Heterogeneous Graph Convolutional Neural Network via Hodge-Laplacian for Brain Functional Data
This study proposes a novel heterogeneous graph convolutional neural network (HGCNN) to handle complex brain fMRI data at regional and across-region levels. We introduce a generic formulation of spectral filters on heterogeneous graphs by introducing the - Hodge-Laplacian (HL) operator. In particula...
Saved in:
Published in | Information processing in medical imaging : proceedings of the ... conference Vol. 13939; p. 278 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
01.01.2023
|
Online Access | Get more information |
ISSN | 1011-2499 |
DOI | 10.1007/978-3-031-34048-2_22 |
Cover
Loading…
Abstract | This study proposes a novel heterogeneous graph convolutional neural network (HGCNN) to handle complex brain fMRI data at regional and across-region levels. We introduce a generic formulation of spectral filters on heterogeneous graphs by introducing the
-
Hodge-Laplacian (HL) operator. In particular, we propose Laguerre polynomial approximations of HL spectral filters and prove that their spatial localization on graphs is related to the polynomial order. Furthermore, based on the bijection property of boundary operators on simplex graphs, we introduce a generic topological graph pooling (TGPool) method that can be used at any dimensional simplices. This study designs HL-node, HL-edge, and HL-HGCNN neural networks to learn signal representation at a graph node, edge levels, and both, respectively. Our experiments employ fMRI from the Adolescent Brain Cognitive Development (ABCD; n=7693) to predict general intelligence. Our results demonstrate the advantage of the HL-edge network over the HL-node network when functional brain connectivity is considered as features. The HL-HGCNN outperforms the state-of-the-art graph neural networks (GNNs) approaches, such as GAT, BrainGNN, dGCN, BrainNetCNN, and Hypergraph NN. The functional connectivity features learned from the HL-HGCNN are meaningful in interpreting neural circuits related to general intelligence. |
---|---|
AbstractList | This study proposes a novel heterogeneous graph convolutional neural network (HGCNN) to handle complex brain fMRI data at regional and across-region levels. We introduce a generic formulation of spectral filters on heterogeneous graphs by introducing the
-
Hodge-Laplacian (HL) operator. In particular, we propose Laguerre polynomial approximations of HL spectral filters and prove that their spatial localization on graphs is related to the polynomial order. Furthermore, based on the bijection property of boundary operators on simplex graphs, we introduce a generic topological graph pooling (TGPool) method that can be used at any dimensional simplices. This study designs HL-node, HL-edge, and HL-HGCNN neural networks to learn signal representation at a graph node, edge levels, and both, respectively. Our experiments employ fMRI from the Adolescent Brain Cognitive Development (ABCD; n=7693) to predict general intelligence. Our results demonstrate the advantage of the HL-edge network over the HL-node network when functional brain connectivity is considered as features. The HL-HGCNN outperforms the state-of-the-art graph neural networks (GNNs) approaches, such as GAT, BrainGNN, dGCN, BrainNetCNN, and Hypergraph NN. The functional connectivity features learned from the HL-HGCNN are meaningful in interpreting neural circuits related to general intelligence. |
Author | Qiu, Anqi Huang, Jinghan Chung, Moo K |
Author_xml | – sequence: 1 givenname: Jinghan surname: Huang fullname: Huang, Jinghan organization: Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore – sequence: 2 givenname: Moo K surname: Chung fullname: Chung, Moo K organization: Department of Biostatistics and Medical Informatics, The University of Wisconsin-Madison, Wisconsin, USA – sequence: 3 givenname: Anqi surname: Qiu fullname: Qiu, Anqi organization: Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38774602$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8tOwzAUBb0ooqX0DxDyDxj8SuwsIdAWqYINbKlu4usSkdqRkxTx90VQVrM5c6S5IJMQAxJyJfiN4NzcFsYyxbgSTGmuLZNbKSdkJrgQTOqimJJF3zcV51oqa4U5J1NljdE5lzPyvsYBU9xhwDj2dJWg-6BlDIfYjkMTA7T0Gcf0i-Erpk96aICuo9sh20DXQt1AoD4mep-gCXQ5hvrkPcAAl-TMQ9vj4sQ5eVs-vpZrtnlZPZV3G1ZpYwdWCC-Mt7qwSkmvQKJxRmUZd5XkHJ1WqraZQ6ucrwoDTkuo4WeT15jb3Ms5uf777cZqj27bpWYP6Xv7HyqP-y9Xtw |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1007/978-3-031-34048-2_22 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
ExternalDocumentID | 38774602 |
Genre | Journal Article |
GroupedDBID | --- F5P NPM |
ID | FETCH-LOGICAL-b478t-91f17f8498332f3a2e7d73550db200ed433c85de83dfb97ad42aca7d76ce686f2 |
ISSN | 1011-2499 |
IngestDate | Wed Feb 19 02:09:43 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-b478t-91f17f8498332f3a2e7d73550db200ed433c85de83dfb97ad42aca7d76ce686f2 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11108189 |
PMID | 38774602 |
ParticipantIDs | pubmed_primary_38774602 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Information processing in medical imaging : proceedings of the ... conference |
PublicationTitleAlternate | Inf Process Med Imaging |
PublicationYear | 2023 |
SSID | ssib004238817 ssib006573086 |
Score | 2.2190135 |
Snippet | This study proposes a novel heterogeneous graph convolutional neural network (HGCNN) to handle complex brain fMRI data at regional and across-region levels. We... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 278 |
Title | Heterogeneous Graph Convolutional Neural Network via Hodge-Laplacian for Brain Functional Data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38774602 |
Volume | 13939 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUKSIgLArFv8oFblarETuIcEVuFAAmpSJyovAVyaFOgcOA_-F_GS5q0FAm4pFXsJqnneTyezJtB6FCKKJKCHgWSgwqkSvGAURUFTAvBspQJYsv5XN_EnTt6eR_dNxqftailt5FoyY-ZvJL_SBXOgVwNS_YPkh1fFE7Ad5AvHEHCcPyVjDsmlqWAZm0CWS9M7mlD4Xv3N4XRN7k37IcN9m6-57zZKdSjDq64icayLo7iBSTM80HzHNY4_7tTR1kb262etWTBMnTcAk-G6fs3PXnf1TsyLoZqVXwtYxBarZaJcPfswgpM3l19CX2fKqCePHkddF0UlSP2Nn9zMZjPed1ZEZKas8LpV-ORhR1fOqGASeoSGpVK1BX1-abc6_EcoIsCQkH9BGHPEZtr8h72rcAJA9s2bv-idSrldtk0h-Zg82GqqdZcQGB_MjZBzgUlaSuKjv9cjaI562mX0GJ5h6nNjDVquito2e9G8LGD1ipq6MEaepiAFbawwhOwwg5W2MMKA6zwFKww4AVbWOEKVtjAah3dnZ91TzqBL8MRCJqwESyH2VGSMZoymLcZ4aFOVAJmalsJmIxaUUIki5RmRGUiTbiiIZcc-sRSxyzOwg00PygGegthldK2iE2_tqAijIUtZxapLJKSgGLYRptuOHpDl2ulVw7Uzo8tu2ipQtoeWshgcut9sBRH4sBK7gt4sWWO |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Graph+Convolutional+Neural+Network+via+Hodge-Laplacian+for+Brain+Functional+Data&rft.jtitle=Information+processing+in+medical+imaging+%3A+proceedings+of+the+...+conference&rft.au=Huang%2C+Jinghan&rft.au=Chung%2C+Moo+K&rft.au=Qiu%2C+Anqi&rft.date=2023-01-01&rft.issn=1011-2499&rft.volume=13939&rft.spage=278&rft_id=info:doi/10.1007%2F978-3-031-34048-2_22&rft_id=info%3Apmid%2F38774602&rft_id=info%3Apmid%2F38774602&rft.externalDocID=38774602 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-2499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-2499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-2499&client=summon |