref_primary_10_1016_j_nbd_2019_03_010 crossref_primary_10_1111_jphp_12160 crossref_primary_10_3390_oxygen2020006 crossref_primary_10_1016_j_molimm_2020_12_035 crossref_primary_10_1089_neu_2015_3970 crossref_primary_10_1002_smll_202101743 crossref_primary_10_3109_00207454_2013_833510 crossref_primary_10_3390_nu14071417 crossref_primary_10_1016_j_jep_2018_02_025 crossref_primary_10_1016_j_bmcl_2019_126858 crossref_primary_10_1186_s40035_025_00465_w crossref_primary_10_1126_scitranslmed_abq5923 crossref_primary_10_1093_braincomms_fcae454 crossref_primary_10_1038_nm_3672 crossref_primary_10_1371_journal_pone_0178490 crossref_primary_10_3390_ijms25179379 crossref_primary_10_1172_JCI90606 crossref_primary_10_1371_journal_pone_0201878 crossref_primary_10_3389_fimmu_2019_00790 crossref_primary_10_2174_1570159X20666211223140303 crossref_primary_10_1186_s13195_024_01484_x crossref_primary_10_7554_eLife_92069 crossref_primary_10_1038_s41467_018_07991_4 crossref_primary_10_2174_0113816128270941231124102032 crossref_primary_10_1016_j_celrep_2023_113313 crossref_primary_10_1007_s11481_015_9612_2 crossref_primary_10_1021_acschemneuro_8b00556 crossref_primary_10_3390_ijms21207458 crossref_primary_10_1021_acschemneuro_6b00250 crossref_primary_10_1038_s41418_018_0195_3 crossref_primary_10_1016_j_arr_2013_12_007 crossref_primary_10_1007_s40242_021_1372_3 crossref_primary_10_1186_s13024_020_00391_7 crossref_primary_10_1016_j_ejphar_2016_06_039 crossref_primary_10_3389_fnagi_2016_00160 crossref_primary_10_1007_s11033_022_07219_1 crossref_primary_10_1186_s40035_024_00447_4 crossref_primary_10_1126_sciadv_abg4980 crossref_primary_10_1002_glia_23579 crossref_primary_10_1177_13872877241295361 crossref_primary_10_1007_s13311_013_0256_8 crossref_primary_10_3390_genes12111753 crossref_primary_10_3390_biomedicines10112982 crossref_primary_10_1038_s41582_020_00435_y crossref_primary_10_1159_000440887 crossref_primary_10_1016_j_jalz_2014_08_105 crossref_primary_10_3233_ADR_230025 crossref_primary_10_1038_s42003_019_0698_6 crossref_primary_10_1039_C8FO01713A crossref_primary_10_3389_fgene_2023_1225196 crossref_primary_10_1186_s13024_016_0088_1 crossref_primary_10_1002_pro_2524 crossref_primary_10_2174_1574885518666230427100702 crossref_primary_10_1186_s13024_023_00668_7 crossref_primary_10_2174_0115680266299847240328045737 crossref_primary_10_1155_2017_4761081 crossref_primary_10_3389_fphar_2020_00021 crossref_primary_10_1016_j_cell_2019_05_056 |
Cites_doi | 10.1038/nature04533 10.1016/S0002-9440(10)64354-4 10.1038/374647a0 10.1016/0003-2697(82)90118-X 10.1080/10286020500209087 10.1523/JNEUROSCI.1808-05.2005 10.1523/JNEUROSCI.0616-08.2008 10.2174/1568010053586237 10.1002/glia.10148 10.1097/00004647-199908000-00001 10.1038/382685a0 10.1074/jbc.M201750200 10.1080/15321810500403722 10.1111/j.1471-4159.2010.06783.x 10.4049/jimmunol.181.9.6503 10.1016/S0167-5699(97)01197-3 10.1093/brain/awn109 10.1111/j.1471-4159.2006.04015.x 10.1006/exnr.1997.6738 10.1002/jnr.20180 10.1016/S0140-6736(01)05625-2 10.1016/j.jneuroim.2009.02.003 10.1002/(SICI)1097-4547(19960115)43:2<190::AID-JNR7>3.0.CO;2-B 10.1038/382716a0 10.1016/j.neuron.2006.01.022 10.3233/JAD-2005-7304 10.4049/jimmunol.175.9.6100 10.1089/rej.2006.9096 10.1046/j.1471-4159.1998.71052123.x 10.1002/glia.20844 10.1523/JNEUROSCI.2557-04.2004 10.1038/78682 10.1523/JNEUROSCI.23-07-02665.2003 10.1016/j.febslet.2007.01.009 10.1111/j.1600-079X.2008.00570.x 10.1212/01.wnl.0000338622.27876.0d 10.1016/S0896-6273(00)80187-7 10.1523/JNEUROSCI.5047-06.2007 10.1186/1742-2094-1-21 10.1523/JNEUROSCI.5572-08.2009 10.1016/j.bcp.2008.05.018 10.1038/nn1372 10.1017/S1740925X08000136 10.1097/00001756-200105250-00030 10.1006/brbi.1995.1032 10.1002/jnr.21011 10.1016/j.arcmed.2007.10.001 10.1074/jbc.M208788200 |
ContentType | Journal Article |
Copyright | Copyright ©2011 Pan et al; licensee BioMed Central Ltd. 2011 Pan et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Copyright ©2011 Pan et al; licensee BioMed Central Ltd. 2011 Pan et al; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1186/1750-1326-6-45 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1750-1326 |
EndPage | 45 |
ExternalDocumentID | oai_doaj_org_article_160f912336e74b29bee55f52e641c753 PMC3149591 oai_biomedcentral_com_1750_1326_6_45 21718498 10_1186_1750_1326_6_45 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 123 29M 2VQ 2WC 4.4 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABIVO ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HH5 HMCUK HYE IAO IHR INH INR IPNFZ IPY ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RIG RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW ~8M NPM PJZUB PPXIY 7X8 -A0 3V. ABVAZ ACRMQ ADINQ AFGXO AFNRJ C24 5PM PUEGO |
ID | FETCH-LOGICAL-b513t-f11cd534cc663436014b09f926ca1b854d724cf0356ab3fb397ced63ec98cfc43 |
IEDL.DBID | RBZ |
ISSN | 1750-1326 |
IngestDate | Wed Aug 27 01:25:41 EDT 2025 Thu Aug 21 18:33:55 EDT 2025 Wed May 22 07:16:50 EDT 2024 Fri Jul 11 11:15:54 EDT 2025 Mon Jul 21 05:34:22 EDT 2025 Thu Apr 24 23:04:34 EDT 2025 Tue Jul 01 01:59:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b513t-f11cd534cc663436014b09f926ca1b854d724cf0356ab3fb397ced63ec98cfc43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1186/1750-1326-6-45 |
PMID | 21718498 |
PQID | 881089408 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_160f912336e74b29bee55f52e641c753 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3149591 biomedcentral_primary_oai_biomedcentral_com_1750_1326_6_45 proquest_miscellaneous_881089408 pubmed_primary_21718498 crossref_citationtrail_10_1186_1750_1326_6_45 crossref_primary_10_1186_1750_1326_6_45 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-06-30 |
PublicationDateYYYYMMDD | 2011-06-30 |
PublicationDate_xml | – month: 06 year: 2011 text: 2011-06-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Molecular neurodegeneration |
PublicationTitleAlternate | Mol Neurodegener |
PublicationYear | 2011 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | J El Khoury (202_CR7) 1996; 382 ME Bamberger (202_CR2) 2003; 23 Q Huang (202_CR50) 2006; 8 JP Cleary (202_CR25) 2005; 8 KR Miller (202_CR12) 2007; 3 KN Dahlgren (202_CR21) 2002; 277 F Bard (202_CR1) 2000; 6 BE Flanary (202_CR11) 2007; 10 J Zhou (202_CR24) 2008; 45 E Shimizu (202_CR38) 2008; 181 K Takata (202_CR9) 2007; 581 Y Yao (202_CR26) 2004; 1 S Pawate (202_CR42) 2004; 77 J Kang (202_CR19) 2001; 12 J Husemann (202_CR5) 2002; 40 YG Zhu (202_CR51) 2004; 25 DA DeWitt (202_CR34) 1998; 149 MJ May (202_CR18) 1998; 19 YJ Kim (202_CR45) 2006; 84 T Heurtaux (202_CR29) 2010; 114 XD Pan (202_CR23) 2009; 57 MD Ard (202_CR33) 1996; 43 J Koenigsknecht (202_CR3) 2004; 24 KJ Moore (202_CR46) 2002; 277 SC Lee (202_CR44) 1995; 9 KK Kopec (202_CR40) 1998; 71 A Okello (202_CR28) 2009; 72 A Cagnin (202_CR27) 2001; 358 S Mandrekar (202_CR36) 2009; 29 J Koenigsknecht-Talboo (202_CR41) 2005; 25 IS Coraci (202_CR4) 2002; 160 T Wyss-Coray (202_CR14) 2006; 12 M Fiala (202_CR35) 2005; 7 H Neumann (202_CR31) 2009; 132 LE Rojo (202_CR13) 2008; 39 HS Choi (202_CR48) 2006; 27 XD Pan (202_CR49) 2008; 76 DM Paresce (202_CR32) 1996; 17 LC Green (202_CR47) 1982; 126 R Medeiros (202_CR16) 2007; 27 A Michelucci (202_CR30) 2009; 210 P Schubert (202_CR43) 1998; 12 P Iribarren (202_CR8) 2005; 175 AR Simard (202_CR10) 2006; 49 K Heinitz (202_CR22) 2006; 98 GJ Ho (202_CR15) 2005; 4 FC Barone (202_CR37) 1999; 19 SD Yan (202_CR6) 1996; 382 S Lesne (202_CR20) 2006; 440 L Meda (202_CR17) 1995; 374 SE Hickman (202_CR39) 2008; 28 15569404 - Acta Pharmacol Sin. 2004 Dec;25(12):1606-12 9769026 - Alzheimer Dis Assoc Disord. 1998;12 Suppl 2:S21-8 18067990 - Arch Med Res. 2008 Jan;39(1):1-16 16541076 - Nature. 2006 Mar 16;440(7082):352-7 16006665 - J Alzheimers Dis. 2005 Jun;7(3):221-32; discussion 255-62 18701698 - J Neurosci. 2008 Aug 13;28(33):8354-60 9500964 - Exp Neurol. 1998 Feb;149(2):329-40 11786404 - Am J Pathol. 2002 Jan;160(1):101-12 17507561 - J Neurosci. 2007 May 16;27(20):5394-404 7715705 - Nature. 1995 Apr 13;374(6523):647-50 17240371 - FEBS Lett. 2007 Feb 6;581(3):475-8 18298462 - J Pineal Res. 2008 Sep;45(2):157-65 18567623 - Brain. 2009 Feb;132(Pt 2):288-95 15608634 - Nat Neurosci. 2005 Jan;8(1):79-84 18941241 - J Immunol. 2008 Nov 1;181(9):6503-13 7181105 - Anal Biochem. 1982 Oct;126(1):131-8 18634615 - Neuron Glia Biol. 2007 Aug;3(3):245-53 16960575 - Nat Med. 2006 Sep;12(9):1005-15 10458589 - J Cereb Blood Flow Metab. 1999 Aug;19(8):819-34 9509763 - Immunol Today. 1998 Feb;19(2):80-8 18602088 - Biochem Pharmacol. 2008 Aug 1;76(3):362-72 16945109 - J Neurochem. 2006 Sep;98(6):1930-45 11513911 - Lancet. 2001 Aug 11;358(9280):461-7 19122031 - Neurology. 2009 Jan 6;72(1):56-62 16476660 - Neuron. 2006 Feb 16;49(4):489-502 19170180 - Glia. 2009 Aug 15;57(11):1227-38 8751438 - Nature. 1996 Aug 22;382(6593):685-91 12379907 - Glia. 2002 Nov;40(2):195-205 12058030 - J Biol Chem. 2002 Aug 30;277(35):32046-53 15264224 - J Neurosci Res. 2004 Aug 15;77(4):540-51 20456016 - J Neurochem. 2010 Jul;114(2):576-86 19339619 - J Neurosci. 2009 Apr 1;29(13):4252-62 8903851 - Brain Behav Immun. 1995 Dec;9(4):345-54 16753784 - J Asian Nat Prod Res. 2006 Jan-Mar;8(1-2):61-71 12684452 - J Neurosci. 2003 Apr 1;23(7):2665-74 10932230 - Nat Med. 2000 Aug;6(8):916-9 8820967 - J Neurosci Res. 1996 Jan 15;43(2):190-202 9798938 - J Neurochem. 1998 Nov;71(5):2123-31 11388427 - Neuroreport. 2001 May 25;12(7):1449-52 16450867 - J Immunoassay Immunochem. 2006;27(1):31-44 19269040 - J Neuroimmunol. 2009 May 29;210(1-2):3-12 16148231 - J Neurosci. 2005 Sep 7;25(36):8240-9 15853747 - Curr Drug Targets Inflamm Allergy. 2005 Apr;4(2):247-56 8816718 - Neuron. 1996 Sep;17(3):553-65 16237106 - J Immunol. 2005 Nov 1;175(9):6100-6 15525768 - J Neurosci. 2004 Nov 3;24(44):9838-46 12239221 - J Biol Chem. 2002 Dec 6;277(49):47373-9 17378753 - Rejuvenation Res. 2007 Mar;10(1):61-74 16881054 - J Neurosci Res. 2006 Oct;84(5):1037-46 15500684 - J Neuroinflammation. 2004 Oct 22;1(1):21 8751442 - Nature. 1996 Aug 22;382(6593):716-9 |
References_xml | – volume: 440 start-page: 352 year: 2006 ident: 202_CR20 publication-title: Nature doi: 10.1038/nature04533 – volume: 160 start-page: 101 year: 2002 ident: 202_CR4 publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)64354-4 – volume: 374 start-page: 647 year: 1995 ident: 202_CR17 publication-title: Nature doi: 10.1038/374647a0 – volume: 126 start-page: 131 year: 1982 ident: 202_CR47 publication-title: Anal Biochem doi: 10.1016/0003-2697(82)90118-X – volume: 8 start-page: 61 year: 2006 ident: 202_CR50 publication-title: J Asian Nat Prod Res doi: 10.1080/10286020500209087 – volume: 25 start-page: 8240 year: 2005 ident: 202_CR41 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1808-05.2005 – volume: 12 start-page: S21 issue: Suppl 2 year: 1998 ident: 202_CR43 publication-title: Alzheimer Dis Assoc Disord – volume: 28 start-page: 8354 year: 2008 ident: 202_CR39 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0616-08.2008 – volume: 4 start-page: 247 year: 2005 ident: 202_CR15 publication-title: Curr Drug Targets Inflamm Allergy doi: 10.2174/1568010053586237 – volume: 40 start-page: 195 year: 2002 ident: 202_CR5 publication-title: Glia doi: 10.1002/glia.10148 – volume: 19 start-page: 819 year: 1999 ident: 202_CR37 publication-title: J Cereb Blood Flow Metab doi: 10.1097/00004647-199908000-00001 – volume: 382 start-page: 685 year: 1996 ident: 202_CR6 publication-title: Nature doi: 10.1038/382685a0 – volume: 277 start-page: 32046 year: 2002 ident: 202_CR21 publication-title: J Biol Chem doi: 10.1074/jbc.M201750200 – volume: 27 start-page: 31 year: 2006 ident: 202_CR48 publication-title: J Immunoassay Immunochem doi: 10.1080/15321810500403722 – volume: 114 start-page: 576 year: 2010 ident: 202_CR29 publication-title: J Neurochem doi: 10.1111/j.1471-4159.2010.06783.x – volume: 25 start-page: 1606 year: 2004 ident: 202_CR51 publication-title: Acta Pharmacol Sin – volume: 181 start-page: 6503 year: 2008 ident: 202_CR38 publication-title: J Immunol doi: 10.4049/jimmunol.181.9.6503 – volume: 19 start-page: 80 year: 1998 ident: 202_CR18 publication-title: Immunol Today doi: 10.1016/S0167-5699(97)01197-3 – volume: 132 start-page: 288 year: 2009 ident: 202_CR31 publication-title: Brain doi: 10.1093/brain/awn109 – volume: 98 start-page: 1930 year: 2006 ident: 202_CR22 publication-title: J Neurochem doi: 10.1111/j.1471-4159.2006.04015.x – volume: 149 start-page: 329 year: 1998 ident: 202_CR34 publication-title: Exp Neurol doi: 10.1006/exnr.1997.6738 – volume: 77 start-page: 540 year: 2004 ident: 202_CR42 publication-title: J Neurosci Res doi: 10.1002/jnr.20180 – volume: 358 start-page: 461 year: 2001 ident: 202_CR27 publication-title: Lancet doi: 10.1016/S0140-6736(01)05625-2 – volume: 210 start-page: 3 year: 2009 ident: 202_CR30 publication-title: J Neuroimmunol doi: 10.1016/j.jneuroim.2009.02.003 – volume: 43 start-page: 190 year: 1996 ident: 202_CR33 publication-title: J Neurosci Res doi: 10.1002/(SICI)1097-4547(19960115)43:2<190::AID-JNR7>3.0.CO;2-B – volume: 382 start-page: 716 year: 1996 ident: 202_CR7 publication-title: Nature doi: 10.1038/382716a0 – volume: 49 start-page: 489 year: 2006 ident: 202_CR10 publication-title: Neuron doi: 10.1016/j.neuron.2006.01.022 – volume: 12 start-page: 1005 year: 2006 ident: 202_CR14 publication-title: Nat Med – volume: 7 start-page: 221 year: 2005 ident: 202_CR35 publication-title: J Alzheimers Dis doi: 10.3233/JAD-2005-7304 – volume: 175 start-page: 6100 year: 2005 ident: 202_CR8 publication-title: J Immunol doi: 10.4049/jimmunol.175.9.6100 – volume: 10 start-page: 61 year: 2007 ident: 202_CR11 publication-title: Rejuvenation Res doi: 10.1089/rej.2006.9096 – volume: 71 start-page: 2123 year: 1998 ident: 202_CR40 publication-title: J Neurochem doi: 10.1046/j.1471-4159.1998.71052123.x – volume: 57 start-page: 1227 year: 2009 ident: 202_CR23 publication-title: Glia doi: 10.1002/glia.20844 – volume: 24 start-page: 9838 year: 2004 ident: 202_CR3 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2557-04.2004 – volume: 6 start-page: 916 year: 2000 ident: 202_CR1 publication-title: Nat Med doi: 10.1038/78682 – volume: 23 start-page: 2665 year: 2003 ident: 202_CR2 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-07-02665.2003 – volume: 581 start-page: 475 year: 2007 ident: 202_CR9 publication-title: FEBS Lett doi: 10.1016/j.febslet.2007.01.009 – volume: 45 start-page: 157 year: 2008 ident: 202_CR24 publication-title: J Pineal Res doi: 10.1111/j.1600-079X.2008.00570.x – volume: 72 start-page: 56 year: 2009 ident: 202_CR28 publication-title: Neurology doi: 10.1212/01.wnl.0000338622.27876.0d – volume: 17 start-page: 553 year: 1996 ident: 202_CR32 publication-title: Neuron doi: 10.1016/S0896-6273(00)80187-7 – volume: 27 start-page: 5394 year: 2007 ident: 202_CR16 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5047-06.2007 – volume: 1 start-page: 21 year: 2004 ident: 202_CR26 publication-title: J Neuroinflammation doi: 10.1186/1742-2094-1-21 – volume: 29 start-page: 4252 year: 2009 ident: 202_CR36 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5572-08.2009 – volume: 76 start-page: 362 year: 2008 ident: 202_CR49 publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2008.05.018 – volume: 8 start-page: 79 year: 2005 ident: 202_CR25 publication-title: Nat Neurosci doi: 10.1038/nn1372 – volume: 3 start-page: 245 year: 2007 ident: 202_CR12 publication-title: Neuron Glia Biol doi: 10.1017/S1740925X08000136 – volume: 12 start-page: 1449 year: 2001 ident: 202_CR19 publication-title: Neuroreport doi: 10.1097/00001756-200105250-00030 – volume: 9 start-page: 345 year: 1995 ident: 202_CR44 publication-title: Brain Behav Immun doi: 10.1006/brbi.1995.1032 – volume: 84 start-page: 1037 year: 2006 ident: 202_CR45 publication-title: J Neurosci Res doi: 10.1002/jnr.21011 – volume: 39 start-page: 1 year: 2008 ident: 202_CR13 publication-title: Arch Med Res doi: 10.1016/j.arcmed.2007.10.001 – volume: 277 start-page: 47373 year: 2002 ident: 202_CR46 publication-title: J Biol Chem doi: 10.1074/jbc.M208788200 – reference: 18298462 - J Pineal Res. 2008 Sep;45(2):157-65 – reference: 19339619 - J Neurosci. 2009 Apr 1;29(13):4252-62 – reference: 12379907 - Glia. 2002 Nov;40(2):195-205 – reference: 16148231 - J Neurosci. 2005 Sep 7;25(36):8240-9 – reference: 10932230 - Nat Med. 2000 Aug;6(8):916-9 – reference: 17378753 - Rejuvenation Res. 2007 Mar;10(1):61-74 – reference: 16945109 - J Neurochem. 2006 Sep;98(6):1930-45 – reference: 16476660 - Neuron. 2006 Feb 16;49(4):489-502 – reference: 7715705 - Nature. 1995 Apr 13;374(6523):647-50 – reference: 12684452 - J Neurosci. 2003 Apr 1;23(7):2665-74 – reference: 17507561 - J Neurosci. 2007 May 16;27(20):5394-404 – reference: 18567623 - Brain. 2009 Feb;132(Pt 2):288-95 – reference: 15525768 - J Neurosci. 2004 Nov 3;24(44):9838-46 – reference: 8820967 - J Neurosci Res. 1996 Jan 15;43(2):190-202 – reference: 18701698 - J Neurosci. 2008 Aug 13;28(33):8354-60 – reference: 16960575 - Nat Med. 2006 Sep;12(9):1005-15 – reference: 8903851 - Brain Behav Immun. 1995 Dec;9(4):345-54 – reference: 18941241 - J Immunol. 2008 Nov 1;181(9):6503-13 – reference: 15264224 - J Neurosci Res. 2004 Aug 15;77(4):540-51 – reference: 12239221 - J Biol Chem. 2002 Dec 6;277(49):47373-9 – reference: 15608634 - Nat Neurosci. 2005 Jan;8(1):79-84 – reference: 8751442 - Nature. 1996 Aug 22;382(6593):716-9 – reference: 8816718 - Neuron. 1996 Sep;17(3):553-65 – reference: 19269040 - J Neuroimmunol. 2009 May 29;210(1-2):3-12 – reference: 9769026 - Alzheimer Dis Assoc Disord. 1998;12 Suppl 2:S21-8 – reference: 11513911 - Lancet. 2001 Aug 11;358(9280):461-7 – reference: 8751438 - Nature. 1996 Aug 22;382(6593):685-91 – reference: 11388427 - Neuroreport. 2001 May 25;12(7):1449-52 – reference: 9509763 - Immunol Today. 1998 Feb;19(2):80-8 – reference: 10458589 - J Cereb Blood Flow Metab. 1999 Aug;19(8):819-34 – reference: 19170180 - Glia. 2009 Aug 15;57(11):1227-38 – reference: 16753784 - J Asian Nat Prod Res. 2006 Jan-Mar;8(1-2):61-71 – reference: 16237106 - J Immunol. 2005 Nov 1;175(9):6100-6 – reference: 15500684 - J Neuroinflammation. 2004 Oct 22;1(1):21 – reference: 17240371 - FEBS Lett. 2007 Feb 6;581(3):475-8 – reference: 7181105 - Anal Biochem. 1982 Oct;126(1):131-8 – reference: 16541076 - Nature. 2006 Mar 16;440(7082):352-7 – reference: 16450867 - J Immunoassay Immunochem. 2006;27(1):31-44 – reference: 9500964 - Exp Neurol. 1998 Feb;149(2):329-40 – reference: 18602088 - Biochem Pharmacol. 2008 Aug 1;76(3):362-72 – reference: 18067990 - Arch Med Res. 2008 Jan;39(1):1-16 – reference: 9798938 - J Neurochem. 1998 Nov;71(5):2123-31 – reference: 18634615 - Neuron Glia Biol. 2007 Aug;3(3):245-53 – reference: 15569404 - Acta Pharmacol Sin. 2004 Dec;25(12):1606-12 – reference: 16006665 - J Alzheimers Dis. 2005 Jun;7(3):221-32; discussion 255-62 – reference: 11786404 - Am J Pathol. 2002 Jan;160(1):101-12 – reference: 16881054 - J Neurosci Res. 2006 Oct;84(5):1037-46 – reference: 12058030 - J Biol Chem. 2002 Aug 30;277(35):32046-53 – reference: 15853747 - Curr Drug Targets Inflamm Allergy. 2005 Apr;4(2):247-56 – reference: 19122031 - Neurology. 2009 Jan 6;72(1):56-62 – reference: 20456016 - J Neurochem. 2010 Jul;114(2):576-86 |
SSID | ssj0047005 |
Score | 2.4042017 |
Snippet | Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident microglia fail to... BACKGROUND: Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident... Abstract Background Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial... |
SourceID | doaj pubmedcentral biomedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 45 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQV2wQUB7DS14gurIax-_uBkRVIZUVlbqzYseeiZQmVWdmMaz5Ij6Eb-LayYwmPMSGTRbxleLkHvueE19fI_SWmai9LAOB4KEI9zISHUsGUgWu0lRK5V3vl5_lxRX_dC2uD476SjlhQ3ng4cOdUllEA9Mrk0FxVxoXghBRlEFy6oFrp9kXYt5OTA1zMFdFTl6E2FgQ0FtyLNdItTzd3yOSpE1Mk33u7SQ85Sr-f6Kev2ZQHoSk84fowcgl8Xx4h0foXugeo-N5Bzr6Zovf4ZzdmX-bH6NvlynzbtEC3PDtslr0frvuV80KgyYH79bYbXFM6f8Aizv84zupbkDKNzUGk1SCs9sAKc1Wfdss-rzOc2B2hpuD1HQMTBjP26_L0IDhyQqPy0BP0NX5xy8fLsh4AgNxgrI1iZT6WjDuPRATzkC8cVeYaErpK-q04LUquY8FE7JyLDogN9BjyYI32kfP2VN01PVdeI4wCDMgLyaomoOCERWoV6WA7EXNaO3rcobOJo6wt0O1DZvqX09bYCja5EWbvGil5WKGyM5r1o-1zdMRG63NGkfL3-xP9va75_zN8n0CwaQ3-QZg1I4Ytf_C6AzhHYQsjN60JFN1od-srNa00IYXeoaeDYjaPwm0IqhvAy1qgrVJV6YtXbPMBcJZkr2GvvgffX-J7g-_0VOK5Ct0tL7bhNfAw9buTR5yPwFyKzEe priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLggoDzCSz4gejIk8bsSQguiqpCWEyv1ZiWOvRspTdp9SCxnfhE_hN_E2JtdNm25cMkhmShW5pvM98XjMUKvqfbKitwRSB6SMCs8UT6nIFXgKHQhZVz1Pv4qTifsyxk_-1v_1L_AxY3SLuwnNZk3b79frj9AwL-PAa_EO8iAKQFVJYggjN9GdyAryRCkY7abUWAS4NY3bbx-T2wJDF9pptWVhe_NIF_Ftv43cdGrJZV7OerkPrrXk0s82qDhAbrl2ofocNSCsD5f4zc4lnvG_-iH6Oc4lOJNG8AfvpgV086ul92iXmAQ6eDuCpdr7MN6AMDJHP_-RYpz0PZ1hcEk9ORsV8BSo1XX1NMuTvzsmR3jeq9WHQM1xqPmx8zVYHi0wP280CM0Ofn87dMp6bdkICXP6JL4LLMVp8xaYCqMgppjZaq9zoUtslJxVsmcWZ9SLoqS-hLYDoxYUGe1st4y-hgdtF3rniIMSg3YjHayYiBpeAFyVkpgf17RrLJVnqDjgSPMxab9hgkNsYdXIDZNcKgJDjXCMJ4gsvWasX2z87DnRmOi6FHimv3Rzn77nH9ZfgwgGIwmnujmU9NHu8lE6jVwAiqcZGWuS-c49zx3gmUWBGKC8BZCBsI5zNEUretWC6NUlirNUpWgJxtE7Z60RWiC5ABrg6EMr7T1LHYMp0EH6-zZf9_5HN3d_EwPhZIv0MFyvnIvgY0ty1cxzP4ACAQ3Pw priority: 102 providerName: Scholars Portal |
Title | Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer's disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21718498 https://www.proquest.com/docview/881089408 http://dx.doi.org/10.1186/1750-1326-6-45 https://pubmed.ncbi.nlm.nih.gov/PMC3149591 https://doaj.org/article/160f912336e74b29bee55f52e641c753 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBbW9rLLsK17ZI9Ah2E9CbOtd2_J0KIIkGLYViDYRbBlKTWQ2kWTHLLzftF-yH7TKMXJ4nQ77SIDFg0LJmnyIykKoXdUe2VF5ggYD0mYFZ4on1GAKjAKnUsZd72PL8XFFRtN-ORPvGMvg58q8QHsW0IAMwkiCOMH6ChjYAUDLh9-2_xzmUxiseKWtm3PeP_5vX3ts445il37_-Zq7ldM7pig88foUes74sGa2U_QA1c_RceDGnDzzQq_x7GaM4bJj9GPcai0m85AvPDtdT5t7GrRzKs5BgwO3CxxscI-lPuDGNzhXz9JfgPQvSoxkISWm_USnNBI1cyqaRPzOjtkp7jaKUXH4Pniwez7tauA8GSO27TPM3R1fvb14wVpT1wgBU_pgvg0tSWnzFpwRBgFsMaKRHudCZunheKslBmzPqFc5AX1BTgzsGJBndXKesvoc3RYN7V7iTAAMWCTdrIEdkmeA1qVEpw7r2ha2jLrodMOI8zturuGCf2uuzOgeiZw0QQuGmEY7yGy4ZqxbS_zcKTGzERMo8Q9-pMt_eY9_6IcBiHorCbeAJE0rTKbVCReg8mnwklWZLpwjnPPMydYagH_9RDeiJABbQ0pmLx2zXJulEoTpVmieujFWqK2bwJsCGhbw4zsyFpnKd2ZurqODcFpgLk6ffU_n_Q1ergOl4dSyDfocHG3dG_B31oUfXQgJ7KPjgaD0ZcRXIdnl58-92P0AsYxU_2ojL8BkCcvzA |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOcAFAQW6PH1A9BRI4ndvW0RVoNsD2koVFytx7N1I2aTax2E584v4Ifwmxt5ktWnhxCWHeFYZ7Yzj74tnPiP0lignDU9tBIuHiKjhLpIuJUBV4MpVJkToeh9d8LNL-uWKXe2hcdcLM-sOhQ1yjgUwZy--7H18v9uPXoWXeFc7tpn6kn-AtTCOgF_xiEeU3UF3BWPCn2vw7eR7936mIg6FjVvbVsrx9u9v9MBXvaUrKPz_DZberK7cWa5OH6IHLc7Ew43vj9CerR-jg2ENHHu2xu9wqPwMn9QP0M-Rr8qbVJCK-HqaTRqzXjaLcoGBr0PkC5yvsfOtAZAyc_z7V5TNgOaXBQYTL89ZrwCwBqumKidN2APaMTvG5U7ZOgaUjIfVj6ktwfBogdstoifo8vTT-ONZ1J7OEOUsIcvIJYkpGKHGAGihBIgdzWPlVMpNluSS0UKk1LiYMJ7lxOUAfMBjTqxR0jhDyVO0Xze1PUQYSBsAG2VFQYHdsAyYrRAABJ0kSWGKdICOe4HQ1xslDu21sfsjkBbaR1H7KGquKRugqIuaNq3uuT9-o9KB_0h-y_5oa98951-WJz4Jet6EG818otvc1AmPnQJ4QLgVNE9Vbi1jjqWW08QAVxwg3KWQhpntt2uy2jarhZYyiaWisRygZ5uM2j4JeCQwcwUjopdrPVf6I3U5DeLhxFNilTz_n7_0Dbp3Nh6d6_PPF19foPubz-y-hPIl2l_OV_YV4LRl_jpMuz99pD8h |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaWRUJcELDAlqcPiD2ZTeJXsrcuUC2PXSFEpRUXK3HsNiJNqj4O5cwv4ofwmxg7SdXswolLVdVTxcrMxN8Xz3xG6CVNbKxFZAgsHpIwLSyJbUSBqsCnSFIpfdf7-YU4G7MPl_xyD427XphZdyisl3PMgTk78WU3x9e7_eilf4jDF_39eJ7bJvdjcQyLYUCAYAkiCOM30E3JuXT5-uX0W_eAZjLwlY1b21bL8fr_rzTBl721y0v8_w2XXi2v3FmvRnfRnRZo4mETGffQnqnuo4NhBSR7tsGvsC_99O_UD9DPc1eWNykhFvF8mk5qvVnVy2KJgbCD63OcbbB1vQEQMwv8-xdJZ8DzixyDidPnrNaAWL1VXRaT2m8C7Zid4GKnbh0DTMbD8sfUFGB4tMTtHtEDNB69-_rmjLTHM5CMh3RFbBjqnFOmNaAWRoHZsSxIbBIJnYZZzFkuI6ZtQLlIM2ozQD4wY0GNTmJtNaMP0X5VV-YQYWBtgGwSI3MG9IanQG2lBCRoYxrmOo8G6KTnCDVvpDiUE8fuj0BcKOdF5byohGJ8gEjnNaVb4XN3_kapPAGKxTX7o619d51_WZ66IOjNxv9QLyaqzXwVisAmgA-oMJJlUZIZw7nlkREs1EAWBwh3IaQgtd1-TVqZer1UcRwGccKCeIAeNRG1vRIQSaDmCYzIXqz1ptIfqYqpVw-njhMn4eP_uaUv0K3Pb0fq0_uLj0_Q7eY1uyuhfIr2V4u1eQY4bZU991n3B-n9Puw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microglial+phagocytosis+induced+by+fibrillar+%CE%B2-amyloid+is+attenuated+by+oligomeric+%CE%B2-amyloid%3A+implications+for+Alzheimer%27s+disease&rft.jtitle=Molecular+neurodegeneration&rft.au=Pan%2C+Xiao-dong&rft.au=Zhu%2C+Yuan-gui&rft.au=Lin%2C+Nan&rft.au=Zhang%2C+Jing&rft.date=2011-06-30&rft.pub=BioMed+Central&rft.eissn=1750-1326&rft.volume=6&rft.spage=45&rft.epage=45&rft_id=info:doi/10.1186%2F1750-1326-6-45&rft_id=info%3Apmid%2F21718498&rft.externalDocID=PMC3149591 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-1326&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-1326&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-1326&client=summon |