Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer's disease

Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric A...

Full description

Saved in:
Bibliographic Details
Published inMolecular neurodegeneration Vol. 6; no. 1; p. 45
Main Authors Pan, Xiao-dong, Zhu, Yuan-gui, Lin, Nan, Zhang, Jing, Ye, Qin-yong, Huang, Hua-pin, Chen, Xiao-chun
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 30.06.2011
BioMed Central
BMC
Online AccessGet full text

Cover

Loading…
Abstract Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ), a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ). However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear. We demonstrated that Aβ(1-42) fibrils, not Aβ(1-42) oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42) not only attenuated fAβ(1-42)-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42). Compared with the fAβ(1-42) treatment, the oAβ(1-42) treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β) level and produced higher levels of tumor necrosis factor-α (TNF-α), nitric oxide (NO), prostaglandin E2 (PGE2) and intracellular superoxide anion (SOA). The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42)-induced microglia was decreased by IL-1β, lippolysaccharide (LPS) and tert-butyl hydroperoxide (t-BHP). The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC), a nuclear factor-κB (NF-κB) inhibitor, and N-acetyl-L-cysteine (NAC), a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42) stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1), and Ig receptor FcγRIII, and significantly increased that of formyl peptide receptor 2 (FPR2) and scavenger receptor class B1 (SRB1), compared with the basal level. Interestingly, the pre-stimulation with oAβ(1-42) or the inflammatory and oxidative milieu (IL-1β, LPS or t-BHP) significantly downregulated the fAβ(1-42)-induced mRNA over-expression of CD36, CD47 and Itgb1 receptors in microglial cells. These results imply that Aβ oligomers induce a potent inflammatory response and subsequently disturb microglial phagocytosis and clearance of Aβ fibrils, thereby contributing to an initial neurodegenerative characteristic of AD. Antiinflammatory and antioxidative therapies may indeed prove beneficial to delay the progression of AD.
AbstractList BACKGROUND: Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ), a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ). However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear. RESULTS: We demonstrated that Aβ(1-42) fibrils, not Aβ(1-42) oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42) not only attenuated fAβ(1-42)-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42). Compared with the fAβ(1-42) treatment, the oAβ(1-42) treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β) level and produced higher levels of tumor necrosis factor-α (TNF-α), nitric oxide (NO), prostaglandin E2 (PGE2) and intracellular superoxide anion (SOA). The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42)-induced microglia was decreased by IL-1β, lippolysaccharide (LPS) and tert-butyl hydroperoxide (t-BHP). The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC), a nuclear factor-κB (NF-κB) inhibitor, and N-acetyl-L-cysteine (NAC), a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42) stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1), and Ig receptor FcγRIII, and significantly increased that of formyl peptide receptor 2 (FPR2) and scavenger receptor class B1 (SRB1), compared with the basal level. Interestingly, the pre-stimulation with oAβ(1-42) or the inflammatory and oxidative milieu (IL-1β, LPS or t-BHP) significantly downregulated the fAβ(1-42)-induced mRNA over-expression of CD36, CD47 and Itgb1 receptors in microglial cells. CONCLUSION: These results imply that Aβ oligomers induce a potent inflammatory response and subsequently disturb microglial phagocytosis and clearance of Aβ fibrils, thereby contributing to an initial neurodegenerative characteristic of AD. Antiinflammatory and antioxidative therapies may indeed prove beneficial to delay the progression of AD.
Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ), a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ). However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear.BACKGROUNDReactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ), a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ). However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear.We demonstrated that Aβ(1-42) fibrils, not Aβ(1-42) oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42) not only attenuated fAβ(1-42)-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42). Compared with the fAβ(1-42) treatment, the oAβ(1-42) treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β) level and produced higher levels of tumor necrosis factor-α (TNF-α), nitric oxide (NO), prostaglandin E2 (PGE2) and intracellular superoxide anion (SOA). The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42)-induced microglia was decreased by IL-1β, lippolysaccharide (LPS) and tert-butyl hydroperoxide (t-BHP). The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC), a nuclear factor-κB (NF-κB) inhibitor, and N-acetyl-L-cysteine (NAC), a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42) stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1), and Ig receptor FcγRIII, and significantly increased that of formyl peptide receptor 2 (FPR2) and scavenger receptor class B1 (SRB1), compared with the basal level. Interestingly, the pre-stimulation with oAβ(1-42) or the inflammatory and oxidative milieu (IL-1β, LPS or t-BHP) significantly downregulated the fAβ(1-42)-induced mRNA over-expression of CD36, CD47 and Itgb1 receptors in microglial cells.RESULTSWe demonstrated that Aβ(1-42) fibrils, not Aβ(1-42) oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42) not only attenuated fAβ(1-42)-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42). Compared with the fAβ(1-42) treatment, the oAβ(1-42) treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β) level and produced higher levels of tumor necrosis factor-α (TNF-α), nitric oxide (NO), prostaglandin E2 (PGE2) and intracellular superoxide anion (SOA). The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42)-induced microglia was decreased by IL-1β, lippolysaccharide (LPS) and tert-butyl hydroperoxide (t-BHP). The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC), a nuclear factor-κB (NF-κB) inhibitor, and N-acetyl-L-cysteine (NAC), a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42) stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1), and Ig receptor FcγRIII, and significantly increased that of formyl peptide receptor 2 (FPR2) and scavenger receptor class B1 (SRB1), compared with the basal level. Interestingly, the pre-stimulation with oAβ(1-42) or the inflammatory and oxidative milieu (IL-1β, LPS or t-BHP) significantly downregulated the fAβ(1-42)-induced mRNA over-expression of CD36, CD47 and Itgb1 receptors in microglial cells.These results imply that Aβ oligomers induce a potent inflammatory response and subsequently disturb microglial phagocytosis and clearance of Aβ fibrils, thereby contributing to an initial neurodegenerative characteristic of AD. Antiinflammatory and antioxidative therapies may indeed prove beneficial to delay the progression of AD.CONCLUSIONThese results imply that Aβ oligomers induce a potent inflammatory response and subsequently disturb microglial phagocytosis and clearance of Aβ fibrils, thereby contributing to an initial neurodegenerative characteristic of AD. Antiinflammatory and antioxidative therapies may indeed prove beneficial to delay the progression of AD.
Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ), a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ). However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear. We demonstrated that Aβ(1-42) fibrils, not Aβ(1-42) oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42) not only attenuated fAβ(1-42)-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42). Compared with the fAβ(1-42) treatment, the oAβ(1-42) treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β) level and produced higher levels of tumor necrosis factor-α (TNF-α), nitric oxide (NO), prostaglandin E2 (PGE2) and intracellular superoxide anion (SOA). The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42)-induced microglia was decreased by IL-1β, lippolysaccharide (LPS) and tert-butyl hydroperoxide (t-BHP). The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC), a nuclear factor-κB (NF-κB) inhibitor, and N-acetyl-L-cysteine (NAC), a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42) stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1), and Ig receptor FcγRIII, and significantly increased that of formyl peptide receptor 2 (FPR2) and scavenger receptor class B1 (SRB1), compared with the basal level. Interestingly, the pre-stimulation with oAβ(1-42) or the inflammatory and oxidative milieu (IL-1β, LPS or t-BHP) significantly downregulated the fAβ(1-42)-induced mRNA over-expression of CD36, CD47 and Itgb1 receptors in microglial cells. These results imply that Aβ oligomers induce a potent inflammatory response and subsequently disturb microglial phagocytosis and clearance of Aβ fibrils, thereby contributing to an initial neurodegenerative characteristic of AD. Antiinflammatory and antioxidative therapies may indeed prove beneficial to delay the progression of AD.
Abstract Background Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ), a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ). However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear. Results We demonstrated that Aβ(1-42) fibrils, not Aβ(1-42) oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42) not only attenuated fAβ(1-42)-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42). Compared with the fAβ(1-42) treatment, the oAβ(1-42) treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β) level and produced higher levels of tumor necrosis factor-α (TNF-α), nitric oxide (NO), prostaglandin E2 (PGE2) and intracellular superoxide anion (SOA). The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42)-induced microglia was decreased by IL-1β, lippolysaccharide (LPS) and tert-butyl hydroperoxide (t-BHP). The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC), a nuclear factor-κB (NF-κB) inhibitor, and N-acetyl-L-cysteine (NAC), a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42) stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1), and Ig receptor FcγRIII, and significantly increased that of formyl peptide receptor 2 (FPR2) and scavenger receptor class B1 (SRB1), compared with the basal level. Interestingly, the pre-stimulation with oAβ(1-42) or the inflammatory and oxidative milieu (IL-1β, LPS or t-BHP) significantly downregulated the fAβ(1-42)-induced mRNA over-expression of CD36, CD47 and Itgb1 receptors in microglial cells. Conclusion These results imply that Aβ oligomers induce a potent inflammatory response and subsequently disturb microglial phagocytosis and clearance of Aβ fibrils, thereby contributing to an initial neurodegenerative characteristic of AD. Antiinflammatory and antioxidative therapies may indeed prove beneficial to delay the progression of AD.
ArticleNumber 45
Author Chen, Xiao-chun
Zhang, Jing
Pan, Xiao-dong
Zhu, Yuan-gui
Ye, Qin-yong
Huang, Hua-pin
Lin, Nan
AuthorAffiliation 1 Department of Neurology, Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
2 Fujian Institute of Geriatrics, Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
3 Centre of Neurobiology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
AuthorAffiliation_xml – name: 3 Centre of Neurobiology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
– name: 1 Department of Neurology, Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
– name: 2 Fujian Institute of Geriatrics, Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
Author_xml – sequence: 1
  givenname: Xiao-dong
  surname: Pan
  fullname: Pan, Xiao-dong
– sequence: 2
  givenname: Yuan-gui
  surname: Zhu
  fullname: Zhu, Yuan-gui
– sequence: 3
  givenname: Nan
  surname: Lin
  fullname: Lin, Nan
– sequence: 4
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
– sequence: 5
  givenname: Qin-yong
  surname: Ye
  fullname: Ye, Qin-yong
– sequence: 6
  givenname: Hua-pin
  surname: Huang
  fullname: Huang, Hua-pin
– sequence: 7
  givenname: Xiao-chun
  surname: Chen
  fullname: Chen, Xiao-chun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21718498$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhiNURD_gyhHl1lOKHX8k5oC0qqBUKuICZ8t27OxUTrzYSaXlzC_ih_Cb6jZttQvqydbMO8_M6J3j4mAMoy2KtxidYdzy97hhqMKk5hWvKHtRHD0FDnb-h8VxStcI0QYh9qo4rHGDWyrao-L3VzAx9B6ULzdr1QeznUKCVMLYzcZ2pd6WDnQE71Us__6p1LD1AboyS9Q02XFW06IKHvow2AhmR_ahhGHjwagJwphKF2K58r_WFrLwNJUdJKuSfV28dMon--bhPSl-fP70_fxLdfXt4vJ8dVVphslUOYxNxwg1hnNCCUeYaiScqLlRWLeMdk1NjUOEcaWJ00Q0eQNOrBGtcYaSk-Jy4XZBXctNhEHFrQwK5H0gxF6qOIHxVmKOnMA1Idw2VNdCW8uYY7XlFJuGkcz6uLA2sx5sZ-w4ReX3oPuZEdayDzeSYCqYwBmwWgAawjOA_YwJg7xzVN45KrmkLDNOH4aI4eds0yQHSMZmr0Yb5iTbFqNWUNRm5bvdcZ_aPF5CFtBFkM8hpWidNDDd25abg5c4980H9_8EZ_-UPZKfKbgFPRHbnQ
CitedBy_id crossref_primary_10_1142_S1793545813500491
crossref_primary_10_1007_s12031_024_02221_7
crossref_primary_10_1016_j_phymed_2025_156502
crossref_primary_10_1016_j_nbd_2015_09_002
crossref_primary_10_3390_cells10102669
crossref_primary_10_1021_acs_est_3c08506
crossref_primary_10_3390_antiox11081553
crossref_primary_10_1016_j_nbd_2023_106285
crossref_primary_10_3389_fncel_2021_749587
crossref_primary_10_1007_s00018_017_2463_7
crossref_primary_10_3389_fnagi_2017_00065
crossref_primary_10_1038_nrneurol_2017_162
crossref_primary_10_3389_fgene_2022_824495
crossref_primary_10_1002_hipo_23504
crossref_primary_10_1186_s13024_022_00545_9
crossref_primary_10_1016_j_ygeno_2024_110976
crossref_primary_10_1098_rsif_2014_1224
crossref_primary_10_1038_cddis_2013_503
crossref_primary_10_3389_fncel_2021_753832
crossref_primary_10_3389_fnagi_2022_968444
crossref_primary_10_1016_j_arr_2021_101451
crossref_primary_10_1371_journal_pone_0147721
crossref_primary_10_1093_brain_aww016
crossref_primary_10_1039_D4CB00189C
crossref_primary_10_1111_jnc_14906
crossref_primary_10_1016_j_neulet_2015_10_024
crossref_primary_10_12677_pi_2024_133022
crossref_primary_10_1016_j_neuroscience_2021_11_001
crossref_primary_10_1007_s10571_013_9984_x
crossref_primary_10_1136_postgradmedj_2013_201515rep
crossref_primary_10_1093_toxsci_kfw081
crossref_primary_10_1371_journal_pone_0129618
crossref_primary_10_3390_ijms17030338
crossref_primary_10_1016_j_neuroscience_2020_01_002
crossref_primary_10_1016_j_neuroscience_2020_09_024
crossref_primary_10_4103_0366_6999_186646
crossref_primary_10_3390_ijms222313136
crossref_primary_10_1186_1750_1326_7_55
crossref_primary_10_1016_j_brainresbull_2020_10_006
crossref_primary_10_1093_hmg_ddz222
crossref_primary_10_1016_j_bbi_2014_05_003
crossref_primary_10_1017_S1740925X12000105
crossref_primary_10_3389_fphys_2020_00393
crossref_primary_10_3389_fnagi_2020_625642
crossref_primary_10_7554_eLife_92069_3
crossref_primary_10_1021_acschemneuro_3c00208
crossref_primary_10_3390_antiox2040246
crossref_primary_10_3389_fncel_2024_1516093
crossref_primary_10_1016_j_neuron_2022_10_021
crossref_primary_10_1002_cbf_3623
crossref_primary_10_1021_acs_nanolett_2c00191
crossref_primary_10_1016_j_trsl_2015_11_005
crossref_primary_10_1073_pnas_1914088116
crossref_primary_10_1016_j_bbrc_2024_150312
crossref_primary_10_1016_j_arr_2024_102615
crossref_primary_10_1016_j_neurobiolaging_2014_05_023
crossref_primary_10_3389_fnins_2017_00680
crossref_primary_10_1186_s13024_020_00417_0
crossref_primary_10_2174_1567205018666210324124239
crossref_primary_10_1096_fj_202401927R
crossref_primary_10_1093_brain_aww349
crossref_primary_10_2174_1389200221666200502015203
crossref_primary_10_1007_s10571_014_0101_6
crossref_primary_10_4103_1673_5374_191224
crossref_primary_10_3390_ijms12118259
crossref_primary_10_1016_j_jpsychires_2024_09_022
crossref_primary_10_3390_ijms22052342
crossref_primary_10_1016_j_nantod_2024_102178
crossref_primary_10_1186_s13024_017_0173_0
crossref_primary_10_1021_acschemneuro_1c00537
crossref_primary_10_1186_1742_2094_9_219
crossref_primary_10_1002_marc_202300378
crossref_primary_10_1186_s12979_018_0142_7
crossref_primary_10_1016_j_envpol_2023_121843
crossref_primary_10_1002_cbic_202300132
crossref_primary_10_3390_ijms23168997
crossref_primary_10_3390_inorganics10010006
crossref_primary_10_3389_fnagi_2015_00094
crossref_primary_10_1089_lrb_2018_0079
crossref_primary_10_1016_j_bbi_2016_07_003
crossref_primary_10_1088_1757_899X_955_1_012101
crossref_primary_10_1096_fj_201801360R
crossref_primary_10_3390_molecules29071478
crossref_primary_10_1186_s12868_016_0315_2
crossref_primary_10_1016_j_ejphar_2021_173873
crossref_primary_10_1016_j_pneurobio_2024_102591
crossref_primary_10_1111_febs_15861
crossref_primary_10_3390_ijms131215510
crossref_primary_10_2174_1875036201811010240
crossref_primary_10_7759_cureus_52423
crossref_primary_10_1016_j_biomaterials_2022_121690
crossref_primary_10_3153_FH22032
crossref_primary_10_1016_j_neuro_2012_12_004
crossref_primary_10_3390_biom13020313
crossref_primary_10_1111_acel_12495
crossref_primary_10_1136_jclinpath_2013_201515
crossref_primary_10_3390_ijms21249441
crossref_primary_10_1111_bpa_12478
crossref_primary_10_1021_acs_nanolett_8b03644
crossref_primary_10_1186_s40478_020_01013_5
crossref_primary_10_3390_ijms21165646
crossref_primary_10_1186_s40478_024_01770_7
crossref_primary_10_1016_j_nepig_2016_05_001
crossref_primary_10_1016_j_carbpol_2020_117124
crossref_primary_10_3389_fnins_2022_798994
crossref_primary_10_1186_s12974_023_02931_6
crossref_primary_10_3109_00207454_2014_952730
crossref_primary_10_1089_jmf_2016_3714
crossref_primary_10_3390_nu11061353
crossref_primary_10_1016_j_bbrc_2016_11_016
crossref_primary_10_1002_ajmg_c_31833
crossref_primary_10_3390_antiox11112097
crossref_primary_10_1016_j_mad_2016_09_009
crossref_primary_10_1080_14756366_2024_2418470
crossref_primary_10_1002_jbt_23660
crossref_primary_10_1016_j_nano_2021_102397
crossref_primary_10_1039_D1FO00286D
crossref_primary_10_2147_NSS_S320745
crossref_primary_10_3390_ijms24031869
crossref_primary_10_3390_cells13040309
crossref_primary_10_3390_ijms21030816
crossref_primary_10_1016_j_vph_2023_107213
crossref_primary_10_3389_fncel_2023_1290628
crossref_primary_10_1039_D2CC00318J
crossref_primary_10_3233_JAD_150282
crossref_primary_10_3233_JAD_231399
crossref_primary_10_1016_j_neulet_2012_02_061
crossref_primary_10_1002_advs_201902906
crossref_primary_10_1016_j_neuropharm_2014_08_012
crossref_primary_10_3390_ijms232113432
crossref_primary_10_3390_ijms23095056
crossref_primary_10_1016_j_ebiom_2015_09_053
crossref_primary_10_1016_j_exer_2013_03_009
crossref_primary_10_3390_nu14183715
crossref_primary_10_1016_j_neurobiolaging_2020_03_024
crossref_primary_10_3389_fnagi_2023_1201982
crossref_primary_10_1016_j_expneurol_2022_114230
crossref_primary_10_1186_1742_2094_9_148
crossref_primary_10_3389_fncel_2014_00129
crossref_primary_10_1002_ame2_12313
crossref_primary_10_1016_j_nbd_2015_08_025
crossref_primary_10_1016_j_brainres_2016_08_016
crossref_primary_10_1002_chem_202400870
crossref_primary_10_1016_j_nano_2018_04_014
crossref_primary_10_1080_19336918_2019_1629224
crossref_primary_10_1016_j_nbd_2019_03_010
crossref_primary_10_1111_jphp_12160
crossref_primary_10_3390_oxygen2020006
crossref_primary_10_1016_j_molimm_2020_12_035
crossref_primary_10_1089_neu_2015_3970
crossref_primary_10_1002_smll_202101743
crossref_primary_10_3109_00207454_2013_833510
crossref_primary_10_3390_nu14071417
crossref_primary_10_1016_j_jep_2018_02_025
crossref_primary_10_1016_j_bmcl_2019_126858
crossref_primary_10_1186_s40035_025_00465_w
crossref_primary_10_1126_scitranslmed_abq5923
crossref_primary_10_1093_braincomms_fcae454
crossref_primary_10_1038_nm_3672
crossref_primary_10_1371_journal_pone_0178490
crossref_primary_10_3390_ijms25179379
crossref_primary_10_1172_JCI90606
crossref_primary_10_1371_journal_pone_0201878
crossref_primary_10_3389_fimmu_2019_00790
crossref_primary_10_2174_1570159X20666211223140303
crossref_primary_10_1186_s13195_024_01484_x
crossref_primary_10_7554_eLife_92069
crossref_primary_10_1038_s41467_018_07991_4
crossref_primary_10_2174_0113816128270941231124102032
crossref_primary_10_1016_j_celrep_2023_113313
crossref_primary_10_1007_s11481_015_9612_2
crossref_primary_10_1021_acschemneuro_8b00556
crossref_primary_10_3390_ijms21207458
crossref_primary_10_1021_acschemneuro_6b00250
crossref_primary_10_1038_s41418_018_0195_3
crossref_primary_10_1016_j_arr_2013_12_007
crossref_primary_10_1007_s40242_021_1372_3
crossref_primary_10_1186_s13024_020_00391_7
crossref_primary_10_1016_j_ejphar_2016_06_039
crossref_primary_10_3389_fnagi_2016_00160
crossref_primary_10_1007_s11033_022_07219_1
crossref_primary_10_1186_s40035_024_00447_4
crossref_primary_10_1126_sciadv_abg4980
crossref_primary_10_1002_glia_23579
crossref_primary_10_1177_13872877241295361
crossref_primary_10_1007_s13311_013_0256_8
crossref_primary_10_3390_genes12111753
crossref_primary_10_3390_biomedicines10112982
crossref_primary_10_1038_s41582_020_00435_y
crossref_primary_10_1159_000440887
crossref_primary_10_1016_j_jalz_2014_08_105
crossref_primary_10_3233_ADR_230025
crossref_primary_10_1038_s42003_019_0698_6
crossref_primary_10_1039_C8FO01713A
crossref_primary_10_3389_fgene_2023_1225196
crossref_primary_10_1186_s13024_016_0088_1
crossref_primary_10_1002_pro_2524
crossref_primary_10_2174_1574885518666230427100702
crossref_primary_10_1186_s13024_023_00668_7
crossref_primary_10_2174_0115680266299847240328045737
crossref_primary_10_1155_2017_4761081
crossref_primary_10_3389_fphar_2020_00021
crossref_primary_10_1016_j_cell_2019_05_056
Cites_doi 10.1038/nature04533
10.1016/S0002-9440(10)64354-4
10.1038/374647a0
10.1016/0003-2697(82)90118-X
10.1080/10286020500209087
10.1523/JNEUROSCI.1808-05.2005
10.1523/JNEUROSCI.0616-08.2008
10.2174/1568010053586237
10.1002/glia.10148
10.1097/00004647-199908000-00001
10.1038/382685a0
10.1074/jbc.M201750200
10.1080/15321810500403722
10.1111/j.1471-4159.2010.06783.x
10.4049/jimmunol.181.9.6503
10.1016/S0167-5699(97)01197-3
10.1093/brain/awn109
10.1111/j.1471-4159.2006.04015.x
10.1006/exnr.1997.6738
10.1002/jnr.20180
10.1016/S0140-6736(01)05625-2
10.1016/j.jneuroim.2009.02.003
10.1002/(SICI)1097-4547(19960115)43:2<190::AID-JNR7>3.0.CO;2-B
10.1038/382716a0
10.1016/j.neuron.2006.01.022
10.3233/JAD-2005-7304
10.4049/jimmunol.175.9.6100
10.1089/rej.2006.9096
10.1046/j.1471-4159.1998.71052123.x
10.1002/glia.20844
10.1523/JNEUROSCI.2557-04.2004
10.1038/78682
10.1523/JNEUROSCI.23-07-02665.2003
10.1016/j.febslet.2007.01.009
10.1111/j.1600-079X.2008.00570.x
10.1212/01.wnl.0000338622.27876.0d
10.1016/S0896-6273(00)80187-7
10.1523/JNEUROSCI.5047-06.2007
10.1186/1742-2094-1-21
10.1523/JNEUROSCI.5572-08.2009
10.1016/j.bcp.2008.05.018
10.1038/nn1372
10.1017/S1740925X08000136
10.1097/00001756-200105250-00030
10.1006/brbi.1995.1032
10.1002/jnr.21011
10.1016/j.arcmed.2007.10.001
10.1074/jbc.M208788200
ContentType Journal Article
Copyright Copyright ©2011 Pan et al; licensee BioMed Central Ltd. 2011 Pan et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Copyright ©2011 Pan et al; licensee BioMed Central Ltd. 2011 Pan et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1186/1750-1326-6-45
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1750-1326
EndPage 45
ExternalDocumentID oai_doaj_org_article_160f912336e74b29bee55f52e641c753
PMC3149591
oai_biomedcentral_com_1750_1326_6_45
21718498
10_1186_1750_1326_6_45
Genre Journal Article
GroupedDBID ---
0R~
123
29M
2VQ
2WC
4.4
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HH5
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
IPY
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
~8M
NPM
PJZUB
PPXIY
7X8
-A0
3V.
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
5PM
PUEGO
ID FETCH-LOGICAL-b513t-f11cd534cc663436014b09f926ca1b854d724cf0356ab3fb397ced63ec98cfc43
IEDL.DBID RBZ
ISSN 1750-1326
IngestDate Wed Aug 27 01:25:41 EDT 2025
Thu Aug 21 18:33:55 EDT 2025
Wed May 22 07:16:50 EDT 2024
Fri Jul 11 11:15:54 EDT 2025
Mon Jul 21 05:34:22 EDT 2025
Thu Apr 24 23:04:34 EDT 2025
Tue Jul 01 01:59:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b513t-f11cd534cc663436014b09f926ca1b854d724cf0356ab3fb397ced63ec98cfc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1750-1326-6-45
PMID 21718498
PQID 881089408
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_160f912336e74b29bee55f52e641c753
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3149591
biomedcentral_primary_oai_biomedcentral_com_1750_1326_6_45
proquest_miscellaneous_881089408
pubmed_primary_21718498
crossref_citationtrail_10_1186_1750_1326_6_45
crossref_primary_10_1186_1750_1326_6_45
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-06-30
PublicationDateYYYYMMDD 2011-06-30
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-30
  day: 30
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Molecular neurodegeneration
PublicationTitleAlternate Mol Neurodegener
PublicationYear 2011
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References J El Khoury (202_CR7) 1996; 382
ME Bamberger (202_CR2) 2003; 23
Q Huang (202_CR50) 2006; 8
JP Cleary (202_CR25) 2005; 8
KR Miller (202_CR12) 2007; 3
KN Dahlgren (202_CR21) 2002; 277
F Bard (202_CR1) 2000; 6
BE Flanary (202_CR11) 2007; 10
J Zhou (202_CR24) 2008; 45
E Shimizu (202_CR38) 2008; 181
K Takata (202_CR9) 2007; 581
Y Yao (202_CR26) 2004; 1
S Pawate (202_CR42) 2004; 77
J Kang (202_CR19) 2001; 12
J Husemann (202_CR5) 2002; 40
YG Zhu (202_CR51) 2004; 25
DA DeWitt (202_CR34) 1998; 149
MJ May (202_CR18) 1998; 19
YJ Kim (202_CR45) 2006; 84
T Heurtaux (202_CR29) 2010; 114
XD Pan (202_CR23) 2009; 57
MD Ard (202_CR33) 1996; 43
J Koenigsknecht (202_CR3) 2004; 24
KJ Moore (202_CR46) 2002; 277
SC Lee (202_CR44) 1995; 9
KK Kopec (202_CR40) 1998; 71
A Okello (202_CR28) 2009; 72
A Cagnin (202_CR27) 2001; 358
S Mandrekar (202_CR36) 2009; 29
J Koenigsknecht-Talboo (202_CR41) 2005; 25
IS Coraci (202_CR4) 2002; 160
T Wyss-Coray (202_CR14) 2006; 12
M Fiala (202_CR35) 2005; 7
H Neumann (202_CR31) 2009; 132
LE Rojo (202_CR13) 2008; 39
HS Choi (202_CR48) 2006; 27
XD Pan (202_CR49) 2008; 76
DM Paresce (202_CR32) 1996; 17
LC Green (202_CR47) 1982; 126
R Medeiros (202_CR16) 2007; 27
A Michelucci (202_CR30) 2009; 210
P Schubert (202_CR43) 1998; 12
P Iribarren (202_CR8) 2005; 175
AR Simard (202_CR10) 2006; 49
K Heinitz (202_CR22) 2006; 98
GJ Ho (202_CR15) 2005; 4
FC Barone (202_CR37) 1999; 19
SD Yan (202_CR6) 1996; 382
S Lesne (202_CR20) 2006; 440
L Meda (202_CR17) 1995; 374
SE Hickman (202_CR39) 2008; 28
15569404 - Acta Pharmacol Sin. 2004 Dec;25(12):1606-12
9769026 - Alzheimer Dis Assoc Disord. 1998;12 Suppl 2:S21-8
18067990 - Arch Med Res. 2008 Jan;39(1):1-16
16541076 - Nature. 2006 Mar 16;440(7082):352-7
16006665 - J Alzheimers Dis. 2005 Jun;7(3):221-32; discussion 255-62
18701698 - J Neurosci. 2008 Aug 13;28(33):8354-60
9500964 - Exp Neurol. 1998 Feb;149(2):329-40
11786404 - Am J Pathol. 2002 Jan;160(1):101-12
17507561 - J Neurosci. 2007 May 16;27(20):5394-404
7715705 - Nature. 1995 Apr 13;374(6523):647-50
17240371 - FEBS Lett. 2007 Feb 6;581(3):475-8
18298462 - J Pineal Res. 2008 Sep;45(2):157-65
18567623 - Brain. 2009 Feb;132(Pt 2):288-95
15608634 - Nat Neurosci. 2005 Jan;8(1):79-84
18941241 - J Immunol. 2008 Nov 1;181(9):6503-13
7181105 - Anal Biochem. 1982 Oct;126(1):131-8
18634615 - Neuron Glia Biol. 2007 Aug;3(3):245-53
16960575 - Nat Med. 2006 Sep;12(9):1005-15
10458589 - J Cereb Blood Flow Metab. 1999 Aug;19(8):819-34
9509763 - Immunol Today. 1998 Feb;19(2):80-8
18602088 - Biochem Pharmacol. 2008 Aug 1;76(3):362-72
16945109 - J Neurochem. 2006 Sep;98(6):1930-45
11513911 - Lancet. 2001 Aug 11;358(9280):461-7
19122031 - Neurology. 2009 Jan 6;72(1):56-62
16476660 - Neuron. 2006 Feb 16;49(4):489-502
19170180 - Glia. 2009 Aug 15;57(11):1227-38
8751438 - Nature. 1996 Aug 22;382(6593):685-91
12379907 - Glia. 2002 Nov;40(2):195-205
12058030 - J Biol Chem. 2002 Aug 30;277(35):32046-53
15264224 - J Neurosci Res. 2004 Aug 15;77(4):540-51
20456016 - J Neurochem. 2010 Jul;114(2):576-86
19339619 - J Neurosci. 2009 Apr 1;29(13):4252-62
8903851 - Brain Behav Immun. 1995 Dec;9(4):345-54
16753784 - J Asian Nat Prod Res. 2006 Jan-Mar;8(1-2):61-71
12684452 - J Neurosci. 2003 Apr 1;23(7):2665-74
10932230 - Nat Med. 2000 Aug;6(8):916-9
8820967 - J Neurosci Res. 1996 Jan 15;43(2):190-202
9798938 - J Neurochem. 1998 Nov;71(5):2123-31
11388427 - Neuroreport. 2001 May 25;12(7):1449-52
16450867 - J Immunoassay Immunochem. 2006;27(1):31-44
19269040 - J Neuroimmunol. 2009 May 29;210(1-2):3-12
16148231 - J Neurosci. 2005 Sep 7;25(36):8240-9
15853747 - Curr Drug Targets Inflamm Allergy. 2005 Apr;4(2):247-56
8816718 - Neuron. 1996 Sep;17(3):553-65
16237106 - J Immunol. 2005 Nov 1;175(9):6100-6
15525768 - J Neurosci. 2004 Nov 3;24(44):9838-46
12239221 - J Biol Chem. 2002 Dec 6;277(49):47373-9
17378753 - Rejuvenation Res. 2007 Mar;10(1):61-74
16881054 - J Neurosci Res. 2006 Oct;84(5):1037-46
15500684 - J Neuroinflammation. 2004 Oct 22;1(1):21
8751442 - Nature. 1996 Aug 22;382(6593):716-9
References_xml – volume: 440
  start-page: 352
  year: 2006
  ident: 202_CR20
  publication-title: Nature
  doi: 10.1038/nature04533
– volume: 160
  start-page: 101
  year: 2002
  ident: 202_CR4
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)64354-4
– volume: 374
  start-page: 647
  year: 1995
  ident: 202_CR17
  publication-title: Nature
  doi: 10.1038/374647a0
– volume: 126
  start-page: 131
  year: 1982
  ident: 202_CR47
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(82)90118-X
– volume: 8
  start-page: 61
  year: 2006
  ident: 202_CR50
  publication-title: J Asian Nat Prod Res
  doi: 10.1080/10286020500209087
– volume: 25
  start-page: 8240
  year: 2005
  ident: 202_CR41
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1808-05.2005
– volume: 12
  start-page: S21
  issue: Suppl 2
  year: 1998
  ident: 202_CR43
  publication-title: Alzheimer Dis Assoc Disord
– volume: 28
  start-page: 8354
  year: 2008
  ident: 202_CR39
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0616-08.2008
– volume: 4
  start-page: 247
  year: 2005
  ident: 202_CR15
  publication-title: Curr Drug Targets Inflamm Allergy
  doi: 10.2174/1568010053586237
– volume: 40
  start-page: 195
  year: 2002
  ident: 202_CR5
  publication-title: Glia
  doi: 10.1002/glia.10148
– volume: 19
  start-page: 819
  year: 1999
  ident: 202_CR37
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1097/00004647-199908000-00001
– volume: 382
  start-page: 685
  year: 1996
  ident: 202_CR6
  publication-title: Nature
  doi: 10.1038/382685a0
– volume: 277
  start-page: 32046
  year: 2002
  ident: 202_CR21
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M201750200
– volume: 27
  start-page: 31
  year: 2006
  ident: 202_CR48
  publication-title: J Immunoassay Immunochem
  doi: 10.1080/15321810500403722
– volume: 114
  start-page: 576
  year: 2010
  ident: 202_CR29
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2010.06783.x
– volume: 25
  start-page: 1606
  year: 2004
  ident: 202_CR51
  publication-title: Acta Pharmacol Sin
– volume: 181
  start-page: 6503
  year: 2008
  ident: 202_CR38
  publication-title: J Immunol
  doi: 10.4049/jimmunol.181.9.6503
– volume: 19
  start-page: 80
  year: 1998
  ident: 202_CR18
  publication-title: Immunol Today
  doi: 10.1016/S0167-5699(97)01197-3
– volume: 132
  start-page: 288
  year: 2009
  ident: 202_CR31
  publication-title: Brain
  doi: 10.1093/brain/awn109
– volume: 98
  start-page: 1930
  year: 2006
  ident: 202_CR22
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2006.04015.x
– volume: 149
  start-page: 329
  year: 1998
  ident: 202_CR34
  publication-title: Exp Neurol
  doi: 10.1006/exnr.1997.6738
– volume: 77
  start-page: 540
  year: 2004
  ident: 202_CR42
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.20180
– volume: 358
  start-page: 461
  year: 2001
  ident: 202_CR27
  publication-title: Lancet
  doi: 10.1016/S0140-6736(01)05625-2
– volume: 210
  start-page: 3
  year: 2009
  ident: 202_CR30
  publication-title: J Neuroimmunol
  doi: 10.1016/j.jneuroim.2009.02.003
– volume: 43
  start-page: 190
  year: 1996
  ident: 202_CR33
  publication-title: J Neurosci Res
  doi: 10.1002/(SICI)1097-4547(19960115)43:2<190::AID-JNR7>3.0.CO;2-B
– volume: 382
  start-page: 716
  year: 1996
  ident: 202_CR7
  publication-title: Nature
  doi: 10.1038/382716a0
– volume: 49
  start-page: 489
  year: 2006
  ident: 202_CR10
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.01.022
– volume: 12
  start-page: 1005
  year: 2006
  ident: 202_CR14
  publication-title: Nat Med
– volume: 7
  start-page: 221
  year: 2005
  ident: 202_CR35
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2005-7304
– volume: 175
  start-page: 6100
  year: 2005
  ident: 202_CR8
  publication-title: J Immunol
  doi: 10.4049/jimmunol.175.9.6100
– volume: 10
  start-page: 61
  year: 2007
  ident: 202_CR11
  publication-title: Rejuvenation Res
  doi: 10.1089/rej.2006.9096
– volume: 71
  start-page: 2123
  year: 1998
  ident: 202_CR40
  publication-title: J Neurochem
  doi: 10.1046/j.1471-4159.1998.71052123.x
– volume: 57
  start-page: 1227
  year: 2009
  ident: 202_CR23
  publication-title: Glia
  doi: 10.1002/glia.20844
– volume: 24
  start-page: 9838
  year: 2004
  ident: 202_CR3
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2557-04.2004
– volume: 6
  start-page: 916
  year: 2000
  ident: 202_CR1
  publication-title: Nat Med
  doi: 10.1038/78682
– volume: 23
  start-page: 2665
  year: 2003
  ident: 202_CR2
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-07-02665.2003
– volume: 581
  start-page: 475
  year: 2007
  ident: 202_CR9
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2007.01.009
– volume: 45
  start-page: 157
  year: 2008
  ident: 202_CR24
  publication-title: J Pineal Res
  doi: 10.1111/j.1600-079X.2008.00570.x
– volume: 72
  start-page: 56
  year: 2009
  ident: 202_CR28
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000338622.27876.0d
– volume: 17
  start-page: 553
  year: 1996
  ident: 202_CR32
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80187-7
– volume: 27
  start-page: 5394
  year: 2007
  ident: 202_CR16
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5047-06.2007
– volume: 1
  start-page: 21
  year: 2004
  ident: 202_CR26
  publication-title: J Neuroinflammation
  doi: 10.1186/1742-2094-1-21
– volume: 29
  start-page: 4252
  year: 2009
  ident: 202_CR36
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5572-08.2009
– volume: 76
  start-page: 362
  year: 2008
  ident: 202_CR49
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2008.05.018
– volume: 8
  start-page: 79
  year: 2005
  ident: 202_CR25
  publication-title: Nat Neurosci
  doi: 10.1038/nn1372
– volume: 3
  start-page: 245
  year: 2007
  ident: 202_CR12
  publication-title: Neuron Glia Biol
  doi: 10.1017/S1740925X08000136
– volume: 12
  start-page: 1449
  year: 2001
  ident: 202_CR19
  publication-title: Neuroreport
  doi: 10.1097/00001756-200105250-00030
– volume: 9
  start-page: 345
  year: 1995
  ident: 202_CR44
  publication-title: Brain Behav Immun
  doi: 10.1006/brbi.1995.1032
– volume: 84
  start-page: 1037
  year: 2006
  ident: 202_CR45
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.21011
– volume: 39
  start-page: 1
  year: 2008
  ident: 202_CR13
  publication-title: Arch Med Res
  doi: 10.1016/j.arcmed.2007.10.001
– volume: 277
  start-page: 47373
  year: 2002
  ident: 202_CR46
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M208788200
– reference: 18298462 - J Pineal Res. 2008 Sep;45(2):157-65
– reference: 19339619 - J Neurosci. 2009 Apr 1;29(13):4252-62
– reference: 12379907 - Glia. 2002 Nov;40(2):195-205
– reference: 16148231 - J Neurosci. 2005 Sep 7;25(36):8240-9
– reference: 10932230 - Nat Med. 2000 Aug;6(8):916-9
– reference: 17378753 - Rejuvenation Res. 2007 Mar;10(1):61-74
– reference: 16945109 - J Neurochem. 2006 Sep;98(6):1930-45
– reference: 16476660 - Neuron. 2006 Feb 16;49(4):489-502
– reference: 7715705 - Nature. 1995 Apr 13;374(6523):647-50
– reference: 12684452 - J Neurosci. 2003 Apr 1;23(7):2665-74
– reference: 17507561 - J Neurosci. 2007 May 16;27(20):5394-404
– reference: 18567623 - Brain. 2009 Feb;132(Pt 2):288-95
– reference: 15525768 - J Neurosci. 2004 Nov 3;24(44):9838-46
– reference: 8820967 - J Neurosci Res. 1996 Jan 15;43(2):190-202
– reference: 18701698 - J Neurosci. 2008 Aug 13;28(33):8354-60
– reference: 16960575 - Nat Med. 2006 Sep;12(9):1005-15
– reference: 8903851 - Brain Behav Immun. 1995 Dec;9(4):345-54
– reference: 18941241 - J Immunol. 2008 Nov 1;181(9):6503-13
– reference: 15264224 - J Neurosci Res. 2004 Aug 15;77(4):540-51
– reference: 12239221 - J Biol Chem. 2002 Dec 6;277(49):47373-9
– reference: 15608634 - Nat Neurosci. 2005 Jan;8(1):79-84
– reference: 8751442 - Nature. 1996 Aug 22;382(6593):716-9
– reference: 8816718 - Neuron. 1996 Sep;17(3):553-65
– reference: 19269040 - J Neuroimmunol. 2009 May 29;210(1-2):3-12
– reference: 9769026 - Alzheimer Dis Assoc Disord. 1998;12 Suppl 2:S21-8
– reference: 11513911 - Lancet. 2001 Aug 11;358(9280):461-7
– reference: 8751438 - Nature. 1996 Aug 22;382(6593):685-91
– reference: 11388427 - Neuroreport. 2001 May 25;12(7):1449-52
– reference: 9509763 - Immunol Today. 1998 Feb;19(2):80-8
– reference: 10458589 - J Cereb Blood Flow Metab. 1999 Aug;19(8):819-34
– reference: 19170180 - Glia. 2009 Aug 15;57(11):1227-38
– reference: 16753784 - J Asian Nat Prod Res. 2006 Jan-Mar;8(1-2):61-71
– reference: 16237106 - J Immunol. 2005 Nov 1;175(9):6100-6
– reference: 15500684 - J Neuroinflammation. 2004 Oct 22;1(1):21
– reference: 17240371 - FEBS Lett. 2007 Feb 6;581(3):475-8
– reference: 7181105 - Anal Biochem. 1982 Oct;126(1):131-8
– reference: 16541076 - Nature. 2006 Mar 16;440(7082):352-7
– reference: 16450867 - J Immunoassay Immunochem. 2006;27(1):31-44
– reference: 9500964 - Exp Neurol. 1998 Feb;149(2):329-40
– reference: 18602088 - Biochem Pharmacol. 2008 Aug 1;76(3):362-72
– reference: 18067990 - Arch Med Res. 2008 Jan;39(1):1-16
– reference: 9798938 - J Neurochem. 1998 Nov;71(5):2123-31
– reference: 18634615 - Neuron Glia Biol. 2007 Aug;3(3):245-53
– reference: 15569404 - Acta Pharmacol Sin. 2004 Dec;25(12):1606-12
– reference: 16006665 - J Alzheimers Dis. 2005 Jun;7(3):221-32; discussion 255-62
– reference: 11786404 - Am J Pathol. 2002 Jan;160(1):101-12
– reference: 16881054 - J Neurosci Res. 2006 Oct;84(5):1037-46
– reference: 12058030 - J Biol Chem. 2002 Aug 30;277(35):32046-53
– reference: 15853747 - Curr Drug Targets Inflamm Allergy. 2005 Apr;4(2):247-56
– reference: 19122031 - Neurology. 2009 Jan 6;72(1):56-62
– reference: 20456016 - J Neurochem. 2010 Jul;114(2):576-86
SSID ssj0047005
Score 2.4042017
Snippet Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident microglia fail to...
BACKGROUND: Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial resident...
Abstract Background Reactive microglia are associated with β-amyloid (Aβ) deposit and clearance in Alzhiemer's Disease (AD). Paradoxically, entocranial...
SourceID doaj
pubmedcentral
biomedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 45
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQV2wQUB7DS14gurIax-_uBkRVIZUVlbqzYseeiZQmVWdmMaz5Ij6Eb-LayYwmPMSGTRbxleLkHvueE19fI_SWmai9LAOB4KEI9zISHUsGUgWu0lRK5V3vl5_lxRX_dC2uD476SjlhQ3ng4cOdUllEA9Mrk0FxVxoXghBRlEFy6oFrp9kXYt5OTA1zMFdFTl6E2FgQ0FtyLNdItTzd3yOSpE1Mk33u7SQ85Sr-f6Kev2ZQHoSk84fowcgl8Xx4h0foXugeo-N5Bzr6Zovf4ZzdmX-bH6NvlynzbtEC3PDtslr0frvuV80KgyYH79bYbXFM6f8Aizv84zupbkDKNzUGk1SCs9sAKc1Wfdss-rzOc2B2hpuD1HQMTBjP26_L0IDhyQqPy0BP0NX5xy8fLsh4AgNxgrI1iZT6WjDuPRATzkC8cVeYaErpK-q04LUquY8FE7JyLDogN9BjyYI32kfP2VN01PVdeI4wCDMgLyaomoOCERWoV6WA7EXNaO3rcobOJo6wt0O1DZvqX09bYCja5EWbvGil5WKGyM5r1o-1zdMRG63NGkfL3-xP9va75_zN8n0CwaQ3-QZg1I4Ytf_C6AzhHYQsjN60JFN1od-srNa00IYXeoaeDYjaPwm0IqhvAy1qgrVJV6YtXbPMBcJZkr2GvvgffX-J7g-_0VOK5Ct0tL7bhNfAw9buTR5yPwFyKzEe
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLggoDzCSz4gejIk8bsSQguiqpCWEyv1ZiWOvRspTdp9SCxnfhE_hN_E2JtdNm25cMkhmShW5pvM98XjMUKvqfbKitwRSB6SMCs8UT6nIFXgKHQhZVz1Pv4qTifsyxk_-1v_1L_AxY3SLuwnNZk3b79frj9AwL-PAa_EO8iAKQFVJYggjN9GdyAryRCkY7abUWAS4NY3bbx-T2wJDF9pptWVhe_NIF_Ftv43cdGrJZV7OerkPrrXk0s82qDhAbrl2ofocNSCsD5f4zc4lnvG_-iH6Oc4lOJNG8AfvpgV086ul92iXmAQ6eDuCpdr7MN6AMDJHP_-RYpz0PZ1hcEk9ORsV8BSo1XX1NMuTvzsmR3jeq9WHQM1xqPmx8zVYHi0wP280CM0Ofn87dMp6bdkICXP6JL4LLMVp8xaYCqMgppjZaq9zoUtslJxVsmcWZ9SLoqS-hLYDoxYUGe1st4y-hgdtF3rniIMSg3YjHayYiBpeAFyVkpgf17RrLJVnqDjgSPMxab9hgkNsYdXIDZNcKgJDjXCMJ4gsvWasX2z87DnRmOi6FHimv3Rzn77nH9ZfgwgGIwmnujmU9NHu8lE6jVwAiqcZGWuS-c49zx3gmUWBGKC8BZCBsI5zNEUretWC6NUlirNUpWgJxtE7Z60RWiC5ABrg6EMr7T1LHYMp0EH6-zZf9_5HN3d_EwPhZIv0MFyvnIvgY0ty1cxzP4ACAQ3Pw
  priority: 102
  providerName: Scholars Portal
Title Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer's disease
URI https://www.ncbi.nlm.nih.gov/pubmed/21718498
https://www.proquest.com/docview/881089408
http://dx.doi.org/10.1186/1750-1326-6-45
https://pubmed.ncbi.nlm.nih.gov/PMC3149591
https://doaj.org/article/160f912336e74b29bee55f52e641c753
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBbW9rLLsK17ZI9Ah2E9CbOtd2_J0KIIkGLYViDYRbBlKTWQ2kWTHLLzftF-yH7TKMXJ4nQ77SIDFg0LJmnyIykKoXdUe2VF5ggYD0mYFZ4on1GAKjAKnUsZd72PL8XFFRtN-ORPvGMvg58q8QHsW0IAMwkiCOMH6ChjYAUDLh9-2_xzmUxiseKWtm3PeP_5vX3ts445il37_-Zq7ldM7pig88foUes74sGa2U_QA1c_RceDGnDzzQq_x7GaM4bJj9GPcai0m85AvPDtdT5t7GrRzKs5BgwO3CxxscI-lPuDGNzhXz9JfgPQvSoxkISWm_USnNBI1cyqaRPzOjtkp7jaKUXH4Pniwez7tauA8GSO27TPM3R1fvb14wVpT1wgBU_pgvg0tSWnzFpwRBgFsMaKRHudCZunheKslBmzPqFc5AX1BTgzsGJBndXKesvoc3RYN7V7iTAAMWCTdrIEdkmeA1qVEpw7r2ha2jLrodMOI8zturuGCf2uuzOgeiZw0QQuGmEY7yGy4ZqxbS_zcKTGzERMo8Q9-pMt_eY9_6IcBiHorCbeAJE0rTKbVCReg8mnwklWZLpwjnPPMydYagH_9RDeiJABbQ0pmLx2zXJulEoTpVmieujFWqK2bwJsCGhbw4zsyFpnKd2ZurqODcFpgLk6ffU_n_Q1ergOl4dSyDfocHG3dG_B31oUfXQgJ7KPjgaD0ZcRXIdnl58-92P0AsYxU_2ojL8BkCcvzA
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOcAFAQW6PH1A9BRI4ndvW0RVoNsD2koVFytx7N1I2aTax2E584v4Ifwmxt5ktWnhxCWHeFYZ7Yzj74tnPiP0lignDU9tBIuHiKjhLpIuJUBV4MpVJkToeh9d8LNL-uWKXe2hcdcLM-sOhQ1yjgUwZy--7H18v9uPXoWXeFc7tpn6kn-AtTCOgF_xiEeU3UF3BWPCn2vw7eR7936mIg6FjVvbVsrx9u9v9MBXvaUrKPz_DZberK7cWa5OH6IHLc7Ew43vj9CerR-jg2ENHHu2xu9wqPwMn9QP0M-Rr8qbVJCK-HqaTRqzXjaLcoGBr0PkC5yvsfOtAZAyc_z7V5TNgOaXBQYTL89ZrwCwBqumKidN2APaMTvG5U7ZOgaUjIfVj6ktwfBogdstoifo8vTT-ONZ1J7OEOUsIcvIJYkpGKHGAGihBIgdzWPlVMpNluSS0UKk1LiYMJ7lxOUAfMBjTqxR0jhDyVO0Xze1PUQYSBsAG2VFQYHdsAyYrRAABJ0kSWGKdICOe4HQ1xslDu21sfsjkBbaR1H7KGquKRugqIuaNq3uuT9-o9KB_0h-y_5oa98951-WJz4Jet6EG818otvc1AmPnQJ4QLgVNE9Vbi1jjqWW08QAVxwg3KWQhpntt2uy2jarhZYyiaWisRygZ5uM2j4JeCQwcwUjopdrPVf6I3U5DeLhxFNilTz_n7_0Dbp3Nh6d6_PPF19foPubz-y-hPIl2l_OV_YV4LRl_jpMuz99pD8h
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaWRUJcELDAlqcPiD2ZTeJXsrcuUC2PXSFEpRUXK3HsNiJNqj4O5cwv4ofwmxg7SdXswolLVdVTxcrMxN8Xz3xG6CVNbKxFZAgsHpIwLSyJbUSBqsCnSFIpfdf7-YU4G7MPl_xyD427XphZdyisl3PMgTk78WU3x9e7_eilf4jDF_39eJ7bJvdjcQyLYUCAYAkiCOM30E3JuXT5-uX0W_eAZjLwlY1b21bL8fr_rzTBl721y0v8_w2XXi2v3FmvRnfRnRZo4mETGffQnqnuo4NhBSR7tsGvsC_99O_UD9DPc1eWNykhFvF8mk5qvVnVy2KJgbCD63OcbbB1vQEQMwv8-xdJZ8DzixyDidPnrNaAWL1VXRaT2m8C7Zid4GKnbh0DTMbD8sfUFGB4tMTtHtEDNB69-_rmjLTHM5CMh3RFbBjqnFOmNaAWRoHZsSxIbBIJnYZZzFkuI6ZtQLlIM2ozQD4wY0GNTmJtNaMP0X5VV-YQYWBtgGwSI3MG9IanQG2lBCRoYxrmOo8G6KTnCDVvpDiUE8fuj0BcKOdF5byohGJ8gEjnNaVb4XN3_kapPAGKxTX7o619d51_WZ66IOjNxv9QLyaqzXwVisAmgA-oMJJlUZIZw7nlkREs1EAWBwh3IaQgtd1-TVqZer1UcRwGccKCeIAeNRG1vRIQSaDmCYzIXqz1ptIfqYqpVw-njhMn4eP_uaUv0K3Pb0fq0_uLj0_Q7eY1uyuhfIr2V4u1eQY4bZU991n3B-n9Puw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microglial+phagocytosis+induced+by+fibrillar+%CE%B2-amyloid+is+attenuated+by+oligomeric+%CE%B2-amyloid%3A+implications+for+Alzheimer%27s+disease&rft.jtitle=Molecular+neurodegeneration&rft.au=Pan%2C+Xiao-dong&rft.au=Zhu%2C+Yuan-gui&rft.au=Lin%2C+Nan&rft.au=Zhang%2C+Jing&rft.date=2011-06-30&rft.pub=BioMed+Central&rft.eissn=1750-1326&rft.volume=6&rft.spage=45&rft.epage=45&rft_id=info:doi/10.1186%2F1750-1326-6-45&rft_id=info%3Apmid%2F21718498&rft.externalDocID=PMC3149591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-1326&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-1326&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-1326&client=summon