CFTR inhibitors
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-regulated Cl- channel whose major function is to facilitate epithelial fluid secretion. Loss-of-function mutations in CFTR cause the genetic disease cystic fibrosis. CFTR is required for transepithelial fluid transport...
Saved in:
Published in | Current pharmaceutical design Vol. 19; no. 19; p. 3529 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United Arab Emirates
2013
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-regulated Cl- channel whose major function is to facilitate epithelial fluid secretion. Loss-of-function mutations in CFTR cause the genetic disease cystic fibrosis. CFTR is required for transepithelial fluid transport in certain secretory diarrheas, such as cholera, and for cyst expansion in autosomal dominant polycystic kidney disease. High-throughput screening has yielded CFTR inhibitors of the thiazolidinone, glycine hydrazide and quinoxalinedione chemical classes. The glycine hydrazides target the extracellular CFTR pore, whereas the thiazolidinones and quinoxalinediones act at the cytoplasmic surface. These inhibitors have been widely used in cystic fibrosis research to study CFTR function at the cell and organ levels. The most potent CFTR inhibitor has IC50 of approximately 4 nM. Studies in animal models support the development of CFTR inhibitors for antisecretory therapy of enterotoxin-mediated diarrheas and polycystic kidney disease. |
---|---|
AbstractList | The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-regulated Cl- channel whose major function is to facilitate epithelial fluid secretion. Loss-of-function mutations in CFTR cause the genetic disease cystic fibrosis. CFTR is required for transepithelial fluid transport in certain secretory diarrheas, such as cholera, and for cyst expansion in autosomal dominant polycystic kidney disease. High-throughput screening has yielded CFTR inhibitors of the thiazolidinone, glycine hydrazide and quinoxalinedione chemical classes. The glycine hydrazides target the extracellular CFTR pore, whereas the thiazolidinones and quinoxalinediones act at the cytoplasmic surface. These inhibitors have been widely used in cystic fibrosis research to study CFTR function at the cell and organ levels. The most potent CFTR inhibitor has IC50 of approximately 4 nM. Studies in animal models support the development of CFTR inhibitors for antisecretory therapy of enterotoxin-mediated diarrheas and polycystic kidney disease. |
Author | Verkman, Alan S Synder, David Tradtrantip, Lukmanee Thiagarajah, Jay R Anderson, Marc O |
Author_xml | – sequence: 1 givenname: Alan S surname: Verkman fullname: Verkman, Alan S email: Alan.Verkman@ucsf.edu organization: University of California-San Francisco, CA 94143-0521, U.S.A. Alan.Verkman@ucsf.edu – sequence: 2 givenname: David surname: Synder fullname: Synder, David – sequence: 3 givenname: Lukmanee surname: Tradtrantip fullname: Tradtrantip, Lukmanee – sequence: 4 givenname: Jay R surname: Thiagarajah fullname: Thiagarajah, Jay R – sequence: 5 givenname: Marc O surname: Anderson fullname: Anderson, Marc O |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23331030$$D View this record in MEDLINE/PubMed |
BookMark | eNo1js1Kw0AURi-i2B_FFxDxBVLnu3dmcmcpwapQKEhdl5lMghGblqQufHsF9WzO7nBmdNrv-4boGmbBKO0dROHBCgjCD0YYJzSFllJYVj-h2Ti-GwMOsOc0YRGBETOlq2q5ebnt-rcudcf9MF7QWRs_xubyz3N6XT5sqqditX58ru5XRbKqx8L56DQ7eAeX2akKfOnrkGKrPtvMCVG0qbXNBi75aAEbQi5bMVlDzXO6-e0ePtOuydvD0O3i8LX9P-NvIjg4Tw |
CitedBy_id | crossref_primary_10_1186_s10020_020_00246_3 crossref_primary_10_3389_fphys_2021_741192 crossref_primary_10_1002_cmdc_201800187 crossref_primary_10_1016_j_jcmgh_2018_02_009 crossref_primary_10_1371_journal_pone_0119122 crossref_primary_10_1039_c3lc50821h crossref_primary_10_1124_dmd_121_000419 crossref_primary_10_1371_journal_pone_0314723 crossref_primary_10_1093_biolre_ioac090 crossref_primary_10_14814_phy2_15128 crossref_primary_10_1186_s12931_018_0901_1 crossref_primary_10_1007_s12013_023_01200_w crossref_primary_10_1371_journal_pone_0094302 crossref_primary_10_3109_0886022X_2015_1013404 crossref_primary_10_3389_fped_2020_00536 crossref_primary_10_1042_CS20210370 crossref_primary_10_1242_jcs_256313 crossref_primary_10_1016_j_jsps_2021_02_005 crossref_primary_10_3390_ph17121602 crossref_primary_10_1016_j_cellsig_2020_109703 crossref_primary_10_1096_fj_201600891R crossref_primary_10_1053_j_gastro_2018_08_025 crossref_primary_10_1371_journal_pone_0145685 crossref_primary_10_3390_toxins14030225 crossref_primary_10_1002_1873_3468_13971 crossref_primary_10_1021_acsomega_0c02467 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.2174/13816128113199990321 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-4286 |
ExternalDocumentID | 23331030 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK072517 |
GroupedDBID | --- .5. 0R~ 29F 36B 4.4 53G 5GY 69Q 7X7 88E 8AO 8FI 8FJ 8R4 8R5 AAEGP ABEEF ABJNI ABMOS ABUWG ABVDF ACGFO ACGFS ACITR ACIWK ACPRK ACZAY ADBBV AENEX AFKRA AFRAH AFUQM AGJNZ AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS ANTIV BENPR BPHCQ BVXVI C1A CCPQU CGR CS3 CUY CVF DU5 EBS ECM EIF EJD F5P FYUFA GH2 HMCUK HZ~ IPNFZ KCGFV KFI M1P NPM O9- P2P PHGZT PQQKQ PROAC PSQYO Q2X RIG UKHRP |
ID | FETCH-LOGICAL-b488t-56a58d516515d258831676c9baf86d4d2b1a38ec8fd015b6a411499d7f30d89c2 |
IngestDate | Thu Apr 03 07:04:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-b488t-56a58d516515d258831676c9baf86d4d2b1a38ec8fd015b6a411499d7f30d89c2 |
PMID | 23331030 |
ParticipantIDs | pubmed_primary_23331030 |
PublicationCentury | 2000 |
PublicationDate | 2013-00-00 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 2013-00-00 |
PublicationDecade | 2010 |
PublicationPlace | United Arab Emirates |
PublicationPlace_xml | – name: United Arab Emirates |
PublicationTitle | Current pharmaceutical design |
PublicationTitleAlternate | Curr Pharm Des |
PublicationYear | 2013 |
SSID | ssj0012914 |
Score | 2.1975129 |
SecondaryResourceType | review_article |
Snippet | The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-regulated Cl- channel whose major function is to facilitate epithelial fluid... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 3529 |
SubjectTerms | Animals Cystic Fibrosis - drug therapy Cystic Fibrosis - genetics Cystic Fibrosis - metabolism Cystic Fibrosis Transmembrane Conductance Regulator - antagonists & inhibitors Cystic Fibrosis Transmembrane Conductance Regulator - genetics Drug Discovery Glycine - analogs & derivatives Glycine - chemistry Glycine - pharmacology High-Throughput Screening Assays Humans Models, Molecular Molecular Structure Mutation Polycystic Kidney Diseases - drug therapy Polycystic Kidney Diseases - genetics Polycystic Kidney Diseases - metabolism Quinoxalines - chemistry Quinoxalines - pharmacology Small Molecule Libraries - chemistry Small Molecule Libraries - pharmacology Thiazolidinediones - chemistry Thiazolidinediones - pharmacology |
Title | CFTR inhibitors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23331030 |
Volume | 19 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG5WvXgxvt-Gg_Gi6EKhtEezcWOMGmPQeDMtLS4-cKPsYf31zlB2lzVrfFwaQikp_abDzHQehOxSIRkLBXNp6iVuIGnTVaA1uyFPIxP60sgyldLFJTu9Cc7uwrtG46zmtdQr1GHyMTGu5D-owj3AFaNk_4Ds8KVwA64BX2gBYWh_hXGrHV_vZ3knUxkWzakLmoO8S93OmM1ajzls3Jq3p8oCevyMG31ob-nn2mJZ83nv4Y9NF_BzK7Kyqt15D0ebIWnEnUw-yDf5KDvWAbdfuSNWVgWs8DC0KhjLCXlEXdBN2BirFHWSEDXGB3KcmMSRUeNB4wCeT-KhnUcx74FoUhsXXQOp-1Ki5FNalj77ufdLnuxB1xSZAo0BS6Ci3aY6T_KFF9jASZzQ0aTpYFro6hVfVIxS1IjnyVylIzjHFvAF0jD5Itm7skj2D5x4FDP3fuDsOVej9OP9JTKHVOGMqGKZ3LRP4tapW5W9cBVw08INmQy5Dj0sUq_9kHNMVsASoWTKmQ60rzxJuUl4qkGWU0wGoNMKoaOUNjUXib9CpvPX3KwRh0fKgP6uUs3hKR7xQDRTGAd7Eji7TtbJqv3Q-67NbXI_WIKNb3s2yeyIYLbITAqbyWyDZFaonXLRPwFCZjE1 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFTR+inhibitors&rft.jtitle=Current+pharmaceutical+design&rft.au=Verkman%2C+Alan+S&rft.au=Synder%2C+David&rft.au=Tradtrantip%2C+Lukmanee&rft.au=Thiagarajah%2C+Jay+R&rft.date=2013-01-01&rft.eissn=1873-4286&rft.volume=19&rft.issue=19&rft.spage=3529&rft_id=info:doi/10.2174%2F13816128113199990321&rft_id=info%3Apmid%2F23331030&rft_id=info%3Apmid%2F23331030&rft.externalDocID=23331030 |