Vinblastine resets tumor-associated macrophages toward M1 phenotype and promotes antitumor immune response

BackgroundMassive tumor-associated macrophage (TAM) infiltration is observed in many tumors, which usually display the immune-suppressive M2-like phenotype but can also be converted to an M1-like antitumor phenotype due to their high degree of plasticity. The macrophage polarization state is associa...

Full description

Saved in:
Bibliographic Details
Published inJournal for immunotherapy of cancer Vol. 11; no. 8; p. e007253
Main Authors Wang, Yi-Na, Wang, Yuan-Yuan, Wang, Jin, Bai, Wen-Juan, Miao, Nai-Jun, Wang, Jing
Format Journal Article
LanguageEnglish
Published London BMJ Publishing Group Ltd 01.08.2023
BMJ Publishing Group LTD
BMJ Publishing Group
SeriesOriginal research
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BackgroundMassive tumor-associated macrophage (TAM) infiltration is observed in many tumors, which usually display the immune-suppressive M2-like phenotype but can also be converted to an M1-like antitumor phenotype due to their high degree of plasticity. The macrophage polarization state is associated with changes in cell shape, macrophage morphology is associated with activation status. M1 macrophages appeared large and rounded, while M2 macrophages were stretched and elongated cells. Manipulating cell morphology has been shown to affect the polarization state of macrophages. The shape of the cell is largely dependent on cytoskeletal proteins, especially, microtubules. As a microtubule-targetting drug, vinblastine (VBL) has been used in chemotherapy. However, no study to date has explored the effect of VBL on TAM shape changes and its role in tumor immune response.MethodWe used fluorescent staining of the cytoskeleton and quantitative analysis to reveal the morphological differences between M0, M1, M2, TAM and VBL-treated TAM. Flow cytometry was used to confirm the polarization states of these macrophages using a cell surface marker-based classification. In vivo antibody depletion experiments in tumor mouse models were performed to test whether macrophages and CD8+ T cell populations were required for the antitumor effect of VBL. VBL and anti-PD-1 combination therapy was then investigated in comparison with monotherapy. RNA-seq of TAM of treated and untreated with VBL was performed to explore the changes in pathway activities. siRNA mediated knockdown experiments were performed to verify the target pathway that was affected by VBL treatment.ResultsHere, we showed that VBL, an antineoplastic agent that destabilizes microtubule, drove macrophage polarization into the M1-like phenotype both in vitro and in tumor models. The antitumor effect of VBL was attenuated in the absence of macrophages or CD8+ T cells. Mechanistically, VBL induces the activation of NF-κB and Cyba-dependent reactive oxygen species generation, thus polarizing TAMs to the M1 phenotype. In parallel, VBL promotes the nuclear translocation of transcription factor EB, inducing lysosome biogenesis and a dramatic increase in phagocytic activity in macrophages.ConclusionsThis study explored whether manipulating cellular morphology affects macrophage polarization and consequently induces an antitumor response. Our data reveal a previously unrecognized antitumor mechanism of VBL and suggest a drug repurposing strategy combining VBL with immune checkpoint inhibitors to improve malignant tumor immunotherapy.
AbstractList Massive tumor-associated macrophage (TAM) infiltration is observed in many tumors, which usually display the immune-suppressive M2-like phenotype but can also be converted to an M1-like antitumor phenotype due to their high degree of plasticity. The macrophage polarization state is associated with changes in cell shape, macrophage morphology is associated with activation status. M1 macrophages appeared large and rounded, while M2 macrophages were stretched and elongated cells. Manipulating cell morphology has been shown to affect the polarization state of macrophages. The shape of the cell is largely dependent on cytoskeletal proteins, especially, microtubules. As a microtubule-targetting drug, vinblastine (VBL) has been used in chemotherapy. However, no study to date has explored the effect of VBL on TAM shape changes and its role in tumor immune response.BACKGROUNDMassive tumor-associated macrophage (TAM) infiltration is observed in many tumors, which usually display the immune-suppressive M2-like phenotype but can also be converted to an M1-like antitumor phenotype due to their high degree of plasticity. The macrophage polarization state is associated with changes in cell shape, macrophage morphology is associated with activation status. M1 macrophages appeared large and rounded, while M2 macrophages were stretched and elongated cells. Manipulating cell morphology has been shown to affect the polarization state of macrophages. The shape of the cell is largely dependent on cytoskeletal proteins, especially, microtubules. As a microtubule-targetting drug, vinblastine (VBL) has been used in chemotherapy. However, no study to date has explored the effect of VBL on TAM shape changes and its role in tumor immune response.We used fluorescent staining of the cytoskeleton and quantitative analysis to reveal the morphological differences between M0, M1, M2, TAM and VBL-treated TAM. Flow cytometry was used to confirm the polarization states of these macrophages using a cell surface marker-based classification. In vivo antibody depletion experiments in tumor mouse models were performed to test whether macrophages and CD8+ T cell populations were required for the antitumor effect of VBL. VBL and anti-PD-1 combination therapy was then investigated in comparison with monotherapy. RNA-seq of TAM of treated and untreated with VBL was performed to explore the changes in pathway activities. siRNA mediated knockdown experiments were performed to verify the target pathway that was affected by VBL treatment.METHODWe used fluorescent staining of the cytoskeleton and quantitative analysis to reveal the morphological differences between M0, M1, M2, TAM and VBL-treated TAM. Flow cytometry was used to confirm the polarization states of these macrophages using a cell surface marker-based classification. In vivo antibody depletion experiments in tumor mouse models were performed to test whether macrophages and CD8+ T cell populations were required for the antitumor effect of VBL. VBL and anti-PD-1 combination therapy was then investigated in comparison with monotherapy. RNA-seq of TAM of treated and untreated with VBL was performed to explore the changes in pathway activities. siRNA mediated knockdown experiments were performed to verify the target pathway that was affected by VBL treatment.Here, we showed that VBL, an antineoplastic agent that destabilizes microtubule, drove macrophage polarization into the M1-like phenotype both in vitro and in tumor models. The antitumor effect of VBL was attenuated in the absence of macrophages or CD8+ T cells. Mechanistically, VBL induces the activation of NF-κB and Cyba-dependent reactive oxygen species generation, thus polarizing TAMs to the M1 phenotype. In parallel, VBL promotes the nuclear translocation of transcription factor EB, inducing lysosome biogenesis and a dramatic increase in phagocytic activity in macrophages.RESULTSHere, we showed that VBL, an antineoplastic agent that destabilizes microtubule, drove macrophage polarization into the M1-like phenotype both in vitro and in tumor models. The antitumor effect of VBL was attenuated in the absence of macrophages or CD8+ T cells. Mechanistically, VBL induces the activation of NF-κB and Cyba-dependent reactive oxygen species generation, thus polarizing TAMs to the M1 phenotype. In parallel, VBL promotes the nuclear translocation of transcription factor EB, inducing lysosome biogenesis and a dramatic increase in phagocytic activity in macrophages.This study explored whether manipulating cellular morphology affects macrophage polarization and consequently induces an antitumor response. Our data reveal a previously unrecognized antitumor mechanism of VBL and suggest a drug repurposing strategy combining VBL with immune checkpoint inhibitors to improve malignant tumor immunotherapy.CONCLUSIONSThis study explored whether manipulating cellular morphology affects macrophage polarization and consequently induces an antitumor response. Our data reveal a previously unrecognized antitumor mechanism of VBL and suggest a drug repurposing strategy combining VBL with immune checkpoint inhibitors to improve malignant tumor immunotherapy.
Background Massive tumor-associated macrophage (TAM) infiltration is observed in many tumors, which usually display the immune-suppressive M2-like phenotype but can also be converted to an M1-like antitumor phenotype due to their high degree of plasticity. The macrophage polarization state is associated with changes in cell shape, macrophage morphology is associated with activation status. M1 macrophages appeared large and rounded, while M2 macrophages were stretched and elongated cells. Manipulating cell morphology has been shown to affect the polarization state of macrophages. The shape of the cell is largely dependent on cytoskeletal proteins, especially, microtubules. As a microtubule-targetting drug, vinblastine (VBL) has been used in chemotherapy. However, no study to date has explored the effect of VBL on TAM shape changes and its role in tumor immune response.Method We used fluorescent staining of the cytoskeleton and quantitative analysis to reveal the morphological differences between M0, M1, M2, TAM and VBL-treated TAM. Flow cytometry was used to confirm the polarization states of these macrophages using a cell surface marker-based classification. In vivo antibody depletion experiments in tumor mouse models were performed to test whether macrophages and CD8+ T cell populations were required for the antitumor effect of VBL. VBL and anti-PD-1 combination therapy was then investigated in comparison with monotherapy. RNA-seq of TAM of treated and untreated with VBL was performed to explore the changes in pathway activities. siRNA mediated knockdown experiments were performed to verify the target pathway that was affected by VBL treatment.Results Here, we showed that VBL, an antineoplastic agent that destabilizes microtubule, drove macrophage polarization into the M1-like phenotype both in vitro and in tumor models. The antitumor effect of VBL was attenuated in the absence of macrophages or CD8+ T cells. Mechanistically, VBL induces the activation of NF-κB and Cyba-dependent reactive oxygen species generation, thus polarizing TAMs to the M1 phenotype. In parallel, VBL promotes the nuclear translocation of transcription factor EB, inducing lysosome biogenesis and a dramatic increase in phagocytic activity in macrophages.Conclusions This study explored whether manipulating cellular morphology affects macrophage polarization and consequently induces an antitumor response. Our data reveal a previously unrecognized antitumor mechanism of VBL and suggest a drug repurposing strategy combining VBL with immune checkpoint inhibitors to improve malignant tumor immunotherapy.
BackgroundMassive tumor-associated macrophage (TAM) infiltration is observed in many tumors, which usually display the immune-suppressive M2-like phenotype but can also be converted to an M1-like antitumor phenotype due to their high degree of plasticity. The macrophage polarization state is associated with changes in cell shape, macrophage morphology is associated with activation status. M1 macrophages appeared large and rounded, while M2 macrophages were stretched and elongated cells. Manipulating cell morphology has been shown to affect the polarization state of macrophages. The shape of the cell is largely dependent on cytoskeletal proteins, especially, microtubules. As a microtubule-targetting drug, vinblastine (VBL) has been used in chemotherapy. However, no study to date has explored the effect of VBL on TAM shape changes and its role in tumor immune response.MethodWe used fluorescent staining of the cytoskeleton and quantitative analysis to reveal the morphological differences between M0, M1, M2, TAM and VBL-treated TAM. Flow cytometry was used to confirm the polarization states of these macrophages using a cell surface marker-based classification. In vivo antibody depletion experiments in tumor mouse models were performed to test whether macrophages and CD8+ T cell populations were required for the antitumor effect of VBL. VBL and anti-PD-1 combination therapy was then investigated in comparison with monotherapy. RNA-seq of TAM of treated and untreated with VBL was performed to explore the changes in pathway activities. siRNA mediated knockdown experiments were performed to verify the target pathway that was affected by VBL treatment.ResultsHere, we showed that VBL, an antineoplastic agent that destabilizes microtubule, drove macrophage polarization into the M1-like phenotype both in vitro and in tumor models. The antitumor effect of VBL was attenuated in the absence of macrophages or CD8+ T cells. Mechanistically, VBL induces the activation of NF-κB and Cyba-dependent reactive oxygen species generation, thus polarizing TAMs to the M1 phenotype. In parallel, VBL promotes the nuclear translocation of transcription factor EB, inducing lysosome biogenesis and a dramatic increase in phagocytic activity in macrophages.ConclusionsThis study explored whether manipulating cellular morphology affects macrophage polarization and consequently induces an antitumor response. Our data reveal a previously unrecognized antitumor mechanism of VBL and suggest a drug repurposing strategy combining VBL with immune checkpoint inhibitors to improve malignant tumor immunotherapy.
Author Wang, Yi-Na
Wang, Jin
Wang, Yuan-Yuan
Miao, Nai-Jun
Bai, Wen-Juan
Wang, Jing
AuthorAffiliation 2 Center for Immune-related Diseases at Shanghai Institute of Immunology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
1 Shanghai Institute of Immunology, Department of Immunology and Microbiology , Shanghai Jiao Tong University School of Medicine , Shanghai , China
AuthorAffiliation_xml – name: 1 Shanghai Institute of Immunology, Department of Immunology and Microbiology , Shanghai Jiao Tong University School of Medicine , Shanghai , China
– name: 2 Center for Immune-related Diseases at Shanghai Institute of Immunology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
Author_xml – sequence: 1
  givenname: Yi-Na
  surname: Wang
  fullname: Wang, Yi-Na
  organization: Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 2
  givenname: Yuan-Yuan
  surname: Wang
  fullname: Wang, Yuan-Yuan
  organization: Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 3
  givenname: Jin
  surname: Wang
  fullname: Wang, Jin
  organization: Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 4
  givenname: Wen-Juan
  surname: Bai
  fullname: Bai, Wen-Juan
  organization: Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 5
  givenname: Nai-Jun
  surname: Miao
  fullname: Miao, Nai-Jun
  organization: Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 6
  givenname: Jing
  orcidid: 0000-0001-8758-1693
  surname: Wang
  fullname: Wang, Jing
  email: jingwang@shsmu.edu.cn
  organization: Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
BookMark eNp9kktv1TAQhS1URMule5aR2LAgYDuxk6wQqnhUKmIDbK3x615HiR1sp6j_Ht-mAloJVrY853wee85TdOKDNwg9J_g1IQ1_M7qsaoppU2PcUdY8QmcUM1KTlvKTv_an6DylEWNMcNP0ff8EnTYdZ5R1_AyN352XE6TsvKmiSSanKq9ziDWkFJSDbHQ1g4phOcDelGL4CVFXn0m1HIwP-WYxFXhdLTHMIRcB-OxuCZWb53WjLsEn8ww9tjAlc3637tC3D--_Xnyqr758vLx4d1VLhlmuFR-s1nzoMFO9NZKTvgFmuVGgBy2lNNJqpjrbNS0m5YBQXF7Za7CKSLDNDl1uXB1gFEt0M8QbEcCJ24MQ9wJidmoyorWNbQcCkvbQWjYM5Z6uA0s1dIrivrDebqxllbPRyvgcYboHvV_x7iD24VoQ3HactKQQXt4RYvixmpTF7JIy0wTehDUJ2nPcYjr0Q5G-eCAdwxp9-auiYgOljJUR7hDeVGUmKUVjf3dDsDgGQxyDIY7BEFswioU_sCiXIbtw7NlN_zO-2oxyHv8080_5Lx7Iz9o
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e38067
crossref_primary_10_1080_1744666X_2024_2438721
crossref_primary_10_1186_s12943_024_02165_x
crossref_primary_10_3390_ijms25158409
crossref_primary_10_1016_j_bbcan_2025_189281
crossref_primary_10_1016_j_phymed_2024_155558
crossref_primary_10_58647_DRUGREPO_24_1_0007
crossref_primary_10_1007_s12094_024_03598_y
crossref_primary_10_3389_fimmu_2024_1381225
crossref_primary_10_1021_acs_jmedchem_4c02933
crossref_primary_10_1016_j_intimp_2024_111771
crossref_primary_10_1136_jitc_2024_009409
crossref_primary_10_1002_cbdv_202402976
crossref_primary_10_3389_fonc_2024_1449696
crossref_primary_10_3390_ijms26052252
crossref_primary_10_1002_advs_202412881
crossref_primary_10_1021_acs_molpharmaceut_4c01277
crossref_primary_10_3389_fimmu_2024_1501659
crossref_primary_10_1007_s00262_024_03880_6
crossref_primary_10_1186_s12951_025_03241_0
crossref_primary_10_3389_fphar_2025_1514158
crossref_primary_10_1021_acs_bioconjchem_4c00242
crossref_primary_10_1002_eji_202451139
Cites_doi 10.1136/jitc-2020-002022
10.1016/j.tibtech.2017.10.007
10.1038/s41551-017-0093
10.1083/jcb.90.3.761
10.1038/nature12034
10.4049/jimmunol.175.4.2071
10.1101/gad.180331.111
10.1016/j.celrep.2018.04.007
10.1074/jbc.M112.410720
10.1016/j.cytogfr.2018.01.007
10.2337/db14-0929
10.1038/s41551-018-0236-8
10.1016/j.cell.2010.03.014
10.1016/j.celrep.2019.08.057
10.1016/j.chom.2017.05.002
10.1038/cr.2013.75
10.1038/nature07205
10.4049/jimmunol.1800443
10.2174/156800906776056473
10.1016/j.celrep.2017.03.038
10.1042/bj2190519
10.1038/s41419-020-03357-1
10.1021/acs.nanolett.9b02795
10.3389/fcell.2018.00038
10.1038/s41598-017-03780-z
10.1111/j.1749-6632.2010.05763.x
10.1016/j.ymthe.2023.05.015
10.1016/j.gene.2016.03.050
10.1073/pnas.1308887110
10.1182/blood-2007-07-099267
10.1158/0008-5472.CAN-18-0014
10.3389/fimmu.2017.02004
10.1038/s42255-021-00482-9
10.1073/pnas.1720948115
10.1056/NEJMoa0905680
10.3389/fimmu.2021.779325
10.1158/2326-6066.CIR-20-0527
10.1038/nrc1317
10.1186/s13046-018-0878-0
10.1021/jacs.1c09741
10.1371/journal.pbio.1000412
10.1038/s41467-021-22212-1
10.3389/fonc.2021.644608
10.1080/15548627.2016.1212787
10.1016/j.freeradbiomed.2017.05.021
ContentType Journal Article
Copyright Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
2023 Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2023
Copyright_xml – notice: Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: 2023 Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2023
DBID 9YT
ACMMV
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1136/jitc-2023-007253
DatabaseName BMJ Open Access Journals
BMJ Journals:Open Access
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ACMMV
  name: BMJ Journals:Open Access
  url: https://journals.bmj.com/
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2051-1426
ExternalDocumentID oai_doaj_org_article_4f3f491ab28a4f5995f677af2da7c208
PMC10476141
10_1136_jitc_2023_007253
jitc
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2023T160425
  funderid: http://dx.doi.org/10.13039/501100002858
– fundername: National Natural Science Foundation
  grantid: 31872737; 81822020; 92042304
– fundername: National Natural Science Foundation
  grantid: 82302069
– fundername: ;
  grantid: 2023T160425
– fundername: ;
  grantid: 31872737; 81822020; 92042304
– fundername: ;
  grantid: 82302069
GroupedDBID 4.4
53G
5VS
7X7
88E
8FI
8FJ
9YT
ABUWG
ACGFS
ACMMV
ADBBV
ADRAZ
AFKRA
AHBYD
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ASPBG
AVWKF
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBS
FYUFA
GROUPED_DOAJ
HMCUK
HYE
IAO
IHR
IHW
INH
INR
KQ8
M1P
M48
M~E
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RMJ
RPM
RSV
SOJ
UKHRP
AAYXX
ADUKV
AHSBF
CITATION
EJD
H13
ITC
PHGZM
ROL
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-b505t-c69fdd69705c8feb6183a5f6ecad9dbbbebfd5c7f73401dbb1204268dafc1baf3
IEDL.DBID DOA
ISSN 2051-1426
IngestDate Wed Aug 27 01:27:04 EDT 2025
Thu Aug 21 18:36:46 EDT 2025
Fri Jul 11 08:46:34 EDT 2025
Fri Jul 25 21:13:46 EDT 2025
Tue Jul 01 01:56:02 EDT 2025
Thu Apr 24 23:08:52 EDT 2025
Thu Apr 24 23:02:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b505t-c69fdd69705c8feb6183a5f6ecad9dbbbebfd5c7f73401dbb1204268dafc1baf3
Notes Original research
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8758-1693
OpenAccessLink https://doaj.org/article/4f3f491ab28a4f5995f677af2da7c208
PMID 37652576
PQID 2859225510
PQPubID 2040222
ParticipantIDs doaj_primary_oai_doaj_org_article_4f3f491ab28a4f5995f677af2da7c208
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10476141
proquest_miscellaneous_2860402989
proquest_journals_2859225510
crossref_primary_10_1136_jitc_2023_007253
crossref_citationtrail_10_1136_jitc_2023_007253
bmj_journals_10_1136_jitc_2023_007253
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: BMA House, Tavistock Square, London, WC1H 9JR
PublicationSeriesTitle Original research
PublicationTitle Journal for immunotherapy of cancer
PublicationTitleAbbrev J Immunother Cancer
PublicationYear 2023
Publisher BMJ Publishing Group Ltd
BMJ Publishing Group LTD
BMJ Publishing Group
Publisher_xml – name: BMJ Publishing Group Ltd
– name: BMJ Publishing Group LTD
– name: BMJ Publishing Group
References Shan, Qin, Jin (R44) 2017; 110
Cassetta, Kitamura (R11) 2018; 6
Wynn, Chawla, Pollard (R14) 2013; 496
Wang, Tang, He (R45) 2021; 3
McWhorter, Wang, Nguyen (R18) 2013; 110
Stasia (R26) 2016; 586
Jordan, Wilson (R31) 2004; 4
Nakamura, Kurihara, Takahashi (R2) 2021; 12
Väyrynen, Haruki, Lau (R5) 2021; 9
Kitamura, Doughty-Shenton, Cassetta (R9) 2017; 8
Steidl, Lee, Shah (R12) 2010; 362
Xu, Cui, Wei (R4) 2018; 37
Rostam, Reynolds, Alexander (R19) 2017; 7
Wang, Yin, Liu (R39) 2021; 143
Harper, Dunne, Segal (R25) 1984; 219
Lan, Sun, Xu (R1) 2019; 79
Feng, Tang, Suzuki (R24) 2019; 202
Natoli, Herzig, Pishali Bejestani (R33) 2021; 11
Nardin, Lefebvre, Labroquère (R34) 2006; 6
Fang, Wan, Zou (R28) 2021; 12
Olson, Kim, Quail (R36) 2017; 19
Cao, Li, Chen (R22) 2021; 9
Chen, Wang, Nan (R3) 2021; 12
Kilkenny, Browne, Cuthill (R46) 2010; 8
Zhang, Yu, Xu (R27) 2016; 12
Wang, Chen, Gao (R38) 2023; 31
Li, Sun, Tan (R29) 2019; 19
Wong, Gregory, Hu (R30) 2017; 21
Kohchi, Inagawa, Nishizawa (R40) 2009; 29
Marklein, Lam, Guvendiren (R17) 2018; 36
Phillip, Wu, Gilkes (R16) 2017; 1
Luengo-Blanco, Prando, Bustamante (R23) 2008; 112
Zhang, Choksi, Chen (R41) 2013; 23
Kashyap, Fernandez-Rodriguez, Zhao (R32) 2019; 28
Locher, Conforti, Aymeric (R35) 2010; 1209
Peranzoni, Lemoine, Vimeux (R10) 2018; 115
Pozzi, Maciaszek, Rock (R15) 2005; 175
Farajzadeh Valilou, Keshavarz-Fathi, Silvestris (R7) 2018; 39
Arwert, Harney, Entenberg (R8) 2018; 23
Melmed, Karanian, Berlin (R21) 1981; 90
Padgett, Burg, Lei (R42) 2015; 64
He, Ryan, Murthy (R43) 2013; 288
Qian, Pollard (R6) 2010; 141
Rodell, Arlauckas, Cuccarese (R20) 2018; 2
Mantovani, Allavena, Sica (R13) 2008; 454
Shree, Olson, Elie (R37) 2011; 25
2024053115262867000_11.8.e007253.15
2024053115262867000_11.8.e007253.37
2024053115262867000_11.8.e007253.14
2024053115262867000_11.8.e007253.36
2024053115262867000_11.8.e007253.13
2024053115262867000_11.8.e007253.35
Shan (2024053115262867000_11.8.e007253.44) 2017; 110
2024053115262867000_11.8.e007253.1
2024053115262867000_11.8.e007253.12
Cao (2024053115262867000_11.8.e007253.22) 2021; 9
2024053115262867000_11.8.e007253.34
2024053115262867000_11.8.e007253.10
2024053115262867000_11.8.e007253.31
2024053115262867000_11.8.e007253.30
Kilkenny (2024053115262867000_11.8.e007253.46) 2010; 8
2024053115262867000_11.8.e007253.18
Marklein (2024053115262867000_11.8.e007253.17) 2018; 36
Li (2024053115262867000_11.8.e007253.29) 2019; 19
Wang (2024053115262867000_11.8.e007253.39) 2021; 143
2024053115262867000_11.8.e007253.26
2024053115262867000_11.8.e007253.25
2024053115262867000_11.8.e007253.24
2024053115262867000_11.8.e007253.23
2024053115262867000_11.8.e007253.21
2024053115262867000_11.8.e007253.43
2024053115262867000_11.8.e007253.42
Kohchi (2024053115262867000_11.8.e007253.40) 2009; 29
2024053115262867000_11.8.e007253.41
Xu (2024053115262867000_11.8.e007253.4) 2018; 37
Rodell (2024053115262867000_11.8.e007253.20) 2018; 2
Cassetta (2024053115262867000_11.8.e007253.11) 2018; 6
Rostam (2024053115262867000_11.8.e007253.19) 2017; 7
Nakamura (2024053115262867000_11.8.e007253.2) 2021; 12
2024053115262867000_11.8.e007253.27
Kashyap (2024053115262867000_11.8.e007253.32) 2019; 28
Wang (2024053115262867000_11.8.e007253.38) 2023; 31
Kitamura (2024053115262867000_11.8.e007253.9) 2017; 8
Phillip (2024053115262867000_11.8.e007253.16) 2017; 1
2024053115262867000_11.8.e007253.8
2024053115262867000_11.8.e007253.7
Natoli (2024053115262867000_11.8.e007253.33) 2021; 11
Wang (2024053115262867000_11.8.e007253.45) 2021; 3
Fang (2024053115262867000_11.8.e007253.28) 2021; 12
2024053115262867000_11.8.e007253.6
Chen (2024053115262867000_11.8.e007253.3) 2021; 12
2024053115262867000_11.8.e007253.5
References_xml – volume: 9
  year: 2021
  ident: R22
  article-title: Effect of cabazitaxel on macrophages improves CD47-targeted Immunotherapy for triple-negative breast cancer
  publication-title: J Immunother Cancer
  doi: 10.1136/jitc-2020-002022
– volume: 36
  start-page: 105
  year: 2018
  ident: R17
  article-title: Functionally-relevant morphological profiling: a tool to assess cellular heterogeneity
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2017.10.007
– volume: 1
  year: 2017
  ident: R16
  article-title: Biophysical and biomolecular determination of cellular age in humans
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-017-0093
– volume: 90
  start-page: 761
  year: 1981
  ident: R21
  article-title: Control of cell volume in the J774 macrophage by microtubule disassembly and cyclic AMP
  publication-title: J Cell Biol
  doi: 10.1083/jcb.90.3.761
– volume: 496
  start-page: 445
  year: 2013
  ident: R14
  article-title: Macrophage biology in development, homeostasis and disease
  publication-title: Nature
  doi: 10.1038/nature12034
– volume: 175
  start-page: 2071
  year: 2005
  ident: R15
  article-title: Both dendritic cells and macrophages can stimulate naive CD8 T cells in vivo to proliferate, develop effector function, and differentiate into memory cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.175.4.2071
– volume: 25
  start-page: 2465
  year: 2011
  ident: R37
  article-title: Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer
  publication-title: Genes Dev
  doi: 10.1101/gad.180331.111
– volume: 23
  start-page: 1239
  year: 2018
  ident: R8
  article-title: A unidirectional transition from migratory to perivascular macrophage is required for tumor cell Intravasation
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.04.007
– volume: 288
  start-page: 20745
  year: 2013
  ident: R43
  article-title: Accelerated development of pulmonary fibrosis via Cu,Zn-superoxide dismutase-induced alternative activation of macrophages
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.410720
– volume: 39
  start-page: 46
  year: 2018
  ident: R7
  article-title: The role of inflammatory cytokines and tumor associated macrophages (TAMs) in microenvironment of pancreatic cancer
  publication-title: Cytokine Growth Factor Rev
  doi: 10.1016/j.cytogfr.2018.01.007
– volume: 64
  start-page: 937
  year: 2015
  ident: R42
  article-title: Loss of NADPH oxidase-derived superoxide Skews macrophage phenotypes to delay type 1 diabetes
  publication-title: Diabetes
  doi: 10.2337/db14-0929
– volume: 2
  start-page: 578
  year: 2018
  ident: R20
  article-title: TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-018-0236-8
– volume: 141
  start-page: 39
  year: 2010
  ident: R6
  article-title: Macrophage diversity enhances tumor progression and metastasis
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.014
– volume: 28
  start-page: 3367
  year: 2019
  ident: R32
  article-title: GEF-H1 signaling upon microtubule destabilization is required for dendritic cell activation and specific anti-tumor responses
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.08.057
– volume: 21
  start-page: 719
  year: 2017
  ident: R30
  article-title: Lysosomal degradation is required for sustained phagocytosis of bacteria by macrophages
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.05.002
– volume: 23
  start-page: 898
  year: 2013
  ident: R41
  article-title: ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages
  publication-title: Cell Res
  doi: 10.1038/cr.2013.75
– volume: 454
  start-page: 436
  year: 2008
  ident: R13
  article-title: Cancer-related inflammation
  publication-title: Nature
  doi: 10.1038/nature07205
– volume: 202
  start-page: 2546
  year: 2019
  ident: R24
  article-title: Essential role of NADPH oxidase-dependent production of reactive oxygen species in maintenance of sustained B cell receptor signaling and B cell proliferation
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1800443
– volume: 6
  start-page: 123
  year: 2006
  ident: R34
  article-title: Liposomal muramyl tripeptide phosphatidylethanolamine: targeting and activating macrophages for adjuvant treatment of osteosarcoma
  publication-title: Curr Cancer Drug Targets
  doi: 10.2174/156800906776056473
– volume: 19
  start-page: 101
  year: 2017
  ident: R36
  article-title: Tumor-associated macrophages suppress the cytotoxic activity of antimitotic agents
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.03.038
– volume: 219
  start-page: 519
  year: 1984
  ident: R25
  article-title: Purification of cytochrome B-245 from human neutrophils
  publication-title: Biochem J
  doi: 10.1042/bj2190519
– volume: 12
  year: 2021
  ident: R28
  article-title: Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-020-03357-1
– volume: 19
  start-page: 7781
  year: 2019
  ident: R29
  article-title: Polystyrene nanoparticles reduced ROS and inhibited ferroptosis by triggering lysosome stress and TFEB nucleus translocation in a size-dependent manner
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.9b02795
– volume: 6
  year: 2018
  ident: R11
  article-title: Targeting tumor-associated macrophages as a potential strategy to enhance the response to immune checkpoint inhibitors
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2018.00038
– volume: 7
  year: 2017
  ident: R19
  article-title: Image based machine learning for identification of macrophage subsets
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-03780-z
– volume: 1209
  start-page: 99
  year: 2010
  ident: R35
  article-title: Desirable cell death during anticancer chemotherapy
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.2010.05763.x
– volume: 31
  start-page: 2169
  year: 2023
  ident: R38
  article-title: Polyphyllin D punctures hypertrophic lysosomes to reverse drug resistance of hepatocellular carcinoma by targeting acid sphingomyelinase
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2023.05.015
– volume: 586
  start-page: 27
  year: 2016
  ident: R26
  article-title: CYBA Encoding P22(Phox), the cytochrome B558 alpha polypeptide: gene structure, expression, role and physiopathology
  publication-title: Gene
  doi: 10.1016/j.gene.2016.03.050
– volume: 110
  start-page: 17253
  year: 2013
  ident: R18
  article-title: Modulation of macrophage phenotype by cell shape
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1308887110
– volume: 112
  start-page: 1453
  year: 2008
  ident: R23
  article-title: Essential role of nuclear factor-kappaB for NADPH oxidase activity in normal and anhidrotic ectodermal dysplasia leukocytes
  publication-title: Blood
  doi: 10.1182/blood-2007-07-099267
– volume: 79
  start-page: 146
  year: 2019
  ident: R1
  article-title: M2 macrophage-derived exosomes promote cell migration and invasion in colon cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-18-0014
– volume: 8
  year: 2017
  ident: R9
  article-title: Monocytes differentiate to immune suppressive precursors of metastasis-associated macrophages in mouse models of metastatic breast cancer
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2017.02004
– volume: 3
  start-page: 1536
  year: 2021
  ident: R45
  article-title: Slit3 secreted from M2-like macrophages increases sympathetic activity and thermogenesis in adipose tissue
  publication-title: Nat Metab
  doi: 10.1038/s42255-021-00482-9
– volume: 115
  start-page: E4041
  year: 2018
  ident: R10
  article-title: Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1720948115
– volume: 362
  start-page: 875
  year: 2010
  ident: R12
  article-title: Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0905680
– volume: 12
  start-page: 779325
  year: 2021
  ident: R3
  article-title: Interaction between macrophage extracellular traps and colon cancer cells promotes colon cancer invasion and correlates with unfavorable prognosis
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2021.779325
– volume: 9
  start-page: 8
  year: 2021
  ident: R5
  article-title: The prognostic role of macrophage polarization in the colorectal cancer microenvironment
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-20-0527
– volume: 4
  start-page: 253
  year: 2004
  ident: R31
  article-title: Microtubules as a target for anticancer drugs
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1317
– volume: 37
  year: 2018
  ident: R4
  article-title: Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-018-0878-0
– volume: 143
  start-page: 20927
  year: 2021
  ident: R39
  article-title: Phenylboronic acid modification augments the lysosome escape and antitumor efficacy of a cylindrical polymer brush-based prodrug
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.1c09741
– volume: 8
  year: 2010
  ident: R46
  article-title: Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000412
– volume: 12
  year: 2021
  ident: R2
  article-title: Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation in the colon
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-22212-1
– volume: 11
  year: 2021
  ident: R33
  article-title: Plinabulin, a distinct microtubule-targeting chemotherapy, promotes M1-like macrophage polarization and anti-tumor immunity
  publication-title: Front Oncol
  doi: 10.3389/fonc.2021.644608
– volume: 12
  start-page: 1954
  year: 2016
  ident: R27
  article-title: Lysosome calcium in ROS regulation of autophagy
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1212787
– volume: 29
  start-page: 817
  year: 2009
  ident: R40
  article-title: ROS and innate immunity
  publication-title: Anticancer Res
– volume: 110
  start-page: 432
  year: 2017
  ident: R44
  article-title: Autophagy suppresses isoprenaline-induced M2 macrophage polarization via the ROS/ERK and mTOR signaling pathway
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2017.05.021
– volume: 9
  year: 2021
  ident: 2024053115262867000_11.8.e007253.22
  article-title: Effect of cabazitaxel on macrophages improves CD47-targeted Immunotherapy for triple-negative breast cancer
  publication-title: J Immunother Cancer
  doi: 10.1136/jitc-2020-002022
– volume: 19
  start-page: 7781
  year: 2019
  ident: 2024053115262867000_11.8.e007253.29
  article-title: Polystyrene nanoparticles reduced ROS and inhibited ferroptosis by triggering lysosome stress and TFEB nucleus translocation in a size-dependent manner
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.9b02795
– ident: 2024053115262867000_11.8.e007253.18
  doi: 10.1073/pnas.1308887110
– ident: 2024053115262867000_11.8.e007253.30
  doi: 10.1016/j.chom.2017.05.002
– volume: 31
  start-page: 2169
  year: 2023
  ident: 2024053115262867000_11.8.e007253.38
  article-title: Polyphyllin D punctures hypertrophic lysosomes to reverse drug resistance of hepatocellular carcinoma by targeting acid sphingomyelinase
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2023.05.015
– ident: 2024053115262867000_11.8.e007253.42
  doi: 10.2337/db14-0929
– ident: 2024053115262867000_11.8.e007253.5
  doi: 10.1158/2326-6066.CIR-20-0527
– ident: 2024053115262867000_11.8.e007253.7
  doi: 10.1016/j.cytogfr.2018.01.007
– ident: 2024053115262867000_11.8.e007253.10
  doi: 10.1073/pnas.1720948115
– ident: 2024053115262867000_11.8.e007253.8
  doi: 10.1016/j.celrep.2018.04.007
– volume: 12
  year: 2021
  ident: 2024053115262867000_11.8.e007253.28
  article-title: Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-020-03357-1
– ident: 2024053115262867000_11.8.e007253.1
  doi: 10.1158/0008-5472.CAN-18-0014
– ident: 2024053115262867000_11.8.e007253.14
  doi: 10.1038/nature12034
– ident: 2024053115262867000_11.8.e007253.41
  doi: 10.1038/cr.2013.75
– volume: 12
  start-page: 779325
  year: 2021
  ident: 2024053115262867000_11.8.e007253.3
  article-title: Interaction between macrophage extracellular traps and colon cancer cells promotes colon cancer invasion and correlates with unfavorable prognosis
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2021.779325
– volume: 143
  start-page: 20927
  year: 2021
  ident: 2024053115262867000_11.8.e007253.39
  article-title: Phenylboronic acid modification augments the lysosome escape and antitumor efficacy of a cylindrical polymer brush-based prodrug
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.1c09741
– ident: 2024053115262867000_11.8.e007253.31
  doi: 10.1038/nrc1317
– volume: 110
  start-page: 432
  year: 2017
  ident: 2024053115262867000_11.8.e007253.44
  article-title: Autophagy suppresses isoprenaline-induced M2 macrophage polarization via the ROS/ERK and mTOR signaling pathway
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2017.05.021
– ident: 2024053115262867000_11.8.e007253.23
  doi: 10.1182/blood-2007-07-099267
– volume: 8
  year: 2017
  ident: 2024053115262867000_11.8.e007253.9
  article-title: Monocytes differentiate to immune suppressive precursors of metastasis-associated macrophages in mouse models of metastatic breast cancer
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2017.02004
– ident: 2024053115262867000_11.8.e007253.15
  doi: 10.4049/jimmunol.175.4.2071
– volume: 2
  start-page: 578
  year: 2018
  ident: 2024053115262867000_11.8.e007253.20
  article-title: TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-018-0236-8
– volume: 3
  start-page: 1536
  year: 2021
  ident: 2024053115262867000_11.8.e007253.45
  article-title: Slit3 secreted from M2-like macrophages increases sympathetic activity and thermogenesis in adipose tissue
  publication-title: Nat Metab
  doi: 10.1038/s42255-021-00482-9
– volume: 8
  year: 2010
  ident: 2024053115262867000_11.8.e007253.46
  article-title: Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000412
– volume: 7
  year: 2017
  ident: 2024053115262867000_11.8.e007253.19
  article-title: Image based machine learning for identification of macrophage subsets
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-03780-z
– ident: 2024053115262867000_11.8.e007253.21
  doi: 10.1083/jcb.90.3.761
– ident: 2024053115262867000_11.8.e007253.34
  doi: 10.2174/156800906776056473
– ident: 2024053115262867000_11.8.e007253.37
  doi: 10.1101/gad.180331.111
– ident: 2024053115262867000_11.8.e007253.35
  doi: 10.1111/j.1749-6632.2010.05763.x
– ident: 2024053115262867000_11.8.e007253.36
  doi: 10.1016/j.celrep.2017.03.038
– volume: 1
  year: 2017
  ident: 2024053115262867000_11.8.e007253.16
  article-title: Biophysical and biomolecular determination of cellular age in humans
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-017-0093
– volume: 11
  year: 2021
  ident: 2024053115262867000_11.8.e007253.33
  article-title: Plinabulin, a distinct microtubule-targeting chemotherapy, promotes M1-like macrophage polarization and anti-tumor immunity
  publication-title: Front Oncol
  doi: 10.3389/fonc.2021.644608
– ident: 2024053115262867000_11.8.e007253.26
  doi: 10.1016/j.gene.2016.03.050
– volume: 28
  start-page: 3367
  year: 2019
  ident: 2024053115262867000_11.8.e007253.32
  article-title: GEF-H1 signaling upon microtubule destabilization is required for dendritic cell activation and specific anti-tumor responses
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.08.057
– ident: 2024053115262867000_11.8.e007253.12
  doi: 10.1056/NEJMoa0905680
– volume: 36
  start-page: 105
  year: 2018
  ident: 2024053115262867000_11.8.e007253.17
  article-title: Functionally-relevant morphological profiling: a tool to assess cellular heterogeneity
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2017.10.007
– volume: 12
  year: 2021
  ident: 2024053115262867000_11.8.e007253.2
  article-title: Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation in the colon
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-22212-1
– ident: 2024053115262867000_11.8.e007253.6
  doi: 10.1016/j.cell.2010.03.014
– volume: 6
  year: 2018
  ident: 2024053115262867000_11.8.e007253.11
  article-title: Targeting tumor-associated macrophages as a potential strategy to enhance the response to immune checkpoint inhibitors
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2018.00038
– ident: 2024053115262867000_11.8.e007253.24
  doi: 10.4049/jimmunol.1800443
– volume: 37
  year: 2018
  ident: 2024053115262867000_11.8.e007253.4
  article-title: Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-018-0878-0
– volume: 29
  start-page: 817
  year: 2009
  ident: 2024053115262867000_11.8.e007253.40
  article-title: ROS and innate immunity
  publication-title: Anticancer Res
– ident: 2024053115262867000_11.8.e007253.13
  doi: 10.1038/nature07205
– ident: 2024053115262867000_11.8.e007253.27
  doi: 10.1080/15548627.2016.1212787
– ident: 2024053115262867000_11.8.e007253.25
  doi: 10.1042/bj2190519
– ident: 2024053115262867000_11.8.e007253.43
  doi: 10.1074/jbc.M112.410720
SSID ssj0001033888
Score 2.4976263
Snippet BackgroundMassive tumor-associated macrophage (TAM) infiltration is observed in many tumors, which usually display the immune-suppressive M2-like phenotype but...
Massive tumor-associated macrophage (TAM) infiltration is observed in many tumors, which usually display the immune-suppressive M2-like phenotype but can also...
Background Massive tumor-associated macrophage (TAM) infiltration is observed in many tumors, which usually display the immune-suppressive M2-like phenotype...
SourceID doaj
pubmedcentral
proquest
crossref
bmj
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e007253
SubjectTerms Biosynthesis
Bone marrow
Cancer
CD8-positive T-lymphocytes
Cell growth
Chemotherapy
combined modality therapy
Cytotoxicity
drug therapy, combination
Drugs
Flow cytometry
Genotype & phenotype
Immune Cell Therapies and Immune Cell Engineering
Immune response
immunohistochemistry
Immunotherapy
Lymphocytes
macrophages
Metastasis
Morphology
Reactive oxygen species
Tumors
SummonAdditionalLinks – databaseName: BMJ Open Access Journals
  dbid: 9YT
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLagSFUvqOUhQks1SHDgMN3NYx57BNSqqrScWlRO0Tzprtik2mb_P_YkuyWXimMyjyT22LFn7M8An6w0XkVnufBK8aosAjdCe24q6b2M0oWSspHnP-TlTXV1K24HR5FyYZaLzp3Z1bJPZyCApqab5PlETwKBXIvyjLaln8MLKkxCIVyzX9ePeypTdLi03p5GljJNx6lCOO9HH8A-ShQhgBLGCD5n9DtKqP0jU3McKPnPn-fiEF4OJiP72vP4CJ6F5hXsz4dD8dew_LloLBrBHV4xyibqHli3WbVrbgbaB89Whmp13aH2wMYUKsvmOaMAr5Z2YZlpPLtPoXnYwVDuLs3AFpQ-kmalSNrwBm4uzq-_X_KhhAK3aNp03MlZRJrP1FQ4HYOVKMFGRBmc8TNvrQ02euFUVCU6WngjL8ip0t5El1sTy7ew17RNeAcMdYOYxmi1k7GiOjFBGiUi2jtF0GhEZvAZ6VkPIvBQJ--ilDWxoCYW1D0LMphsKV67AYecymH8eWLEl92I-x6D44m-34iJu36Enp1utOvf9SCMdRVL_ITc2EKbKhLkWpRKmVh4o1wx1RmcbJfA4_cQ0h8qP9RhGXzcNaMw0gmLaUK7oT4SlSKB2megR0tn9ELjlmZxl2C9CTQDjaX8_X8S8hgO-pVN0YgnsNetN-EDWkidPU1i8Rdqow-7
  priority: 102
  providerName: BMJ Publishing Group Ltd
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELbYRUJcEMtDBJaVkeDAwWrzst0TArSr1UrlxKLeIr-GbUWT0qb_nxnXbcmlx9hjJx7PTMb2-BvGPlppvAJnRe2VElVZBGFq7YWppPcSpAsl3Uae_pC399XdrJ6lDbdNCqvc28RoqH3naI98REBrKHsoQl9WfwVljaLT1ZRC44w9JugyCulSM3XcYxnjAkzr_elkKUeLee8EZQwXBJlNGZHP7HIx-CdF6P6BvzmMlvzv93PznD1LfiP_upvoC_YotC_Yk2k6GX_JFr_mrUVPuMcnTleK-g3vt8tuLUyagOD50lDCrgc0IVgZ42X5NOcU5dXRViw3reerGJ-HBIYu8FIPfE53SGKvFE4bXrH7m-uf329FyqMgLPo3vXByAsj4iRrXTkOwEtXY1CCDM37irbXBgq-dAlXiagsL8oJWVtobcLk1UL5m523XhjeMo4GoxwBWOwkVJYsJ0qga0OkpgkZPMmOfkJ9N0oNNE5cYpWyI7w3xvdnxPWOjPccbl8DIKSfGnxMtPh9arHZAHCdov9EkHugIQjsWdOvfTdLIpoISh5AbW2hTAeGugVTKQOGNcsVYZ-xyLwLH8RylMGMfDtWokXTMYtrQbYlGomUkZPuM6YHoDD5oWNPOHyK2NyFnoMeUvz399nfs6U6KKRLxkp336214j95Rb6-iCvwDHSIS8g
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYolapeqtKHui0gI7WHHlyyDz9yqBAgEEJKT03FbeVnSUR2IWyk8u-ZcZzQlRAnjru2V-sZz3jGnvmGkK9GaCeDNYw7KVlVFp5prhzTlXBOBGF9idnIo1_ibFydX_CLh_ToRMDbR107rCc1nl_9-HdzdwAC_zNVJNmfTjrLsAw4QxxsXr4gL2Ffkiimo2TsxxOXAbhjSq3uKh8ZCPuLmU17O1QE8u9Zn_3Yyf82o9O35E2yIunhku1bZMM378irUbonf0-mfyaNAbu4gyeKCUbdLe0Ws3bOdGKHd3SmsXzXJSgUaIzRs3SUU4z5avFglurG0esYrQcdNKbz4hfoBDNK4lcxuNZ_IOPTk9_HZyxVVWAGrJ2OWTEMwIahHHCrgjcChFrzILzVbuiMMd4Ex60MsgTfC17kBfpZyulgc6ND-ZFsNm3jPxEK6oIPQjDKilBh6RgvtOQBTKDCK7ArM_IN6FmvmFpHh6MUNdK9RrrXS7pnZH9F8domaHKskHH1xIjv6xHXS1iOJ_oeIRPX_RBQO75o53_rJJ91FUqYQq5NoXQVEIUtCCl1KJyWthiojGyvlsDDfBD8D_QhqLWM7K2bQT7x0kU3vl1gHwF6EnHuM6J6S6f3Q_2WZnIZkb4RRwPsp_zzc0zhC3m9XOsYvbhNNrv5wu-ARdWZ3Sgo9woNI2o
  priority: 102
  providerName: Scholars Portal
Title Vinblastine resets tumor-associated macrophages toward M1 phenotype and promotes antitumor immune response
URI https://jitc.bmj.com/content/11/8/e007253.full
https://www.proquest.com/docview/2859225510
https://www.proquest.com/docview/2860402989
https://pubmed.ncbi.nlm.nih.gov/PMC10476141
https://doaj.org/article/4f3f491ab28a4f5995f677af2da7c208
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB6aFEovpU-qNjVbaA89LLZeu6tjEhJCQaGUJLgnsU9iU8shkf9_Z1aya13SSy8y1q4W6dPs7Ix25huAL0ZoJ4M1vHRS8iLPPNelclwXwjkRhPU5ZSPXl-Liuvg-L-d7pb4oJqynB-6BmxYhD0WVapMpXQSixwpCSh0yp6XN-jRfXPP2nKn4dWWGrpdS233JXEyXi85yqhXOiSybaiEfmNVytBpF0v6RpTmOk9xbeM5fwovBYmTH_Z2-gie-fQ3P6mFP_A0sbxatQRu4w3-Mkom6B9ZtVut7rgfovWMrTaW6blF5YGOMlGV1yii-a00fYZluHbuLkXnYQVPqLo3AFpQ9EkelQFr_Fq7Pz65OL_hQQYEbtGw6bkUVEPJKzkqrgjcCJ7BGAL3VrnLGGG-CK60MMkc_C0-kGflUyulgU6ND_g4O23Xr3wND1VDOQjDKCnwfOJAXWpYBzZ3MK7QhE_iKeDbDDHhoonORi4Zwbwj3psc9gekW8cYONORUDeP3I1d8211x11NwPNL3hF7irh-RZ8cTKFLNIFLNv0QqgaOtCPx9HiL6Q92HKiyBz7tmnIu0waJbv95QH4E6kTjtE1Aj0Rnd0LilXdxGVm_izEBbKf3wPx7hIzzvZZ0iFY_gsLvf-E9oPXVmAgdyLvFY_bqawNPj07q-wd-Ts8sfPydxEuGxLtQfobYhpA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61qQRcEE_VtMAi0QOHVeLX2jkgRKFVSpsIoRb1ZvZJExE7TRwh_hS_kRnHTvAltx7tXa93Z2dnZ3Zn5gN4q4Q0idOKxyZJeBQGlss4NVxGwhjhhLYhRSMPR2JwFX25jq934G8TC0NulY1MrAS1KTSdkXcp0RryHrLQh9ktJ9Qoul1tIDRWbHFu__xGk23x_uwzzu9REJyeXH4a8BpVgCvc7UuuRd9hN_pJL9aps0ogU8vYCaul6RullFXOxDpxSYi2B77wA7IzUiOd9pV0Iba7C3tRiKZMB_aOT0Zfv21OdXpo8qVpcx8aiu5kXGpOGOWcknQTBvOumk5au2AFFtDScNv-mf9teKeP4GGtqbKPK9Z6DDs2fwL3hvVd_FOYfB_nCnXvEp8YBTGVC1Yup8Wcy3rKrWFTSRBhNyi0sLDy0GVDn5FfWUGHv0zmhs0qj0CsIClkmFpgY4paqVolB177DK7uhMbPoZMXud0HhiIp7jmnUi1cRPA0VsgkdqhmBTZF3dWDI6RnVq-8RVYZNaHIiO4Z0T1b0d2DbkPxTNfpzwmF49eWL96tv5itUn9sqXtMk7iuR0m7qxfF_GdWy4AsciEOwZcqSGXkKNObE0kiXWBkooNe6sFhwwKb8Wz43oM362KUAXSxI3NbLKmOQFlMufQ9SFus0-pQuyQf31TZxClXB-po_ovtf38N9weXw4vs4mx0fgAPVhxNfpCH0CnnS_sSdbNSvaoXBIMfd70G_wExfVSt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61Raq4IJ7CtMAi0QOHVeLXrnNACChRS0nFgaLczD5pImKniSPEX-PXMePYCb7k1qO967U9OzM7szvzDcBrLZSV3mieWil5EkeOqzSzXCXCWuGFcTFlI48uxdlV8nmcjvfgb5sLQ2GVrU6sFbUtDe2R9whoDXkPWajnm7CIr6fDd_MbThWk6KS1LaexZpEL9-c3um_Lt-enONcnUTT89O3jGW8qDHCNK3_FjRh4_KSB7Kcm804LZHCVeuGMsgOrtXba29RIL2P0Q_BGGJHPkVnlTaiVj3Hcfbgj4zQkGZNjud3f6aPzl2XtyWgsetNJZThVK-cE103VmPf1bNpZD-uyAR1btxup-d_SN7wP9xqblb1fM9kD2HPFQzgcNafyj2D6fVJotMIrvGKUzlQtWbWalQuumsl3ls0UFQu7RvWFjXWsLhuFjCLMStoGZqqwbF7HBmIHRcnDNAKbUP5KPSqF8rrHcHUrFH4CB0VZuKfAUDmlfe91ZoRPqFCNE0qmHg2uyGVoxQZwgvTMGxlc5rV7E4uc6J4T3fM13QPotRTPTQOETvU4fu144s3mifkaBGRH3w80iZt-BN9d3ygXP_NGG-SJj_EXQqWjTCWeMN-8kFL5yCppon4WwHHLAtv_2UpAAK82zagN6IhHFa5cUR-BWplQ9QPIOqzT-aBuSzG5rnHFCbUDrbXw2e63v4RDlLz8y_nlxRHcXTM0BUQew0G1WLnnaKRV-kUtDQx-3Lb4_QPpold9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vinblastine+resets+tumor-associated+macrophages+toward+M1+phenotype+and+promotes+antitumor+immune+response&rft.jtitle=Journal+for+immunotherapy+of+cancer&rft.au=Jing+Wang&rft.au=Jin+Wang&rft.au=Yi-Na+Wang&rft.au=Yuan-Yuan+Wang&rft.date=2023-08-01&rft.pub=BMJ+Publishing+Group&rft.eissn=2051-1426&rft.volume=11&rft.issue=8&rft_id=info:doi/10.1136%2Fjitc-2023-007253&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4f3f491ab28a4f5995f677af2da7c208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-1426&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-1426&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-1426&client=summon