Weak solutions of functional differential inequalities with first-order partial derivatives

The article deals with functional differential inequalities generated by the Cauchy problem for nonlinear first-order partial functional differential equations. The unknown function is the functional variable in equation and inequalities, and the partial derivatives appear in a classical sense. Theo...

Full description

Saved in:
Bibliographic Details
Published inJournal of inequalities and applications Vol. 2011; no. 1; pp. 1 - 20
Main Author Kamont, Zdzisław
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 22.06.2011
Springer Nature B.V
BioMed Central Ltd
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The article deals with functional differential inequalities generated by the Cauchy problem for nonlinear first-order partial functional differential equations. The unknown function is the functional variable in equation and inequalities, and the partial derivatives appear in a classical sense. Theorems on weak solutions to functional differential inequalities are presented. Moreover, a comparison theorem gives an estimate for functions of several variables by means of functions of one variable which are solutions of ordinary differential equations or inequalities. It is shown that there are solutions of initial problems defined on the Haar pyramid. Mathematics Subject Classification: 35R10, 35R45 .
AbstractList The article deals with functional differential inequalities generated by the Cauchy problem for nonlinear first-order partial functional differential equations. The unknown function is the functional variable in equation and inequalities, and the partial derivatives appear in a classical sense. Theorems on weak solutions to functional differential inequalities are presented. Moreover, a comparison theorem gives an estimate for functions of several variables by means of functions of one variable which are solutions of ordinary differential equations or inequalities. It is shown that there are solutions of initial problems defined on the Haar pyramid. Mathematics Subject Classification: 35R10, 35R45.[PUBLICATION ABSTRACT]
The article deals with functional differential inequalities generated by the Cauchy problem for nonlinear first-order partial functional differential equations. The unknown function is the functional variable in equation and inequalities, and the partial derivatives appear in a classical sense. Theorems on weak solutions to functional differential inequalities are presented. Moreover, a comparison theorem gives an estimate for functions of several variables by means of functions of one variable which are solutions of ordinary differential equations or inequalities. It is shown that there are solutions of initial problems defined on the Haar pyramid. Mathematics Subject Classification: 35R10, 35R45.
The article deals with functional differential inequalities generated by the Cauchy problem for nonlinear first-order partial functional differential equations. The unknown function is the functional variable in equation and inequalities, and the partial derivatives appear in a classical sense. Theorems on weak solutions to functional differential inequalities are presented. Moreover, a comparison theorem gives an estimate for functions of several variables by means of functions of one variable which are solutions of ordinary differential equations or inequalities. It is shown that there are solutions of initial problems defined on the Haar pyramid. Mathematics Subject Classification: 35R10, 35R45 .
Abstract The article deals with functional differential inequalities generated by the Cauchy problem for nonlinear first-order partial functional differential equations. The unknown function is the functional variable in equation and inequalities, and the partial derivatives appear in a classical sense. Theorems on weak solutions to functional differential inequalities are presented. Moreover, a comparison theorem gives an estimate for functions of several variables by means of functions of one variable which are solutions of ordinary differential equations or inequalities. It is shown that there are solutions of initial problems defined on the Haar pyramid. Mathematics Subject Classification: 35R10, 35R45.
ArticleNumber 15
Author Kamont, Zdzisław
Author_xml – sequence: 1
  givenname: Zdzisław
  surname: Kamont
  fullname: Kamont, Zdzisław
  email: Zdzislaw.Kamont@mat.ug.edu.pl
  organization: Institute of Mathematics, University of Gdańsk
BookMark eNp1ks1u1TAQhS1UJNrCA7CL1A2bQMY_sbOsCoVKldiAQGJhOfa4-DY3vrWTW_XtcRpUtRWsPDP-5uj4yEfkYIwjEvIWmvcAqv0ADe1qyunPmjYANYgX5PBhdvCofkWOct40DQWm-CH59QPNdZXjME8hjrmKvvLzaJfGDJUL3mPCcQqlCSPezGYIU8Bc3Ybpd-VDylMdk8NU7Uy6p0od9mYKe8yvyUtvhoxv_p7H5Pv5p29nX-rLr58vzk4v655LmGqmJLeCyl55ZpQBAV5IA8YJ9A3SljmlqOVUKiF7bxkzjXLcd7yXEhhz7JhcrLoumo3epbA16U5HE_T9IKYrvZizA2rjGPeOMtej58x5JURHqfdgW9d1VBatj6tWH-IWnS1vT2Z4Ivr0xsatXsLVS7h6CV-DKDLvVpldijcz5klvQ7Y4DGbEOGcNnHWyVVS0BT15hm7inEr6hWKFU1x2qlCwUjbFnBP6B0vQ6OUH_NMEXXdyYccrTI-U_7v0B9inthY
Cites_doi 10.4064/ap88-1-2
10.4064/ap98-1-3
10.1016/0096-3003(94)90048-5
10.1007/BF01776851
10.1016/0362-546X(90)90024-B
10.1016/S0362-546X(01)00907-5
10.1007/BF02411944
10.1216/RMJ-1980-10-1-239
10.1007/978-94-011-4635-7
10.4064/ap-59-1-65-75
ContentType Journal Article
Copyright Kamont; licensee Springer. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Springer International Publishing AG 2011
Copyright_xml – notice: Kamont; licensee Springer. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Springer International Publishing AG 2011
DBID C6C
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1186/1029-242X-2011-15
DatabaseName Springer Nature OA Free Journals
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Civil Engineering Abstracts



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1029-242X
EndPage 20
ExternalDocumentID oai_doaj_org_article_ad34fd23dbef43df855922ff1c6d9927
oai_biomedcentral_com_1029_242X_2011_15
2906827361
10_1186_1029_242X_2011_15
Genre Feature
GroupedDBID -A0
-~9
0R~
29K
2WC
4.4
40G
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
ABDBF
ABEEZ
ABFTD
ABJCF
ACACY
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CCPQU
CS3
D-I
DU5
EBLON
EBS
EJD
ESX
GROUPED_DOAJ
H13
HCIFZ
HZ~
IL9
J9A
K6V
K7-
KQ8
L6V
M7S
M~E
O9-
OK1
P2P
P62
PIMPY
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SOJ
TUS
~8M
AASML
AAYXX
AMVHM
CITATION
OVT
PHGZM
PHGZT
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
2VQ
SMT
U2A
AAYZJ
AFNRJ
AHBXF
PUEGO
ID FETCH-LOGICAL-b471t-3874c527b8f3a8a151f57a1ad5ef0e263d882c427857bfc33a08d4f94b77133d3
IEDL.DBID BENPR
ISSN 1029-242X
1025-5834
IngestDate Wed Aug 27 01:23:20 EDT 2025
Tue Apr 16 22:45:26 EDT 2024
Fri Jul 11 08:18:15 EDT 2025
Fri Jul 25 09:14:44 EDT 2025
Tue Jul 01 04:06:01 EDT 2025
Fri Feb 21 02:33:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Haar pyramid
Functional differential inequalities
Comparison theorems
Weak solutions of initial problems
Language English
License http://creativecommons.org/licenses/by/2.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b471t-3874c527b8f3a8a151f57a1ad5ef0e263d882c427857bfc33a08d4f94b77133d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://www.proquest.com/docview/1314384798?pq-origsite=%requestingapplication%
PQID 1314384798
PQPubID 237789
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_ad34fd23dbef43df855922ff1c6d9927
biomedcentral_primary_oai_biomedcentral_com_1029_242X_2011_15
proquest_miscellaneous_1439768256
proquest_journals_1314384798
crossref_primary_10_1186_1029_242X_2011_15
springer_journals_10_1186_1029_242X_2011_15
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20110622
PublicationDateYYYYMMDD 2011-06-22
PublicationDate_xml – month: 6
  year: 2011
  text: 20110622
  day: 22
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of inequalities and applications
PublicationTitleAbbrev J Inequal Appl
PublicationYear 2011
Publisher Springer International Publishing
Springer Nature B.V
BioMed Central Ltd
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: BioMed Central Ltd
– name: SpringerOpen
References TopolskiKClassical methods for viscosity solutions of differential-functional inequalitiesNonlinear World199741180899.351271452501
BainovDKamontZMinchevEOn first order impulsive partial differential inequalitiesAppl Math Comput1994612072300815.35134127430710.1016/0096-3003(94)90048-5
KamontZHyperbolic Functional Differential Inequalities1999DordrechtKluwer Acadamic Publishers10.1007/978-94-011-4635-7
Cinquini CibrarioMSopra una class di sistemi de equazioni nonlineari a derivate parziali in piú variabili indipendentiAnn mat pura ed appl19851402232530575.3500780763910.1007/BF01776851
LaddeGSLakshmikanthamVVatsalaAMonotone Iterative Techniques for Nonlinear Differential Equations1985BostonPitmann Advanced Publishing Program
LakshimkanthamVVatsalaASGeneralized Quasilinearization for Nonlinear Problems1995DordrechtKluwer Acadamic Publication
TopolskiKOn the uniqueness of viscosity solutions for first order partial differential functional equationsAnn Plon Math19945965750804.351381270302
KamontZInfinite systems of hyperbolic functional differential inequalitiesNonlinear Anal TMA200251142914451022.35093193093510.1016/S0362-546X(01)00907-5
ByszewskiLFinite systems of strong nonlinear differential functional degenerate implicit inequalities with first order partial derivativesUniv Iagell Acta Math19922977841172979
Puźniakowska-GałuchEOn the local Cauchy problem for first order partial differential functional equationsAnn Polon Math20109839611195.35294260748510.4064/ap98-1-3
CinquiniSSopra i sistemi iperbolici di equazion a derivate parzaili (nonlinear) in piú variabili indipendentiAnn Mat pura ed appl19791202012140412.3505910.1007/BF02411944
LakshmikanthamVLeelaSDifferential and Integral Inequalities1969New YorkAcadamic Press
VanTDTsujiMThai SonNDThe Characteristics method and Its Generalizations for First Order Nonlinear Partial Differential equations2000Boca Raton, FLChapmann and Hall/CRC
SzarskiJComparison theorems for infinite systems of differential functional equations and strongly coupled infinite systems of first order partial differential equationsRocky Mt J Math19801023724657387310.1216/RMJ-1980-10-1-239
AugustynowiczAKamontZOn Kamke's functions in uniqueness theorems for first order partial differential functional equationsNonlinear Anal TMA1990148378500738.35014105553310.1016/0362-546X(90)90024-B
KamontZKoziełSFunctional differential inequalities with unbounded delayAnn Polon Math20068819371111.35139220495410.4064/ap88-1-2
BrandiPMarcelliCHaar Inequality in hereditary setting and applicationsRend Sem Math Univ Padova1966961771941438297
SzarskiJDifferential Inequalities1967WarsawPolish Scientific Publishers
J Szarski (9_CR2) 1967
P Brandi (9_CR6) 1966; 96
Z Kamont (9_CR12) 2006; 88
GS Ladde (9_CR3) 1985
J Szarski (9_CR9) 1980; 10
D Bainov (9_CR10) 1994; 61
L Byszewski (9_CR11) 1992; 29
K Topolski (9_CR15) 1997; 4
Z Kamont (9_CR8) 2002; 51
TD Van (9_CR5) 2000
S Cinquini (9_CR16) 1979; 120
A Augustynowicz (9_CR13) 1990; 14
V Lakshmikantham (9_CR1) 1969
Z Kamont (9_CR7) 1999
E Puźniakowska-Gałuch (9_CR18) 2010; 98
V Lakshimkantham (9_CR4) 1995
K Topolski (9_CR14) 1994; 59
M Cinquini Cibrario (9_CR17) 1985; 140
References_xml – reference: TopolskiKClassical methods for viscosity solutions of differential-functional inequalitiesNonlinear World199741180899.351271452501
– reference: VanTDTsujiMThai SonNDThe Characteristics method and Its Generalizations for First Order Nonlinear Partial Differential equations2000Boca Raton, FLChapmann and Hall/CRC
– reference: LakshimkanthamVVatsalaASGeneralized Quasilinearization for Nonlinear Problems1995DordrechtKluwer Acadamic Publication
– reference: BainovDKamontZMinchevEOn first order impulsive partial differential inequalitiesAppl Math Comput1994612072300815.35134127430710.1016/0096-3003(94)90048-5
– reference: KamontZKoziełSFunctional differential inequalities with unbounded delayAnn Polon Math20068819371111.35139220495410.4064/ap88-1-2
– reference: KamontZHyperbolic Functional Differential Inequalities1999DordrechtKluwer Acadamic Publishers10.1007/978-94-011-4635-7
– reference: LakshmikanthamVLeelaSDifferential and Integral Inequalities1969New YorkAcadamic Press
– reference: Puźniakowska-GałuchEOn the local Cauchy problem for first order partial differential functional equationsAnn Polon Math20109839611195.35294260748510.4064/ap98-1-3
– reference: TopolskiKOn the uniqueness of viscosity solutions for first order partial differential functional equationsAnn Plon Math19945965750804.351381270302
– reference: SzarskiJDifferential Inequalities1967WarsawPolish Scientific Publishers
– reference: LaddeGSLakshmikanthamVVatsalaAMonotone Iterative Techniques for Nonlinear Differential Equations1985BostonPitmann Advanced Publishing Program
– reference: BrandiPMarcelliCHaar Inequality in hereditary setting and applicationsRend Sem Math Univ Padova1966961771941438297
– reference: SzarskiJComparison theorems for infinite systems of differential functional equations and strongly coupled infinite systems of first order partial differential equationsRocky Mt J Math19801023724657387310.1216/RMJ-1980-10-1-239
– reference: AugustynowiczAKamontZOn Kamke's functions in uniqueness theorems for first order partial differential functional equationsNonlinear Anal TMA1990148378500738.35014105553310.1016/0362-546X(90)90024-B
– reference: Cinquini CibrarioMSopra una class di sistemi de equazioni nonlineari a derivate parziali in piú variabili indipendentiAnn mat pura ed appl19851402232530575.3500780763910.1007/BF01776851
– reference: CinquiniSSopra i sistemi iperbolici di equazion a derivate parzaili (nonlinear) in piú variabili indipendentiAnn Mat pura ed appl19791202012140412.3505910.1007/BF02411944
– reference: KamontZInfinite systems of hyperbolic functional differential inequalitiesNonlinear Anal TMA200251142914451022.35093193093510.1016/S0362-546X(01)00907-5
– reference: ByszewskiLFinite systems of strong nonlinear differential functional degenerate implicit inequalities with first order partial derivativesUniv Iagell Acta Math19922977841172979
– volume: 88
  start-page: 19
  year: 2006
  ident: 9_CR12
  publication-title: Ann Polon Math
  doi: 10.4064/ap88-1-2
– volume-title: Monotone Iterative Techniques for Nonlinear Differential Equations
  year: 1985
  ident: 9_CR3
– volume: 98
  start-page: 39
  year: 2010
  ident: 9_CR18
  publication-title: Ann Polon Math
  doi: 10.4064/ap98-1-3
– volume: 61
  start-page: 207
  year: 1994
  ident: 9_CR10
  publication-title: Appl Math Comput
  doi: 10.1016/0096-3003(94)90048-5
– volume: 29
  start-page: 77
  year: 1992
  ident: 9_CR11
  publication-title: Univ Iagell Acta Math
– volume: 140
  start-page: 223
  year: 1985
  ident: 9_CR17
  publication-title: Ann mat pura ed appl
  doi: 10.1007/BF01776851
– volume: 14
  start-page: 837
  year: 1990
  ident: 9_CR13
  publication-title: Nonlinear Anal TMA
  doi: 10.1016/0362-546X(90)90024-B
– volume: 96
  start-page: 177
  year: 1966
  ident: 9_CR6
  publication-title: Rend Sem Math Univ Padova
– volume: 51
  start-page: 1429
  year: 2002
  ident: 9_CR8
  publication-title: Nonlinear Anal TMA
  doi: 10.1016/S0362-546X(01)00907-5
– volume-title: The Characteristics method and Its Generalizations for First Order Nonlinear Partial Differential equations
  year: 2000
  ident: 9_CR5
– volume: 4
  start-page: 1
  year: 1997
  ident: 9_CR15
  publication-title: Nonlinear World
– volume: 120
  start-page: 201
  year: 1979
  ident: 9_CR16
  publication-title: Ann Mat pura ed appl
  doi: 10.1007/BF02411944
– volume-title: Differential Inequalities
  year: 1967
  ident: 9_CR2
– volume: 10
  start-page: 237
  year: 1980
  ident: 9_CR9
  publication-title: Rocky Mt J Math
  doi: 10.1216/RMJ-1980-10-1-239
– volume-title: Hyperbolic Functional Differential Inequalities
  year: 1999
  ident: 9_CR7
  doi: 10.1007/978-94-011-4635-7
– volume-title: Generalized Quasilinearization for Nonlinear Problems
  year: 1995
  ident: 9_CR4
– volume: 59
  start-page: 65
  year: 1994
  ident: 9_CR14
  publication-title: Ann Plon Math
  doi: 10.4064/ap-59-1-65-75
– volume-title: Differential and Integral Inequalities
  year: 1969
  ident: 9_CR1
SSID ssj0021384
ssib044744598
ssib008501289
Score 1.8406214
Snippet The article deals with functional differential inequalities generated by the Cauchy problem for nonlinear first-order partial functional differential...
Abstract The article deals with functional differential inequalities generated by the Cauchy problem for nonlinear first-order partial functional differential...
SourceID doaj
biomedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Applications of Mathematics
Classification
Comparison theorems
Derivatives
Differential equations
Functional differential inequalities
Functions (mathematics)
Haar pyramid
Inequalities
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Theorems
Weak solutions of initial problems
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlxaHkUNBeRKPbWyuvErzoEDIBBCak9FXYmD5cRjCYF2V-zS38-Mk402VSsuvcZx7HhmPN_M2DOMfbaBsk0CCJWqidAJWhGkdcIZADpVqMuG7jt__2Gvb_XN1Ew3Sn3RmbAuPXC3cN9CVDpFqWIDSauYHEJgKVMqWxvrWuZ75DjahjFFnOQMbbyDota60trUQ3xBlirXIi6pmKtxSvfxztJZ3EYkxRzkVGT3IdXLHV2FfxxpsJzof4RO_wioZj11tcPe9gCTn3U_tsvewGyPvevBJu9FebnP7n5BeOAD5_F54qTjOtcgX9dNQfl_5AhEu7uXaFVzctzydI-gUeS0nXxBa0hdkJd_5zTiy_fs9ury58W16CstiAaV04oS7OrWyKpxSQUXEAUkU4UyRANpAtKqiEC8paocpmpSq1SYuKhTrZuKjNyoDtjWbD6DD4y3aFInRH0WLFrdFuoUoK0NmaExBFAFOx2tpl90WTU85bket6DIeaKGJ2p4ooYvTcG-rFd_6JoNGWf_9vI50Wc0Rn6AHOZ7DvOvcVjBjtbU9b2AL32pqG68rmpXsE9DM4omxVvCDObP-E4Ge2iC24J9XXPFxif-NevD_zHrj2y7c39bIeUR21o9PcMx4qdVc5JF5QURyhOW
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9VAEF-kXuxB-yVGq6zgSVl42a9sDh6qWEqhniw-6GHZZGdFLO-V5tW_35nN5mFKPXgKJLtJyMxkfr-dnRnG3tlA1SYBhErNQugEvQjSOuEMAO0q1HVH-c4XX-3ZpT5fmmXJ4x6m3e5TSDL_qbNZO4tHSbEAuRR5WY8Syx8bou4UoaUUh8KyauV0CV8-OO1eZvv1zCHluv0zsHkvPprdzukee1rwIj8ZBbzPHsHqgD0r2JEXyxwO2O7Ftv7qcMiuvkP4xbdqxdeJkwMb1_341BQFjfuaI8ocEyuRMnNaleXpJyJCkWty8hvSLJqCivo71wgfjtjl6Zdvn89EaaMgOvQ8G6qeq3sjm84lFVxAF59ME-oQDaQFSKsiouyeWm6Ypku9UmHhok6t7hpisFE9Zzur9QpeMN4jX04I6SxYpNQW2hSgbw1xzBgCqIp9nH1bfzOWzPBUxHp-BUXrSTaeZONJNr42FXs_yWI7NbMUZx8a_ImkNXtGPrG-_eGL3fkQlU5RqthB0iomhwxKypTq3sa2lU3FjidZ-2K9g68VNYXXTesq9nZ7Ge2OgilhBes7HJORHPJrW7EPk478dYt_vfXL_xr9ij0ZF7GtkPKY7Wxu7-A1oqBN9yZr_R_eNgGo
  priority: 102
  providerName: Springer Nature
Title Weak solutions of functional differential inequalities with first-order partial derivatives
URI https://link.springer.com/article/10.1186/1029-242X-2011-15
https://www.proquest.com/docview/1314384798
https://www.proquest.com/docview/1439768256
http://dx.doi.org/10.1186/1029-242X-2011-15
https://doaj.org/article/ad34fd23dbef43df855922ff1c6d9927
Volume 2011
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELbY9gIHHguIwFIZiRMoovErzgGhbrVlVWlXCFhRiUPkxDZCrJqy6fL7mXGcQBBw8SGPJuq8vpmJ5yPkuTI4bdK5lPt8ngrv6tQwpVMtncOvCkVW4X7ns3N1eiHWG7mJBbc2flbZ-8TgqG1TY438VcaRqFvkhX6z-54iaxR2VyOFxgGZggvWekKmxyfn794PGqUlOuAhYAuRCyGLoc_AMh44iTMkdZWai9j3zLQCd8Kw98A2aSgjIm_uaEv85SiShYH_I5T6R2M1xKvVXXI7Ak266DTjHrnhtofkTgSdNJp0e0hunQ2DW9v75PMnZ77RQR9p4ylGvq5gSHs2FfAKlxTgabcjE3JtiuVc6r8ClEzDME-6Q5XEW0DDf4Th4u0DcrE6-bg8TSP_QlpByNrj2F1RS5ZX2nOjDWADL3OTGSudnzumuAV4XiNXh8wrX3Nu5toKX4gqx9TX8odksm227hGhNSTaHrCgcgpyceUKb1xdSExOrTGOJ-T16L8td92sjRKnX4_PgFKUKJsSZVOibMpMJuRFL4vh1pDeaPW3i49RWqNnhAPN1ZcyGmxpLBfeMm4r5wW3XkPqxZj3Wa1sUbA8IUe9rMto9m35S0kT8mw4DQaLXRizdc01XBMgICTmKiEvex357Sf-9daP___AJ-RmV-5WKWNHZLK_unZPAS_tqxk5EPO3sOoVrNPFYv1hPYuGAkeXTOCqlrNQj_gJErYV-g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADB6VcgAOPAqIQIFBggsoYjOvTA4V4rVsabenVqzEYZhkZhCi2izNFsSf4jdiTx4QBNx63bxWsf35sx3bhDxUFqdNep_ykE9SEXyVWqZ0qqX3-FWhyErsd54fqNmReLuQiw3yo--Fwc8qe0yMQO3qCnPkTzOOi7pFXuhnqy8pbo3C6mq_QqNViz3__RuEbM3O7iuQ7yPGpq8PX87SbqtAWgIQr3GYrKgky0sduNUWPF6Quc2skz5MPFPcAemscAOFzMtQcW4n2olQiDLHgM5xuO85cl5w8OTYmT59M-ivlgj3Az0QIhdCFkNVg2U8bkDOcIWs1Fx0VdZMKwAvhpUOtkhj0hK39I4a8I9HfjOuFxhx4j_KuNE7Tq-Syx2tpc9bPbxGNvxyi1zpKC7tAKTZIpfmw5jY5jp5_87bz3TQfloHin62TU_SfncLYNAxBTLc9n9CZE8xeUzDJyCuaRwdSldoAHgJ2NPXOMq8uUGOzkQuN8nmsl76W4RWENYHYJ7KK4j8lS-C9VUhMRR21nqekJ3RuzWrdrKHwVnb4yOgggZlY1A2BmVjMpmQx70shktjMKXV305-gdIaPSP-UJ98NB08GOu4CI5xV_oguAsaAj3GQsgq5YqC5QnZ7mVtOpBpzC-TSMiD4TDAA9Z87NLXp3BOJJwaiG1CnvQ68tst_vWvb___gffJhdnhfN_s7x7s3SEX20S7ShnbJpvrk1N_F5jaurwXzYOSD2dtjz8Bt5JKtg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgwKOAWChgJLiAom78SJxDhSjtqqV0VSEqVurBOLFdVVS7S7MF8df4dczkBUHArde8lZn5_I3Hng_gWWKp26T3kQjpKJLBF5HliY608p5WFco4p_3OB5Nk90i-narpCvxo98LQssoWEyugdvOC5sg3YkFC3TLN9EZolkUcbo9fLb5EpCBFldZWTqN2kX3__Rumb-Xm3jba-jnn450Pb3ajRmEgyhGUl9RYVhaKp7kOwmqLo19QqY2tUz6MPE-EQwJakBqFSvNQCGFH2smQyTyl5M4JfO4VWE0pKxrA6tbO5PB9581aEfh3ZEHKVEqVdTUOHotKDzkmQVmlhWxqrrFOEMo41T34NKqmMEmzt7cd_6w3ilZiAz2G_EdRtxorx7fgRkNy2evaK2_Dip-twc2G8LIGTso1uH7QNY0t78DxR28_sy4W2DwwGnXryUrWKrkgIp0xpMb1blDM8xlNJbNwijQ2qhqJsgWFA92C0fW1amxe3oWjS7HMPRjM5jN_H1iBSX5AHpr4JEU-4rNgfZEpSoydtV4MYbP3b82i7vNhqPN2_ww6pCHbGLKNIduYWA3hRWuL7tYqtdLJ3y7eImv13lEdmJ-fmAYsjHVCBseFy32QwgWNaR_nIcRF4rKMp0NYb21tGsgpza8AGcLT7jSCBVWA7MzPL_Cain5qpLlDeNn6yG-P-NdXP_j_C5_AVYxF825vsv8QrtWz7knE-ToMlucX_hHStmX-uIkPBp8uOyR_AvaZUEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak+solutions+of+functional+differential+inequalities+with+first-order+partial+derivatives&rft.jtitle=Journal+of+inequalities+and+applications&rft.au=Kamont%2C+Zdzis%C3%85%2Caw&rft.date=2011-06-22&rft.pub=Springer+Nature+B.V&rft.issn=1025-5834&rft.eissn=1029-242X&rft.volume=2011&rft.spage=1&rft_id=info:doi/10.1186%2F1029-242X-2011-15&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2906827361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-242X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-242X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-242X&client=summon