A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences

Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the number of detected DTI obtained by high-throughput techniques has been increasing, the number of known DTI is still limited. On the other hand,...

Full description

Saved in:
Bibliographic Details
Published inCurrent protein & peptide science Vol. 19; no. 5; p. 468
Main Authors Huang, Yu-An, You, Zhu-Hong, Chen, Xing
Format Journal Article
LanguageEnglish
Published United Arab Emirates 01.05.2018
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the number of detected DTI obtained by high-throughput techniques has been increasing, the number of known DTI is still limited. On the other hand, the experimental methods for detecting the interactions among drugs and proteins are costly and inefficient. Therefore, computational approaches for predicting DTI are drawing increasing attention in recent years. In this paper, we report a novel computational model for predicting the DTI using extremely randomized trees model and protein amino acids information. More specifically, the protein sequence is represented as a Pseudo Substitution Matrix Representation (Pseudo-SMR) descriptor in which the influence of biological evolutionary information is retained. For the representation of drug molecules, a novel fingerprint feature vector is utilized to describe its substructure information. Then the DTI pair is characterized by concatenating the two vector spaces of protein sequence and drug substructure. Finally, the proposed method is explored for predicting the DTI on four benchmark datasets: Enzyme, Ion Channel, GPCRs and Nuclear Receptor. The experimental results demonstrate that this method achieves promising prediction accuracies of 89.85%, 87.87%, 82.99% and 81.67%, respectively. For further evaluation, we compared the performance of Extremely Randomized Trees model with that of the state-of-the-art Support Vector Machine classifier. And we also compared the proposed model with existing computational models, and confirmed 15 potential drug-target interactions by looking for existing databases. The experiment results show that the proposed method is feasible and promising for predicting drug-target interactions for new drug candidate screening based on sizeable features.
AbstractList Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the number of detected DTI obtained by high-throughput techniques has been increasing, the number of known DTI is still limited. On the other hand, the experimental methods for detecting the interactions among drugs and proteins are costly and inefficient. Therefore, computational approaches for predicting DTI are drawing increasing attention in recent years. In this paper, we report a novel computational model for predicting the DTI using extremely randomized trees model and protein amino acids information. More specifically, the protein sequence is represented as a Pseudo Substitution Matrix Representation (Pseudo-SMR) descriptor in which the influence of biological evolutionary information is retained. For the representation of drug molecules, a novel fingerprint feature vector is utilized to describe its substructure information. Then the DTI pair is characterized by concatenating the two vector spaces of protein sequence and drug substructure. Finally, the proposed method is explored for predicting the DTI on four benchmark datasets: Enzyme, Ion Channel, GPCRs and Nuclear Receptor. The experimental results demonstrate that this method achieves promising prediction accuracies of 89.85%, 87.87%, 82.99% and 81.67%, respectively. For further evaluation, we compared the performance of Extremely Randomized Trees model with that of the state-of-the-art Support Vector Machine classifier. And we also compared the proposed model with existing computational models, and confirmed 15 potential drug-target interactions by looking for existing databases. The experiment results show that the proposed method is feasible and promising for predicting drug-target interactions for new drug candidate screening based on sizeable features.
Author You, Zhu-Hong
Huang, Yu-An
Chen, Xing
Author_xml – sequence: 1
  givenname: Yu-An
  surname: Huang
  fullname: Huang, Yu-An
  organization: Department of Computing, Hong Kong Polytechnic University, Hung Hom, Hong Kong
– sequence: 2
  givenname: Zhu-Hong
  surname: You
  fullname: You, Zhu-Hong
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, China
– sequence: 3
  givenname: Xing
  surname: Chen
  fullname: Chen, Xing
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27875970$$D View this record in MEDLINE/PubMed
BookMark eNo1j9tKAzEYhIMo9qCvIPEBVnPYTbKXpVotVBTaXpcc_pSVbrYm2Yu-fdcTDAzDB8PMBF2GLgBC95Q8MCrLR8pVzQiXVAkhqKCUMUo4qeQFGlMlq6KqKjJCk5Q-CWFEKX6NRkwOpJZkjPwMr08pQ6tzY_FHBNfY3HQBdx4_xX5fbHTcQ8bLkCHqH5TwNjVhj9-6A9j-oCNeDBHiMTYhJ6yDG3q6DE3Aa_jqIVhIN-jK60OC2z-fou3ieTN_LVbvL8v5bFWYUpJcSCV8aQhw4SkXSrvaqJJqxwVwbaWFbylrqPbcAjPKWSmEcVQYxXnp2RTd_fYee9OC2w2bWh1Pu__D7AzLMFv0
CitedBy_id crossref_primary_10_1016_j_chemolab_2024_105224
crossref_primary_10_1109_TCBB_2019_2940187
crossref_primary_10_1039_D1MO00237F
crossref_primary_10_1109_ACCESS_2019_2910277
crossref_primary_10_2174_1574893617666220509185052
crossref_primary_10_1109_JBHI_2022_3219213
crossref_primary_10_1186_s12967_020_02490_x
crossref_primary_10_2174_0113892002268739231211063718
crossref_primary_10_1038_s41598_020_63842_7
crossref_primary_10_1016_j_ab_2020_113978
crossref_primary_10_1186_s12918_018_0664_9
crossref_primary_10_3390_molecules23071697
crossref_primary_10_1109_TCBB_2020_2999084
crossref_primary_10_1016_j_artmed_2024_102864
crossref_primary_10_1039_D0RA02297G
crossref_primary_10_1007_s00530_024_01325_9
crossref_primary_10_1093_bib_bbab046
crossref_primary_10_3390_molecules26247474
crossref_primary_10_1002_minf_202200102
crossref_primary_10_1186_s12920_018_0429_8
crossref_primary_10_1016_j_crmeth_2023_100411
crossref_primary_10_1109_ACCESS_2020_3026479
crossref_primary_10_1007_s12539_021_00488_7
crossref_primary_10_1016_j_chemolab_2021_104270
crossref_primary_10_1007_s11390_021_0844_8
crossref_primary_10_1155_2020_4516250
crossref_primary_10_1016_j_ab_2019_113507
crossref_primary_10_1186_s12864_022_08423_w
crossref_primary_10_1186_s12859_019_3263_x
crossref_primary_10_1016_j_nanoen_2021_106314
crossref_primary_10_3389_fphar_2023_1132012
crossref_primary_10_3389_fchem_2021_662688
crossref_primary_10_3389_fpubh_2022_902123
crossref_primary_10_2174_0929867326666190808154841
crossref_primary_10_1016_j_jbi_2018_11_001
crossref_primary_10_1007_s11042_022_13508_5
crossref_primary_10_1038_s41598_018_28577_6
crossref_primary_10_1515_mr_2023_0038
crossref_primary_10_3892_ol_2019_10889
crossref_primary_10_1186_s12859_024_05698_6
crossref_primary_10_1177_1753425919887411
crossref_primary_10_1016_j_jbi_2019_103159
crossref_primary_10_1088_1742_6596_1684_1_012072
crossref_primary_10_1186_s12967_019_2127_5
crossref_primary_10_1016_j_heliyon_2020_e03444
crossref_primary_10_1016_j_ygeno_2018_12_007
crossref_primary_10_1186_s13071_023_05698_0
crossref_primary_10_1093_bib_bbz157
crossref_primary_10_18632_oncotarget_20915
crossref_primary_10_1109_TCBB_2021_3066813
ContentType Journal Article
Copyright Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Copyright_xml – notice: Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.2174/1389203718666161122103057
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1875-5550
ExternalDocumentID 27875970
Genre Journal Article
GroupedDBID ---
.5.
0R~
29F
36B
4.4
53G
5GY
AAEGP
ABEEF
ABJNI
ACGFS
ACITR
ACIWK
ACPRK
AENEX
AFRAH
AFUQM
AGJNZ
ALMA_UNASSIGNED_HOLDINGS
ANTIV
C1A
CGR
CS3
CUY
CVF
DU5
EBS
ECM
EIF
EJD
F5P
GH2
HZ~
IPNFZ
KCGFV
KFI
NPM
O9-
P2P
RIG
ID FETCH-LOGICAL-b470t-786f4b0e36f1368ad9b841ad36e3ac7ce7ce78cb1af3ce2b8dc766bd16b8334f2
IngestDate Thu Jan 02 23:04:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords computational model
extremely randomized trees
drug substructure fingerprint
pseudo substitution matrix representation
Drug-target interactions
Language English
License Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b470t-786f4b0e36f1368ad9b841ad36e3ac7ce7ce78cb1af3ce2b8dc766bd16b8334f2
PMID 27875970
ParticipantIDs pubmed_primary_27875970
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United Arab Emirates
PublicationPlace_xml – name: United Arab Emirates
PublicationTitle Current protein & peptide science
PublicationTitleAlternate Curr Protein Pept Sci
PublicationYear 2018
SSID ssj0020883
Score 2.4206135
Snippet Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the...
SourceID pubmed
SourceType Index Database
StartPage 468
SubjectTerms Computer Simulation
Databases, Protein
Datasets as Topic
Drug Discovery
Models, Molecular
Molecular Structure
Pharmaceutical Preparations - chemistry
Protein Binding
Proteins - chemistry
Structure-Activity Relationship
Title A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences
URI https://www.ncbi.nlm.nih.gov/pubmed/27875970
Volume 19
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBabBNpcQtK0TfNChd4WpbZly9qjyYMlkNDDLmxOQZKl9tLdZR-XnvrTO3rYFkuWtgFjjGWM8Xz-NDMefYPQF_hihKCFIpzxAgKU3BApTE5YAmgulIIp3aYGHh7ZcJzfT4pJr_c7qlpar-SV-vXiupLXWBXOgV3tKtn_sGx7UzgBx2Bf2IOFYf9PNq6C4LhTXf22sP9cGgfwZrH-TkauzNtn_fwChmXf1wg8NF1x-3cur2fTe6tls3TAdsAEFglF1rH_2sg5zcNFFjhzWxhT636YTDughFT005pU04hd3P-QH2synIVZ01UXePqbNDNpSESkvCv7u9KePCH2IUXhhWRbdh1EKCoiqsx9O51NCrchks0mgCOVWTlBDvEVeKVpltmGaF7MOjLt_KezbQa8A6FR8vfRDXXtZmgH7UCcYRun2mxPCNiBgekb9Dk81detz2QVpcN9NqIT56WMDtFBCC9w5bFyhHp6-g69vW66-h0jU-EOM7jDDJ4ZHGEGx5jBDjO4xQyOMYMBMzhgBreYeY_Gd7ej6yEJvTaIzMtkRUrOTC4TTZlJKeOiHkiep6KmTFOhSqXtxpVMhaFKZ5LXqmRM1imTnNLcZB_Q7nQ21ScIF5zRLKVGDUxqG7nIMinrpNbKCJPVgn5CH_0rep57QZXn5uWdbh05Q_sd5M7RnoEvWF-AO7iSl85mfwCikF9c
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Prediction+of+Drug-Target+Interactions+Using+Molecular+Fingerprints+and+Protein+Sequences&rft.jtitle=Current+protein+%26+peptide+science&rft.au=Huang%2C+Yu-An&rft.au=You%2C+Zhu-Hong&rft.au=Chen%2C+Xing&rft.date=2018-05-01&rft.eissn=1875-5550&rft.volume=19&rft.issue=5&rft.spage=468&rft_id=info:doi/10.2174%2F1389203718666161122103057&rft_id=info%3Apmid%2F27875970&rft_id=info%3Apmid%2F27875970&rft.externalDocID=27875970