Heterogeneous Graph Convolutional Neural Network via Hodge-Laplacian for Brain Functional Data

This study proposes a novel heterogeneous graph convolutional neural network (HGCNN) to handle complex brain fMRI data at regional and across-region levels. We introduce a generic formulation of spectral filters on heterogeneous graphs by introducing the - Hodge-Laplacian (HL) operator. In particula...

Full description

Saved in:
Bibliographic Details
Published inInformation processing in medical imaging : proceedings of the ... conference Vol. 13939; p. 278
Main Authors Huang, Jinghan, Chung, Moo K, Qiu, Anqi
Format Journal Article
LanguageEnglish
Published Germany 01.01.2023
Online AccessGet more information
ISSN1011-2499
DOI10.1007/978-3-031-34048-2_22

Cover

Loading…
Abstract This study proposes a novel heterogeneous graph convolutional neural network (HGCNN) to handle complex brain fMRI data at regional and across-region levels. We introduce a generic formulation of spectral filters on heterogeneous graphs by introducing the - Hodge-Laplacian (HL) operator. In particular, we propose Laguerre polynomial approximations of HL spectral filters and prove that their spatial localization on graphs is related to the polynomial order. Furthermore, based on the bijection property of boundary operators on simplex graphs, we introduce a generic topological graph pooling (TGPool) method that can be used at any dimensional simplices. This study designs HL-node, HL-edge, and HL-HGCNN neural networks to learn signal representation at a graph node, edge levels, and both, respectively. Our experiments employ fMRI from the Adolescent Brain Cognitive Development (ABCD; n=7693) to predict general intelligence. Our results demonstrate the advantage of the HL-edge network over the HL-node network when functional brain connectivity is considered as features. The HL-HGCNN outperforms the state-of-the-art graph neural networks (GNNs) approaches, such as GAT, BrainGNN, dGCN, BrainNetCNN, and Hypergraph NN. The functional connectivity features learned from the HL-HGCNN are meaningful in interpreting neural circuits related to general intelligence.
AbstractList This study proposes a novel heterogeneous graph convolutional neural network (HGCNN) to handle complex brain fMRI data at regional and across-region levels. We introduce a generic formulation of spectral filters on heterogeneous graphs by introducing the - Hodge-Laplacian (HL) operator. In particular, we propose Laguerre polynomial approximations of HL spectral filters and prove that their spatial localization on graphs is related to the polynomial order. Furthermore, based on the bijection property of boundary operators on simplex graphs, we introduce a generic topological graph pooling (TGPool) method that can be used at any dimensional simplices. This study designs HL-node, HL-edge, and HL-HGCNN neural networks to learn signal representation at a graph node, edge levels, and both, respectively. Our experiments employ fMRI from the Adolescent Brain Cognitive Development (ABCD; n=7693) to predict general intelligence. Our results demonstrate the advantage of the HL-edge network over the HL-node network when functional brain connectivity is considered as features. The HL-HGCNN outperforms the state-of-the-art graph neural networks (GNNs) approaches, such as GAT, BrainGNN, dGCN, BrainNetCNN, and Hypergraph NN. The functional connectivity features learned from the HL-HGCNN are meaningful in interpreting neural circuits related to general intelligence.
Author Qiu, Anqi
Huang, Jinghan
Chung, Moo K
Author_xml – sequence: 1
  givenname: Jinghan
  surname: Huang
  fullname: Huang, Jinghan
  organization: Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
– sequence: 2
  givenname: Moo K
  surname: Chung
  fullname: Chung, Moo K
  organization: Department of Biostatistics and Medical Informatics, The University of Wisconsin-Madison, Wisconsin, USA
– sequence: 3
  givenname: Anqi
  surname: Qiu
  fullname: Qiu, Anqi
  organization: Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38774602$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tOwzAUBb0ooqX0DxDyDxj8SuwsIdAWqYINbKlu4usSkdqRkxTx90VQVrM5c6S5IJMQAxJyJfiN4NzcFsYyxbgSTGmuLZNbKSdkJrgQTOqimJJF3zcV51oqa4U5J1NljdE5lzPyvsYBU9xhwDj2dJWg-6BlDIfYjkMTA7T0Gcf0i-Erpk96aICuo9sh20DXQt1AoD4mep-gCXQ5hvrkPcAAl-TMQ9vj4sQ5eVs-vpZrtnlZPZV3G1ZpYwdWCC-Mt7qwSkmvQKJxRmUZd5XkHJ1WqraZQ6ucrwoDTkuo4WeT15jb3Ms5uf777cZqj27bpWYP6Xv7HyqP-y9Xtw
ContentType Journal Article
DBID NPM
DOI 10.1007/978-3-031-34048-2_22
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
ExternalDocumentID 38774602
Genre Journal Article
GroupedDBID ---
F5P
NPM
ID FETCH-LOGICAL-b478t-91f17f8498332f3a2e7d73550db200ed433c85de83dfb97ad42aca7d76ce686f2
ISSN 1011-2499
IngestDate Wed Feb 19 02:09:43 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b478t-91f17f8498332f3a2e7d73550db200ed433c85de83dfb97ad42aca7d76ce686f2
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11108189
PMID 38774602
ParticipantIDs pubmed_primary_38774602
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Information processing in medical imaging : proceedings of the ... conference
PublicationTitleAlternate Inf Process Med Imaging
PublicationYear 2023
SSID ssib004238817
ssib006573086
Score 2.2190135
Snippet This study proposes a novel heterogeneous graph convolutional neural network (HGCNN) to handle complex brain fMRI data at regional and across-region levels. We...
SourceID pubmed
SourceType Index Database
StartPage 278
Title Heterogeneous Graph Convolutional Neural Network via Hodge-Laplacian for Brain Functional Data
URI https://www.ncbi.nlm.nih.gov/pubmed/38774602
Volume 13939
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUKSIgLArFv8oFblarETuIcEVuFAAmpSJyovAVyaFOgcOA_-F_GS5q0FAm4pFXsJqnneTyezJtB6FCKKJKCHgWSgwqkSvGAURUFTAvBspQJYsv5XN_EnTt6eR_dNxqftailt5FoyY-ZvJL_SBXOgVwNS_YPkh1fFE7Ad5AvHEHCcPyVjDsmlqWAZm0CWS9M7mlD4Xv3N4XRN7k37IcN9m6-57zZKdSjDq64icayLo7iBSTM80HzHNY4_7tTR1kb262etWTBMnTcAk-G6fs3PXnf1TsyLoZqVXwtYxBarZaJcPfswgpM3l19CX2fKqCePHkddF0UlSP2Nn9zMZjPed1ZEZKas8LpV-ORhR1fOqGASeoSGpVK1BX1-abc6_EcoIsCQkH9BGHPEZtr8h72rcAJA9s2bv-idSrldtk0h-Zg82GqqdZcQGB_MjZBzgUlaSuKjv9cjaI562mX0GJ5h6nNjDVquito2e9G8LGD1ipq6MEaepiAFbawwhOwwg5W2MMKA6zwFKww4AVbWOEKVtjAah3dnZ91TzqBL8MRCJqwESyH2VGSMZoymLcZ4aFOVAJmalsJmIxaUUIki5RmRGUiTbiiIZcc-sRSxyzOwg00PygGegthldK2iE2_tqAijIUtZxapLJKSgGLYRptuOHpDl2ulVw7Uzo8tu2ipQtoeWshgcut9sBRH4sBK7gt4sWWO
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Graph+Convolutional+Neural+Network+via+Hodge-Laplacian+for+Brain+Functional+Data&rft.jtitle=Information+processing+in+medical+imaging+%3A+proceedings+of+the+...+conference&rft.au=Huang%2C+Jinghan&rft.au=Chung%2C+Moo+K&rft.au=Qiu%2C+Anqi&rft.date=2023-01-01&rft.issn=1011-2499&rft.volume=13939&rft.spage=278&rft_id=info:doi/10.1007%2F978-3-031-34048-2_22&rft_id=info%3Apmid%2F38774602&rft_id=info%3Apmid%2F38774602&rft.externalDocID=38774602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-2499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-2499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-2499&client=summon