Cell membrane-anchored and tumor-targeted IL-12 T-cell therapy destroys cancer-associated fibroblasts and disrupts extracellular matrix in heterogenous osteosarcoma xenograft models

BackgroundThe extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of many solid tumors to immunotherapy. CAF-targeted chimeric antigen receptor-T cell therapy cannot infiltrate ECM-rich tumors such as osteosarco...

Full description

Saved in:
Bibliographic Details
Published inJournal for immunotherapy of cancer Vol. 12; no. 1; p. e006991
Main Authors Hu, Jiemiao, Lazar, Alexander J, Ingram, Davis, Wang, Wei-Lien, Zhang, Wendong, Jia, Zhiliang, Ragoonanan, Dristhi, Wang, Jian, Xia, Xueqing, Mahadeo, Kris, Gorlick, Richard, Li, Shulin
Format Journal Article
LanguageEnglish
Published England BMJ Publishing Group Ltd 09.01.2024
BMJ Publishing Group
SeriesOriginal research
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BackgroundThe extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of many solid tumors to immunotherapy. CAF-targeted chimeric antigen receptor-T cell therapy cannot infiltrate ECM-rich tumors such as osteosarcoma.MethodIn this study, we used RNA sequencing to assess whether the recently invented membrane-anchored and tumor-targeted IL-12-armed (attIL12) T cells, which bind cell-surface vimentin (CSV) on tumor cells, could destroy CAFs to disrupt the ECM. We established an in vitro model of the interaction between osteosarcoma CAFs and attIL12-T cells to uncover the underlying mechanism by which attIL12-T cells penetrate stroma-enriched osteosarcoma tumors.ResultsRNA sequencing demonstrated that attIL12-T cell treatment altered ECM-related gene expression. Immunohistochemistry staining revealed disruption or elimination of high-density CAFs and ECM in osteosarcoma xenograft tumors following attIL12-T cell treatment, and CAF/ECM density was inversely correlated with T-cell infiltration. Other IL12-armed T cells, such as wild-type IL-12-targeted or tumor-targeted IL-12-T cells, did not disrupt the ECM because this effect depended on the engagement between CSV on the tumor cell and its ligand on the attIL12-T cells. Mechanistic studies found that attIL12-T cell treatment elevated IFNγ production on interacting with CSV+ tumor cells, suppressing transforming growth factor beta secretion and in turn upregulating FAS-mediated CAF apoptosis. CAF destruction reshaped the tumor stroma to favor T-cell infiltration and tumor inhibition.ConclusionsThis study unveiled a novel therapy—attIL12-T cells—for targeting CAFs/ECM. These findings are highly relevant to humans because CAFs are abundant in human osteosarcoma.
AbstractList The extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of many solid tumors to immunotherapy. CAF-targeted chimeric antigen receptor-T cell therapy cannot infiltrate ECM-rich tumors such as osteosarcoma. In this study, we used RNA sequencing to assess whether the recently invented membrane-anchored and tumor-targeted IL-12-armed (attIL12) T cells, which bind cell-surface vimentin (CSV) on tumor cells, could destroy CAFs to disrupt the ECM. We established an in vitro model of the interaction between osteosarcoma CAFs and attIL12-T cells to uncover the underlying mechanism by which attIL12-T cells penetrate stroma-enriched osteosarcoma tumors. RNA sequencing demonstrated that attIL12-T cell treatment altered ECM-related gene expression. Immunohistochemistry staining revealed disruption or elimination of high-density CAFs and ECM in osteosarcoma xenograft tumors following attIL12-T cell treatment, and CAF/ECM density was inversely correlated with T-cell infiltration. Other IL12-armed T cells, such as wild-type IL-12-targeted or tumor-targeted IL-12-T cells, did not disrupt the ECM because this effect depended on the engagement between CSV on the tumor cell and its ligand on the attIL12-T cells. Mechanistic studies found that attIL12-T cell treatment elevated IFNγ production on interacting with CSV tumor cells, suppressing transforming growth factor beta secretion and in turn upregulating FAS-mediated CAF apoptosis. CAF destruction reshaped the tumor stroma to favor T-cell infiltration and tumor inhibition. This study unveiled a novel therapy-attIL12-T cells-for targeting CAFs/ECM. These findings are highly relevant to humans because CAFs are abundant in human osteosarcoma.
Background The extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of many solid tumors to immunotherapy. CAF-targeted chimeric antigen receptor-T cell therapy cannot infiltrate ECM-rich tumors such as osteosarcoma.Method In this study, we used RNA sequencing to assess whether the recently invented membrane-anchored and tumor-targeted IL-12-armed (attIL12) T cells, which bind cell-surface vimentin (CSV) on tumor cells, could destroy CAFs to disrupt the ECM. We established an in vitro model of the interaction between osteosarcoma CAFs and attIL12-T cells to uncover the underlying mechanism by which attIL12-T cells penetrate stroma-enriched osteosarcoma tumors.Results RNA sequencing demonstrated that attIL12-T cell treatment altered ECM-related gene expression. Immunohistochemistry staining revealed disruption or elimination of high-density CAFs and ECM in osteosarcoma xenograft tumors following attIL12-T cell treatment, and CAF/ECM density was inversely correlated with T-cell infiltration. Other IL12-armed T cells, such as wild-type IL-12-targeted or tumor-targeted IL-12-T cells, did not disrupt the ECM because this effect depended on the engagement between CSV on the tumor cell and its ligand on the attIL12-T cells. Mechanistic studies found that attIL12-T cell treatment elevated IFNγ production on interacting with CSV+ tumor cells, suppressing transforming growth factor beta secretion and in turn upregulating FAS-mediated CAF apoptosis. CAF destruction reshaped the tumor stroma to favor T-cell infiltration and tumor inhibition.Conclusions This study unveiled a novel therapy—attIL12-T cells—for targeting CAFs/ECM. These findings are highly relevant to humans because CAFs are abundant in human osteosarcoma.
BackgroundThe extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of many solid tumors to immunotherapy. CAF-targeted chimeric antigen receptor-T cell therapy cannot infiltrate ECM-rich tumors such as osteosarcoma.MethodIn this study, we used RNA sequencing to assess whether the recently invented membrane-anchored and tumor-targeted IL-12-armed (attIL12) T cells, which bind cell-surface vimentin (CSV) on tumor cells, could destroy CAFs to disrupt the ECM. We established an in vitro model of the interaction between osteosarcoma CAFs and attIL12-T cells to uncover the underlying mechanism by which attIL12-T cells penetrate stroma-enriched osteosarcoma tumors.ResultsRNA sequencing demonstrated that attIL12-T cell treatment altered ECM-related gene expression. Immunohistochemistry staining revealed disruption or elimination of high-density CAFs and ECM in osteosarcoma xenograft tumors following attIL12-T cell treatment, and CAF/ECM density was inversely correlated with T-cell infiltration. Other IL12-armed T cells, such as wild-type IL-12-targeted or tumor-targeted IL-12-T cells, did not disrupt the ECM because this effect depended on the engagement between CSV on the tumor cell and its ligand on the attIL12-T cells. Mechanistic studies found that attIL12-T cell treatment elevated IFNγ production on interacting with CSV+ tumor cells, suppressing transforming growth factor beta secretion and in turn upregulating FAS-mediated CAF apoptosis. CAF destruction reshaped the tumor stroma to favor T-cell infiltration and tumor inhibition.ConclusionsThis study unveiled a novel therapy—attIL12-T cells—for targeting CAFs/ECM. These findings are highly relevant to humans because CAFs are abundant in human osteosarcoma.
The extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of many solid tumors to immunotherapy. CAF-targeted chimeric antigen receptor-T cell therapy cannot infiltrate ECM-rich tumors such as osteosarcoma.BACKGROUNDThe extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of many solid tumors to immunotherapy. CAF-targeted chimeric antigen receptor-T cell therapy cannot infiltrate ECM-rich tumors such as osteosarcoma.In this study, we used RNA sequencing to assess whether the recently invented membrane-anchored and tumor-targeted IL-12-armed (attIL12) T cells, which bind cell-surface vimentin (CSV) on tumor cells, could destroy CAFs to disrupt the ECM. We established an in vitro model of the interaction between osteosarcoma CAFs and attIL12-T cells to uncover the underlying mechanism by which attIL12-T cells penetrate stroma-enriched osteosarcoma tumors.METHODIn this study, we used RNA sequencing to assess whether the recently invented membrane-anchored and tumor-targeted IL-12-armed (attIL12) T cells, which bind cell-surface vimentin (CSV) on tumor cells, could destroy CAFs to disrupt the ECM. We established an in vitro model of the interaction between osteosarcoma CAFs and attIL12-T cells to uncover the underlying mechanism by which attIL12-T cells penetrate stroma-enriched osteosarcoma tumors.RNA sequencing demonstrated that attIL12-T cell treatment altered ECM-related gene expression. Immunohistochemistry staining revealed disruption or elimination of high-density CAFs and ECM in osteosarcoma xenograft tumors following attIL12-T cell treatment, and CAF/ECM density was inversely correlated with T-cell infiltration. Other IL12-armed T cells, such as wild-type IL-12-targeted or tumor-targeted IL-12-T cells, did not disrupt the ECM because this effect depended on the engagement between CSV on the tumor cell and its ligand on the attIL12-T cells. Mechanistic studies found that attIL12-T cell treatment elevated IFNγ production on interacting with CSV+ tumor cells, suppressing transforming growth factor beta secretion and in turn upregulating FAS-mediated CAF apoptosis. CAF destruction reshaped the tumor stroma to favor T-cell infiltration and tumor inhibition.RESULTSRNA sequencing demonstrated that attIL12-T cell treatment altered ECM-related gene expression. Immunohistochemistry staining revealed disruption or elimination of high-density CAFs and ECM in osteosarcoma xenograft tumors following attIL12-T cell treatment, and CAF/ECM density was inversely correlated with T-cell infiltration. Other IL12-armed T cells, such as wild-type IL-12-targeted or tumor-targeted IL-12-T cells, did not disrupt the ECM because this effect depended on the engagement between CSV on the tumor cell and its ligand on the attIL12-T cells. Mechanistic studies found that attIL12-T cell treatment elevated IFNγ production on interacting with CSV+ tumor cells, suppressing transforming growth factor beta secretion and in turn upregulating FAS-mediated CAF apoptosis. CAF destruction reshaped the tumor stroma to favor T-cell infiltration and tumor inhibition.This study unveiled a novel therapy-attIL12-T cells-for targeting CAFs/ECM. These findings are highly relevant to humans because CAFs are abundant in human osteosarcoma.CONCLUSIONSThis study unveiled a novel therapy-attIL12-T cells-for targeting CAFs/ECM. These findings are highly relevant to humans because CAFs are abundant in human osteosarcoma.
Author Mahadeo, Kris
Ragoonanan, Dristhi
Wang, Jian
Ingram, Davis
Zhang, Wendong
Hu, Jiemiao
Lazar, Alexander J
Jia, Zhiliang
Wang, Wei-Lien
Gorlick, Richard
Li, Shulin
Xia, Xueqing
AuthorAffiliation 1 Department of Pediatrics-Research , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
3 Department of Genomic Medicine , The Universiy of Texas MD Anderson Cancer Center , Houston , Texas , USA
5 Department of Biostatistics , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
4 Department of Pediatric Stem Cell Transplantation and Cellular Therapy , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
2 Department of Pathology , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
AuthorAffiliation_xml – name: 1 Department of Pediatrics-Research , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
– name: 4 Department of Pediatric Stem Cell Transplantation and Cellular Therapy , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
– name: 2 Department of Pathology , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
– name: 3 Department of Genomic Medicine , The Universiy of Texas MD Anderson Cancer Center , Houston , Texas , USA
– name: 5 Department of Biostatistics , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
Author_xml – sequence: 1
  givenname: Jiemiao
  orcidid: 0000-0002-5142-0641
  surname: Hu
  fullname: Hu, Jiemiao
  organization: Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
– sequence: 2
  givenname: Alexander J
  surname: Lazar
  fullname: Lazar, Alexander J
  organization: Department of Genomic Medicine, The Universiy of Texas MD Anderson Cancer Center, Houston, Texas, USA
– sequence: 3
  givenname: Davis
  surname: Ingram
  fullname: Ingram, Davis
  organization: Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
– sequence: 4
  givenname: Wei-Lien
  surname: Wang
  fullname: Wang, Wei-Lien
  organization: Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
– sequence: 5
  givenname: Wendong
  surname: Zhang
  fullname: Zhang, Wendong
  organization: Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
– sequence: 6
  givenname: Zhiliang
  surname: Jia
  fullname: Jia, Zhiliang
  organization: Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
– sequence: 7
  givenname: Dristhi
  surname: Ragoonanan
  fullname: Ragoonanan, Dristhi
  organization: Department of Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
– sequence: 8
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  organization: Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
– sequence: 9
  givenname: Xueqing
  surname: Xia
  fullname: Xia, Xueqing
  organization: Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
– sequence: 10
  givenname: Kris
  surname: Mahadeo
  fullname: Mahadeo, Kris
  organization: Department of Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
– sequence: 11
  givenname: Richard
  surname: Gorlick
  fullname: Gorlick, Richard
  organization: Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
– sequence: 12
  givenname: Shulin
  orcidid: 0000-0001-5657-4183
  surname: Li
  fullname: Li, Shulin
  email: sli4@mdanderson.org
  organization: Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38199607$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpnhXykgUBP_LyCqERj5FGYlPW1vUjMx4l8XDtoOkP6__D6ZSqRYKV45tzvmude18WZ1OYXFG8ZvQ9Y6L5sPfJlJxyUVLaSMmeFRec1qxkFW_OHn2fF1cx7imljArRdd2L4lx0TMqGthfF7coNAxndqBEmV8JkdgGdJTBZkuYxYJkAty7l0npTMk6uS7M40s4hHG6IdTFhuInEZKvDEmIMxsOi773GoAeIKd7hrI84H_LFHRPCQpkHQDJCQn8kfiK73AbD1k1hjiTE5EIENGEEcsy1LUKfyBisG-Kr4nkPQ3RX9-dl8ePL5-vVt3Lz_et69WlT6prSVGqRc6namltGK6FpDaJvdSVNB7x3FWt0K7nsBQfetLTOgYDpraNNLaGVWX1ZrE9cG2CvDuhHwBsVwKu7QsCtAkzeDE5ZaTJHADesr6xrZWs663SvmQPRiTqzPp5Yh1mPzho35RSGJ9Cnfya_U9vwSzHa0aZpWSa8vSdg-Dnn4NXo45JjnlyOTHHJRFV1LWuz9M3jZg9d_gw-C-hJYDDEiK5_kDCqlvVSy3qpZb3Uab2ypfnLYnyC5MPyXD_8z_juZNTjXu3DjFOe2b_lvwHnZugb
CitedBy_id crossref_primary_10_1002_advs_202410918
crossref_primary_10_1016_j_biopha_2024_117045
crossref_primary_10_3390_curroncol32020079
crossref_primary_10_1007_s12026_024_09483_8
crossref_primary_10_3389_fimmu_2025_1579822
crossref_primary_10_1186_s12935_025_03709_x
crossref_primary_10_1080_14737140_2024_2421194
crossref_primary_10_3390_cancers16244158
crossref_primary_10_3390_biomedicines13030664
crossref_primary_10_3389_fimmu_2025_1557006
crossref_primary_10_1063_5_0199024
crossref_primary_10_1016_j_heliyon_2024_e32357
crossref_primary_10_3389_fcell_2024_1394339
Cites_doi 10.1007/s10549-008-9982-8
10.1136/jitc-2020-001772
10.1038/s41467-020-14646-w
10.1084/jem.20122344
10.1080/01926230701320337
10.2147/CCID.S50046
10.1158/1078-0432.CCR-22-0721
10.15252/embj.2018101302
10.4049/jimmunol.2001203
10.1038/nature25501
10.1158/2159-8290.CD-19-0644
10.1083/jcb.201704053
10.1038/mt.2013.110
10.1186/s12931-018-0801-4
10.1158/0008-5472.CAN-19-3158
10.1002/glia.20803
10.1186/s13046-020-01611-0
10.1016/j.ccell.2015.11.002
10.1038/s41417-019-0109-7
10.1158/2326-6066.CIR-13-0027
10.1074/jbc.275.13.9767
10.1159/000495714
10.1186/s13287-018-0780-x
10.1158/0008-5472.CAN-14-3041
10.1016/j.cell.2009.10.027
10.1038/s41416-020-1020-6
10.1007/s13277-013-1172-6
10.1158/1078-0432.CCR-08-0816
10.1172/JCI45817
10.1158/0008-5472.CAN-20-3941
10.1200/JCO.2014.58.0225
10.1016/j.canlet.2017.07.024
10.1158/0008-5472.CAN-03-1472
10.1016/j.matbio.2017.12.003
10.1111/j.1349-7006.2010.01731.x
10.1038/s41467-017-01430-6
10.1158/0008-5472.CAN-21-0614
10.1038/s41467-018-06654-8
10.1159/000069863
10.18632/oncotarget.12135
10.1084/jem.20130110
10.1073/pnas.1801348115
10.1038/onc.2017.387
10.1182/blood.2021012811
10.1093/jnci/djx121
10.1038/nature21349
10.1038/mt.2011.38
10.1136/jitc-2021-003633
10.3390/jcm8111989
10.1155/2017/4825108
10.18632/oncotarget.11307
10.1038/s41388-018-0209-0
10.1002/glia.20803.
10.1155/2017/2370927
ContentType Journal Article
Copyright Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2024
Copyright_xml – notice: Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2024
DBID 9YT
ACMMV
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1136/jitc-2023-006991
DatabaseName BMJ Open Access Journals
BMJ Journals:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: ACMMV
  name: BMJ Journals:Open Access
  url: https://journals.bmj.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2051-1426
ExternalDocumentID oai_doaj_org_article_d9c32a3a2c1f4de797c8debfb1ea3835
PMC10806671
38199607
10_1136_jitc_2023_006991
jitc
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  grantid: P30 CA016672; RO1 CA120985
– fundername: NCI NIH HHS
  grantid: R01 CA120895
– fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: ;
  grantid: P30 CA016672; RO1 CA120985
GroupedDBID 4.4
53G
5VS
7X7
88E
8FI
8FJ
9YT
ABUWG
ACGFS
ACMMV
ADBBV
ADRAZ
AFKRA
AHBYD
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ASPBG
AVWKF
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBS
FYUFA
GROUPED_DOAJ
HMCUK
HYE
IAO
IHR
IHW
INH
INR
KQ8
M1P
M48
M~E
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RMJ
RPM
RSV
SOJ
UKHRP
AAYXX
ADUKV
AHSBF
CITATION
EJD
H13
ITC
PHGZM
ROL
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
7X8
5PM
PUEGO
ID FETCH-LOGICAL-b500t-b36994752d1043b05a3f7b49c8a2fe416b7929f32a26705607acfde0659a795a3
IEDL.DBID DOA
ISSN 2051-1426
IngestDate Wed Aug 27 01:18:44 EDT 2025
Thu Aug 21 18:36:08 EDT 2025
Thu Jul 10 16:45:33 EDT 2025
Mon Jul 21 06:07:59 EDT 2025
Thu Apr 24 23:00:40 EDT 2025
Tue Jul 01 01:56:03 EDT 2025
Thu Apr 24 22:49:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Tumor Microenvironment
Pediatrics
Lymphocytes, Tumor-Infiltrating
Cytokines
Immunotherapy, Adoptive
Language English
License This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.
Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b500t-b36994752d1043b05a3f7b49c8a2fe416b7929f32a26705607acfde0659a795a3
Notes Original research
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5142-0641
0000-0001-5657-4183
OpenAccessLink https://doaj.org/article/d9c32a3a2c1f4de797c8debfb1ea3835
PMID 38199607
PQID 2913448717
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d9c32a3a2c1f4de797c8debfb1ea3835
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10806671
proquest_miscellaneous_2913448717
pubmed_primary_38199607
crossref_primary_10_1136_jitc_2023_006991
crossref_citationtrail_10_1136_jitc_2023_006991
bmj_journals_10_1136_jitc_2023_006991
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-09
PublicationDateYYYYMMDD 2024-01-09
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-09
  day: 09
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: BMA House, Tavistock Square, London, WC1H 9JR
PublicationSeriesTitle Original research
PublicationTitle Journal for immunotherapy of cancer
PublicationTitleAbbrev J Immunother Cancer
PublicationTitleAlternate J Immunother Cancer
PublicationYear 2024
Publisher BMJ Publishing Group Ltd
BMJ Publishing Group
Publisher_xml – name: BMJ Publishing Group Ltd
– name: BMJ Publishing Group
References Todd, Ryall, Vyse (R1) 2016; 7
Conti, Kendall, Bateman (R10) 2008; 14
Yoshida (R43) 2020; 39
He, Wang, Zhao (R4) 2014; 35
Roberts, Deonarine, Jones (R20) 2013; 210
Hanley, Mellone, Ford (R15) 2018; 110
Kakarla, Chow, Mata (R50) 2013; 21
Huang, Zhou, Huang (R54) 2017; 2017
Sato, Imamura, Semba (R30) 2021; 81
Casey, Bond, Tighe (R8) 2009; 114
Cutrera, Dibra, Xia (R22) 2011; 19
Miskolczi, Smith, Rowling (R3) 2018; 37
Tang, Chen, Bao (R14) 2018; 115
Bian, Fan, Li (R24) 2010; 101
Zheng, Wang, Chen (R33) 2018; 9
Qiao, Zhang, Li (R13) 2018; 37
Tran, Chinnasamy, Yu (R49) 2013; 210
Levental, Yu, Kass (R34) 2009; 139
Sakemura, Hefazi, Siegler (R52) 2022; 139
Wang, Lo, Scholler (R19) 2014; 2
Ford, Hanley, Mellone (R21) 2020; 80
Erdogan, Ao, White (R47) 2017; 216
Mariathasan, Turley, Nickles (R39) 2018; 554
Brunner, Kasibhatla, Pinkoski (R32) 2000; 275
Eikenes, Bruland, Brekken (R7) 2004; 64
Özdemir, Pentcheva-Hoang, Carstens (R17) 2015; 28
Xiao, Wan, Nur (R5) 2018; 51
Harryvan, Verdegaal, Hardwick (R37) 2019; 8
Avery, Govindaraju, Jacob (R38) 2018; 67
Hu, Yang, Zhang (R23) 2022; 10
Zheng, Luo, Zhang (R45) 2002; 22
Saha, Islam, Kwak (R28) 2020; 27
Chen, Mellman (R12) 2017; 541
Ligon, Choi, Cojocaru (R36) 2021; 9
Hofheinz, al-Batran, Hartmann (R51) 2003; 26
Chakravarthy, Khan, Bensler (R16) 2018; 9
Wu, Beird, Andrew Livingston (R41) 2020; 11
Lo, Wang, Scholler (R18) 2015; 75
Dominguez, Müller, Keerthivasan (R40) 2020; 10
Salmon, Franciszkiewicz, Damotte (R6) 2012; 122
Dodi, Ajayi, Chang (R46) 2018; 19
Baker, Abuwarwar, Poly (R9) 2021; 206
Darby, Laverdet, Bonté (R42) 2014; 7
Ahmed, Brawley, Hegde (R35) 2015; 33
Zode, Clark, Wordinger (R11) 2009; 57
Jia, Janjanam, Wu (R29) 2019; 38
Wu, Liang, Chen (R26) 2016; 7
Lim, Tan, Lim (R2) 2017; 8
Yang, Hu, Jia (R27) 2022; 28
Cortini, Avnet, Baldini (R25) 2017; 405
Elmore (R31) 2007; 35
Xu, Fu, Plate (R44) 1998; 58
Hanley, Thomas (R48) 2020; 123
Liu, Zhou, Xiao (R53) 2022; 82
Dodi (2024053115230101000_12.1.e006991.46) 2018; 19
2024053115230101000_12.1.e006991.28
Hanley (2024053115230101000_12.1.e006991.48) 2020; 123
Sakemura (2024053115230101000_12.1.e006991.52) 2022; 139
2024053115230101000_12.1.e006991.24
2024053115230101000_12.1.e006991.26
2024053115230101000_12.1.e006991.30
Todd (2024053115230101000_12.1.e006991.1) 2016; 7
2024053115230101000_12.1.e006991.31
Hu (2024053115230101000_12.1.e006991.23) 2022; 10
2024053115230101000_12.1.e006991.32
Lim (2024053115230101000_12.1.e006991.2) 2017; 8
Xu (2024053115230101000_12.1.e006991.44) 1998; 58
Harryvan (2024053115230101000_12.1.e006991.37) 2019; 8
2024053115230101000_12.1.e006991.17
2024053115230101000_12.1.e006991.18
2024053115230101000_12.1.e006991.19
2024053115230101000_12.1.e006991.12
2024053115230101000_12.1.e006991.13
2024053115230101000_12.1.e006991.14
2024053115230101000_12.1.e006991.20
2024053115230101000_12.1.e006991.21
2024053115230101000_12.1.e006991.22
2024053115230101000_12.1.e006991.6
Xiao (2024053115230101000_12.1.e006991.5) 2018; 51
2024053115230101000_12.1.e006991.3
Yoshida (2024053115230101000_12.1.e006991.43) 2020; 39
2024053115230101000_12.1.e006991.49
2024053115230101000_12.1.e006991.9
2024053115230101000_12.1.e006991.8
2024053115230101000_12.1.e006991.47
2024053115230101000_12.1.e006991.7
2024053115230101000_12.1.e006991.53
2024053115230101000_12.1.e006991.10
2024053115230101000_12.1.e006991.54
2024053115230101000_12.1.e006991.11
2024053115230101000_12.1.e006991.50
He (2024053115230101000_12.1.e006991.4) 2014; 35
2024053115230101000_12.1.e006991.51
Hanley (2024053115230101000_12.1.e006991.15) 2018; 110
Zheng (2024053115230101000_12.1.e006991.33) 2018; 9
Yang (2024053115230101000_12.1.e006991.27) 2022; 28
2024053115230101000_12.1.e006991.38
2024053115230101000_12.1.e006991.39
2024053115230101000_12.1.e006991.34
2024053115230101000_12.1.e006991.35
Wu (2024053115230101000_12.1.e006991.41) 2020; 11
Zheng (2024053115230101000_12.1.e006991.45) 2002; 22
Jia (2024053115230101000_12.1.e006991.29) 2019; 38
2024053115230101000_12.1.e006991.42
Chakravarthy (2024053115230101000_12.1.e006991.16) 2018; 9
2024053115230101000_12.1.e006991.40
Ligon (2024053115230101000_12.1.e006991.36) 2021; 9
Cortini (2024053115230101000_12.1.e006991.25) 2017; 405
References_xml – volume: 114
  start-page: 47
  year: 2009
  ident: R8
  article-title: Molecular signatures suggest a major role for Stromal cells in development of invasive breast cancer
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-008-9982-8
– volume: 9
  year: 2021
  ident: R36
  article-title: Pathways of immune exclusion in metastatic Osteosarcoma are associated with inferior patient outcomes
  publication-title: J Immunother Cancer
  doi: 10.1136/jitc-2020-001772
– volume: 11
  year: 2020
  ident: R41
  article-title: Immuno-Genomic landscape of Osteosarcoma
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-14646-w
– volume: 210
  start-page: 1137
  year: 2013
  ident: R20
  article-title: Depletion of Stromal cells expressing fibroblast activation protein-alpha from Skeletal muscle and bone marrow results in Cachexia and anemia
  publication-title: J Exp Med
  doi: 10.1084/jem.20122344
– volume: 35
  start-page: 495
  year: 2007
  ident: R31
  article-title: Apoptosis: a review of programmed cell death
  publication-title: Toxicol Pathol
  doi: 10.1080/01926230701320337
– volume: 7
  start-page: 301
  year: 2014
  ident: R42
  article-title: Fibroblasts and Myofibroblasts in wound healing
  publication-title: Clin Cosmet Investig Dermatol
  doi: 10.2147/CCID.S50046
– volume: 28
  start-page: 3862
  year: 2022
  ident: R27
  article-title: Membrane-anchored and tumor-targeted Il12 (Attil12)-PBMC therapy for Osteosarcoma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-22-0721
– volume: 38
  year: 2019
  ident: R29
  article-title: The tumor cell-secreted Matricellular protein Wisp1 drives pro-metastatic collagen Linearization
  publication-title: EMBO J
  doi: 10.15252/embj.2018101302
– volume: 206
  start-page: 310
  year: 2021
  ident: R9
  article-title: Cancer-associated fibroblasts and T cells: from mechanisms to outcomes
  publication-title: J Immunol
  doi: 10.4049/jimmunol.2001203
– volume: 554
  start-page: 544
  year: 2018
  ident: R39
  article-title: Tgfbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells
  publication-title: Nature
  doi: 10.1038/nature25501
– volume: 10
  start-page: 232
  year: 2020
  ident: R40
  article-title: Single-cell RNA sequencing reveals Stromal evolution into Lrrc15(+) Myofibroblasts as a determinant of patient response to cancer Immunotherapy
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-19-0644
– volume: 216
  start-page: 3799
  year: 2017
  ident: R47
  article-title: Cancer-associated fibroblasts promote directional cancer cell migration by Aligning fibronectin
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201704053
– volume: 21
  start-page: 1611
  year: 2013
  ident: R50
  article-title: Antitumor effects of Chimeric receptor engineered human T cells directed to tumor Stroma
  publication-title: Mol Ther
  doi: 10.1038/mt.2013.110
– volume: 19
  year: 2018
  ident: R46
  article-title: Regulation of fibroblast Fas expression by soluble and mechanical pro-Fibrotic stimuli
  publication-title: Respir Res
  doi: 10.1186/s12931-018-0801-4
– volume: 80
  start-page: 1846
  year: 2020
  ident: R21
  article-title: Nox4 inhibition potentiates Immunotherapy by overcoming cancer-associated fibroblast-mediated Cd8 T-cell exclusion from tumors
  publication-title: Cancer Research
  doi: 10.1158/0008-5472.CAN-19-3158
– volume: 57
  start-page: 755
  year: 2009
  ident: R11
  article-title: Bone Morphogenetic protein 4 inhibits TGF-Beta2 stimulation of extracellular matrix proteins in optic nerve head cells: role of Gremlin in ECM modulation
  publication-title: Glia
  doi: 10.1002/glia.20803
– volume: 39
  year: 2020
  ident: R43
  article-title: Regulation of heterogeneous cancer-associated fibroblasts: the molecular pathology of activated signaling pathways
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-020-01611-0
– volume: 28
  start-page: 831
  year: 2015
  ident: R17
  article-title: Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates Pancreas cancer with reduced survival
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.11.002
– volume: 27
  start-page: 147
  year: 2020
  ident: R28
  article-title: Prom1 and Prom2 expression Differentially modulates clinical prognosis of cancer: a Multiomics analysis
  publication-title: Cancer Gene Ther
  doi: 10.1038/s41417-019-0109-7
– volume: 2
  start-page: 154
  year: 2014
  ident: R19
  article-title: Targeting fibroblast activation protein in tumor Stroma with Chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-13-0027
– volume: 275
  start-page: 9767
  year: 2000
  ident: R32
  article-title: Expression of Fas ligand in activated T cells is regulated by C-Myc
  publication-title: J Biol Chem
  doi: 10.1074/jbc.275.13.9767
– volume: 51
  start-page: 1879
  year: 2018
  ident: R5
  article-title: Targeting Cd44 by CRISPR-Cas9 in multi-drug resistant Osteosarcoma cells
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000495714
– volume: 9
  year: 2018
  ident: R33
  article-title: Mesenchymal stem cells in the Osteosarcoma Microenvironment: their biological properties, influence on tumor growth, and therapeutic implications
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-018-0780-x
– volume: 75
  start-page: 2800
  year: 2015
  ident: R18
  article-title: Tumor-promoting Desmoplasia is disrupted by Depleting FAP-expressing Stromal cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-3041
– volume: 139
  start-page: 891
  year: 2009
  ident: R34
  article-title: Matrix Crosslinking forces tumor progression by enhancing integrin signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2009.10.027
– volume: 22
  start-page: 1090
  year: 2002
  ident: R45
  article-title: Interferon-gamma up-regulates Fas expression and increases Fas-mediated apoptosis in tumor cell lines
  publication-title: Di Yi Jun Yi Da Xue Xue Bao
– volume: 123
  start-page: 1353
  year: 2020
  ident: R48
  article-title: T-cell tumour exclusion and Immunotherapy resistance: a role for CAF targeting
  publication-title: Br J Cancer
  doi: 10.1038/s41416-020-1020-6
– volume: 35
  start-page: 1297
  year: 2014
  ident: R4
  article-title: Col1A1 polymorphism is associated with risks of Osteosarcoma susceptibility and death
  publication-title: Tumour Biol
  doi: 10.1007/s13277-013-1172-6
– volume: 14
  start-page: 6405
  year: 2008
  ident: R10
  article-title: The Desmoplastic reaction surrounding hepatic colorectal adenocarcinoma metastases AIDS tumor growth and survival via Alphav integrin ligation
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-08-0816
– volume: 122
  start-page: 899
  year: 2012
  ident: R6
  article-title: Matrix architecture defines the preferential localization and migration of T cells into the Stroma of human lung tumors
  publication-title: J Clin Invest
  doi: 10.1172/JCI45817
– volume: 81
  start-page: 4751
  year: 2021
  ident: R30
  article-title: Tgfbeta signaling activated by cancer-associated fibroblasts determines the histological signature of lung adenocarcinoma
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-20-3941
– volume: 33
  start-page: 1688
  year: 2015
  ident: R35
  article-title: Human Epidermal growth factor receptor 2 (Her2) -Specific Chimeric antigen receptor-modified T cells for the Immunotherapy of Her2-positive sarcoma
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2014.58.0225
– volume: 405
  start-page: 90
  year: 2017
  ident: R25
  article-title: Mesenchymal Stroma: role in Osteosarcoma progression
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2017.07.024
– volume: 64
  start-page: 4768
  year: 2004
  ident: R7
  article-title: Collagenase increases the Transcapillary pressure gradient and improves the uptake and distribution of Monoclonal antibodies in human Osteosarcoma Xenografts
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-03-1472
– volume: 67
  start-page: 90
  year: 2018
  ident: R38
  article-title: Extracellular matrix directs Phenotypic heterogeneity of activated fibroblasts
  publication-title: Matrix Biol
  doi: 10.1016/j.matbio.2017.12.003
– volume: 101
  start-page: 2554
  year: 2010
  ident: R24
  article-title: Human Mesenchymal stem cells promote growth of Osteosarcoma: involvement of Interleukin-6 in the interaction between human Mesenchymal stem cells and Saos-2
  publication-title: Cancer Sci
  doi: 10.1111/j.1349-7006.2010.01731.x
– volume: 8
  year: 2017
  ident: R2
  article-title: An extracellular matrix-related Prognostic and predictive indicator for early-stage non-small cell lung cancer
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01430-6
– volume: 82
  start-page: 419
  year: 2022
  ident: R53
  article-title: BRAF inhibitors Reprogram cancer-associated fibroblasts to drive matrix remodeling and therapeutic escape in Melanoma
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-21-0614
– volume: 9
  year: 2018
  ident: R16
  article-title: TGF-beta-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and Immunotherapy failure
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-06654-8
– volume: 26
  start-page: 44
  year: 2003
  ident: R51
  article-title: Stromal antigen targeting by a Humanised Monoclonal antibody: an early phase II trial of Sibrotuzumab in patients with metastatic colorectal cancer
  publication-title: Onkologie
  doi: 10.1159/000069863
– volume: 7
  start-page: 68954
  year: 2016
  ident: R26
  article-title: Association between tumor-Stroma ratio and prognosis in solid tumor patients: a systematic review and meta-analysis
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.12135
– volume: 210
  start-page: 1125
  year: 2013
  ident: R49
  article-title: Immune targeting of fibroblast activation protein triggers recognition of Multipotent bone marrow Stromal cells and Cachexia
  publication-title: J Exp Med
  doi: 10.1084/jem.20130110
– volume: 115
  start-page: E5990
  year: 2018
  ident: R14
  article-title: Hypoxic tumor Microenvironment activates Gli2 via HIF-1Alpha and TGF-Beta2 to promote Chemoresistance in colorectal cancer
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1801348115
– volume: 37
  start-page: 873
  year: 2018
  ident: R13
  article-title: Il6 derived from cancer-associated fibroblasts promotes Chemoresistance via Cxcr7 in Esophageal squamous cell carcinoma
  publication-title: Oncogene
  doi: 10.1038/onc.2017.387
– volume: 139
  start-page: 3708
  year: 2022
  ident: R52
  article-title: Targeting cancer-associated fibroblasts in the bone marrow prevents resistance to CART-cell therapy in multiple myeloma
  publication-title: Blood
  doi: 10.1182/blood.2021012811
– volume: 110
  start-page: 109
  year: 2018
  ident: R15
  article-title: Targeting the Myofibroblastic cancer-associated fibroblast phenotype through inhibition of Nox4
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djx121
– volume: 541
  start-page: 321
  year: 2017
  ident: R12
  article-title: Elements of cancer immunity and the cancer-immune set point
  publication-title: Nature
  doi: 10.1038/nature21349
– volume: 19
  start-page: 1468
  year: 2011
  ident: R22
  article-title: Discovery of a linear peptide for improving tumor targeting of gene products and treatment of distal tumors by IL-12 gene therapy
  publication-title: Mol Ther
  doi: 10.1038/mt.2011.38
– volume: 10
  year: 2022
  ident: R23
  article-title: Cell membrane-anchored and tumor-targeted IL-12 (Attil12)-T cell therapy for eliminating large and heterogeneous solid tumors
  publication-title: J Immunother Cancer
  doi: 10.1136/jitc-2021-003633
– volume: 8
  year: 2019
  ident: R37
  article-title: Targeting of the cancer-associated fibroblast-T-cell axis in solid malignancies
  publication-title: J Clin Med
  doi: 10.3390/jcm8111989
– volume: 58
  start-page: 2832
  year: 1998
  ident: R44
  article-title: IFN-gamma induces cell growth inhibition by Fas-mediated apoptosis: requirement of Stat1 protein for up-regulation of Fas and FasL expression
  publication-title: Cancer Res
– volume: 2017
  start-page: 1
  year: 2017
  ident: R54
  article-title: Isolation of fibroblast-activation protein-specific cancer-associated fibroblasts
  publication-title: BioMed Research International
  doi: 10.1155/2017/4825108
– volume: 7
  start-page: 62939
  year: 2016
  ident: R1
  article-title: Systematic analysis of tumour cell-extracellular matrix adhesion identifies independent Prognostic factors in breast cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11307
– volume: 37
  start-page: 3166
  year: 2018
  ident: R3
  article-title: Collagen abundance controls Melanoma phenotypes through lineage-specific Microenvironment sensing
  publication-title: Oncogene
  doi: 10.1038/s41388-018-0209-0
– ident: 2024053115230101000_12.1.e006991.26
  doi: 10.18632/oncotarget.12135
– ident: 2024053115230101000_12.1.e006991.21
  doi: 10.1158/0008-5472.CAN-19-3158
– ident: 2024053115230101000_12.1.e006991.6
  doi: 10.1172/JCI45817
– ident: 2024053115230101000_12.1.e006991.22
  doi: 10.1038/mt.2011.38
– ident: 2024053115230101000_12.1.e006991.40
  doi: 10.1158/2159-8290.CD-19-0644
– ident: 2024053115230101000_12.1.e006991.11
  doi: 10.1002/glia.20803.
– volume: 7
  start-page: 62939
  year: 2016
  ident: 2024053115230101000_12.1.e006991.1
  article-title: Systematic analysis of tumour cell-extracellular matrix adhesion identifies independent Prognostic factors in breast cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11307
– volume: 139
  start-page: 3708
  year: 2022
  ident: 2024053115230101000_12.1.e006991.52
  article-title: Targeting cancer-associated fibroblasts in the bone marrow prevents resistance to CART-cell therapy in multiple myeloma
  publication-title: Blood
  doi: 10.1182/blood.2021012811
– volume: 110
  start-page: 109
  year: 2018
  ident: 2024053115230101000_12.1.e006991.15
  article-title: Targeting the Myofibroblastic cancer-associated fibroblast phenotype through inhibition of Nox4
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djx121
– volume: 19
  year: 2018
  ident: 2024053115230101000_12.1.e006991.46
  article-title: Regulation of fibroblast Fas expression by soluble and mechanical pro-Fibrotic stimuli
  publication-title: Respir Res
  doi: 10.1186/s12931-018-0801-4
– ident: 2024053115230101000_12.1.e006991.3
  doi: 10.1038/s41388-018-0209-0
– volume: 58
  start-page: 2832
  year: 1998
  ident: 2024053115230101000_12.1.e006991.44
  article-title: IFN-gamma induces cell growth inhibition by Fas-mediated apoptosis: requirement of Stat1 protein for up-regulation of Fas and FasL expression
  publication-title: Cancer Res
– ident: 2024053115230101000_12.1.e006991.12
  doi: 10.1038/nature21349
– volume: 8
  year: 2017
  ident: 2024053115230101000_12.1.e006991.2
  article-title: An extracellular matrix-related Prognostic and predictive indicator for early-stage non-small cell lung cancer
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01430-6
– volume: 51
  start-page: 1879
  year: 2018
  ident: 2024053115230101000_12.1.e006991.5
  article-title: Targeting Cd44 by CRISPR-Cas9 in multi-drug resistant Osteosarcoma cells
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000495714
– ident: 2024053115230101000_12.1.e006991.14
  doi: 10.1073/pnas.1801348115
– ident: 2024053115230101000_12.1.e006991.47
  doi: 10.1083/jcb.201704053
– ident: 2024053115230101000_12.1.e006991.50
  doi: 10.1038/mt.2013.110
– ident: 2024053115230101000_12.1.e006991.20
  doi: 10.1084/jem.20122344
– volume: 9
  year: 2021
  ident: 2024053115230101000_12.1.e006991.36
  article-title: Pathways of immune exclusion in metastatic Osteosarcoma are associated with inferior patient outcomes
  publication-title: J Immunother Cancer
  doi: 10.1136/jitc-2020-001772
– ident: 2024053115230101000_12.1.e006991.32
  doi: 10.1074/jbc.275.13.9767
– volume: 8
  year: 2019
  ident: 2024053115230101000_12.1.e006991.37
  article-title: Targeting of the cancer-associated fibroblast-T-cell axis in solid malignancies
  publication-title: J Clin Med
  doi: 10.3390/jcm8111989
– volume: 123
  start-page: 1353
  year: 2020
  ident: 2024053115230101000_12.1.e006991.48
  article-title: T-cell tumour exclusion and Immunotherapy resistance: a role for CAF targeting
  publication-title: Br J Cancer
  doi: 10.1038/s41416-020-1020-6
– ident: 2024053115230101000_12.1.e006991.31
  doi: 10.1080/01926230701320337
– ident: 2024053115230101000_12.1.e006991.18
  doi: 10.1158/0008-5472.CAN-14-3041
– ident: 2024053115230101000_12.1.e006991.24
  doi: 10.1111/j.1349-7006.2010.01731.x
– volume: 9
  year: 2018
  ident: 2024053115230101000_12.1.e006991.33
  article-title: Mesenchymal stem cells in the Osteosarcoma Microenvironment: their biological properties, influence on tumor growth, and therapeutic implications
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-018-0780-x
– ident: 2024053115230101000_12.1.e006991.28
  doi: 10.1038/s41417-019-0109-7
– volume: 9
  year: 2018
  ident: 2024053115230101000_12.1.e006991.16
  article-title: TGF-beta-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and Immunotherapy failure
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-06654-8
– volume: 10
  year: 2022
  ident: 2024053115230101000_12.1.e006991.23
  article-title: Cell membrane-anchored and tumor-targeted IL-12 (Attil12)-T cell therapy for eliminating large and heterogeneous solid tumors
  publication-title: J Immunother Cancer
  doi: 10.1136/jitc-2021-003633
– volume: 39
  year: 2020
  ident: 2024053115230101000_12.1.e006991.43
  article-title: Regulation of heterogeneous cancer-associated fibroblasts: the molecular pathology of activated signaling pathways
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-020-01611-0
– ident: 2024053115230101000_12.1.e006991.38
  doi: 10.1016/j.matbio.2017.12.003
– volume: 38
  year: 2019
  ident: 2024053115230101000_12.1.e006991.29
  article-title: The tumor cell-secreted Matricellular protein Wisp1 drives pro-metastatic collagen Linearization
  publication-title: EMBO J
  doi: 10.15252/embj.2018101302
– ident: 2024053115230101000_12.1.e006991.13
  doi: 10.1038/onc.2017.387
– ident: 2024053115230101000_12.1.e006991.9
  doi: 10.4049/jimmunol.2001203
– volume: 405
  start-page: 90
  year: 2017
  ident: 2024053115230101000_12.1.e006991.25
  article-title: Mesenchymal Stroma: role in Osteosarcoma progression
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2017.07.024
– volume: 22
  start-page: 1090
  year: 2002
  ident: 2024053115230101000_12.1.e006991.45
  article-title: Interferon-gamma up-regulates Fas expression and increases Fas-mediated apoptosis in tumor cell lines
  publication-title: Di Yi Jun Yi Da Xue Xue Bao
– ident: 2024053115230101000_12.1.e006991.19
  doi: 10.1158/2326-6066.CIR-13-0027
– ident: 2024053115230101000_12.1.e006991.39
  doi: 10.1038/nature25501
– ident: 2024053115230101000_12.1.e006991.8
  doi: 10.1007/s10549-008-9982-8
– ident: 2024053115230101000_12.1.e006991.34
  doi: 10.1016/j.cell.2009.10.027
– ident: 2024053115230101000_12.1.e006991.30
  doi: 10.1158/0008-5472.CAN-20-3941
– ident: 2024053115230101000_12.1.e006991.35
  doi: 10.1200/JCO.2014.58.0225
– ident: 2024053115230101000_12.1.e006991.7
  doi: 10.1158/0008-5472.CAN-03-1472
– volume: 28
  start-page: 3862
  year: 2022
  ident: 2024053115230101000_12.1.e006991.27
  article-title: Membrane-anchored and tumor-targeted Il12 (Attil12)-PBMC therapy for Osteosarcoma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-22-0721
– volume: 11
  year: 2020
  ident: 2024053115230101000_12.1.e006991.41
  article-title: Immuno-Genomic landscape of Osteosarcoma
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-14646-w
– ident: 2024053115230101000_12.1.e006991.49
  doi: 10.1084/jem.20130110
– volume: 35
  start-page: 1297
  year: 2014
  ident: 2024053115230101000_12.1.e006991.4
  article-title: Col1A1 polymorphism is associated with risks of Osteosarcoma susceptibility and death
  publication-title: Tumour Biol
  doi: 10.1007/s13277-013-1172-6
– ident: 2024053115230101000_12.1.e006991.42
  doi: 10.2147/CCID.S50046
– ident: 2024053115230101000_12.1.e006991.10
  doi: 10.1158/1078-0432.CCR-08-0816
– ident: 2024053115230101000_12.1.e006991.53
  doi: 10.1158/0008-5472.CAN-21-0614
– ident: 2024053115230101000_12.1.e006991.17
  doi: 10.1016/j.ccell.2015.11.002
– ident: 2024053115230101000_12.1.e006991.51
  doi: 10.1159/000069863
– ident: 2024053115230101000_12.1.e006991.54
  doi: 10.1155/2017/2370927
SSID ssj0001033888
Score 2.3672836
Snippet BackgroundThe extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of...
The extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of many solid...
Background The extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
bmj
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e006991
SubjectTerms Animals
Bone Neoplasms - therapy
Cancer-Associated Fibroblasts
Cell Membrane
Cell- and Tissue-Based Therapy
Clinical/Translational Cancer Immunotherapy
Cytokines
Disease Models, Animal
Extracellular Matrix
Heterografts
Humans
Immunotherapy, Adoptive
Interleukin-12
Lymphocytes, Tumor-Infiltrating
Osteosarcoma - therapy
Pediatrics
Tumor Microenvironment
SummonAdditionalLinks – databaseName: BMJ Open Access Journals
  dbid: 9YT
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSFUviDfhJSPBgYO7SZzY8REqqoIop61UTpGf3a02SZVkpfaH8f-YSbILi1DFMV7beXwz62_seRDyLtYmFtYKZoMJYKBww5TQoHipirXlSniLscOn38XJWfb1PD-fDEWMhblc9vbQVJdjOAMmaKr7WZLOkpnHpLoqOcRt6bvkHhYmQRcu9WP-e08lBoOrKDankVwM0zGsEM7G0QdkH00UoO24HMF9dpajIWv_v6jm3x6TfyxBxw_I_Yk70o8j2A_JHV8_Ivun0-n4Y_LzyK9WtPIVWMC1Z4Dnomm9o7p2tF9XTctGv29o-vKNJSmdM9y3p2MM1g118DBtc9NRi6LQMj1BB_0DWNWNAabdd8N0btm16yu4gP_2VuMs6M5KK0z4f02XNV2gm00zZoClGEjSdKBSTaXpNbRdtDr0dKjC0z0hZ8ef50cnbCrLwEwexz0zHL5kJvPUgSnHTZxrHqTJlC10GjwQPCOBcwWe6lRI4Fex1DY4jwe4Wiro_ZTs1U3tnxNqCw7iwYMxPM-E9hoJj7QmM567pAgReQ8YlZNadeVgsXBRIqwlwlqOsEZktkGxtFNucyyxsbplxIftiKsxr8ctfT-hYGz7YUbuoaFpL8pJwUunLLwx16lNQua8VNIWzptgEq850NyIvN2IVQkajMCAKAAGZYrOD2A3JjIiz0Yx295qI6wRKXYEcOdZdn-pl4shSzg6jwohkxf_-Q1fkgO4yobtJfWK7PXt2r8GwtWbN4OW_QJu3iqx
  priority: 102
  providerName: BMJ Publishing Group Ltd
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfQkBAXxDfdABkJDhzMkjiNkwNCMDENRDmt0m6WP9dOTTKcVGr_sP1_vJekhaJqJ4517NT17736_ez3QcjbSOkoMyZjxmsPBIVrVmQKFC8pImV4kTmDscOTn9nZNP1-Mb74Ex49LGCzl9phPalpWHxY_Vp_AoX_OFQkOb6at4ZhGXCGeXcxlP0u7EsC1XQyGPvdiUsEdCzPN3eVewbC_qLLq50dqkvkv8_6_NeJ8q9d6fQheTCYk_Rzj_8jcsdVj8m9yXBh_oTcnLjFgpauBFJcOQYQz-rgLFWVpe2yrAPrXcGh6dsPFif0nOFRPu3DstbUwmRCvW6oQekITA1oQn8PRLvWYHy3Tfc6O2_C8ho-wN99UPgW9HClJdYAWNF5RWfoeVP3SWEpxpbUDWhZXSq6grbLoHxLu8I8zVMyPf16fnLGhkoNTI-jqGWaw_KlYpxYYHdcR2PFvdBpYXKVeAc2nxZghnmeqCQTYHJFQhlvHd7pKlFA72fkoKor94JQk3OQGO615uM0U06hDSSMTrXjNs79iLwDjORGUGRHYngmEUuJWMoeyxE53qAozZDuHKtuLG4Z8X474rpP9XFL3y8oGNt-mKS7a6jDpRx0XtrCwC_mKjGxT60ThTC5ddrr2CkOlu-IvNmIlQSlRmBAFAADmaA_BFDJWIzI817Mtl-FFBtoJzzJdwRwZy67T6r5rEscjv6kWSbiw_8x-yNyHxYk7Y6jipfkoA1L9woMtFa_7vTuN_RyPw0
  priority: 102
  providerName: Scholars Portal
Title Cell membrane-anchored and tumor-targeted IL-12 T-cell therapy destroys cancer-associated fibroblasts and disrupts extracellular matrix in heterogenous osteosarcoma xenograft models
URI https://jitc.bmj.com/content/12/1/e006991.full
https://www.ncbi.nlm.nih.gov/pubmed/38199607
https://www.proquest.com/docview/2913448717
https://pubmed.ncbi.nlm.nih.gov/PMC10806671
https://doaj.org/article/d9c32a3a2c1f4de797c8debfb1ea3835
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9swFBVrB2MvY9_LPoIG28MeRGzLluzHNrR0Yy5jpCN7MpIsNSmxXWwH2h-2_7d7bSckY3Qve3GILDtC5yq6R7o6l5APntKeMEYw47QDgsI1S4SCgRcknjI8Edbg2eH0XJxdhF_m0Xwn1RfGhPXywH3HTfLE8EBxFRjfhbmViTRxbrXTvlXArjr1UpjzdshUt7riAfWK482-JBeTq2VrGOYKZyjOi5KcB7q42puNOtH-v3mafwZM7sxAp4_Jo8F1pEd9k5-Qe7Z8Sh6kw-b4M_JralcrWtgCCHBpGcC5qGqbU1XmtF0XVc36sG8o-vyV-QGdMVy2p_0RrFuaQ2Pq6rahBi2hZmpADuo7INWVBke7bbrX5cumXl_DF_hrrxW-BaNZaYF6_zd0WdIFRtlUvQAsxXMkVQMjqioUvYGyy1q5lnZJeJrn5OL0ZDY9Y0NWBqYjz2uZ5tB9oYyCHJgc116kuJM6TEysAmfBv9MSXC4HoAVCgnvlSWVcbnH_VskEar8gh2VV2leEmpiDdXCnNY9CoaxCf0caHWrLcz92I_IRMMqGUdVkHWHhIkMsM8Qy67EckckGxcwM0uaYYWN1xxOftk9c97Ied9Q9RsPY1kNB7q4AzDQbzDT7l5mOyPuNWWUwgBEYMAXAIAsw9gFooy9H5GVvZtufQjoNFBPuxHsGuNeW_TvlctGJhGPsqBDSf_0_Wv-GPIQOCbulp-QtOWzrtX0Hzlirx-RAziVck5-zMbl_NE3TH_B5fHL-7fu4G5NwTcP4N0n6PfA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZgSGMviDvhaiR44MFrEqd28ggTUwftnjppPFm2Y6-dmmRKUmn7Yfw_zknSQhGaeKxjO5fvnPo79vFnQj6E2oTCWsGsNx4CFG5YJjQ4XpyF2vJMOIt7h2enYnKWfDsfnw-BIu6FuVy29tAUl_12BhRoKttRFI-ikUNR3Sw6xGnpu-SeRNkVtOgf899zKiEEXGm6WY3kouuO4QnhrG99QPYxRAHajsMR3GdnOOpU-_9FNf_OmPxjCDp-SB4M3JF-7sF-RO648jHZnw2r40_IzyO3WtHCFRABl44BnouqdjnVZU7bdVHVrM_7hqKTKYtiOmc4b0_7PVg3NIeHqaubhlo0hZrpATqo7yGqrgww7bbpusuXTb2-gh_w315r7AXTWWmBgv_XdFnSBabZVL0CLMWNJFUDLlUVml5D2UWtfUu7U3iap-Ts-Ov8aMKGYxmYGYdhywyHL5nIcZxDKMdNONbcS5NkNtWxd0DwjATO5XmsYyGBX4VSW587XMDVMoPaz8heWZXuBaE25WAe3BvDx4nQTiPhkdYkxvE8Sn1APgJGanCrRnURCxcKYVUIq-phDchog6Kyg7Y5HrGxuqXFp22Lq17X45a6X9AwtvVQkbsrqOoLNTi4yjMLb8x1bCOf5E5m0qa5M95ETnOguQF5vzErBR6MwIApAAYqxuQHiBsjGZDnvZltb7Ux1oCkOwa48yy7V8rlolMJx-RRIWT08j-_4TtyfzKfTdX05PT7K3IAV5Juqil7Tfbaeu3eAPlqzdvO434BoPktoA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbGkKq9IO6Uq5HggQe3SZzaySMMqg22iYdOGk-Rr2unJqmSVNp-GP-Pc5K0UIQmHuM4zuU7J_6OffyZkHeB0oEwRjDjtYcAhWuWCgWOF6WBMjwVzuDa4dMzcXQef72YXOyRaLMW5mrRmJHOr7rlDCjQVDTjMBqHY4eiumk4wmHp0cr6O-QuUJcY9fLTH7Pf4yoBBF1JspmR5KJtkuEu4axr4YAMMEwB6o5dEtxrp0tqlfv_RTf_zpr8oxua3if3ev5IP3aAPyB7rnhIBqf9DPkj8vPQLZc0dzlEwYVjgOm8rJylqrC0Wedlxbrcbyg6PmFhRGcMx-5ptw7rhlp4mKq8qalBc6iY6uGD-h4i61ID227qtjm7qKv1Cg7g_14pbAVTWmmOov_XdFHQOabalJ0KLMXFJGUNblXmil5D2WWlfEPbnXjqx-R8-mV2eMT6rRmYngRBwzSHLxnLSWQhnOM6mCjupY5Tk6jIOyB5WgLv8jxSkZDAsQKpjLcOJ3GVTKH2E7JflIV7RqhJOJgI91rzSSyUU0h6pNGxdtyGiR-S94BR1rtWnbVRCxcZwpohrFkH65CMNyhmptc3x202lrdc8WF7xarT9ril7ic0jG09VOVuC8rqMuudPLOpgTfmKjKhj62TqTSJddrr0CkOVHdI3m7MKgMvRmDAFACDLMIECIgdQzkkTzsz295qY6xDkuwY4M6z7J4pFvNWKRwTSIWQ4fP__IZvyOD752l2cnz27QU5gBNxO9qUviT7TbV2r4B_Nfp163C_ANhCLq8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+membrane-anchored+and+tumor-targeted+IL-12+T-cell+therapy+destroys+cancer-associated+fibroblasts+and+disrupts+extracellular+matrix+in+heterogenous+osteosarcoma+xenograft+models&rft.jtitle=Journal+for+immunotherapy+of+cancer&rft.au=Jian+Wang&rft.au=Wei-Lien+Wang&rft.au=Jiemiao+Hu&rft.au=Wendong+Zhang&rft.date=2024-01-09&rft.pub=BMJ+Publishing+Group&rft.eissn=2051-1426&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1136%2Fjitc-2023-006991&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d9c32a3a2c1f4de797c8debfb1ea3835
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-1426&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-1426&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-1426&client=summon