Cell membrane-anchored and tumor-targeted IL-12 T-cell therapy destroys cancer-associated fibroblasts and disrupts extracellular matrix in heterogenous osteosarcoma xenograft models
BackgroundThe extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of many solid tumors to immunotherapy. CAF-targeted chimeric antigen receptor-T cell therapy cannot infiltrate ECM-rich tumors such as osteosarco...
Saved in:
Published in | Journal for immunotherapy of cancer Vol. 12; no. 1; p. e006991 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BMJ Publishing Group Ltd
09.01.2024
BMJ Publishing Group |
Series | Original research |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BackgroundThe extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of many solid tumors to immunotherapy. CAF-targeted chimeric antigen receptor-T cell therapy cannot infiltrate ECM-rich tumors such as osteosarcoma.MethodIn this study, we used RNA sequencing to assess whether the recently invented membrane-anchored and tumor-targeted IL-12-armed (attIL12) T cells, which bind cell-surface vimentin (CSV) on tumor cells, could destroy CAFs to disrupt the ECM. We established an in vitro model of the interaction between osteosarcoma CAFs and attIL12-T cells to uncover the underlying mechanism by which attIL12-T cells penetrate stroma-enriched osteosarcoma tumors.ResultsRNA sequencing demonstrated that attIL12-T cell treatment altered ECM-related gene expression. Immunohistochemistry staining revealed disruption or elimination of high-density CAFs and ECM in osteosarcoma xenograft tumors following attIL12-T cell treatment, and CAF/ECM density was inversely correlated with T-cell infiltration. Other IL12-armed T cells, such as wild-type IL-12-targeted or tumor-targeted IL-12-T cells, did not disrupt the ECM because this effect depended on the engagement between CSV on the tumor cell and its ligand on the attIL12-T cells. Mechanistic studies found that attIL12-T cell treatment elevated IFNγ production on interacting with CSV+ tumor cells, suppressing transforming growth factor beta secretion and in turn upregulating FAS-mediated CAF apoptosis. CAF destruction reshaped the tumor stroma to favor T-cell infiltration and tumor inhibition.ConclusionsThis study unveiled a novel therapy—attIL12-T cells—for targeting CAFs/ECM. These findings are highly relevant to humans because CAFs are abundant in human osteosarcoma. |
---|---|
AbstractList | The extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of many solid tumors to immunotherapy. CAF-targeted chimeric antigen receptor-T cell therapy cannot infiltrate ECM-rich tumors such as osteosarcoma.
In this study, we used RNA sequencing to assess whether the recently invented membrane-anchored and tumor-targeted IL-12-armed (attIL12) T cells, which bind cell-surface vimentin (CSV) on tumor cells, could destroy CAFs to disrupt the ECM. We established an in vitro model of the interaction between osteosarcoma CAFs and attIL12-T cells to uncover the underlying mechanism by which attIL12-T cells penetrate stroma-enriched osteosarcoma tumors.
RNA sequencing demonstrated that attIL12-T cell treatment altered ECM-related gene expression. Immunohistochemistry staining revealed disruption or elimination of high-density CAFs and ECM in osteosarcoma xenograft tumors following attIL12-T cell treatment, and CAF/ECM density was inversely correlated with T-cell infiltration. Other IL12-armed T cells, such as wild-type IL-12-targeted or tumor-targeted IL-12-T cells, did not disrupt the ECM because this effect depended on the engagement between CSV on the tumor cell and its ligand on the attIL12-T cells. Mechanistic studies found that attIL12-T cell treatment elevated IFNγ production on interacting with CSV
tumor cells, suppressing transforming growth factor beta secretion and in turn upregulating FAS-mediated CAF apoptosis. CAF destruction reshaped the tumor stroma to favor T-cell infiltration and tumor inhibition.
This study unveiled a novel therapy-attIL12-T cells-for targeting CAFs/ECM. These findings are highly relevant to humans because CAFs are abundant in human osteosarcoma. Background The extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of many solid tumors to immunotherapy. CAF-targeted chimeric antigen receptor-T cell therapy cannot infiltrate ECM-rich tumors such as osteosarcoma.Method In this study, we used RNA sequencing to assess whether the recently invented membrane-anchored and tumor-targeted IL-12-armed (attIL12) T cells, which bind cell-surface vimentin (CSV) on tumor cells, could destroy CAFs to disrupt the ECM. We established an in vitro model of the interaction between osteosarcoma CAFs and attIL12-T cells to uncover the underlying mechanism by which attIL12-T cells penetrate stroma-enriched osteosarcoma tumors.Results RNA sequencing demonstrated that attIL12-T cell treatment altered ECM-related gene expression. Immunohistochemistry staining revealed disruption or elimination of high-density CAFs and ECM in osteosarcoma xenograft tumors following attIL12-T cell treatment, and CAF/ECM density was inversely correlated with T-cell infiltration. Other IL12-armed T cells, such as wild-type IL-12-targeted or tumor-targeted IL-12-T cells, did not disrupt the ECM because this effect depended on the engagement between CSV on the tumor cell and its ligand on the attIL12-T cells. Mechanistic studies found that attIL12-T cell treatment elevated IFNγ production on interacting with CSV+ tumor cells, suppressing transforming growth factor beta secretion and in turn upregulating FAS-mediated CAF apoptosis. CAF destruction reshaped the tumor stroma to favor T-cell infiltration and tumor inhibition.Conclusions This study unveiled a novel therapy—attIL12-T cells—for targeting CAFs/ECM. These findings are highly relevant to humans because CAFs are abundant in human osteosarcoma. BackgroundThe extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of many solid tumors to immunotherapy. CAF-targeted chimeric antigen receptor-T cell therapy cannot infiltrate ECM-rich tumors such as osteosarcoma.MethodIn this study, we used RNA sequencing to assess whether the recently invented membrane-anchored and tumor-targeted IL-12-armed (attIL12) T cells, which bind cell-surface vimentin (CSV) on tumor cells, could destroy CAFs to disrupt the ECM. We established an in vitro model of the interaction between osteosarcoma CAFs and attIL12-T cells to uncover the underlying mechanism by which attIL12-T cells penetrate stroma-enriched osteosarcoma tumors.ResultsRNA sequencing demonstrated that attIL12-T cell treatment altered ECM-related gene expression. Immunohistochemistry staining revealed disruption or elimination of high-density CAFs and ECM in osteosarcoma xenograft tumors following attIL12-T cell treatment, and CAF/ECM density was inversely correlated with T-cell infiltration. Other IL12-armed T cells, such as wild-type IL-12-targeted or tumor-targeted IL-12-T cells, did not disrupt the ECM because this effect depended on the engagement between CSV on the tumor cell and its ligand on the attIL12-T cells. Mechanistic studies found that attIL12-T cell treatment elevated IFNγ production on interacting with CSV+ tumor cells, suppressing transforming growth factor beta secretion and in turn upregulating FAS-mediated CAF apoptosis. CAF destruction reshaped the tumor stroma to favor T-cell infiltration and tumor inhibition.ConclusionsThis study unveiled a novel therapy—attIL12-T cells—for targeting CAFs/ECM. These findings are highly relevant to humans because CAFs are abundant in human osteosarcoma. The extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of many solid tumors to immunotherapy. CAF-targeted chimeric antigen receptor-T cell therapy cannot infiltrate ECM-rich tumors such as osteosarcoma.BACKGROUNDThe extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of many solid tumors to immunotherapy. CAF-targeted chimeric antigen receptor-T cell therapy cannot infiltrate ECM-rich tumors such as osteosarcoma.In this study, we used RNA sequencing to assess whether the recently invented membrane-anchored and tumor-targeted IL-12-armed (attIL12) T cells, which bind cell-surface vimentin (CSV) on tumor cells, could destroy CAFs to disrupt the ECM. We established an in vitro model of the interaction between osteosarcoma CAFs and attIL12-T cells to uncover the underlying mechanism by which attIL12-T cells penetrate stroma-enriched osteosarcoma tumors.METHODIn this study, we used RNA sequencing to assess whether the recently invented membrane-anchored and tumor-targeted IL-12-armed (attIL12) T cells, which bind cell-surface vimentin (CSV) on tumor cells, could destroy CAFs to disrupt the ECM. We established an in vitro model of the interaction between osteosarcoma CAFs and attIL12-T cells to uncover the underlying mechanism by which attIL12-T cells penetrate stroma-enriched osteosarcoma tumors.RNA sequencing demonstrated that attIL12-T cell treatment altered ECM-related gene expression. Immunohistochemistry staining revealed disruption or elimination of high-density CAFs and ECM in osteosarcoma xenograft tumors following attIL12-T cell treatment, and CAF/ECM density was inversely correlated with T-cell infiltration. Other IL12-armed T cells, such as wild-type IL-12-targeted or tumor-targeted IL-12-T cells, did not disrupt the ECM because this effect depended on the engagement between CSV on the tumor cell and its ligand on the attIL12-T cells. Mechanistic studies found that attIL12-T cell treatment elevated IFNγ production on interacting with CSV+ tumor cells, suppressing transforming growth factor beta secretion and in turn upregulating FAS-mediated CAF apoptosis. CAF destruction reshaped the tumor stroma to favor T-cell infiltration and tumor inhibition.RESULTSRNA sequencing demonstrated that attIL12-T cell treatment altered ECM-related gene expression. Immunohistochemistry staining revealed disruption or elimination of high-density CAFs and ECM in osteosarcoma xenograft tumors following attIL12-T cell treatment, and CAF/ECM density was inversely correlated with T-cell infiltration. Other IL12-armed T cells, such as wild-type IL-12-targeted or tumor-targeted IL-12-T cells, did not disrupt the ECM because this effect depended on the engagement between CSV on the tumor cell and its ligand on the attIL12-T cells. Mechanistic studies found that attIL12-T cell treatment elevated IFNγ production on interacting with CSV+ tumor cells, suppressing transforming growth factor beta secretion and in turn upregulating FAS-mediated CAF apoptosis. CAF destruction reshaped the tumor stroma to favor T-cell infiltration and tumor inhibition.This study unveiled a novel therapy-attIL12-T cells-for targeting CAFs/ECM. These findings are highly relevant to humans because CAFs are abundant in human osteosarcoma.CONCLUSIONSThis study unveiled a novel therapy-attIL12-T cells-for targeting CAFs/ECM. These findings are highly relevant to humans because CAFs are abundant in human osteosarcoma. |
Author | Mahadeo, Kris Ragoonanan, Dristhi Wang, Jian Ingram, Davis Zhang, Wendong Hu, Jiemiao Lazar, Alexander J Jia, Zhiliang Wang, Wei-Lien Gorlick, Richard Li, Shulin Xia, Xueqing |
AuthorAffiliation | 1 Department of Pediatrics-Research , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA 3 Department of Genomic Medicine , The Universiy of Texas MD Anderson Cancer Center , Houston , Texas , USA 5 Department of Biostatistics , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA 4 Department of Pediatric Stem Cell Transplantation and Cellular Therapy , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA 2 Department of Pathology , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA |
AuthorAffiliation_xml | – name: 1 Department of Pediatrics-Research , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA – name: 4 Department of Pediatric Stem Cell Transplantation and Cellular Therapy , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA – name: 2 Department of Pathology , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA – name: 3 Department of Genomic Medicine , The Universiy of Texas MD Anderson Cancer Center , Houston , Texas , USA – name: 5 Department of Biostatistics , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA |
Author_xml | – sequence: 1 givenname: Jiemiao orcidid: 0000-0002-5142-0641 surname: Hu fullname: Hu, Jiemiao organization: Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA – sequence: 2 givenname: Alexander J surname: Lazar fullname: Lazar, Alexander J organization: Department of Genomic Medicine, The Universiy of Texas MD Anderson Cancer Center, Houston, Texas, USA – sequence: 3 givenname: Davis surname: Ingram fullname: Ingram, Davis organization: Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA – sequence: 4 givenname: Wei-Lien surname: Wang fullname: Wang, Wei-Lien organization: Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA – sequence: 5 givenname: Wendong surname: Zhang fullname: Zhang, Wendong organization: Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA – sequence: 6 givenname: Zhiliang surname: Jia fullname: Jia, Zhiliang organization: Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA – sequence: 7 givenname: Dristhi surname: Ragoonanan fullname: Ragoonanan, Dristhi organization: Department of Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA – sequence: 8 givenname: Jian surname: Wang fullname: Wang, Jian organization: Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA – sequence: 9 givenname: Xueqing surname: Xia fullname: Xia, Xueqing organization: Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA – sequence: 10 givenname: Kris surname: Mahadeo fullname: Mahadeo, Kris organization: Department of Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA – sequence: 11 givenname: Richard surname: Gorlick fullname: Gorlick, Richard organization: Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA – sequence: 12 givenname: Shulin orcidid: 0000-0001-5657-4183 surname: Li fullname: Li, Shulin email: sli4@mdanderson.org organization: Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38199607$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNUREvpnhXykgUBP_LyCqERj5FGYlPW1vUjMx4l8XDtoOkP6__D6ZSqRYKV45tzvmude18WZ1OYXFG8ZvQ9Y6L5sPfJlJxyUVLaSMmeFRec1qxkFW_OHn2fF1cx7imljArRdd2L4lx0TMqGthfF7coNAxndqBEmV8JkdgGdJTBZkuYxYJkAty7l0npTMk6uS7M40s4hHG6IdTFhuInEZKvDEmIMxsOi773GoAeIKd7hrI84H_LFHRPCQpkHQDJCQn8kfiK73AbD1k1hjiTE5EIENGEEcsy1LUKfyBisG-Kr4nkPQ3RX9-dl8ePL5-vVt3Lz_et69WlT6prSVGqRc6namltGK6FpDaJvdSVNB7x3FWt0K7nsBQfetLTOgYDpraNNLaGVWX1ZrE9cG2CvDuhHwBsVwKu7QsCtAkzeDE5ZaTJHADesr6xrZWs663SvmQPRiTqzPp5Yh1mPzho35RSGJ9Cnfya_U9vwSzHa0aZpWSa8vSdg-Dnn4NXo45JjnlyOTHHJRFV1LWuz9M3jZg9d_gw-C-hJYDDEiK5_kDCqlvVSy3qpZb3Uab2ypfnLYnyC5MPyXD_8z_juZNTjXu3DjFOe2b_lvwHnZugb |
CitedBy_id | crossref_primary_10_1002_advs_202410918 crossref_primary_10_1016_j_biopha_2024_117045 crossref_primary_10_3390_curroncol32020079 crossref_primary_10_1007_s12026_024_09483_8 crossref_primary_10_3389_fimmu_2025_1579822 crossref_primary_10_1186_s12935_025_03709_x crossref_primary_10_1080_14737140_2024_2421194 crossref_primary_10_3390_cancers16244158 crossref_primary_10_3390_biomedicines13030664 crossref_primary_10_3389_fimmu_2025_1557006 crossref_primary_10_1063_5_0199024 crossref_primary_10_1016_j_heliyon_2024_e32357 crossref_primary_10_3389_fcell_2024_1394339 |
Cites_doi | 10.1007/s10549-008-9982-8 10.1136/jitc-2020-001772 10.1038/s41467-020-14646-w 10.1084/jem.20122344 10.1080/01926230701320337 10.2147/CCID.S50046 10.1158/1078-0432.CCR-22-0721 10.15252/embj.2018101302 10.4049/jimmunol.2001203 10.1038/nature25501 10.1158/2159-8290.CD-19-0644 10.1083/jcb.201704053 10.1038/mt.2013.110 10.1186/s12931-018-0801-4 10.1158/0008-5472.CAN-19-3158 10.1002/glia.20803 10.1186/s13046-020-01611-0 10.1016/j.ccell.2015.11.002 10.1038/s41417-019-0109-7 10.1158/2326-6066.CIR-13-0027 10.1074/jbc.275.13.9767 10.1159/000495714 10.1186/s13287-018-0780-x 10.1158/0008-5472.CAN-14-3041 10.1016/j.cell.2009.10.027 10.1038/s41416-020-1020-6 10.1007/s13277-013-1172-6 10.1158/1078-0432.CCR-08-0816 10.1172/JCI45817 10.1158/0008-5472.CAN-20-3941 10.1200/JCO.2014.58.0225 10.1016/j.canlet.2017.07.024 10.1158/0008-5472.CAN-03-1472 10.1016/j.matbio.2017.12.003 10.1111/j.1349-7006.2010.01731.x 10.1038/s41467-017-01430-6 10.1158/0008-5472.CAN-21-0614 10.1038/s41467-018-06654-8 10.1159/000069863 10.18632/oncotarget.12135 10.1084/jem.20130110 10.1073/pnas.1801348115 10.1038/onc.2017.387 10.1182/blood.2021012811 10.1093/jnci/djx121 10.1038/nature21349 10.1038/mt.2011.38 10.1136/jitc-2021-003633 10.3390/jcm8111989 10.1155/2017/4825108 10.18632/oncotarget.11307 10.1038/s41388-018-0209-0 10.1002/glia.20803. 10.1155/2017/2370927 |
ContentType | Journal Article |
Copyright | Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2024 |
Copyright_xml | – notice: Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. – notice: Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2024 |
DBID | 9YT ACMMV AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1136/jitc-2023-006991 |
DatabaseName | BMJ Open Access Journals BMJ Journals:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: ACMMV name: BMJ Journals:Open Access url: https://journals.bmj.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2051-1426 |
ExternalDocumentID | oai_doaj_org_article_d9c32a3a2c1f4de797c8debfb1ea3835 PMC10806671 38199607 10_1136_jitc_2023_006991 jitc |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH grantid: P30 CA016672; RO1 CA120985 – fundername: NCI NIH HHS grantid: R01 CA120895 – fundername: NCI NIH HHS grantid: P30 CA016672 – fundername: ; grantid: P30 CA016672; RO1 CA120985 |
GroupedDBID | 4.4 53G 5VS 7X7 88E 8FI 8FJ 9YT ABUWG ACGFS ACMMV ADBBV ADRAZ AFKRA AHBYD AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ASPBG AVWKF BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU DIK EBS FYUFA GROUPED_DOAJ HMCUK HYE IAO IHR IHW INH INR KQ8 M1P M48 M~E OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RMJ RPM RSV SOJ UKHRP AAYXX ADUKV AHSBF CITATION EJD H13 ITC PHGZM ROL CGR CUY CVF ECM EIF NPM PJZUB PPXIY 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-b500t-b36994752d1043b05a3f7b49c8a2fe416b7929f32a26705607acfde0659a795a3 |
IEDL.DBID | DOA |
ISSN | 2051-1426 |
IngestDate | Wed Aug 27 01:18:44 EDT 2025 Thu Aug 21 18:36:08 EDT 2025 Thu Jul 10 16:45:33 EDT 2025 Mon Jul 21 06:07:59 EDT 2025 Thu Apr 24 23:00:40 EDT 2025 Tue Jul 01 01:56:03 EDT 2025 Thu Apr 24 22:49:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Tumor Microenvironment Pediatrics Lymphocytes, Tumor-Infiltrating Cytokines Immunotherapy, Adoptive |
Language | English |
License | This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/. Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b500t-b36994752d1043b05a3f7b49c8a2fe416b7929f32a26705607acfde0659a795a3 |
Notes | Original research ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5142-0641 0000-0001-5657-4183 |
OpenAccessLink | https://doaj.org/article/d9c32a3a2c1f4de797c8debfb1ea3835 |
PMID | 38199607 |
PQID | 2913448717 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d9c32a3a2c1f4de797c8debfb1ea3835 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10806671 proquest_miscellaneous_2913448717 pubmed_primary_38199607 crossref_primary_10_1136_jitc_2023_006991 crossref_citationtrail_10_1136_jitc_2023_006991 bmj_journals_10_1136_jitc_2023_006991 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-09 |
PublicationDateYYYYMMDD | 2024-01-09 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: BMA House, Tavistock Square, London, WC1H 9JR |
PublicationSeriesTitle | Original research |
PublicationTitle | Journal for immunotherapy of cancer |
PublicationTitleAbbrev | J Immunother Cancer |
PublicationTitleAlternate | J Immunother Cancer |
PublicationYear | 2024 |
Publisher | BMJ Publishing Group Ltd BMJ Publishing Group |
Publisher_xml | – name: BMJ Publishing Group Ltd – name: BMJ Publishing Group |
References | Todd, Ryall, Vyse (R1) 2016; 7 Conti, Kendall, Bateman (R10) 2008; 14 Yoshida (R43) 2020; 39 He, Wang, Zhao (R4) 2014; 35 Roberts, Deonarine, Jones (R20) 2013; 210 Hanley, Mellone, Ford (R15) 2018; 110 Kakarla, Chow, Mata (R50) 2013; 21 Huang, Zhou, Huang (R54) 2017; 2017 Sato, Imamura, Semba (R30) 2021; 81 Casey, Bond, Tighe (R8) 2009; 114 Cutrera, Dibra, Xia (R22) 2011; 19 Miskolczi, Smith, Rowling (R3) 2018; 37 Tang, Chen, Bao (R14) 2018; 115 Bian, Fan, Li (R24) 2010; 101 Zheng, Wang, Chen (R33) 2018; 9 Qiao, Zhang, Li (R13) 2018; 37 Tran, Chinnasamy, Yu (R49) 2013; 210 Levental, Yu, Kass (R34) 2009; 139 Sakemura, Hefazi, Siegler (R52) 2022; 139 Wang, Lo, Scholler (R19) 2014; 2 Ford, Hanley, Mellone (R21) 2020; 80 Erdogan, Ao, White (R47) 2017; 216 Mariathasan, Turley, Nickles (R39) 2018; 554 Brunner, Kasibhatla, Pinkoski (R32) 2000; 275 Eikenes, Bruland, Brekken (R7) 2004; 64 Özdemir, Pentcheva-Hoang, Carstens (R17) 2015; 28 Xiao, Wan, Nur (R5) 2018; 51 Harryvan, Verdegaal, Hardwick (R37) 2019; 8 Avery, Govindaraju, Jacob (R38) 2018; 67 Hu, Yang, Zhang (R23) 2022; 10 Zheng, Luo, Zhang (R45) 2002; 22 Saha, Islam, Kwak (R28) 2020; 27 Chen, Mellman (R12) 2017; 541 Ligon, Choi, Cojocaru (R36) 2021; 9 Hofheinz, al-Batran, Hartmann (R51) 2003; 26 Chakravarthy, Khan, Bensler (R16) 2018; 9 Wu, Beird, Andrew Livingston (R41) 2020; 11 Lo, Wang, Scholler (R18) 2015; 75 Dominguez, Müller, Keerthivasan (R40) 2020; 10 Salmon, Franciszkiewicz, Damotte (R6) 2012; 122 Dodi, Ajayi, Chang (R46) 2018; 19 Baker, Abuwarwar, Poly (R9) 2021; 206 Darby, Laverdet, Bonté (R42) 2014; 7 Ahmed, Brawley, Hegde (R35) 2015; 33 Zode, Clark, Wordinger (R11) 2009; 57 Jia, Janjanam, Wu (R29) 2019; 38 Wu, Liang, Chen (R26) 2016; 7 Lim, Tan, Lim (R2) 2017; 8 Yang, Hu, Jia (R27) 2022; 28 Cortini, Avnet, Baldini (R25) 2017; 405 Elmore (R31) 2007; 35 Xu, Fu, Plate (R44) 1998; 58 Hanley, Thomas (R48) 2020; 123 Liu, Zhou, Xiao (R53) 2022; 82 Dodi (2024053115230101000_12.1.e006991.46) 2018; 19 2024053115230101000_12.1.e006991.28 Hanley (2024053115230101000_12.1.e006991.48) 2020; 123 Sakemura (2024053115230101000_12.1.e006991.52) 2022; 139 2024053115230101000_12.1.e006991.24 2024053115230101000_12.1.e006991.26 2024053115230101000_12.1.e006991.30 Todd (2024053115230101000_12.1.e006991.1) 2016; 7 2024053115230101000_12.1.e006991.31 Hu (2024053115230101000_12.1.e006991.23) 2022; 10 2024053115230101000_12.1.e006991.32 Lim (2024053115230101000_12.1.e006991.2) 2017; 8 Xu (2024053115230101000_12.1.e006991.44) 1998; 58 Harryvan (2024053115230101000_12.1.e006991.37) 2019; 8 2024053115230101000_12.1.e006991.17 2024053115230101000_12.1.e006991.18 2024053115230101000_12.1.e006991.19 2024053115230101000_12.1.e006991.12 2024053115230101000_12.1.e006991.13 2024053115230101000_12.1.e006991.14 2024053115230101000_12.1.e006991.20 2024053115230101000_12.1.e006991.21 2024053115230101000_12.1.e006991.22 2024053115230101000_12.1.e006991.6 Xiao (2024053115230101000_12.1.e006991.5) 2018; 51 2024053115230101000_12.1.e006991.3 Yoshida (2024053115230101000_12.1.e006991.43) 2020; 39 2024053115230101000_12.1.e006991.49 2024053115230101000_12.1.e006991.9 2024053115230101000_12.1.e006991.8 2024053115230101000_12.1.e006991.47 2024053115230101000_12.1.e006991.7 2024053115230101000_12.1.e006991.53 2024053115230101000_12.1.e006991.10 2024053115230101000_12.1.e006991.54 2024053115230101000_12.1.e006991.11 2024053115230101000_12.1.e006991.50 He (2024053115230101000_12.1.e006991.4) 2014; 35 2024053115230101000_12.1.e006991.51 Hanley (2024053115230101000_12.1.e006991.15) 2018; 110 Zheng (2024053115230101000_12.1.e006991.33) 2018; 9 Yang (2024053115230101000_12.1.e006991.27) 2022; 28 2024053115230101000_12.1.e006991.38 2024053115230101000_12.1.e006991.39 2024053115230101000_12.1.e006991.34 2024053115230101000_12.1.e006991.35 Wu (2024053115230101000_12.1.e006991.41) 2020; 11 Zheng (2024053115230101000_12.1.e006991.45) 2002; 22 Jia (2024053115230101000_12.1.e006991.29) 2019; 38 2024053115230101000_12.1.e006991.42 Chakravarthy (2024053115230101000_12.1.e006991.16) 2018; 9 2024053115230101000_12.1.e006991.40 Ligon (2024053115230101000_12.1.e006991.36) 2021; 9 Cortini (2024053115230101000_12.1.e006991.25) 2017; 405 |
References_xml | – volume: 114 start-page: 47 year: 2009 ident: R8 article-title: Molecular signatures suggest a major role for Stromal cells in development of invasive breast cancer publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-008-9982-8 – volume: 9 year: 2021 ident: R36 article-title: Pathways of immune exclusion in metastatic Osteosarcoma are associated with inferior patient outcomes publication-title: J Immunother Cancer doi: 10.1136/jitc-2020-001772 – volume: 11 year: 2020 ident: R41 article-title: Immuno-Genomic landscape of Osteosarcoma publication-title: Nat Commun doi: 10.1038/s41467-020-14646-w – volume: 210 start-page: 1137 year: 2013 ident: R20 article-title: Depletion of Stromal cells expressing fibroblast activation protein-alpha from Skeletal muscle and bone marrow results in Cachexia and anemia publication-title: J Exp Med doi: 10.1084/jem.20122344 – volume: 35 start-page: 495 year: 2007 ident: R31 article-title: Apoptosis: a review of programmed cell death publication-title: Toxicol Pathol doi: 10.1080/01926230701320337 – volume: 7 start-page: 301 year: 2014 ident: R42 article-title: Fibroblasts and Myofibroblasts in wound healing publication-title: Clin Cosmet Investig Dermatol doi: 10.2147/CCID.S50046 – volume: 28 start-page: 3862 year: 2022 ident: R27 article-title: Membrane-anchored and tumor-targeted Il12 (Attil12)-PBMC therapy for Osteosarcoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-22-0721 – volume: 38 year: 2019 ident: R29 article-title: The tumor cell-secreted Matricellular protein Wisp1 drives pro-metastatic collagen Linearization publication-title: EMBO J doi: 10.15252/embj.2018101302 – volume: 206 start-page: 310 year: 2021 ident: R9 article-title: Cancer-associated fibroblasts and T cells: from mechanisms to outcomes publication-title: J Immunol doi: 10.4049/jimmunol.2001203 – volume: 554 start-page: 544 year: 2018 ident: R39 article-title: Tgfbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells publication-title: Nature doi: 10.1038/nature25501 – volume: 10 start-page: 232 year: 2020 ident: R40 article-title: Single-cell RNA sequencing reveals Stromal evolution into Lrrc15(+) Myofibroblasts as a determinant of patient response to cancer Immunotherapy publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-19-0644 – volume: 216 start-page: 3799 year: 2017 ident: R47 article-title: Cancer-associated fibroblasts promote directional cancer cell migration by Aligning fibronectin publication-title: J Cell Biol doi: 10.1083/jcb.201704053 – volume: 21 start-page: 1611 year: 2013 ident: R50 article-title: Antitumor effects of Chimeric receptor engineered human T cells directed to tumor Stroma publication-title: Mol Ther doi: 10.1038/mt.2013.110 – volume: 19 year: 2018 ident: R46 article-title: Regulation of fibroblast Fas expression by soluble and mechanical pro-Fibrotic stimuli publication-title: Respir Res doi: 10.1186/s12931-018-0801-4 – volume: 80 start-page: 1846 year: 2020 ident: R21 article-title: Nox4 inhibition potentiates Immunotherapy by overcoming cancer-associated fibroblast-mediated Cd8 T-cell exclusion from tumors publication-title: Cancer Research doi: 10.1158/0008-5472.CAN-19-3158 – volume: 57 start-page: 755 year: 2009 ident: R11 article-title: Bone Morphogenetic protein 4 inhibits TGF-Beta2 stimulation of extracellular matrix proteins in optic nerve head cells: role of Gremlin in ECM modulation publication-title: Glia doi: 10.1002/glia.20803 – volume: 39 year: 2020 ident: R43 article-title: Regulation of heterogeneous cancer-associated fibroblasts: the molecular pathology of activated signaling pathways publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-020-01611-0 – volume: 28 start-page: 831 year: 2015 ident: R17 article-title: Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates Pancreas cancer with reduced survival publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.11.002 – volume: 27 start-page: 147 year: 2020 ident: R28 article-title: Prom1 and Prom2 expression Differentially modulates clinical prognosis of cancer: a Multiomics analysis publication-title: Cancer Gene Ther doi: 10.1038/s41417-019-0109-7 – volume: 2 start-page: 154 year: 2014 ident: R19 article-title: Targeting fibroblast activation protein in tumor Stroma with Chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-13-0027 – volume: 275 start-page: 9767 year: 2000 ident: R32 article-title: Expression of Fas ligand in activated T cells is regulated by C-Myc publication-title: J Biol Chem doi: 10.1074/jbc.275.13.9767 – volume: 51 start-page: 1879 year: 2018 ident: R5 article-title: Targeting Cd44 by CRISPR-Cas9 in multi-drug resistant Osteosarcoma cells publication-title: Cell Physiol Biochem doi: 10.1159/000495714 – volume: 9 year: 2018 ident: R33 article-title: Mesenchymal stem cells in the Osteosarcoma Microenvironment: their biological properties, influence on tumor growth, and therapeutic implications publication-title: Stem Cell Res Ther doi: 10.1186/s13287-018-0780-x – volume: 75 start-page: 2800 year: 2015 ident: R18 article-title: Tumor-promoting Desmoplasia is disrupted by Depleting FAP-expressing Stromal cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-3041 – volume: 139 start-page: 891 year: 2009 ident: R34 article-title: Matrix Crosslinking forces tumor progression by enhancing integrin signaling publication-title: Cell doi: 10.1016/j.cell.2009.10.027 – volume: 22 start-page: 1090 year: 2002 ident: R45 article-title: Interferon-gamma up-regulates Fas expression and increases Fas-mediated apoptosis in tumor cell lines publication-title: Di Yi Jun Yi Da Xue Xue Bao – volume: 123 start-page: 1353 year: 2020 ident: R48 article-title: T-cell tumour exclusion and Immunotherapy resistance: a role for CAF targeting publication-title: Br J Cancer doi: 10.1038/s41416-020-1020-6 – volume: 35 start-page: 1297 year: 2014 ident: R4 article-title: Col1A1 polymorphism is associated with risks of Osteosarcoma susceptibility and death publication-title: Tumour Biol doi: 10.1007/s13277-013-1172-6 – volume: 14 start-page: 6405 year: 2008 ident: R10 article-title: The Desmoplastic reaction surrounding hepatic colorectal adenocarcinoma metastases AIDS tumor growth and survival via Alphav integrin ligation publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-0816 – volume: 122 start-page: 899 year: 2012 ident: R6 article-title: Matrix architecture defines the preferential localization and migration of T cells into the Stroma of human lung tumors publication-title: J Clin Invest doi: 10.1172/JCI45817 – volume: 81 start-page: 4751 year: 2021 ident: R30 article-title: Tgfbeta signaling activated by cancer-associated fibroblasts determines the histological signature of lung adenocarcinoma publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-20-3941 – volume: 33 start-page: 1688 year: 2015 ident: R35 article-title: Human Epidermal growth factor receptor 2 (Her2) -Specific Chimeric antigen receptor-modified T cells for the Immunotherapy of Her2-positive sarcoma publication-title: J Clin Oncol doi: 10.1200/JCO.2014.58.0225 – volume: 405 start-page: 90 year: 2017 ident: R25 article-title: Mesenchymal Stroma: role in Osteosarcoma progression publication-title: Cancer Lett doi: 10.1016/j.canlet.2017.07.024 – volume: 64 start-page: 4768 year: 2004 ident: R7 article-title: Collagenase increases the Transcapillary pressure gradient and improves the uptake and distribution of Monoclonal antibodies in human Osteosarcoma Xenografts publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-03-1472 – volume: 67 start-page: 90 year: 2018 ident: R38 article-title: Extracellular matrix directs Phenotypic heterogeneity of activated fibroblasts publication-title: Matrix Biol doi: 10.1016/j.matbio.2017.12.003 – volume: 101 start-page: 2554 year: 2010 ident: R24 article-title: Human Mesenchymal stem cells promote growth of Osteosarcoma: involvement of Interleukin-6 in the interaction between human Mesenchymal stem cells and Saos-2 publication-title: Cancer Sci doi: 10.1111/j.1349-7006.2010.01731.x – volume: 8 year: 2017 ident: R2 article-title: An extracellular matrix-related Prognostic and predictive indicator for early-stage non-small cell lung cancer publication-title: Nat Commun doi: 10.1038/s41467-017-01430-6 – volume: 82 start-page: 419 year: 2022 ident: R53 article-title: BRAF inhibitors Reprogram cancer-associated fibroblasts to drive matrix remodeling and therapeutic escape in Melanoma publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-21-0614 – volume: 9 year: 2018 ident: R16 article-title: TGF-beta-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and Immunotherapy failure publication-title: Nat Commun doi: 10.1038/s41467-018-06654-8 – volume: 26 start-page: 44 year: 2003 ident: R51 article-title: Stromal antigen targeting by a Humanised Monoclonal antibody: an early phase II trial of Sibrotuzumab in patients with metastatic colorectal cancer publication-title: Onkologie doi: 10.1159/000069863 – volume: 7 start-page: 68954 year: 2016 ident: R26 article-title: Association between tumor-Stroma ratio and prognosis in solid tumor patients: a systematic review and meta-analysis publication-title: Oncotarget doi: 10.18632/oncotarget.12135 – volume: 210 start-page: 1125 year: 2013 ident: R49 article-title: Immune targeting of fibroblast activation protein triggers recognition of Multipotent bone marrow Stromal cells and Cachexia publication-title: J Exp Med doi: 10.1084/jem.20130110 – volume: 115 start-page: E5990 year: 2018 ident: R14 article-title: Hypoxic tumor Microenvironment activates Gli2 via HIF-1Alpha and TGF-Beta2 to promote Chemoresistance in colorectal cancer publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1801348115 – volume: 37 start-page: 873 year: 2018 ident: R13 article-title: Il6 derived from cancer-associated fibroblasts promotes Chemoresistance via Cxcr7 in Esophageal squamous cell carcinoma publication-title: Oncogene doi: 10.1038/onc.2017.387 – volume: 139 start-page: 3708 year: 2022 ident: R52 article-title: Targeting cancer-associated fibroblasts in the bone marrow prevents resistance to CART-cell therapy in multiple myeloma publication-title: Blood doi: 10.1182/blood.2021012811 – volume: 110 start-page: 109 year: 2018 ident: R15 article-title: Targeting the Myofibroblastic cancer-associated fibroblast phenotype through inhibition of Nox4 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djx121 – volume: 541 start-page: 321 year: 2017 ident: R12 article-title: Elements of cancer immunity and the cancer-immune set point publication-title: Nature doi: 10.1038/nature21349 – volume: 19 start-page: 1468 year: 2011 ident: R22 article-title: Discovery of a linear peptide for improving tumor targeting of gene products and treatment of distal tumors by IL-12 gene therapy publication-title: Mol Ther doi: 10.1038/mt.2011.38 – volume: 10 year: 2022 ident: R23 article-title: Cell membrane-anchored and tumor-targeted IL-12 (Attil12)-T cell therapy for eliminating large and heterogeneous solid tumors publication-title: J Immunother Cancer doi: 10.1136/jitc-2021-003633 – volume: 8 year: 2019 ident: R37 article-title: Targeting of the cancer-associated fibroblast-T-cell axis in solid malignancies publication-title: J Clin Med doi: 10.3390/jcm8111989 – volume: 58 start-page: 2832 year: 1998 ident: R44 article-title: IFN-gamma induces cell growth inhibition by Fas-mediated apoptosis: requirement of Stat1 protein for up-regulation of Fas and FasL expression publication-title: Cancer Res – volume: 2017 start-page: 1 year: 2017 ident: R54 article-title: Isolation of fibroblast-activation protein-specific cancer-associated fibroblasts publication-title: BioMed Research International doi: 10.1155/2017/4825108 – volume: 7 start-page: 62939 year: 2016 ident: R1 article-title: Systematic analysis of tumour cell-extracellular matrix adhesion identifies independent Prognostic factors in breast cancer publication-title: Oncotarget doi: 10.18632/oncotarget.11307 – volume: 37 start-page: 3166 year: 2018 ident: R3 article-title: Collagen abundance controls Melanoma phenotypes through lineage-specific Microenvironment sensing publication-title: Oncogene doi: 10.1038/s41388-018-0209-0 – ident: 2024053115230101000_12.1.e006991.26 doi: 10.18632/oncotarget.12135 – ident: 2024053115230101000_12.1.e006991.21 doi: 10.1158/0008-5472.CAN-19-3158 – ident: 2024053115230101000_12.1.e006991.6 doi: 10.1172/JCI45817 – ident: 2024053115230101000_12.1.e006991.22 doi: 10.1038/mt.2011.38 – ident: 2024053115230101000_12.1.e006991.40 doi: 10.1158/2159-8290.CD-19-0644 – ident: 2024053115230101000_12.1.e006991.11 doi: 10.1002/glia.20803. – volume: 7 start-page: 62939 year: 2016 ident: 2024053115230101000_12.1.e006991.1 article-title: Systematic analysis of tumour cell-extracellular matrix adhesion identifies independent Prognostic factors in breast cancer publication-title: Oncotarget doi: 10.18632/oncotarget.11307 – volume: 139 start-page: 3708 year: 2022 ident: 2024053115230101000_12.1.e006991.52 article-title: Targeting cancer-associated fibroblasts in the bone marrow prevents resistance to CART-cell therapy in multiple myeloma publication-title: Blood doi: 10.1182/blood.2021012811 – volume: 110 start-page: 109 year: 2018 ident: 2024053115230101000_12.1.e006991.15 article-title: Targeting the Myofibroblastic cancer-associated fibroblast phenotype through inhibition of Nox4 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djx121 – volume: 19 year: 2018 ident: 2024053115230101000_12.1.e006991.46 article-title: Regulation of fibroblast Fas expression by soluble and mechanical pro-Fibrotic stimuli publication-title: Respir Res doi: 10.1186/s12931-018-0801-4 – ident: 2024053115230101000_12.1.e006991.3 doi: 10.1038/s41388-018-0209-0 – volume: 58 start-page: 2832 year: 1998 ident: 2024053115230101000_12.1.e006991.44 article-title: IFN-gamma induces cell growth inhibition by Fas-mediated apoptosis: requirement of Stat1 protein for up-regulation of Fas and FasL expression publication-title: Cancer Res – ident: 2024053115230101000_12.1.e006991.12 doi: 10.1038/nature21349 – volume: 8 year: 2017 ident: 2024053115230101000_12.1.e006991.2 article-title: An extracellular matrix-related Prognostic and predictive indicator for early-stage non-small cell lung cancer publication-title: Nat Commun doi: 10.1038/s41467-017-01430-6 – volume: 51 start-page: 1879 year: 2018 ident: 2024053115230101000_12.1.e006991.5 article-title: Targeting Cd44 by CRISPR-Cas9 in multi-drug resistant Osteosarcoma cells publication-title: Cell Physiol Biochem doi: 10.1159/000495714 – ident: 2024053115230101000_12.1.e006991.14 doi: 10.1073/pnas.1801348115 – ident: 2024053115230101000_12.1.e006991.47 doi: 10.1083/jcb.201704053 – ident: 2024053115230101000_12.1.e006991.50 doi: 10.1038/mt.2013.110 – ident: 2024053115230101000_12.1.e006991.20 doi: 10.1084/jem.20122344 – volume: 9 year: 2021 ident: 2024053115230101000_12.1.e006991.36 article-title: Pathways of immune exclusion in metastatic Osteosarcoma are associated with inferior patient outcomes publication-title: J Immunother Cancer doi: 10.1136/jitc-2020-001772 – ident: 2024053115230101000_12.1.e006991.32 doi: 10.1074/jbc.275.13.9767 – volume: 8 year: 2019 ident: 2024053115230101000_12.1.e006991.37 article-title: Targeting of the cancer-associated fibroblast-T-cell axis in solid malignancies publication-title: J Clin Med doi: 10.3390/jcm8111989 – volume: 123 start-page: 1353 year: 2020 ident: 2024053115230101000_12.1.e006991.48 article-title: T-cell tumour exclusion and Immunotherapy resistance: a role for CAF targeting publication-title: Br J Cancer doi: 10.1038/s41416-020-1020-6 – ident: 2024053115230101000_12.1.e006991.31 doi: 10.1080/01926230701320337 – ident: 2024053115230101000_12.1.e006991.18 doi: 10.1158/0008-5472.CAN-14-3041 – ident: 2024053115230101000_12.1.e006991.24 doi: 10.1111/j.1349-7006.2010.01731.x – volume: 9 year: 2018 ident: 2024053115230101000_12.1.e006991.33 article-title: Mesenchymal stem cells in the Osteosarcoma Microenvironment: their biological properties, influence on tumor growth, and therapeutic implications publication-title: Stem Cell Res Ther doi: 10.1186/s13287-018-0780-x – ident: 2024053115230101000_12.1.e006991.28 doi: 10.1038/s41417-019-0109-7 – volume: 9 year: 2018 ident: 2024053115230101000_12.1.e006991.16 article-title: TGF-beta-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and Immunotherapy failure publication-title: Nat Commun doi: 10.1038/s41467-018-06654-8 – volume: 10 year: 2022 ident: 2024053115230101000_12.1.e006991.23 article-title: Cell membrane-anchored and tumor-targeted IL-12 (Attil12)-T cell therapy for eliminating large and heterogeneous solid tumors publication-title: J Immunother Cancer doi: 10.1136/jitc-2021-003633 – volume: 39 year: 2020 ident: 2024053115230101000_12.1.e006991.43 article-title: Regulation of heterogeneous cancer-associated fibroblasts: the molecular pathology of activated signaling pathways publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-020-01611-0 – ident: 2024053115230101000_12.1.e006991.38 doi: 10.1016/j.matbio.2017.12.003 – volume: 38 year: 2019 ident: 2024053115230101000_12.1.e006991.29 article-title: The tumor cell-secreted Matricellular protein Wisp1 drives pro-metastatic collagen Linearization publication-title: EMBO J doi: 10.15252/embj.2018101302 – ident: 2024053115230101000_12.1.e006991.13 doi: 10.1038/onc.2017.387 – ident: 2024053115230101000_12.1.e006991.9 doi: 10.4049/jimmunol.2001203 – volume: 405 start-page: 90 year: 2017 ident: 2024053115230101000_12.1.e006991.25 article-title: Mesenchymal Stroma: role in Osteosarcoma progression publication-title: Cancer Lett doi: 10.1016/j.canlet.2017.07.024 – volume: 22 start-page: 1090 year: 2002 ident: 2024053115230101000_12.1.e006991.45 article-title: Interferon-gamma up-regulates Fas expression and increases Fas-mediated apoptosis in tumor cell lines publication-title: Di Yi Jun Yi Da Xue Xue Bao – ident: 2024053115230101000_12.1.e006991.19 doi: 10.1158/2326-6066.CIR-13-0027 – ident: 2024053115230101000_12.1.e006991.39 doi: 10.1038/nature25501 – ident: 2024053115230101000_12.1.e006991.8 doi: 10.1007/s10549-008-9982-8 – ident: 2024053115230101000_12.1.e006991.34 doi: 10.1016/j.cell.2009.10.027 – ident: 2024053115230101000_12.1.e006991.30 doi: 10.1158/0008-5472.CAN-20-3941 – ident: 2024053115230101000_12.1.e006991.35 doi: 10.1200/JCO.2014.58.0225 – ident: 2024053115230101000_12.1.e006991.7 doi: 10.1158/0008-5472.CAN-03-1472 – volume: 28 start-page: 3862 year: 2022 ident: 2024053115230101000_12.1.e006991.27 article-title: Membrane-anchored and tumor-targeted Il12 (Attil12)-PBMC therapy for Osteosarcoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-22-0721 – volume: 11 year: 2020 ident: 2024053115230101000_12.1.e006991.41 article-title: Immuno-Genomic landscape of Osteosarcoma publication-title: Nat Commun doi: 10.1038/s41467-020-14646-w – ident: 2024053115230101000_12.1.e006991.49 doi: 10.1084/jem.20130110 – volume: 35 start-page: 1297 year: 2014 ident: 2024053115230101000_12.1.e006991.4 article-title: Col1A1 polymorphism is associated with risks of Osteosarcoma susceptibility and death publication-title: Tumour Biol doi: 10.1007/s13277-013-1172-6 – ident: 2024053115230101000_12.1.e006991.42 doi: 10.2147/CCID.S50046 – ident: 2024053115230101000_12.1.e006991.10 doi: 10.1158/1078-0432.CCR-08-0816 – ident: 2024053115230101000_12.1.e006991.53 doi: 10.1158/0008-5472.CAN-21-0614 – ident: 2024053115230101000_12.1.e006991.17 doi: 10.1016/j.ccell.2015.11.002 – ident: 2024053115230101000_12.1.e006991.51 doi: 10.1159/000069863 – ident: 2024053115230101000_12.1.e006991.54 doi: 10.1155/2017/2370927 |
SSID | ssj0001033888 |
Score | 2.3672836 |
Snippet | BackgroundThe extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of... The extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of many solid... Background The extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of... |
SourceID | doaj pubmedcentral proquest pubmed crossref bmj |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e006991 |
SubjectTerms | Animals Bone Neoplasms - therapy Cancer-Associated Fibroblasts Cell Membrane Cell- and Tissue-Based Therapy Clinical/Translational Cancer Immunotherapy Cytokines Disease Models, Animal Extracellular Matrix Heterografts Humans Immunotherapy, Adoptive Interleukin-12 Lymphocytes, Tumor-Infiltrating Osteosarcoma - therapy Pediatrics Tumor Microenvironment |
SummonAdditionalLinks | – databaseName: BMJ Open Access Journals dbid: 9YT link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSFUviDfhJSPBgYO7SZzY8REqqoIop61UTpGf3a02SZVkpfaH8f-YSbILi1DFMV7beXwz62_seRDyLtYmFtYKZoMJYKBww5TQoHipirXlSniLscOn38XJWfb1PD-fDEWMhblc9vbQVJdjOAMmaKr7WZLOkpnHpLoqOcRt6bvkHhYmQRcu9WP-e08lBoOrKDankVwM0zGsEM7G0QdkH00UoO24HMF9dpajIWv_v6jm3x6TfyxBxw_I_Yk70o8j2A_JHV8_Ivun0-n4Y_LzyK9WtPIVWMC1Z4Dnomm9o7p2tF9XTctGv29o-vKNJSmdM9y3p2MM1g118DBtc9NRi6LQMj1BB_0DWNWNAabdd8N0btm16yu4gP_2VuMs6M5KK0z4f02XNV2gm00zZoClGEjSdKBSTaXpNbRdtDr0dKjC0z0hZ8ef50cnbCrLwEwexz0zHL5kJvPUgSnHTZxrHqTJlC10GjwQPCOBcwWe6lRI4Fex1DY4jwe4Wiro_ZTs1U3tnxNqCw7iwYMxPM-E9hoJj7QmM567pAgReQ8YlZNadeVgsXBRIqwlwlqOsEZktkGxtFNucyyxsbplxIftiKsxr8ctfT-hYGz7YUbuoaFpL8pJwUunLLwx16lNQua8VNIWzptgEq850NyIvN2IVQkajMCAKAAGZYrOD2A3JjIiz0Yx295qI6wRKXYEcOdZdn-pl4shSzg6jwohkxf_-Q1fkgO4yobtJfWK7PXt2r8GwtWbN4OW_QJu3iqx priority: 102 providerName: BMJ Publishing Group Ltd – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfQkBAXxDfdABkJDhzMkjiNkwNCMDENRDmt0m6WP9dOTTKcVGr_sP1_vJekhaJqJ4517NT17736_ez3QcjbSOkoMyZjxmsPBIVrVmQKFC8pImV4kTmDscOTn9nZNP1-Mb74Ex49LGCzl9phPalpWHxY_Vp_AoX_OFQkOb6at4ZhGXCGeXcxlP0u7EsC1XQyGPvdiUsEdCzPN3eVewbC_qLLq50dqkvkv8_6_NeJ8q9d6fQheTCYk_Rzj_8jcsdVj8m9yXBh_oTcnLjFgpauBFJcOQYQz-rgLFWVpe2yrAPrXcGh6dsPFif0nOFRPu3DstbUwmRCvW6oQekITA1oQn8PRLvWYHy3Tfc6O2_C8ho-wN99UPgW9HClJdYAWNF5RWfoeVP3SWEpxpbUDWhZXSq6grbLoHxLu8I8zVMyPf16fnLGhkoNTI-jqGWaw_KlYpxYYHdcR2PFvdBpYXKVeAc2nxZghnmeqCQTYHJFQhlvHd7pKlFA72fkoKor94JQk3OQGO615uM0U06hDSSMTrXjNs79iLwDjORGUGRHYngmEUuJWMoeyxE53qAozZDuHKtuLG4Z8X474rpP9XFL3y8oGNt-mKS7a6jDpRx0XtrCwC_mKjGxT60ThTC5ddrr2CkOlu-IvNmIlQSlRmBAFAADmaA_BFDJWIzI817Mtl-FFBtoJzzJdwRwZy67T6r5rEscjv6kWSbiw_8x-yNyHxYk7Y6jipfkoA1L9woMtFa_7vTuN_RyPw0 priority: 102 providerName: Scholars Portal |
Title | Cell membrane-anchored and tumor-targeted IL-12 T-cell therapy destroys cancer-associated fibroblasts and disrupts extracellular matrix in heterogenous osteosarcoma xenograft models |
URI | https://jitc.bmj.com/content/12/1/e006991.full https://www.ncbi.nlm.nih.gov/pubmed/38199607 https://www.proquest.com/docview/2913448717 https://pubmed.ncbi.nlm.nih.gov/PMC10806671 https://doaj.org/article/d9c32a3a2c1f4de797c8debfb1ea3835 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9swFBVrB2MvY9_LPoIG28MeRGzLluzHNrR0Yy5jpCN7MpIsNSmxXWwH2h-2_7d7bSckY3Qve3GILDtC5yq6R7o6l5APntKeMEYw47QDgsI1S4SCgRcknjI8Edbg2eH0XJxdhF_m0Xwn1RfGhPXywH3HTfLE8EBxFRjfhbmViTRxbrXTvlXArjr1UpjzdshUt7riAfWK482-JBeTq2VrGOYKZyjOi5KcB7q42puNOtH-v3mafwZM7sxAp4_Jo8F1pEd9k5-Qe7Z8Sh6kw-b4M_JralcrWtgCCHBpGcC5qGqbU1XmtF0XVc36sG8o-vyV-QGdMVy2p_0RrFuaQ2Pq6rahBi2hZmpADuo7INWVBke7bbrX5cumXl_DF_hrrxW-BaNZaYF6_zd0WdIFRtlUvQAsxXMkVQMjqioUvYGyy1q5lnZJeJrn5OL0ZDY9Y0NWBqYjz2uZ5tB9oYyCHJgc116kuJM6TEysAmfBv9MSXC4HoAVCgnvlSWVcbnH_VskEar8gh2VV2leEmpiDdXCnNY9CoaxCf0caHWrLcz92I_IRMMqGUdVkHWHhIkMsM8Qy67EckckGxcwM0uaYYWN1xxOftk9c97Ied9Q9RsPY1kNB7q4AzDQbzDT7l5mOyPuNWWUwgBEYMAXAIAsw9gFooy9H5GVvZtufQjoNFBPuxHsGuNeW_TvlctGJhGPsqBDSf_0_Wv-GPIQOCbulp-QtOWzrtX0Hzlirx-RAziVck5-zMbl_NE3TH_B5fHL-7fu4G5NwTcP4N0n6PfA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZgSGMviDvhaiR44MFrEqd28ggTUwftnjppPFm2Y6-dmmRKUmn7Yfw_zknSQhGaeKxjO5fvnPo79vFnQj6E2oTCWsGsNx4CFG5YJjQ4XpyF2vJMOIt7h2enYnKWfDsfnw-BIu6FuVy29tAUl_12BhRoKttRFI-ikUNR3Sw6xGnpu-SeRNkVtOgf899zKiEEXGm6WY3kouuO4QnhrG99QPYxRAHajsMR3GdnOOpU-_9FNf_OmPxjCDp-SB4M3JF-7sF-RO648jHZnw2r40_IzyO3WtHCFRABl44BnouqdjnVZU7bdVHVrM_7hqKTKYtiOmc4b0_7PVg3NIeHqaubhlo0hZrpATqo7yGqrgww7bbpusuXTb2-gh_w315r7AXTWWmBgv_XdFnSBabZVL0CLMWNJFUDLlUVml5D2UWtfUu7U3iap-Ts-Ov8aMKGYxmYGYdhywyHL5nIcZxDKMdNONbcS5NkNtWxd0DwjATO5XmsYyGBX4VSW587XMDVMoPaz8heWZXuBaE25WAe3BvDx4nQTiPhkdYkxvE8Sn1APgJGanCrRnURCxcKYVUIq-phDchog6Kyg7Y5HrGxuqXFp22Lq17X45a6X9AwtvVQkbsrqOoLNTi4yjMLb8x1bCOf5E5m0qa5M95ETnOguQF5vzErBR6MwIApAAYqxuQHiBsjGZDnvZltb7Ux1oCkOwa48yy7V8rlolMJx-RRIWT08j-_4TtyfzKfTdX05PT7K3IAV5Juqil7Tfbaeu3eAPlqzdvO434BoPktoA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbGkKq9IO6Uq5HggQe3SZzaySMMqg22iYdOGk-Rr2unJqmSVNp-GP-Pc5K0UIQmHuM4zuU7J_6OffyZkHeB0oEwRjDjtYcAhWuWCgWOF6WBMjwVzuDa4dMzcXQef72YXOyRaLMW5mrRmJHOr7rlDCjQVDTjMBqHY4eiumk4wmHp0cr6O-QuUJcY9fLTH7Pf4yoBBF1JspmR5KJtkuEu4axr4YAMMEwB6o5dEtxrp0tqlfv_RTf_zpr8oxua3if3ev5IP3aAPyB7rnhIBqf9DPkj8vPQLZc0dzlEwYVjgOm8rJylqrC0Wedlxbrcbyg6PmFhRGcMx-5ptw7rhlp4mKq8qalBc6iY6uGD-h4i61ID227qtjm7qKv1Cg7g_14pbAVTWmmOov_XdFHQOabalJ0KLMXFJGUNblXmil5D2WWlfEPbnXjqx-R8-mV2eMT6rRmYngRBwzSHLxnLSWQhnOM6mCjupY5Tk6jIOyB5WgLv8jxSkZDAsQKpjLcOJ3GVTKH2E7JflIV7RqhJOJgI91rzSSyUU0h6pNGxdtyGiR-S94BR1rtWnbVRCxcZwpohrFkH65CMNyhmptc3x202lrdc8WF7xarT9ril7ic0jG09VOVuC8rqMuudPLOpgTfmKjKhj62TqTSJddrr0CkOVHdI3m7MKgMvRmDAFACDLMIECIgdQzkkTzsz295qY6xDkuwY4M6z7J4pFvNWKRwTSIWQ4fP__IZvyOD752l2cnz27QU5gBNxO9qUviT7TbV2r4B_Nfp163C_ANhCLq8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+membrane-anchored+and+tumor-targeted+IL-12+T-cell+therapy+destroys+cancer-associated+fibroblasts+and+disrupts+extracellular+matrix+in+heterogenous+osteosarcoma+xenograft+models&rft.jtitle=Journal+for+immunotherapy+of+cancer&rft.au=Jian+Wang&rft.au=Wei-Lien+Wang&rft.au=Jiemiao+Hu&rft.au=Wendong+Zhang&rft.date=2024-01-09&rft.pub=BMJ+Publishing+Group&rft.eissn=2051-1426&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1136%2Fjitc-2023-006991&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d9c32a3a2c1f4de797c8debfb1ea3835 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-1426&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-1426&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-1426&client=summon |