The gene normalization task in BioCreative III

We report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of the genes detected in full-text articles. For training, 32 fully and 500 partially annotated articles were prepared. A total of 507 articles were selected...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 12 Suppl 8; no. S8; p. S2
Main Authors Lu, Zhiyong, Kao, Hung-Yu, Wei, Chih-Hsuan, Huang, Minlie, Liu, Jingchen, Kuo, Cheng-Ju, Hsu, Chun-Nan, Tsai, Richard Tzong-Han, Dai, Hong-Jie, Okazaki, Naoaki, Cho, Han-Cheol, Gerner, Martin, Solt, Illes, Agarwal, Shashank, Liu, Feifan, Vishnyakova, Dina, Ruch, Patrick, Romacker, Martin, Rinaldi, Fabio, Bhattacharya, Sanmitra, Srinivasan, Padmini, Liu, Hongfang, Torii, Manabu, Matos, Sergio, Campos, David, Verspoor, Karin, Livingston, Kevin M, Wilbur, W John
Format Journal Article
LanguageEnglish
Published England BioMed Central 03.10.2011
BioMed Central Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of the genes detected in full-text articles. For training, 32 fully and 500 partially annotated articles were prepared. A total of 507 articles were selected as the test set. Due to the high annotation cost, it was not feasible to obtain gold-standard human annotations for all test articles. Instead, we developed an Expectation Maximization (EM) algorithm approach for choosing a small number of test articles for manual annotation that were most capable of differentiating team performance. Moreover, the same algorithm was subsequently used for inferring ground truth based solely on team submissions. We report team performance on both gold standard and inferred ground truth using a newly proposed metric called Threshold Average Precision (TAP-k). We received a total of 37 runs from 14 different teams for the task. When evaluated using the gold-standard annotations of the 50 articles, the highest TAP-k scores were 0.3297 (k=5), 0.3538 (k=10), and 0.3535 (k=20), respectively. Higher TAP-k scores of 0.4916 (k=5, 10, 20) were observed when evaluated using the inferred ground truth over the full test set. When combining team results using machine learning, the best composite system achieved TAP-k scores of 0.3707 (k=5), 0.4311 (k=10), and 0.4477 (k=20) on the gold standard, representing improvements of 12.4%, 21.8%, and 26.6% over the best team results, respectively. By using full text and being species non-specific, the GN task in BioCreative III has moved closer to a real literature curation task than similar tasks in the past and presents additional challenges for the text mining community, as revealed in the overall team results. By evaluating teams using the gold standard, we show that the EM algorithm allows team submissions to be differentiated while keeping the manual annotation effort feasible. Using the inferred ground truth we show measures of comparative performance between teams. Finally, by comparing team rankings on gold standard vs. inferred ground truth, we further demonstrate that the inferred ground truth is as effective as the gold standard for detecting good team performance.
AbstractList BACKGROUND: We report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of the genes detected in full-text articles. For training, 32 fully and 500 partially annotated articles were prepared. A total of 507 articles were selected as the test set. Due to the high annotation cost, it was not feasible to obtain gold-standard human annotations for all test articles. Instead, we developed an Expectation Maximization (EM) algorithm approach for choosing a small number of test articles for manual annotation that were most capable of differentiating team performance. Moreover, the same algorithm was subsequently used for inferring ground truth based solely on team submissions. We report team performance on both gold standard and inferred ground truth using a newly proposed metric called Threshold Average Precision (TAP-k). RESULTS: We received a total of 37 runs from 14 different teams for the task. When evaluated using the gold-standard annotations of the 50 articles, the highest TAP-k scores were 0.3297 (k=5), 0.3538 (k=10), and 0.3535 (k=20), respectively. Higher TAP-k scores of 0.4916 (k=5, 10, 20) were observed when evaluated using the inferred ground truth over the full test set. When combining team results using machine learning, the best composite system achieved TAP-k scores of 0.3707 (k=5), 0.4311 (k=10), and 0.4477 (k=20) on the gold standard, representing improvements of 12.4%, 21.8%, and 26.6% over the best team results, respectively. CONCLUSIONS: By using full text and being species non-specific, the GN task in BioCreative III has moved closer to a real literature curation task than similar tasks in the past and presents additional challenges for the text mining community, as revealed in the overall team results. By evaluating teams using the gold standard, we show that the EM algorithm allows team submissions to be differentiated while keeping the manual annotation effort feasible. Using the inferred ground truth we show measures of comparative performance between teams. Finally, by comparing team rankings on gold standard vs. inferred ground truth, we further demonstrate that the inferred ground truth is as effective as the gold standard for detecting good team performance.
We report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of the genes detected in full-text articles. For training, 32 fully and 500 partially annotated articles were prepared. A total of 507 articles were selected as the test set. Due to the high annotation cost, it was not feasible to obtain gold-standard human annotations for all test articles. Instead, we developed an Expectation Maximization (EM) algorithm approach for choosing a small number of test articles for manual annotation that were most capable of differentiating team performance. Moreover, the same algorithm was subsequently used for inferring ground truth based solely on team submissions. We report team performance on both gold standard and inferred ground truth using a newly proposed metric called Threshold Average Precision (TAP-k). We received a total of 37 runs from 14 different teams for the task. When evaluated using the gold-standard annotations of the 50 articles, the highest TAP-k scores were 0.3297 (k=5), 0.3538 (k=10), and 0.3535 (k=20), respectively. Higher TAP-k scores of 0.4916 (k=5, 10, 20) were observed when evaluated using the inferred ground truth over the full test set. When combining team results using machine learning, the best composite system achieved TAP-k scores of 0.3707 (k=5), 0.4311 (k=10), and 0.4477 (k=20) on the gold standard, representing improvements of 12.4%, 21.8%, and 26.6% over the best team results, respectively. By using full text and being species non-specific, the GN task in BioCreative III has moved closer to a real literature curation task than similar tasks in the past and presents additional challenges for the text mining community, as revealed in the overall team results. By evaluating teams using the gold standard, we show that the EM algorithm allows team submissions to be differentiated while keeping the manual annotation effort feasible. Using the inferred ground truth we show measures of comparative performance between teams. Finally, by comparing team rankings on gold standard vs. inferred ground truth, we further demonstrate that the inferred ground truth is as effective as the gold standard for detecting good team performance.
Abstract Background: We report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of the genes detected in full-text articles. For training, 32 fully and 500 partially annotated articles were prepared. A total of 507 articles were selected as the test set. Due to the high annotation cost, it was not feasible to obtain gold-standard human annotations for all test articles. Instead, we developed an Expectation Maximization (EM) algorithm approach for choosing a small number of test articles for manual annotation that were most capable of differentiating team performance. Moreover, the same algorithm was subsequently used for inferring ground truth based solely on team submissions. We report team performance on both gold standard and inferred ground truth using a newly proposed metric called Threshold Average Precision (TAP-k ). Results: We received a total of 37 runs from 14 different teams for the task. When evaluated using the gold-standard annotations of the 50 articles, the highest TAP-k scores were 0.3297 (k =5), 0.3538 (k =10), and 0.3535 (k =20), respectively. Higher TAP-k scores of 0.4916 (k =5, 10, 20) were observed when evaluated using the inferred ground truth over the full test set. When combining team results using machine learning, the best composite system achieved TAP-k scores of 0.3707 (k =5), 0.4311 (k =10), and 0.4477 (k =20) on the gold standard, representing improvements of 12.4%, 21.8%, and 26.6% over the best team results, respectively. Conclusions: By using full text and being species non-specific, the GN task in BioCreative III has moved closer to a real literature curation task than similar tasks in the past and presents additional challenges for the text mining community, as revealed in the overall team results. By evaluating teams using the gold standard, we show that the EM algorithm allows team submissions to be differentiated while keeping the manual annotation effort feasible. Using the inferred ground truth we show measures of comparative performance between teams. Finally, by comparing team rankings on gold standard vs. inferred ground truth, we further demonstrate that the inferred ground truth is as effective as the gold standard for detecting good team performance.
BACKGROUNDWe report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of the genes detected in full-text articles. For training, 32 fully and 500 partially annotated articles were prepared. A total of 507 articles were selected as the test set. Due to the high annotation cost, it was not feasible to obtain gold-standard human annotations for all test articles. Instead, we developed an Expectation Maximization (EM) algorithm approach for choosing a small number of test articles for manual annotation that were most capable of differentiating team performance. Moreover, the same algorithm was subsequently used for inferring ground truth based solely on team submissions. We report team performance on both gold standard and inferred ground truth using a newly proposed metric called Threshold Average Precision (TAP-k).RESULTSWe received a total of 37 runs from 14 different teams for the task. When evaluated using the gold-standard annotations of the 50 articles, the highest TAP-k scores were 0.3297 (k=5), 0.3538 (k=10), and 0.3535 (k=20), respectively. Higher TAP-k scores of 0.4916 (k=5, 10, 20) were observed when evaluated using the inferred ground truth over the full test set. When combining team results using machine learning, the best composite system achieved TAP-k scores of 0.3707 (k=5), 0.4311 (k=10), and 0.4477 (k=20) on the gold standard, representing improvements of 12.4%, 21.8%, and 26.6% over the best team results, respectively.CONCLUSIONSBy using full text and being species non-specific, the GN task in BioCreative III has moved closer to a real literature curation task than similar tasks in the past and presents additional challenges for the text mining community, as revealed in the overall team results. By evaluating teams using the gold standard, we show that the EM algorithm allows team submissions to be differentiated while keeping the manual annotation effort feasible. Using the inferred ground truth we show measures of comparative performance between teams. Finally, by comparing team rankings on gold standard vs. inferred ground truth, we further demonstrate that the inferred ground truth is as effective as the gold standard for detecting good team performance.
ArticleNumber S2
Author Gerner, Martin
Verspoor, Karin
Romacker, Martin
Ruch, Patrick
Wei, Chih-Hsuan
Liu, Jingchen
Rinaldi, Fabio
Kuo, Cheng-Ju
Okazaki, Naoaki
Srinivasan, Padmini
Bhattacharya, Sanmitra
Lu, Zhiyong
Liu, Hongfang
Kao, Hung-Yu
Dai, Hong-Jie
Liu, Feifan
Vishnyakova, Dina
Hsu, Chun-Nan
Tsai, Richard Tzong-Han
Wilbur, W John
Agarwal, Shashank
Huang, Minlie
Campos, David
Cho, Han-Cheol
Matos, Sergio
Solt, Illes
Livingston, Kevin M
Torii, Manabu
AuthorAffiliation 1 National Center for Biotechnology Information (NCBI), 8600 Rockville Pike, Bethesda, Maryland 20894, USA
12 Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics, 1117 Budapest, Hungary
7 Department of Computer Science, National Tsing-Hua University, Hsinchu, Taiwan, R.O.C
14 BiTem Group, Division of Medical Information Sciences, University of Geneva, Switzerland
16 NITAS/TMS, Text Mining Services, Novartis AG, Switzerland
13 Medical Informatics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
3 Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China
9 Interfaculty Initiative in Information Studies, University of Tokyo, Japan
10 Graduate School of Information Science and Technology, University of Tokyo, Japan
17 Institute of Computational Linguistics, University of Zurich, Zurich, Switzerland
4 Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
20 Lab of Text Intelligence in Biom
AuthorAffiliation_xml – name: 2 Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C
– name: 9 Interfaculty Initiative in Information Studies, University of Tokyo, Japan
– name: 8 Institute of Information Science, Academic Sinica, Taipei, Taiwan, R.O.C
– name: 22 Center for Computational Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, USA
– name: 14 BiTem Group, Division of Medical Information Sciences, University of Geneva, Switzerland
– name: 3 Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China
– name: 4 Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
– name: 6 Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, Taiwan, R.O.C
– name: 10 Graduate School of Information Science and Technology, University of Tokyo, Japan
– name: 18 Department of Computer Science, The University of Iowa, Iowa City, Iowa 52242, USA
– name: 12 Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics, 1117 Budapest, Hungary
– name: 17 Institute of Computational Linguistics, University of Zurich, Zurich, Switzerland
– name: 5 Information Science Institute, University of Southern California, Marina del Rey, California, USA
– name: 16 NITAS/TMS, Text Mining Services, Novartis AG, Switzerland
– name: 11 Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
– name: 20 Lab of Text Intelligence in Biomedicine, Georgetown University Medical Center, 4000 Reservoir Rd., NW, Washington, DC 20057 USA
– name: 21 DETI/IEETA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
– name: 19 Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
– name: 7 Department of Computer Science, National Tsing-Hua University, Hsinchu, Taiwan, R.O.C
– name: 13 Medical Informatics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
– name: 1 National Center for Biotechnology Information (NCBI), 8600 Rockville Pike, Bethesda, Maryland 20894, USA
– name: 15 BiTeM Group, Information Science Department, University of Applied Science, Geneva, Switzerland
Author_xml – sequence: 1
  givenname: Zhiyong
  surname: Lu
  fullname: Lu, Zhiyong
  email: zhiyong.lu@nih.gov
  organization: National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, Maryland 20894, USA. zhiyong.lu@nih.gov
– sequence: 2
  givenname: Hung-Yu
  surname: Kao
  fullname: Kao, Hung-Yu
– sequence: 3
  givenname: Chih-Hsuan
  surname: Wei
  fullname: Wei, Chih-Hsuan
– sequence: 4
  givenname: Minlie
  surname: Huang
  fullname: Huang, Minlie
– sequence: 5
  givenname: Jingchen
  surname: Liu
  fullname: Liu, Jingchen
– sequence: 6
  givenname: Cheng-Ju
  surname: Kuo
  fullname: Kuo, Cheng-Ju
– sequence: 7
  givenname: Chun-Nan
  surname: Hsu
  fullname: Hsu, Chun-Nan
– sequence: 8
  givenname: Richard Tzong-Han
  surname: Tsai
  fullname: Tsai, Richard Tzong-Han
– sequence: 9
  givenname: Hong-Jie
  surname: Dai
  fullname: Dai, Hong-Jie
– sequence: 10
  givenname: Naoaki
  surname: Okazaki
  fullname: Okazaki, Naoaki
– sequence: 11
  givenname: Han-Cheol
  surname: Cho
  fullname: Cho, Han-Cheol
– sequence: 12
  givenname: Martin
  surname: Gerner
  fullname: Gerner, Martin
– sequence: 13
  givenname: Illes
  surname: Solt
  fullname: Solt, Illes
– sequence: 14
  givenname: Shashank
  surname: Agarwal
  fullname: Agarwal, Shashank
– sequence: 15
  givenname: Feifan
  surname: Liu
  fullname: Liu, Feifan
– sequence: 16
  givenname: Dina
  surname: Vishnyakova
  fullname: Vishnyakova, Dina
– sequence: 17
  givenname: Patrick
  surname: Ruch
  fullname: Ruch, Patrick
– sequence: 18
  givenname: Martin
  surname: Romacker
  fullname: Romacker, Martin
– sequence: 19
  givenname: Fabio
  surname: Rinaldi
  fullname: Rinaldi, Fabio
– sequence: 20
  givenname: Sanmitra
  surname: Bhattacharya
  fullname: Bhattacharya, Sanmitra
– sequence: 21
  givenname: Padmini
  surname: Srinivasan
  fullname: Srinivasan, Padmini
– sequence: 22
  givenname: Hongfang
  surname: Liu
  fullname: Liu, Hongfang
– sequence: 23
  givenname: Manabu
  surname: Torii
  fullname: Torii, Manabu
– sequence: 24
  givenname: Sergio
  surname: Matos
  fullname: Matos, Sergio
– sequence: 25
  givenname: David
  surname: Campos
  fullname: Campos, David
– sequence: 26
  givenname: Karin
  surname: Verspoor
  fullname: Verspoor, Karin
– sequence: 27
  givenname: Kevin M
  surname: Livingston
  fullname: Livingston, Kevin M
– sequence: 28
  givenname: W John
  surname: Wilbur
  fullname: Wilbur, W John
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22151901$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1LxDAQhoMofv8BD1K8eOqaSZo2vQi6-LEgeFg9h6SdarRNNOkK-uvtsrq4oqcZZt55eHlnh6w775CQA6AjAJmfQFZAyoCKFFg6lemUrZHt5XD9R79FdmJ8ohQKScUm2WIMBJQUtsno7hGTB3SYOB863doP3Vvvkl7H58S65Nz6ccBh9obJZDLZIxuNbiPuf9Vdcn95cTe-Tm9urybjs5vUZCXtU45VLvKm4TxDCrVpDMsLLGjNAEWday6hoJkxvOYCpKl1TmtTM5mJSsgsz_guOV1wX2amw7pC1wfdqpdgOx3elddWrW6cfVQP_k1xlpclLwbAxQJgrP8HsLqpfKfmeal5XgqYmko1ZQPn-MtI8K8zjL3qbKywbbVDP4uqBJYxWYIYlEe_lE9-FtyQkhqSLhkHCYOILURV8DEGbJaOgKr5U__2cPgzjOXJ9xf5Jwcxnig
CitedBy_id crossref_primary_10_1093_bioinformatics_btt156
crossref_primary_10_1093_bioinformatics_btt474
crossref_primary_10_1186_1471_2105_14_281
crossref_primary_10_1021_acs_chemrev_6b00851
crossref_primary_10_1093_jamia_ocv037
crossref_primary_10_3390_diagnostics14020174
crossref_primary_10_1146_annurev_biodatasci_021821_061045
crossref_primary_10_1093_database_bau073
crossref_primary_10_1093_database_baac090
crossref_primary_10_1016_j_jbi_2021_103779
crossref_primary_10_1186_1471_2105_14_S3_S10
crossref_primary_10_1186_s12859_019_2678_8
crossref_primary_10_1186_s12859_019_3157_y
crossref_primary_10_1093_jamia_ocaa106
crossref_primary_10_1093_bioinformatics_btu795
crossref_primary_10_1186_1471_2105_14_171
crossref_primary_10_1186_2041_1480_5_10
crossref_primary_10_1371_journal_pcbi_1003799
crossref_primary_10_1109_ACCESS_2019_2920708
crossref_primary_10_1109_TCBB_2013_139
crossref_primary_10_1002_widm_1288
crossref_primary_10_1016_j_jbi_2013_12_006
crossref_primary_10_1186_s13321_019_0343_x
crossref_primary_10_1371_journal_pone_0135305
crossref_primary_10_1093_database_baac084
crossref_primary_10_1016_j_jbi_2013_12_014
crossref_primary_10_1371_journal_pone_0079517
crossref_primary_10_1371_journal_pone_0065390
crossref_primary_10_1186_1758_2946_7_S1_S7
crossref_primary_10_1186_1471_2105_14_104
crossref_primary_10_1186_s13326_018_0194_9
crossref_primary_10_1093_database_baw005
crossref_primary_10_1186_1758_2946_7_S1_S3
crossref_primary_10_1093_database_bau094
crossref_primary_10_1093_bioinformatics_btr358
crossref_primary_10_1016_j_jbi_2012_04_014
crossref_primary_10_3389_frma_2021_654438
crossref_primary_10_1186_s12859_015_0871_y
crossref_primary_10_1038_s41597_020_0543_2
crossref_primary_10_1371_journal_pone_0055814
crossref_primary_10_1093_bib_bbaa054
crossref_primary_10_1093_database_bay110
crossref_primary_10_1093_database_bas026
crossref_primary_10_1093_database_bav016
crossref_primary_10_1093_nar_gky355
crossref_primary_10_1109_JBHI_2015_2422651
crossref_primary_10_1186_s13321_018_0327_2
crossref_primary_10_1371_journal_pone_0162287
crossref_primary_10_1186_s12859_023_05350_9
Cites_doi 10.1186/gb-2008-9-s2-s3
10.1093/bioinformatics/btr042
10.1186/1471-2105-11-85
10.1142/S0219720010004562
10.1093/bioinformatics/btq002
10.1093/database/bap019
10.1186/gb-2008-9-s2-s14
10.1186/gb-2008-9-s2-s2
10.1186/1471-2105-6-S1-S11
10.1093/bioinformatics/bti783
10.1093/bioinformatics/bti749
10.1093/bioinformatics/bti475
10.1186/gb-2008-9-s2-s13
10.1093/database/baq023
10.1186/1471-2105-6-S1-S12
10.1197/jamia.M2085
10.1109/TCBB.2010.61
10.1109/TCBB.2010.50
10.1093/bioinformatics/btq270
10.1145/1656274.1656278
10.1093/bioinformatics/btn502
10.1109/TCBB.2010.45
10.1038/75556
10.1093/bioinformatics/btn183
ContentType Journal Article
Copyright 2011 Lu et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2011 Lu et al; licensee BioMed Central Ltd. 2011 Lu et al; licensee BioMed Central Ltd.
Copyright_xml – notice: 2011 Lu et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2011 Lu et al; licensee BioMed Central Ltd. 2011 Lu et al; licensee BioMed Central Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1186/1471-2105-12-S8-S2
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Advanced Technologies Database with Aerospace
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Medicine
EISSN 1471-2105
EndPage S2
ExternalDocumentID oai_biomedcentral_com_1471_2105_12_S8_S2
2501824691
10_1186_1471_2105_12_S8_S2
22151901
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: R01 LM009959
– fundername: NLM NIH HHS
  grantid: 5R01LM009836
– fundername: Intramural NIH HHS
– fundername: NLM NIH HHS
  grantid: 5R01LM010125
– fundername: NLM NIH HHS
  grantid: 5R01 LM008111-05
– fundername: NIGMS NIH HHS
  grantid: 5R01 GM083649-03
– fundername: NLM NIH HHS
  grantid: 1-R01-LM009959-01A1
– fundername: NLM NIH HHS
  grantid: 5R01 LM010120-02
– fundername: NLM NIH HHS
  grantid: 3T15 LM009451-03S1
GroupedDBID ---
-A0
0R~
23N
2VQ
2WC
3V.
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C24
C6C
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M0N
M1P
M48
M7P
MK~
ML0
M~E
NPM
O5R
O5S
OK1
P2P
P62
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PQEST
PQUKI
Q9U
7X8
ABVAZ
AFGXO
AFNRJ
AFPKN
5PM
ID FETCH-LOGICAL-b490t-3ec656ff334e01dbfb267e70d21e5d6a381704bb3d3518bda60dbd2845c584643
IEDL.DBID RBZ
ISSN 1471-2105
IngestDate Tue Sep 17 21:12:05 EDT 2024
Wed May 22 07:16:38 EDT 2024
Sat Oct 26 06:02:17 EDT 2024
Thu Oct 10 20:15:23 EDT 2024
Fri Dec 06 06:06:47 EST 2024
Sat Nov 02 12:23:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue S8
Language English
License http://creativecommons.org/licenses/by/2.0
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b490t-3ec656ff334e01dbfb267e70d21e5d6a381704bb3d3518bda60dbd2845c584643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1471-2105-12-S8-S2
PMID 22151901
PQID 901923181
PQPubID 44065
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3269937
biomedcentral_primary_oai_biomedcentral_com_1471_2105_12_S8_S2
proquest_miscellaneous_912428915
proquest_journals_901923181
crossref_primary_10_1186_1471_2105_12_S8_S2
pubmed_primary_22151901
PublicationCentury 2000
PublicationDate 2011-10-03
PublicationDateYYYYMMDD 2011-10-03
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-03
  day: 03
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2011
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References 4796_CR30
4796_CR33
J Whitechill (4796_CR9) 2009
TH Haveliwala (4796_CR52) 2002
4796_CR31
D Hong-Jie (4796_CR44) 2010; 7
4796_CR32
ME Colosimo (4796_CR3) 2005; 6
M Hall (4796_CR23) 2009; 11
S Sarntivijai (4796_CR37) 2008; 24
M Gerner (4796_CR25) 2010; 11
R Leaman (4796_CR28) 2008
F Rinaldi (4796_CR48) 2010; 7
4796_CR38
4796_CR35
4796_CR36
E Agirre (4796_CR51) 2009
AP Dawid (4796_CR13) 1979; 28
B Settles (4796_CR26) 2005; 21
F Rinaldi (4796_CR47) 2008; 9
S Matos (4796_CR50) 2010
4796_CR40
X Wang (4796_CR16) 2010; 26
4796_CR41
T Zhang (4796_CR21) 2004
M Ashburner (4796_CR54) 2000; 25
4796_CR43
P Ruch (4796_CR46) 2006; 22
H Liu (4796_CR39) 2006; 22
S Brin (4796_CR53) 1998
AS Schwartz (4796_CR58) 2003
M Huang (4796_CR42) 2011; 1
P Donmez (4796_CR8) 2009
4796_CR56
DD Lewis (4796_CR17) 1998
VC Raykar (4796_CR12) 2010; 11
P Smyth (4796_CR11) 1995; 7
L Smith (4796_CR20) 2008; 9
C Lindberg (4796_CR34) 1990; 61
HD Carroll (4796_CR5) 2010; 26
F Leitner (4796_CR19) 2010; 7
R Snow (4796_CR6) 2008
L Hirschman (4796_CR2) 2005; 6
S Bhattacharya (4796_CR49) 2010
4796_CR22
VS Sheng (4796_CR7) 2008
AA Morgan (4796_CR1) 2008; 9
CN Hsu (4796_CR27) 2008; 24
T Kappeler (4796_CR15) 2009
J Hakenberg (4796_CR29) 2008; 9
Z Lu (4796_CR45) 2010
B Turner (4796_CR55) 2010; 2010
P Welinder (4796_CR10) 2010
KG Dowell (4796_CR4) 2009; 2009
4796_CR24
H Liu (4796_CR57) 2006; 13
D Rebholz-Schuhmann (4796_CR14) 2010; 8
A McCallum (4796_CR18) 1998
References_xml – volume: 9
  start-page: S3
  issue: Suppl 2
  year: 2008
  ident: 4796_CR1
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-s2-s3
  contributor:
    fullname: AA Morgan
– volume: 1
  start-page: 1032
  issue: 27
  year: 2011
  ident: 4796_CR42
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr042
  contributor:
    fullname: M Huang
– volume: 11
  start-page: 85
  year: 2010
  ident: 4796_CR25
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-85
  contributor:
    fullname: M Gerner
– ident: 4796_CR33
– ident: 4796_CR56
– volume-title: Proceedings of the 11th international conference on World Wide Web
  year: 2002
  ident: 4796_CR52
  contributor:
    fullname: TH Haveliwala
– ident: 4796_CR43
– volume: 8
  start-page: 163
  issue: 1
  year: 2010
  ident: 4796_CR14
  publication-title: J Bioinform Comput Biol
  doi: 10.1142/S0219720010004562
  contributor:
    fullname: D Rebholz-Schuhmann
– ident: 4796_CR24
– volume: 28
  start-page: 20
  issue: 1
  year: 1979
  ident: 4796_CR13
  publication-title: Journal of the Royal Statistical Society Series C (Applied Statistics)
  contributor:
    fullname: AP Dawid
– volume: 26
  start-page: 661
  issue: 5
  year: 2010
  ident: 4796_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq002
  contributor:
    fullname: X Wang
– ident: 4796_CR30
– volume: 2009
  start-page: bap019
  year: 2009
  ident: 4796_CR4
  publication-title: Database (Oxford)
  doi: 10.1093/database/bap019
  contributor:
    fullname: KG Dowell
– volume-title: Proceedings of the seventh international conference on World Wide Web 7
  year: 1998
  ident: 4796_CR53
  contributor:
    fullname: S Brin
– volume: 11
  start-page: 1297
  year: 2010
  ident: 4796_CR12
  publication-title: Journal of Machine Learning Research
  contributor:
    fullname: VC Raykar
– volume: 9
  start-page: S14
  issue: Suppl 2
  year: 2008
  ident: 4796_CR29
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-s2-s14
  contributor:
    fullname: J Hakenberg
– volume: 9
  start-page: S2
  issue: Suppl 2
  year: 2008
  ident: 4796_CR20
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-s2-s2
  contributor:
    fullname: L Smith
– volume: 6
  start-page: S11
  issue: Suppl 1
  year: 2005
  ident: 4796_CR2
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-S1-S11
  contributor:
    fullname: L Hirschman
– ident: 4796_CR38
– ident: 4796_CR40
– volume: 22
  start-page: 658
  issue: 6
  year: 2006
  ident: 4796_CR46
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti783
  contributor:
    fullname: P Ruch
– volume-title: Proceedings of the Workshop on BioNLP
  year: 2009
  ident: 4796_CR15
  contributor:
    fullname: T Kappeler
– volume: 22
  start-page: 103
  issue: 1
  year: 2006
  ident: 4796_CR39
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti749
  contributor:
    fullname: H Liu
– volume-title: Workshop on Advancing Computer Vision with Humans in the Loop at CVPR'10
  year: 2010
  ident: 4796_CR10
  contributor:
    fullname: P Welinder
– volume: 21
  start-page: 3191
  issue: 14
  year: 2005
  ident: 4796_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti475
  contributor:
    fullname: B Settles
– start-page: 2035
  volume-title: Advances in Neural Information Processing Systems
  year: 2009
  ident: 4796_CR9
  contributor:
    fullname: J Whitechill
– start-page: 55
  volume-title: Proceedings of the BioCreative III workshop
  year: 2010
  ident: 4796_CR49
  contributor:
    fullname: S Bhattacharya
– ident: 4796_CR31
– volume: 9
  start-page: S13
  issue: Suppl 2
  year: 2008
  ident: 4796_CR47
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-s2-s13
  contributor:
    fullname: F Rinaldi
– volume: 2010
  start-page: baq023
  year: 2010
  ident: 4796_CR55
  publication-title: Database (Oxford)
  doi: 10.1093/database/baq023
  contributor:
    fullname: B Turner
– volume: 6
  start-page: S12
  issue: Suppl 1
  year: 2005
  ident: 4796_CR3
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-S1-S12
  contributor:
    fullname: ME Colosimo
– ident: 4796_CR35
– volume: 13
  start-page: 497
  issue: 5
  year: 2006
  ident: 4796_CR57
  publication-title: J Am Med Inform Assoc
  doi: 10.1197/jamia.M2085
  contributor:
    fullname: H Liu
– ident: 4796_CR41
– volume-title: Proceedings of the twenty-first international conference on Machine learning
  year: 2004
  ident: 4796_CR21
  contributor:
    fullname: T Zhang
– start-page: 652
  volume-title: Pac Symp Biocomput
  year: 2008
  ident: 4796_CR28
  contributor:
    fullname: R Leaman
– ident: 4796_CR22
– volume: 7
  start-page: 385
  issue: 3
  year: 2010
  ident: 4796_CR19
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2010.61
  contributor:
    fullname: F Leitner
– volume: 61
  start-page: 40
  issue: 5
  year: 1990
  ident: 4796_CR34
  publication-title: J Am Med Rec Assoc
  contributor:
    fullname: C Lindberg
– start-page: 24
  volume-title: Proceedings of the BioCreative III workshop
  year: 2010
  ident: 4796_CR45
  contributor:
    fullname: Z Lu
– start-page: 33
  volume-title: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics
  year: 2009
  ident: 4796_CR51
  contributor:
    fullname: E Agirre
– ident: 4796_CR32
– volume: 7
  start-page: 472
  issue: 3
  year: 2010
  ident: 4796_CR48
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2010.50
  contributor:
    fullname: F Rinaldi
– volume: 26
  start-page: 1708
  issue: 14
  year: 2010
  ident: 4796_CR5
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq270
  contributor:
    fullname: HD Carroll
– ident: 4796_CR36
– volume-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing
  year: 2008
  ident: 4796_CR6
  contributor:
    fullname: R Snow
– start-page: 41
  volume-title: AAAI-98 WORKSHOP ON LEARNING FOR TEXT CATEGORIZATION
  year: 1998
  ident: 4796_CR18
  contributor:
    fullname: A McCallum
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 4796_CR23
  publication-title: SIGKDD Explor Newsl
  doi: 10.1145/1656274.1656278
  contributor:
    fullname: M Hall
– start-page: 119
  volume-title: Proceedings of the BioCreative III Workshop
  year: 2010
  ident: 4796_CR50
  contributor:
    fullname: S Matos
– volume: 24
  start-page: 2760
  issue: 23
  year: 2008
  ident: 4796_CR37
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn502
  contributor:
    fullname: S Sarntivijai
– volume: 7
  start-page: 412
  issue: 3
  year: 2010
  ident: 4796_CR44
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2010.45
  contributor:
    fullname: D Hong-Jie
– volume: 25
  start-page: 25
  issue: 1
  year: 2000
  ident: 4796_CR54
  publication-title: Nat Genet
  doi: 10.1038/75556
  contributor:
    fullname: M Ashburner
– start-page: 4
  volume-title: Proceedings of the 10th European Conference on Machine Learning
  year: 1998
  ident: 4796_CR17
  contributor:
    fullname: DD Lewis
– volume-title: Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining
  year: 2008
  ident: 4796_CR7
  contributor:
    fullname: VS Sheng
– volume-title: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining
  year: 2009
  ident: 4796_CR8
  contributor:
    fullname: P Donmez
– volume: 7
  start-page: 1085
  year: 1995
  ident: 4796_CR11
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: P Smyth
– volume: 24
  start-page: i286
  issue: 13
  year: 2008
  ident: 4796_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn183
  contributor:
    fullname: CN Hsu
– start-page: 451
  volume-title: Pac Symp Biocomput
  year: 2003
  ident: 4796_CR58
  contributor:
    fullname: AS Schwartz
SSID ssj0017805
Score 2.4332151
Snippet We report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of the genes...
Abstract Background: We report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of...
BACKGROUNDWe report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of the...
BACKGROUND: We report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of...
SourceID pubmedcentral
biomedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage S2
SubjectTerms Academic libraries
Algorithms
Animals
Data Mining - methods
Data Mining - standards
Full text
Genes
Health sciences
Humans
Information science
Labeling
Life sciences
Medicine
National Library of Medicine (U.S.)
Periodicals as Topic
Studies
United States
SummonAdditionalLinks – databaseName: PubMed Central
  dbid: RPM
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SQKGX0qYvN0nRIbeiXeu58qUQloZsIKGwDeQmJEuiSzdOSDaF_vuO_FjqpqeeZ4TteXi-QfMAOC4Vd1JGQXVUnKInRlolXVOm6mjKWeK6ncB3canPruT5tbreATX0wrRF-7VfTZr1zaRZfW9rK-9u6ulQJzb9ejFHyJHD6nQXdjH8Dil6f3WQh_QP3TFGTxn-fSnmNSrXICwNXeb9NTwHuiovghl1ua_HwekJ4vy7cPKPSHT6El70EJKcdK_6CnZisw_PuqWSv17DBDVP0CwiaTIeXfeNlmTjHn6QVUOQcd4ixZ-RLBaLN3B1-uXb_Iz2WxGol1W5oSLWiMFSEkLGkgWfPEcJz8rAWVRBu3bknvReBKGY8cHpMviAUUjVGWxI8Rb2mtsmvgciQlTMRVMpV0uHiVhKLqkkkjOKy6AL-DwSj73rJmDYPJN6TEH3sFnUNovaMm6Xxi55AZ8GeW7PtlmH0f_kPhhEbntPerBVh0ENK4BsqegC-V7DNfH2EVkQo2DeyFQB7zr9bB82KLqA2Uhzoy8ZU9Do2inbvZF9-O-TB_CcDwWD4hD2NveP8QgRzMZ_bC32N4vx8E0
  priority: 500
  providerName: National Library of Medicine
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxwxDLbarVpxQS19MGypcuitSpk8N3sBIcTCVqKXLRK3KDNJVFQ0C-yCxL_HmZc6tOKcZB62Y3-OHRvga664kzIIqoPiFHdioNOoS8pUGUw-iVzXFfjOfurTc_njQl20uTmrNq2y04m1ovbLMp2R700bLGLYwfUNTU2jUnC17aDxEl4xPtEpo8_MTvogQirX392TMXqPoR6m6OGolI2wMHTBn1xyvxrapn8A59O8yb8M0ewtbLYIkhw2LH8HL0K1Ba-bnpIPW_DmrI2Wv4fvKAMEBSSQKiHTq_bKJVm71R9yWRFcc1RjxvtA5vP5BzifHf86OqVtfwRayGm-piKUiMZiFEKGnPkiFhxpPck9Z0F57erie7IohBeKmcI7nfvCoz1SZYIdUnyEUbWswjYQ4YNiLpipcqV06JLF6KKKIjqjuPQ6g_0Bpex1UwvDpurUwxFkmk2ktonUlnG7MHbBM_jWkbZfW_sfRv939rijvm331Mr2EpAB6UdxM6QIh6vC8g6nIFpBD5KpDD41rOpfxhO2wUdkMBkwcfAnw5Hq8nddbxsRbkJxO89-1Bg2eJceKD7DaH17F3YRr6yLL7VUPgIucuoY
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB4hUFEviEIfS2jlQ2_IsH7GObQVQkUEKb2kkbhZ3rWtokZLCwGRf9_xPkKXRj3b3sfnGc83mvEMwMdccSdlEFQHxSlqYqCjqEvKVBlMPoxc1xX4Jt_0xUxeXqmrDejaHbUA3q117VI_qdnt_Pjx9_ILKvynWuGNPmF4wFJ0XVRKM5gaOsUjeYujZUwpXhP5FFVI9fu7izNr1z279T7vG6t_GOjzRMq_LNP5Luy0lJKcNjLwCjZCtQcvmiaTyz3YnrTh8304RqEgKDGBVImqzts7mGTh7n6S64rgmrOaRD4EMh6PX8Ps_Ov3swvaNkyghRzlCypCifQsRiFkyJkvYsER_GHuOQvKa1dX45NFIbxQzBTe6dwXHg2UKhMPkeINbFY3VXgHRPigmAtmpFwpHfpoMbqooojOKC69zuBzDyn7qymOYVO56v4Iao5NUNsEtWXcTo2d8gyOOmhXa2uHxOi1swcd-raTETtq6KlhGZDVKGpHCnm4Ktzc4xSkL-hSMpXB22arVi_jiezgIzIY9jax9yf9ker6R12AGylvonUH__2oAbzkXb6gOITNxe19eI8EZlF8qKXyD74z7XU
  priority: 102
  providerName: Scholars Portal
Title The gene normalization task in BioCreative III
URI https://www.ncbi.nlm.nih.gov/pubmed/22151901
https://www.proquest.com/docview/901923181
https://search.proquest.com/docview/912428915
http://dx.doi.org/10.1186/1471-2105-12-S8-S2
https://pubmed.ncbi.nlm.nih.gov/PMC3269937
Volume 12 Suppl 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VVkhcEG_SQuQDNzDEz3gvSLTq0kVqhbpUWnGxnNhWK6oUtVsk_j1jJ7siZW9cfJmxo3zjxze2ZwzwplLcSRkE1UFxiiMx0EnULWWqDaaqI9c5A9_xiT46k18WarEF7zaf4DOjPzCcPik6JipdIpgbOscJdwedBpFcrdP97-szg5SdP8cSDfqrEJmNbdyJb78cL0v_cM27Vyb_WoOmj-DhQB7Jp97aj2ErdE_gfv-c5O-n8B5tTrBDBNIlJno5hFiSpbv5QS46gooHmSP-CmQ2mz2Ds-nht4MjOryHQBs5qZZUhBbZV4xCyFAx38SGI7Z15TkLymuXk-3JphFeKGYa73TlG4_rj2oTzZDiOWx3V114CUT4oJgLZqJcKx2iGaOLKorojOLS6wI-juCxP_vcFzZlox5LcGDYhK9N-FrG7dzYOS_g7QrPdd3sbxi9UXtvBbkdxtCNnfTs07ACyFqKnT-daLguXN2iCrIT9BiZKuBFb5_1x3jiMthEAfXIcqM_GUu6i_OcXxsZbWJtu_-LwR484Ksbg-IVbC-vb8NrpDDLpoR79aLG0kw_l7Czf3jy9bTM2wFYHktT5p5d5r2nPxB08fk
link.rule.ids 108,230,314,727,780,784,864,885,12056,12765,21388,24318,24937,27924,27925,31719,31720,33373,33374,33744,33745,43310,43600,43805,53791,53793,75811,75812
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVjwuCAqloTxy4IZM4-d6LyCoWu1Cd4XYVurNcmJbVFTZlt0i8e8ZJ05ECuJsO4-Zsf2NZ_wNwOtCMiuE50R5yQjORE8mQVWEysrrYhyYahj45gs1PRWfzuRZys1Zp7TKbk1sFmq3quIZ-f6kxSKavr-8IrFoVAyupgoat2ErEqfLEWx9PFx8-dqHESJhf3dTRqt9iisxQR9HxnyEpSZLduOa-8Vwd_oLct7MnPxjKzp6CA8Shsw_tEp_BLd8vQ132qqSv7bh7jzFyx_DW7SCHE3E53XEphfp0mW-sevv-Xmd45iDBjX-9PlsNnsCp0eHJwdTkiokkFJMig3hvkI8FgLnwhfUlaFkKO1x4Rj10inb0O-JsuSOS6pLZ1XhSoc7kqwi8BB8B0b1qva7kHPnJbVeT6SthEWnLAQbZODBasmEUxm8G0jKXLZsGCbyUw9bUG0mitpEURvKzFKbJcvgTSfafmzjgWj1z957nfRNmlVr09tABnnfitMhxjhs7VfX2AXxCvqQVGbwtFVV_zIW0Q0-IoPxQImDPxm21OffGsZtxLgRxz3770e9gnvTk_mxOZ4tPu_BfdYlC_LnMNr8uPYvEL1sypfJRn8DR_vuaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VRSAuiPIMpeADN-Q28Wu9FyTasuryqCqWShUXy45tseqSregWiX_P2ElWTemNWyRPHOXzjP2N7PkM8KaUzAoROFVBMoqRGOg4qppWsg66HEWmsgLfl2N1dCo-nsmzDTjpa2Hcz9rNl51oaBIq3r1ehr7Iczc-1Od7Fz62Ia_VXoVTLMXkRaaDBjNNZzgp30EmnEP16_739b5CUvDP9UadfV9Gc2sfN2rgF8Ol6x8-evNY5bV1avIQHnQEk7xvPWILNkLzCO62V07-eQy76BcEnSaQJv37oivDJCt7eU7mDUHDg8wjfwcynU6fwOnkw7eDI9rdmUCdGJcrykONDC1GzkUoK--iY4j_qPSsCtIrmwX5hHPcc1lp560qvfO4Rsk6URHBn8Jms2zCcyDcB1nZoMfS1sJimhajjTLyaLVkwqsC3g3gMRetPoZJitXDFhw1k_A1CV9TMTPTZsYKeNvjuX435yRa3Wq93UNuuji7NOOWoeqqALJuxQBJux62CcsrNEEGg1llJQt41o7P-mMs8R3sooDRYOQGfzJsaeY_sgY3st7E7F78Lwav4d7J4cR8nh5_2ob7rD9gyF_C5urXVdhBxrNyr7IT_wUUc_zF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+gene+normalization+task+in+BioCreative+III&rft.jtitle=BMC+bioinformatics&rft.au=Lu%2C+Zhiyong&rft.au=Kao%2C+Hung-Yu&rft.au=Wei%2C+Chih-Hsuan&rft.au=Huang%2C+Minlie&rft.date=2011-10-03&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=12&rft.issue=Suppl+8&rft.spage=S2&rft_id=info:doi/10.1186%2F1471-2105-12-S8-S2&rft.externalDocID=2501824691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon