Weak solutions of functional differential inequalities with first-order partial derivatives
The article deals with functional differential inequalities generated by the Cauchy problem for nonlinear first-order partial functional differential equations. The unknown function is the functional variable in equation and inequalities, and the partial derivatives appear in a classical sense. Theo...
Saved in:
Published in | Journal of inequalities and applications Vol. 2011; no. 1; pp. 1 - 20 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
22.06.2011
Springer Nature B.V BioMed Central Ltd SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The article deals with functional differential inequalities generated by the Cauchy problem for nonlinear first-order partial functional differential equations. The unknown function is the functional variable in equation and inequalities, and the partial derivatives appear in a classical sense. Theorems on weak solutions to functional differential inequalities are presented. Moreover, a comparison theorem gives an estimate for functions of several variables by means of functions of one variable which are solutions of ordinary differential equations or inequalities. It is shown that there are solutions of initial problems defined on the Haar pyramid.
Mathematics Subject Classification: 35R10, 35R45
. |
---|---|
AbstractList | The article deals with functional differential inequalities generated by the Cauchy problem for nonlinear first-order partial functional differential equations. The unknown function is the functional variable in equation and inequalities, and the partial derivatives appear in a classical sense. Theorems on weak solutions to functional differential inequalities are presented. Moreover, a comparison theorem gives an estimate for functions of several variables by means of functions of one variable which are solutions of ordinary differential equations or inequalities. It is shown that there are solutions of initial problems defined on the Haar pyramid. Mathematics Subject Classification: 35R10, 35R45.[PUBLICATION ABSTRACT] The article deals with functional differential inequalities generated by the Cauchy problem for nonlinear first-order partial functional differential equations. The unknown function is the functional variable in equation and inequalities, and the partial derivatives appear in a classical sense. Theorems on weak solutions to functional differential inequalities are presented. Moreover, a comparison theorem gives an estimate for functions of several variables by means of functions of one variable which are solutions of ordinary differential equations or inequalities. It is shown that there are solutions of initial problems defined on the Haar pyramid. Mathematics Subject Classification: 35R10, 35R45. The article deals with functional differential inequalities generated by the Cauchy problem for nonlinear first-order partial functional differential equations. The unknown function is the functional variable in equation and inequalities, and the partial derivatives appear in a classical sense. Theorems on weak solutions to functional differential inequalities are presented. Moreover, a comparison theorem gives an estimate for functions of several variables by means of functions of one variable which are solutions of ordinary differential equations or inequalities. It is shown that there are solutions of initial problems defined on the Haar pyramid. Mathematics Subject Classification: 35R10, 35R45 . Abstract The article deals with functional differential inequalities generated by the Cauchy problem for nonlinear first-order partial functional differential equations. The unknown function is the functional variable in equation and inequalities, and the partial derivatives appear in a classical sense. Theorems on weak solutions to functional differential inequalities are presented. Moreover, a comparison theorem gives an estimate for functions of several variables by means of functions of one variable which are solutions of ordinary differential equations or inequalities. It is shown that there are solutions of initial problems defined on the Haar pyramid. Mathematics Subject Classification: 35R10, 35R45. |
ArticleNumber | 15 |
Author | Kamont, Zdzisław |
Author_xml | – sequence: 1 givenname: Zdzisław surname: Kamont fullname: Kamont, Zdzisław email: Zdzislaw.Kamont@mat.ug.edu.pl organization: Institute of Mathematics, University of Gdańsk |
BookMark | eNp1ks1u1TAQhS1UJNrCA7CL1A2bQMY_sbOsCoVKldiAQGJhOfa4-DY3vrWTW_XtcRpUtRWsPDP-5uj4yEfkYIwjEvIWmvcAqv0ADe1qyunPmjYANYgX5PBhdvCofkWOct40DQWm-CH59QPNdZXjME8hjrmKvvLzaJfGDJUL3mPCcQqlCSPezGYIU8Bc3Ybpd-VDylMdk8NU7Uy6p0od9mYKe8yvyUtvhoxv_p7H5Pv5p29nX-rLr58vzk4v655LmGqmJLeCyl55ZpQBAV5IA8YJ9A3SljmlqOVUKiF7bxkzjXLcd7yXEhhz7JhcrLoumo3epbA16U5HE_T9IKYrvZizA2rjGPeOMtej58x5JURHqfdgW9d1VBatj6tWH-IWnS1vT2Z4Ivr0xsatXsLVS7h6CV-DKDLvVpldijcz5klvQ7Y4DGbEOGcNnHWyVVS0BT15hm7inEr6hWKFU1x2qlCwUjbFnBP6B0vQ6OUH_NMEXXdyYccrTI-U_7v0B9inthY |
Cites_doi | 10.4064/ap88-1-2 10.4064/ap98-1-3 10.1016/0096-3003(94)90048-5 10.1007/BF01776851 10.1016/0362-546X(90)90024-B 10.1016/S0362-546X(01)00907-5 10.1007/BF02411944 10.1216/RMJ-1980-10-1-239 10.1007/978-94-011-4635-7 10.4064/ap-59-1-65-75 |
ContentType | Journal Article |
Copyright | Kamont; licensee Springer. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Springer International Publishing AG 2011 |
Copyright_xml | – notice: Kamont; licensee Springer. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Springer International Publishing AG 2011 |
DBID | C6C AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1186/1029-242X-2011-15 |
DatabaseName | Springer Nature OA Free Journals CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1029-242X |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_ad34fd23dbef43df855922ff1c6d9927 oai_biomedcentral_com_1029_242X_2011_15 2906827361 10_1186_1029_242X_2011_15 |
Genre | Feature |
GroupedDBID | -A0 -~9 0R~ 29K 2WC 4.4 40G 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN ABDBF ABEEZ ABFTD ABJCF ACACY ACGFO ACGFS ACIPV ACIWK ACUHS ACULB ADBBV ADINQ AENEX AFGXO AFKRA AFPKN AHBYD AHSBF AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CCPQU CS3 D-I DU5 EBLON EBS EJD ESX GROUPED_DOAJ H13 HCIFZ HZ~ IL9 J9A K6V K7- KQ8 L6V M7S M~E O9- OK1 P2P P62 PIMPY PROAC PTHSS Q2X REM RHU RNS RSV SOJ TUS ~8M AASML AAYXX AMVHM CITATION OVT PHGZM PHGZT 7TB 8FD ABUWG AZQEC DWQXO FR3 GNUQQ JQ2 KR7 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 2VQ SMT U2A AAYZJ AFNRJ AHBXF PUEGO |
ID | FETCH-LOGICAL-b471t-3874c527b8f3a8a151f57a1ad5ef0e263d882c427857bfc33a08d4f94b77133d3 |
IEDL.DBID | BENPR |
ISSN | 1029-242X 1025-5834 |
IngestDate | Wed Aug 27 01:23:20 EDT 2025 Tue Apr 16 22:45:26 EDT 2024 Fri Jul 11 08:18:15 EDT 2025 Fri Jul 25 09:14:44 EDT 2025 Tue Jul 01 04:06:01 EDT 2025 Fri Feb 21 02:33:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Haar pyramid Functional differential inequalities Comparison theorems Weak solutions of initial problems |
Language | English |
License | http://creativecommons.org/licenses/by/2.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b471t-3874c527b8f3a8a151f57a1ad5ef0e263d882c427857bfc33a08d4f94b77133d3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1314384798?pq-origsite=%requestingapplication% |
PQID | 1314384798 |
PQPubID | 237789 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ad34fd23dbef43df855922ff1c6d9927 biomedcentral_primary_oai_biomedcentral_com_1029_242X_2011_15 proquest_miscellaneous_1439768256 proquest_journals_1314384798 crossref_primary_10_1186_1029_242X_2011_15 springer_journals_10_1186_1029_242X_2011_15 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20110622 |
PublicationDateYYYYMMDD | 2011-06-22 |
PublicationDate_xml | – month: 6 year: 2011 text: 20110622 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Journal of inequalities and applications |
PublicationTitleAbbrev | J Inequal Appl |
PublicationYear | 2011 |
Publisher | Springer International Publishing Springer Nature B.V BioMed Central Ltd SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: BioMed Central Ltd – name: SpringerOpen |
References | TopolskiKClassical methods for viscosity solutions of differential-functional inequalitiesNonlinear World199741180899.351271452501 BainovDKamontZMinchevEOn first order impulsive partial differential inequalitiesAppl Math Comput1994612072300815.35134127430710.1016/0096-3003(94)90048-5 KamontZHyperbolic Functional Differential Inequalities1999DordrechtKluwer Acadamic Publishers10.1007/978-94-011-4635-7 Cinquini CibrarioMSopra una class di sistemi de equazioni nonlineari a derivate parziali in piú variabili indipendentiAnn mat pura ed appl19851402232530575.3500780763910.1007/BF01776851 LaddeGSLakshmikanthamVVatsalaAMonotone Iterative Techniques for Nonlinear Differential Equations1985BostonPitmann Advanced Publishing Program LakshimkanthamVVatsalaASGeneralized Quasilinearization for Nonlinear Problems1995DordrechtKluwer Acadamic Publication TopolskiKOn the uniqueness of viscosity solutions for first order partial differential functional equationsAnn Plon Math19945965750804.351381270302 KamontZInfinite systems of hyperbolic functional differential inequalitiesNonlinear Anal TMA200251142914451022.35093193093510.1016/S0362-546X(01)00907-5 ByszewskiLFinite systems of strong nonlinear differential functional degenerate implicit inequalities with first order partial derivativesUniv Iagell Acta Math19922977841172979 Puźniakowska-GałuchEOn the local Cauchy problem for first order partial differential functional equationsAnn Polon Math20109839611195.35294260748510.4064/ap98-1-3 CinquiniSSopra i sistemi iperbolici di equazion a derivate parzaili (nonlinear) in piú variabili indipendentiAnn Mat pura ed appl19791202012140412.3505910.1007/BF02411944 LakshmikanthamVLeelaSDifferential and Integral Inequalities1969New YorkAcadamic Press VanTDTsujiMThai SonNDThe Characteristics method and Its Generalizations for First Order Nonlinear Partial Differential equations2000Boca Raton, FLChapmann and Hall/CRC SzarskiJComparison theorems for infinite systems of differential functional equations and strongly coupled infinite systems of first order partial differential equationsRocky Mt J Math19801023724657387310.1216/RMJ-1980-10-1-239 AugustynowiczAKamontZOn Kamke's functions in uniqueness theorems for first order partial differential functional equationsNonlinear Anal TMA1990148378500738.35014105553310.1016/0362-546X(90)90024-B KamontZKoziełSFunctional differential inequalities with unbounded delayAnn Polon Math20068819371111.35139220495410.4064/ap88-1-2 BrandiPMarcelliCHaar Inequality in hereditary setting and applicationsRend Sem Math Univ Padova1966961771941438297 SzarskiJDifferential Inequalities1967WarsawPolish Scientific Publishers J Szarski (9_CR2) 1967 P Brandi (9_CR6) 1966; 96 Z Kamont (9_CR12) 2006; 88 GS Ladde (9_CR3) 1985 J Szarski (9_CR9) 1980; 10 D Bainov (9_CR10) 1994; 61 L Byszewski (9_CR11) 1992; 29 K Topolski (9_CR15) 1997; 4 Z Kamont (9_CR8) 2002; 51 TD Van (9_CR5) 2000 S Cinquini (9_CR16) 1979; 120 A Augustynowicz (9_CR13) 1990; 14 V Lakshmikantham (9_CR1) 1969 Z Kamont (9_CR7) 1999 E Puźniakowska-Gałuch (9_CR18) 2010; 98 V Lakshimkantham (9_CR4) 1995 K Topolski (9_CR14) 1994; 59 M Cinquini Cibrario (9_CR17) 1985; 140 |
References_xml | – reference: TopolskiKClassical methods for viscosity solutions of differential-functional inequalitiesNonlinear World199741180899.351271452501 – reference: VanTDTsujiMThai SonNDThe Characteristics method and Its Generalizations for First Order Nonlinear Partial Differential equations2000Boca Raton, FLChapmann and Hall/CRC – reference: LakshimkanthamVVatsalaASGeneralized Quasilinearization for Nonlinear Problems1995DordrechtKluwer Acadamic Publication – reference: BainovDKamontZMinchevEOn first order impulsive partial differential inequalitiesAppl Math Comput1994612072300815.35134127430710.1016/0096-3003(94)90048-5 – reference: KamontZKoziełSFunctional differential inequalities with unbounded delayAnn Polon Math20068819371111.35139220495410.4064/ap88-1-2 – reference: KamontZHyperbolic Functional Differential Inequalities1999DordrechtKluwer Acadamic Publishers10.1007/978-94-011-4635-7 – reference: LakshmikanthamVLeelaSDifferential and Integral Inequalities1969New YorkAcadamic Press – reference: Puźniakowska-GałuchEOn the local Cauchy problem for first order partial differential functional equationsAnn Polon Math20109839611195.35294260748510.4064/ap98-1-3 – reference: TopolskiKOn the uniqueness of viscosity solutions for first order partial differential functional equationsAnn Plon Math19945965750804.351381270302 – reference: SzarskiJDifferential Inequalities1967WarsawPolish Scientific Publishers – reference: LaddeGSLakshmikanthamVVatsalaAMonotone Iterative Techniques for Nonlinear Differential Equations1985BostonPitmann Advanced Publishing Program – reference: BrandiPMarcelliCHaar Inequality in hereditary setting and applicationsRend Sem Math Univ Padova1966961771941438297 – reference: SzarskiJComparison theorems for infinite systems of differential functional equations and strongly coupled infinite systems of first order partial differential equationsRocky Mt J Math19801023724657387310.1216/RMJ-1980-10-1-239 – reference: AugustynowiczAKamontZOn Kamke's functions in uniqueness theorems for first order partial differential functional equationsNonlinear Anal TMA1990148378500738.35014105553310.1016/0362-546X(90)90024-B – reference: Cinquini CibrarioMSopra una class di sistemi de equazioni nonlineari a derivate parziali in piú variabili indipendentiAnn mat pura ed appl19851402232530575.3500780763910.1007/BF01776851 – reference: CinquiniSSopra i sistemi iperbolici di equazion a derivate parzaili (nonlinear) in piú variabili indipendentiAnn Mat pura ed appl19791202012140412.3505910.1007/BF02411944 – reference: KamontZInfinite systems of hyperbolic functional differential inequalitiesNonlinear Anal TMA200251142914451022.35093193093510.1016/S0362-546X(01)00907-5 – reference: ByszewskiLFinite systems of strong nonlinear differential functional degenerate implicit inequalities with first order partial derivativesUniv Iagell Acta Math19922977841172979 – volume: 88 start-page: 19 year: 2006 ident: 9_CR12 publication-title: Ann Polon Math doi: 10.4064/ap88-1-2 – volume-title: Monotone Iterative Techniques for Nonlinear Differential Equations year: 1985 ident: 9_CR3 – volume: 98 start-page: 39 year: 2010 ident: 9_CR18 publication-title: Ann Polon Math doi: 10.4064/ap98-1-3 – volume: 61 start-page: 207 year: 1994 ident: 9_CR10 publication-title: Appl Math Comput doi: 10.1016/0096-3003(94)90048-5 – volume: 29 start-page: 77 year: 1992 ident: 9_CR11 publication-title: Univ Iagell Acta Math – volume: 140 start-page: 223 year: 1985 ident: 9_CR17 publication-title: Ann mat pura ed appl doi: 10.1007/BF01776851 – volume: 14 start-page: 837 year: 1990 ident: 9_CR13 publication-title: Nonlinear Anal TMA doi: 10.1016/0362-546X(90)90024-B – volume: 96 start-page: 177 year: 1966 ident: 9_CR6 publication-title: Rend Sem Math Univ Padova – volume: 51 start-page: 1429 year: 2002 ident: 9_CR8 publication-title: Nonlinear Anal TMA doi: 10.1016/S0362-546X(01)00907-5 – volume-title: The Characteristics method and Its Generalizations for First Order Nonlinear Partial Differential equations year: 2000 ident: 9_CR5 – volume: 4 start-page: 1 year: 1997 ident: 9_CR15 publication-title: Nonlinear World – volume: 120 start-page: 201 year: 1979 ident: 9_CR16 publication-title: Ann Mat pura ed appl doi: 10.1007/BF02411944 – volume-title: Differential Inequalities year: 1967 ident: 9_CR2 – volume: 10 start-page: 237 year: 1980 ident: 9_CR9 publication-title: Rocky Mt J Math doi: 10.1216/RMJ-1980-10-1-239 – volume-title: Hyperbolic Functional Differential Inequalities year: 1999 ident: 9_CR7 doi: 10.1007/978-94-011-4635-7 – volume-title: Generalized Quasilinearization for Nonlinear Problems year: 1995 ident: 9_CR4 – volume: 59 start-page: 65 year: 1994 ident: 9_CR14 publication-title: Ann Plon Math doi: 10.4064/ap-59-1-65-75 – volume-title: Differential and Integral Inequalities year: 1969 ident: 9_CR1 |
SSID | ssj0021384 ssib044744598 ssib008501289 |
Score | 1.8406214 |
Snippet | The article deals with functional differential inequalities generated by the Cauchy problem for nonlinear first-order partial functional differential... Abstract The article deals with functional differential inequalities generated by the Cauchy problem for nonlinear first-order partial functional differential... |
SourceID | doaj biomedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Analysis Applications of Mathematics Classification Comparison theorems Derivatives Differential equations Functional differential inequalities Functions (mathematics) Haar pyramid Inequalities Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Theorems Weak solutions of initial problems |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlxaHkUNBeRKPbWyuvErzoEDIBBCak9FXYmD5cRjCYF2V-zS38-Mk402VSsuvcZx7HhmPN_M2DOMfbaBsk0CCJWqidAJWhGkdcIZADpVqMuG7jt__2Gvb_XN1Ew3Sn3RmbAuPXC3cN9CVDpFqWIDSauYHEJgKVMqWxvrWuZ75DjahjFFnOQMbbyDota60trUQ3xBlirXIi6pmKtxSvfxztJZ3EYkxRzkVGT3IdXLHV2FfxxpsJzof4RO_wioZj11tcPe9gCTn3U_tsvewGyPvevBJu9FebnP7n5BeOAD5_F54qTjOtcgX9dNQfl_5AhEu7uXaFVzctzydI-gUeS0nXxBa0hdkJd_5zTiy_fs9ury58W16CstiAaV04oS7OrWyKpxSQUXEAUkU4UyRANpAtKqiEC8paocpmpSq1SYuKhTrZuKjNyoDtjWbD6DD4y3aFInRH0WLFrdFuoUoK0NmaExBFAFOx2tpl90WTU85bket6DIeaKGJ2p4ooYvTcG-rFd_6JoNGWf_9vI50Wc0Rn6AHOZ7DvOvcVjBjtbU9b2AL32pqG68rmpXsE9DM4omxVvCDObP-E4Ge2iC24J9XXPFxif-NevD_zHrj2y7c39bIeUR21o9PcMx4qdVc5JF5QURyhOW priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9VAEF-kXuxB-yVGq6zgSVl42a9sDh6qWEqhniw-6GHZZGdFLO-V5tW_35nN5mFKPXgKJLtJyMxkfr-dnRnG3tlA1SYBhErNQugEvQjSOuEMAO0q1HVH-c4XX-3ZpT5fmmXJ4x6m3e5TSDL_qbNZO4tHSbEAuRR5WY8Syx8bou4UoaUUh8KyauV0CV8-OO1eZvv1zCHluv0zsHkvPprdzukee1rwIj8ZBbzPHsHqgD0r2JEXyxwO2O7Ftv7qcMiuvkP4xbdqxdeJkwMb1_341BQFjfuaI8ocEyuRMnNaleXpJyJCkWty8hvSLJqCivo71wgfjtjl6Zdvn89EaaMgOvQ8G6qeq3sjm84lFVxAF59ME-oQDaQFSKsiouyeWm6Ypku9UmHhok6t7hpisFE9Zzur9QpeMN4jX04I6SxYpNQW2hSgbw1xzBgCqIp9nH1bfzOWzPBUxHp-BUXrSTaeZONJNr42FXs_yWI7NbMUZx8a_ImkNXtGPrG-_eGL3fkQlU5RqthB0iomhwxKypTq3sa2lU3FjidZ-2K9g68VNYXXTesq9nZ7Ge2OgilhBes7HJORHPJrW7EPk478dYt_vfXL_xr9ij0ZF7GtkPKY7Wxu7-A1oqBN9yZr_R_eNgGo priority: 102 providerName: Springer Nature |
Title | Weak solutions of functional differential inequalities with first-order partial derivatives |
URI | https://link.springer.com/article/10.1186/1029-242X-2011-15 https://www.proquest.com/docview/1314384798 https://www.proquest.com/docview/1439768256 http://dx.doi.org/10.1186/1029-242X-2011-15 https://doaj.org/article/ad34fd23dbef43df855922ff1c6d9927 |
Volume | 2011 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELbY9gIHHguIwFIZiRMoovErzgGhbrVlVWlXCFhRiUPkxDZCrJqy6fL7mXGcQBBw8SGPJuq8vpmJ5yPkuTI4bdK5lPt8ngrv6tQwpVMtncOvCkVW4X7ns3N1eiHWG7mJBbc2flbZ-8TgqG1TY438VcaRqFvkhX6z-54iaxR2VyOFxgGZggvWekKmxyfn794PGqUlOuAhYAuRCyGLoc_AMh44iTMkdZWai9j3zLQCd8Kw98A2aSgjIm_uaEv85SiShYH_I5T6R2M1xKvVXXI7Ak266DTjHrnhtofkTgSdNJp0e0hunQ2DW9v75PMnZ77RQR9p4ylGvq5gSHs2FfAKlxTgabcjE3JtiuVc6r8ClEzDME-6Q5XEW0DDf4Th4u0DcrE6-bg8TSP_QlpByNrj2F1RS5ZX2nOjDWADL3OTGSudnzumuAV4XiNXh8wrX3Nu5toKX4gqx9TX8odksm227hGhNSTaHrCgcgpyceUKb1xdSExOrTGOJ-T16L8td92sjRKnX4_PgFKUKJsSZVOibMpMJuRFL4vh1pDeaPW3i49RWqNnhAPN1ZcyGmxpLBfeMm4r5wW3XkPqxZj3Wa1sUbA8IUe9rMto9m35S0kT8mw4DQaLXRizdc01XBMgICTmKiEvex357Sf-9daP___AJ-RmV-5WKWNHZLK_unZPAS_tqxk5EPO3sOoVrNPFYv1hPYuGAkeXTOCqlrNQj_gJErYV-g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADB6VcgAOPAqIQIFBggsoYjOvTA4V4rVsabenVqzEYZhkZhCi2izNFsSf4jdiTx4QBNx63bxWsf35sx3bhDxUFqdNep_ykE9SEXyVWqZ0qqX3-FWhyErsd54fqNmReLuQiw3yo--Fwc8qe0yMQO3qCnPkTzOOi7pFXuhnqy8pbo3C6mq_QqNViz3__RuEbM3O7iuQ7yPGpq8PX87SbqtAWgIQr3GYrKgky0sduNUWPF6Quc2skz5MPFPcAemscAOFzMtQcW4n2olQiDLHgM5xuO85cl5w8OTYmT59M-ivlgj3Az0QIhdCFkNVg2U8bkDOcIWs1Fx0VdZMKwAvhpUOtkhj0hK39I4a8I9HfjOuFxhx4j_KuNE7Tq-Syx2tpc9bPbxGNvxyi1zpKC7tAKTZIpfmw5jY5jp5_87bz3TQfloHin62TU_SfncLYNAxBTLc9n9CZE8xeUzDJyCuaRwdSldoAHgJ2NPXOMq8uUGOzkQuN8nmsl76W4RWENYHYJ7KK4j8lS-C9VUhMRR21nqekJ3RuzWrdrKHwVnb4yOgggZlY1A2BmVjMpmQx70shktjMKXV305-gdIaPSP-UJ98NB08GOu4CI5xV_oguAsaAj3GQsgq5YqC5QnZ7mVtOpBpzC-TSMiD4TDAA9Z87NLXp3BOJJwaiG1CnvQ68tst_vWvb___gffJhdnhfN_s7x7s3SEX20S7ShnbJpvrk1N_F5jaurwXzYOSD2dtjz8Bt5JKtg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgwKOAWChgJLiAom78SJxDhSjtqqV0VSEqVurBOLFdVVS7S7MF8df4dczkBUHArde8lZn5_I3Hng_gWWKp26T3kQjpKJLBF5HliY608p5WFco4p_3OB5Nk90i-narpCvxo98LQssoWEyugdvOC5sg3YkFC3TLN9EZolkUcbo9fLb5EpCBFldZWTqN2kX3__Rumb-Xm3jba-jnn450Pb3ajRmEgyhGUl9RYVhaKp7kOwmqLo19QqY2tUz6MPE-EQwJakBqFSvNQCGFH2smQyTyl5M4JfO4VWE0pKxrA6tbO5PB9581aEfh3ZEHKVEqVdTUOHotKDzkmQVmlhWxqrrFOEMo41T34NKqmMEmzt7cd_6w3ilZiAz2G_EdRtxorx7fgRkNy2evaK2_Dip-twc2G8LIGTso1uH7QNY0t78DxR28_sy4W2DwwGnXryUrWKrkgIp0xpMb1blDM8xlNJbNwijQ2qhqJsgWFA92C0fW1amxe3oWjS7HMPRjM5jN_H1iBSX5AHpr4JEU-4rNgfZEpSoydtV4MYbP3b82i7vNhqPN2_ww6pCHbGLKNIduYWA3hRWuL7tYqtdLJ3y7eImv13lEdmJ-fmAYsjHVCBseFy32QwgWNaR_nIcRF4rKMp0NYb21tGsgpza8AGcLT7jSCBVWA7MzPL_Cain5qpLlDeNn6yG-P-NdXP_j_C5_AVYxF825vsv8QrtWz7knE-ToMlucX_hHStmX-uIkPBp8uOyR_AvaZUEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak+solutions+of+functional+differential+inequalities+with+first-order+partial+derivatives&rft.jtitle=Journal+of+inequalities+and+applications&rft.au=Kamont%2C+Zdzis%C3%85%2Caw&rft.date=2011-06-22&rft.pub=Springer+Nature+B.V&rft.issn=1025-5834&rft.eissn=1029-242X&rft.volume=2011&rft.spage=1&rft_id=info:doi/10.1186%2F1029-242X-2011-15&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2906827361 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-242X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-242X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-242X&client=summon |