A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences
Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the number of detected DTI obtained by high-throughput techniques has been increasing, the number of known DTI is still limited. On the other hand,...
Saved in:
Published in | Current protein & peptide science Vol. 19; no. 5; p. 468 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United Arab Emirates
01.05.2018
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the number of detected DTI obtained by high-throughput techniques has been increasing, the number of known DTI is still limited. On the other hand, the experimental methods for detecting the interactions among drugs and proteins are costly and inefficient.
Therefore, computational approaches for predicting DTI are drawing increasing attention in recent years. In this paper, we report a novel computational model for predicting the DTI using extremely randomized trees model and protein amino acids information.
More specifically, the protein sequence is represented as a Pseudo Substitution Matrix Representation (Pseudo-SMR) descriptor in which the influence of biological evolutionary information is retained. For the representation of drug molecules, a novel fingerprint feature vector is utilized to describe its substructure information. Then the DTI pair is characterized by concatenating the two vector spaces of protein sequence and drug substructure. Finally, the proposed method is explored for predicting the DTI on four benchmark datasets: Enzyme, Ion Channel, GPCRs and Nuclear Receptor.
The experimental results demonstrate that this method achieves promising prediction accuracies of 89.85%, 87.87%, 82.99% and 81.67%, respectively. For further evaluation, we compared the performance of Extremely Randomized Trees model with that of the state-of-the-art Support Vector Machine classifier. And we also compared the proposed model with existing computational models, and confirmed 15 potential drug-target interactions by looking for existing databases.
The experiment results show that the proposed method is feasible and promising for predicting drug-target interactions for new drug candidate screening based on sizeable features. |
---|---|
AbstractList | Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the number of detected DTI obtained by high-throughput techniques has been increasing, the number of known DTI is still limited. On the other hand, the experimental methods for detecting the interactions among drugs and proteins are costly and inefficient.
Therefore, computational approaches for predicting DTI are drawing increasing attention in recent years. In this paper, we report a novel computational model for predicting the DTI using extremely randomized trees model and protein amino acids information.
More specifically, the protein sequence is represented as a Pseudo Substitution Matrix Representation (Pseudo-SMR) descriptor in which the influence of biological evolutionary information is retained. For the representation of drug molecules, a novel fingerprint feature vector is utilized to describe its substructure information. Then the DTI pair is characterized by concatenating the two vector spaces of protein sequence and drug substructure. Finally, the proposed method is explored for predicting the DTI on four benchmark datasets: Enzyme, Ion Channel, GPCRs and Nuclear Receptor.
The experimental results demonstrate that this method achieves promising prediction accuracies of 89.85%, 87.87%, 82.99% and 81.67%, respectively. For further evaluation, we compared the performance of Extremely Randomized Trees model with that of the state-of-the-art Support Vector Machine classifier. And we also compared the proposed model with existing computational models, and confirmed 15 potential drug-target interactions by looking for existing databases.
The experiment results show that the proposed method is feasible and promising for predicting drug-target interactions for new drug candidate screening based on sizeable features. |
Author | You, Zhu-Hong Huang, Yu-An Chen, Xing |
Author_xml | – sequence: 1 givenname: Yu-An surname: Huang fullname: Huang, Yu-An organization: Department of Computing, Hong Kong Polytechnic University, Hung Hom, Hong Kong – sequence: 2 givenname: Zhu-Hong surname: You fullname: You, Zhu-Hong organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, China – sequence: 3 givenname: Xing surname: Chen fullname: Chen, Xing organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27875970$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j9tKAzEYhIMo9qCvIPEBVnPYTbKXpVotVBTaXpcc_pSVbrYm2Yu-fdcTDAzDB8PMBF2GLgBC95Q8MCrLR8pVzQiXVAkhqKCUMUo4qeQFGlMlq6KqKjJCk5Q-CWFEKX6NRkwOpJZkjPwMr08pQ6tzY_FHBNfY3HQBdx4_xX5fbHTcQ8bLkCHqH5TwNjVhj9-6A9j-oCNeDBHiMTYhJ6yDG3q6DE3Aa_jqIVhIN-jK60OC2z-fou3ieTN_LVbvL8v5bFWYUpJcSCV8aQhw4SkXSrvaqJJqxwVwbaWFbylrqPbcAjPKWSmEcVQYxXnp2RTd_fYee9OC2w2bWh1Pu__D7AzLMFv0 |
CitedBy_id | crossref_primary_10_1016_j_chemolab_2024_105224 crossref_primary_10_1109_TCBB_2019_2940187 crossref_primary_10_1039_D1MO00237F crossref_primary_10_1109_ACCESS_2019_2910277 crossref_primary_10_2174_1574893617666220509185052 crossref_primary_10_1109_JBHI_2022_3219213 crossref_primary_10_1186_s12967_020_02490_x crossref_primary_10_2174_0113892002268739231211063718 crossref_primary_10_1038_s41598_020_63842_7 crossref_primary_10_1016_j_ab_2020_113978 crossref_primary_10_1186_s12918_018_0664_9 crossref_primary_10_3390_molecules23071697 crossref_primary_10_1109_TCBB_2020_2999084 crossref_primary_10_1016_j_artmed_2024_102864 crossref_primary_10_1039_D0RA02297G crossref_primary_10_1007_s00530_024_01325_9 crossref_primary_10_1093_bib_bbab046 crossref_primary_10_3390_molecules26247474 crossref_primary_10_1002_minf_202200102 crossref_primary_10_1186_s12920_018_0429_8 crossref_primary_10_1016_j_crmeth_2023_100411 crossref_primary_10_1109_ACCESS_2020_3026479 crossref_primary_10_1007_s12539_021_00488_7 crossref_primary_10_1016_j_chemolab_2021_104270 crossref_primary_10_1007_s11390_021_0844_8 crossref_primary_10_1155_2020_4516250 crossref_primary_10_1016_j_ab_2019_113507 crossref_primary_10_1186_s12864_022_08423_w crossref_primary_10_1186_s12859_019_3263_x crossref_primary_10_1016_j_nanoen_2021_106314 crossref_primary_10_3389_fphar_2023_1132012 crossref_primary_10_3389_fchem_2021_662688 crossref_primary_10_3389_fpubh_2022_902123 crossref_primary_10_2174_0929867326666190808154841 crossref_primary_10_1016_j_jbi_2018_11_001 crossref_primary_10_1007_s11042_022_13508_5 crossref_primary_10_1038_s41598_018_28577_6 crossref_primary_10_1515_mr_2023_0038 crossref_primary_10_3892_ol_2019_10889 crossref_primary_10_1186_s12859_024_05698_6 crossref_primary_10_1177_1753425919887411 crossref_primary_10_1016_j_jbi_2019_103159 crossref_primary_10_1088_1742_6596_1684_1_012072 crossref_primary_10_1186_s12967_019_2127_5 crossref_primary_10_1016_j_heliyon_2020_e03444 crossref_primary_10_1016_j_ygeno_2018_12_007 crossref_primary_10_1186_s13071_023_05698_0 crossref_primary_10_1093_bib_bbz157 crossref_primary_10_18632_oncotarget_20915 crossref_primary_10_1109_TCBB_2021_3066813 |
ContentType | Journal Article |
Copyright | Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org. |
Copyright_xml | – notice: Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org. |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.2174/1389203718666161122103057 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1875-5550 |
ExternalDocumentID | 27875970 |
Genre | Journal Article |
GroupedDBID | --- .5. 0R~ 29F 36B 4.4 53G 5GY AAEGP ABEEF ABJNI ACGFS ACITR ACIWK ACPRK AENEX AFRAH AFUQM AGJNZ ALMA_UNASSIGNED_HOLDINGS ANTIV C1A CGR CS3 CUY CVF DU5 EBS ECM EIF EJD F5P GH2 HZ~ IPNFZ KCGFV KFI NPM O9- P2P RIG |
ID | FETCH-LOGICAL-b470t-786f4b0e36f1368ad9b841ad36e3ac7ce7ce78cb1af3ce2b8dc766bd16b8334f2 |
IngestDate | Thu Jan 02 23:04:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | computational model extremely randomized trees drug substructure fingerprint pseudo substitution matrix representation Drug-target interactions |
Language | English |
License | Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-b470t-786f4b0e36f1368ad9b841ad36e3ac7ce7ce78cb1af3ce2b8dc766bd16b8334f2 |
PMID | 27875970 |
ParticipantIDs | pubmed_primary_27875970 |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United Arab Emirates |
PublicationPlace_xml | – name: United Arab Emirates |
PublicationTitle | Current protein & peptide science |
PublicationTitleAlternate | Curr Protein Pept Sci |
PublicationYear | 2018 |
SSID | ssj0020883 |
Score | 2.4206135 |
Snippet | Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 468 |
SubjectTerms | Computer Simulation Databases, Protein Datasets as Topic Drug Discovery Models, Molecular Molecular Structure Pharmaceutical Preparations - chemistry Protein Binding Proteins - chemistry Structure-Activity Relationship |
Title | A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27875970 |
Volume | 19 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBabBNpcQtK0TfNChd4WpbZly9qjyYMlkNDDLmxOQZKl9tLdZR-XnvrTO3rYFkuWtgFjjGWM8Xz-NDMefYPQF_hihKCFIpzxAgKU3BApTE5YAmgulIIp3aYGHh7ZcJzfT4pJr_c7qlpar-SV-vXiupLXWBXOgV3tKtn_sGx7UzgBx2Bf2IOFYf9PNq6C4LhTXf22sP9cGgfwZrH-TkauzNtn_fwChmXf1wg8NF1x-3cur2fTe6tls3TAdsAEFglF1rH_2sg5zcNFFjhzWxhT636YTDughFT005pU04hd3P-QH2synIVZ01UXePqbNDNpSESkvCv7u9KePCH2IUXhhWRbdh1EKCoiqsx9O51NCrchks0mgCOVWTlBDvEVeKVpltmGaF7MOjLt_KezbQa8A6FR8vfRDXXtZmgH7UCcYRun2mxPCNiBgekb9Dk81detz2QVpcN9NqIT56WMDtFBCC9w5bFyhHp6-g69vW66-h0jU-EOM7jDDJ4ZHGEGx5jBDjO4xQyOMYMBMzhgBreYeY_Gd7ej6yEJvTaIzMtkRUrOTC4TTZlJKeOiHkiep6KmTFOhSqXtxpVMhaFKZ5LXqmRM1imTnNLcZB_Q7nQ21ScIF5zRLKVGDUxqG7nIMinrpNbKCJPVgn5CH_0rep57QZXn5uWdbh05Q_sd5M7RnoEvWF-AO7iSl85mfwCikF9c |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Prediction+of+Drug-Target+Interactions+Using+Molecular+Fingerprints+and+Protein+Sequences&rft.jtitle=Current+protein+%26+peptide+science&rft.au=Huang%2C+Yu-An&rft.au=You%2C+Zhu-Hong&rft.au=Chen%2C+Xing&rft.date=2018-05-01&rft.eissn=1875-5550&rft.volume=19&rft.issue=5&rft.spage=468&rft_id=info:doi/10.2174%2F1389203718666161122103057&rft_id=info%3Apmid%2F27875970&rft_id=info%3Apmid%2F27875970&rft.externalDocID=27875970 |